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1 Introduction

We built a 2-player virtual air hockey game. Our goal was to implement an exciting and easy-to-
play game without the burdensome physical setup. The players are able to control the mallets
by moving two colored squares on a desk. On the screen, we render two perspectives of our
virtual air hockey table, one for each player.

We picked this project for two reasons. Firstly, implementing air hockey is fun. Air hockey
is a timeless classic that we grew up with, and reliving our childhood was one reason our project
was fun to work on. Building a game also introduced an interactive component of our product
that other people could enjoy. Second, air hockey presented interesting technical challenges.
For example, the implementation of a realistic physics engine and the generation of smooth
gameplay requires efficient design and attention to detail. This game also allowed for flexible
reach goals, since there is always room for additional features.

Air hockey works as follows. In physical air hockey, two players control mallets that are
used to strike a puck, which slides across a rectangular table with minimal friction. The puck
bounces off the four table sides, which are raised to form walls. Along the two shorter sides of
the table are two goals, one defended by each player. The objective of the game is to hit the
puck into the opponent’s goal. When a goal is scored, the scoring player wins a point.

In retrospect, we found this project challenging to implement cleanly. Smooth gameplay
requires handling noisy camera inputs well. The physics was nontrivial to simulate. For example,
the speed of the puck varies considerably throughout a game in an actual air hockey game. Given
that we have a table size restriction in pixels and collision detection has to be done in digital
circuits, the movement of pucks were hard to control at high velocities. Further, we were not
able to reach our original goal of implementing 3-dimensional graphics. After making some
progress, we ran into some unexpected problems we were not able to overcome and settled on
2-dimensional graphics instead.

Overall, however, we were still able to produce a working prototype (in time for the video
recording, but unfortunately not in time for the checkoff). The object recognition module was
successful in providing a smooth movement for users’ mallets while the physics module could
speed up or slow down the puck using the mallets’ momentum. Our clean graphics interface
produced nostalgic retro-style fonts and color schemes.

2 Summary

We designed our system so that members of our team could effectively work in parallel,
such that individuals would be minimally bottlenecked by the other members until the final
integration. We separated our system into four abstract components that interfaced with one
another: object recognition, physics engine, graphical interface, and game logic (Figure 1).

The object recognition module is responsible for interpreting the user input (movement of
two colored squares on the table) and translating the information into two mallet positions on
our virtual representation of the air hockey table. The physics engine is responsible for taking
in object positions (2 mallets and a puck) as input and detecting collisions with the puck. The
physics engine then outputs the updated puck positions. The graphical interface is responsible
for producing the two perspectives of the hockey table along with the objects on it. In addition,
the graphics interface displays any relevant information about the game state, such as the
current score, when the game is paused, etc. To accomplish this, the graphical interface takes
in information about the game state and object positions. Finally, the module that glues the
other components together is the game logic. The game logic component keeps track of current
game state information (scores, etc.) and handles IO signals (pause/restart/replay, etc.).
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Figure 1: The overall block diagram features four modules. The object recognition module converts
a camera input into mallet positions, which are then fed into the game logic module. The game logic
module keeps track of the object positions and player scores. Object positions are updated with help
from the physics module, and the game is displayed using the graphics module. The fifth module in the
bottom left is just for debouncing input and output and is relatively minor.

Yuqing was responsible for the object recognition module. Abe was responsible for the
physics module and the game logic module. Alex was responsible for the graphical interface.
Lastly, we were all responsible for the integration of the 4 modules.

3 Modules

3.1 Object Recognition (Yuqing)

3.1.1 Overview

First we will give a high-level overview of the object recognition component, shown in Figure 2.
The purpose of this component is to process the NTSC video stream from the camera as

input and ultimately determine the positions of the two mallets on the virtual air hockey table.
Figure 3 below shows the physical setup of the mallet controls recorded by the camera.

The object recognition process can be generally organized into two separate stages. The
first stage involves transforming the input data from the camera into a useful form. Next, in
the second stage we use this modified camera data to generate the positions of the two mallets
on our air hockey table. Our virtual table is a 1024 x 512 rectangle on which Player 1 stands
from the left and Player 2 stands from the right. Figure 4 demonstrates a sample output of the
object recognition component corresponding to an input in Figure 3. The outputted values are
the coordinates of the two mallets.

3.1.2 Module Details

In the first stage of object recognition, we process the camera input into a more readily usable
form. The module reads in NTSC video data from the camera as a YCrCb color stream using the
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Figure 2: The object recognition module. This module interprets the camera input and produces two
mallet positions on the virtual air hockey table.

Figure 3: Object recognition setup. The two colored squares function as mallet controls. Players can
slide the mallet controls anywhere in their allocated half of the legal playing field. Boundaries of the
legal playing field are in red.

staff-provided ntsc code module. Then, we convert the YCrCb data into RGB format and store
the result in ZBT memory, which we implemented by modifying the staff-provided ntsc to zbt
module that stores grayscale data. Finally, we read the RGB data from ZBT memory and
convert it to HSV format, which more readily facilitates color detection. Detecting color in
HSV requires us to check only the hue (H) bits, while in RGB format we would need to check
all of the RGB bits. This allows more convenient calibration. Furthermore, isolation of the hue
component possibly allows for more resilient color detection.

The second stage of object recognition is more involved. In this stage, we take the HSV
color data corresponding to our color input and produce the coordinates of the two mallets
on the virtual table. Our system involves two mallet detectors, one for each player. The
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Figure 4: Sample results of object recognition. The mallet controls are interpreted as if the players were
standing on opposite sides of the table.

Figure 5: Mallet detector module. The mallet detection process consists of a few steps.

Mallet Detector modules receive a stream of VGA pixel coordinates, hcount and vcount, along
with their corresponding HSV data. Each Mallet Detector outputs a single mallet position
(corresponding to player 1 or player 2). Figure 5 summarizes the parts of the Mallet Detector
module. We omit some details and rename some modules for clarity.

Inside the mallet detector, we first have a Color Detector module that sends a high “match”
signal whenever the inputted hue value is within a target range. For player 1 this target range
is a shade of green, and for player 2 this target range is a shade of blue. This signal is used by
the center of mass calculator, which calculates the center of mass of a given color range within
a single frame.

The center of mass calculator module consists of three accumulators and two dividers. The
center of mass is calculated by averaging the x-coordinates and y-coordinates of all pixels that
fall in the color range (i.e. for which the “match” signal from the Color Detector is high). To
do this, we keep separate sums for the x-coordinates and y-coordinates, and we keep a count
of the number of pixels of the target color. We then use a Core Gen divider to compute the
averages. In computing this quotient, one must be careful about selecting a proper divider
size. Selecting a divider too small produces overflow errors, while selecting a divider too large
unnecessarily hinders performance (a larger divider lengthens compilation times and increases
latencies). The camera produces approximately 500 x 700 pixels – if a detected object occupies
a sizeable portion of the screen, then the coordinate sums become quite large. One other detail
in the center calculator module is identifying start and end of frames. In our implementation,
we use the pixel coordinates of the top left and bottom right corners of the camera displays as
these indicators, Each time hcount and vcount reach the top left corner of the camera display,
we have begun a new frame, and we clear the accumulators. Each time hcount and vcount reach
the bottom right, we have finished the frame, and we wait for the outputs from the divider.
When the quotients are valid, we output them and send a high “ready” signal.

4



Although these center of mass positions could be directly translated into positions on the
virtual hockey table, calculations from a single frame are relatively more prone to noisy behavior.
Our solution to this problem is to smoothen the signal by maintaining the average of the last 8
positions (effectively sending the signal through a low pass filter). The Center Of Mass Averager
module implements this smoothing.

Finally, the Screen-To-Table Converter module translates the smoothed center of mass po-
sitions into positions on the virtual air hockey table. Our internal representation of the table
is a 1024 x 512 rectangle, as shown earlier in Figure 4. The mallet control is configured as if
Player 1 is on the left side of the table and Player 2 is on the right.

Figure 6: Example coordinate mappings. Example mappings from physical mallet controls to the mallet
positions on the table. Notice that in the second example Player 1’s mallet control is in the wrong half
of the game field. The position of the green control is interpreted as on the boundary.

This change of coordinates consists of a rotation (in opposite directions for the two players)
followed by a linear scaling. In our implementation, each player can move the puck only within
his own half of the table. One surprisingly time-consuming aspect of the mallet position gener-
ation was allowing the players to easily maneuver their mallets across the entire legal table, the
table edges in particular. The players should be able to move the mallets against the walls, even
though the center of mass of an object will never hit the physical game field boundaries. (If
the entire colored mallet control is in bounds then its center of mass must be inside the bounds
as well). Our solution involves establishing a smaller legal center of mass field for the center of
masses. We generate the table positions from the smaller center of mass field, instead of the
entire game field. We manually optimized the parameters of the center of mass field to allow
for comprehensive movement, making the field small enough for a player to be able to cover
the entire table space. Meanwhile, too small of a center of mass field creates oversensitivity to
small player movements. More details about the implementation are presented in the Imple-
mentation Process section. Figure 6 below shows example mappings from the physical space
into representations on the virtual table.

One additional feature we implemented in this transformation is to disallow the players from
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interfering with other player’s half of the table. When a player places his mallet control in the
other player’s territory, it is read as if the mallet control is on the center boundary.

3.1.3 Implementation Process and Testing

Overall, the implementation of the object recognition was successful. When finished, the compo-
nent allowed players to move their mallets to any legal region of the table with fine control. The
averaging virtually eliminated arbitrary movements caused by noise. Testing was done mostly
by using the VGA display and the hex display on the labkit. A main obstacle in implementation
was the compile time. Every compilation required 30-40 minutes, seriously bottlenecking the
rate at which we could test new features.

Figure 7: Color video successful.

The first step of building this component was to modify the staff-provided camera modules
to work in color instead of grayscale. This process was significantly more involved than we
expected, as we had underestimated the number of pieces involved in writing the video data
to ZBT memory and reading it back. In retrospect, we would have saved a significant amount
of time by choosing to seek more guidance. Instead, we spent a large amount of effort in
attempting to understand the code and identifying the necessary changes. In the end, however,
we were able to handle the colored video data, as shown in Figure 7.

The next step was to identify objects of a particular color. To do this we converted the
RGB video data to HSV format, and checked to see if the hue (H) bits were within a target
range. We tested the detection by coloring over the recognized objects. Initially, we made a
naive mistake of matching color by checking the high order bits. This method introduced an
unintended bias: consider the hue 0x0F. Matching the high order bits selects for the colors with
hue values slightly less than 0x0F – the hue values slightly larger than 0x0F are ignored. We
later resolved this issue by checking if the absolute difference of a detected hue and a target
hue was within a specific bound. To calibrate our system, we generated crosshairs on the VGA
display and printed to the hex display the hue value of the pixel in the crosshairs, as shown in
Figure 8 below.

Once we were confident that the color detection was functional, we proceeded to calculating
the centers of mass. The process through which the centers were calculated are described above
in the Module Details section. To verify correctness, we displayed crosshairs corresponding to
the calculated centers of masses, as shown in Figure 9. The performance of the smoothing
(averaging) was tested in the same manner with crosshairs.
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Figure 8: Crosshairs example. Pixels within a range of a target hue were colored over to signal detection.
The hue value in the crosshairs was outputted to the hex display for calibration.

Figure 9: More crosshairs. White crosshairs intersect at the center of mass of the detected green regions,
while the black crosshairs intersect at the center of mass of the detected blue regions.

We originally encountered overflow issues. Calculating center of mass requires computing
an average of all pixels of a detected color. This involves computing a sum of all relevant coor-
dinates. Since the camera display is approximately 500 x 700 pixels, a sizeable object produces
large sum. After increasing the number of bits in our sum accumulators and correspondingly
increasing the size of our divider module, the overflow issues disappeared and the center of
mass was behaving as expected. An alternative solution to the overflow problem would be to
truncate low-order bits. However, this reduces the accuracy of the resultant center of mass, so
we did not take this alternative approach.

A second major challenge of the center of mass calculation was dealing with camera noise.
Our particular camera seemed to consistently produce noisy outputs on the edges and in the
corners, and this noise created enough false-positive detected pixels to hamper the accuracy of
the center of mass calculation. Our solution to this problem was to disregard the edges and
corners of the camera display in calculating the center of mass. Only pixels within an inner
rectangle would be allowed to contribute to the center of mass, as shown in Figure 10. The
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Figure 10: Camera borders. The black rectangule represents the entire camera display. To disregard
the heavy noise around the boundary, only pixels within the red rectangle were used in calculating the
center of mass.

boundaries of the physical game field were drawn to match the inner red rectangle.

Figure 11: Inner camera borders. Instead of mapping the red rectangle to the entire virtual table, we
mapped the blue rectangle. This way, the players could move the center of mass to the boundary of the
mapping.

The final step was to convert the averaged center of mass to a coordinate on the table. As
described in the Module Details section, the transformation consists of a rotation and a linear
scaling. One of the larger implementation struggles was to guarantee that both players would be
able to reach the entirety of their half of the table. We originally made the mistake of mapping
the entire legal game field (the red rectangle in Figure 10) to the virtual table. This actually
made it impossible for the mallets to hit the edges of the table, since the center of mass must
always lie strictly inside the red rectangle. We resolved this issue by instead mapping a smaller
center of mass field to the table, as shown in Figure 11.

Finally, taking care of all the details required multiple attempts. For example, we must
properly handle the cases in which the center of mass lies outside of the blue rectangle. We
must also recognize that the mallets themselves are sized – only the mallet boundaries, and not
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the edges, can be tangent to the table edges. In addition, as described in the Module Details
section we implemented a feature to disallow the players from interfering with the other half of
the game field. This introduced some special cases as well.

Figure 12: The “Calibration Mode” display. We see the detected blue and green regions colored in.
The blue and green crosshairs correspond to the smoothed centers of mass, while the white and black
crosshairs correspond to positions on the virtual table following the coordinate conversion.

Ideally, the cleanest method of testing the coordinate conversion would have been to connect
the output to a functional graphical interface. Since the graphical interface was not yet available,
we instead tested the coordinate conversion using crosshairs, shown below in Figure 12. We
drew crosshairs corresponding to the resultant mallet positions. This was slightly confusing to
look at, since we now had crosshairs corresponding to both physical and virtual objects on the
same screen. In the end, the testing was relatively effective. We preserved this final testing
display as a “camera calibration mode” for the game itself. Before playing the game, the players
can use this screen to verify that the camera has been calibrated correctly.

3.1.4 Review and Recommendations

The object recognition component was generally very successful. It presented players with
smooth and very fine mallet control throughout the entire intended half of the table. A major
reason for the success is that we did not underestimate the time required to fully debug the
system. Since every compilation of the objection recognition component required 30-40 minutes,
we were allowed relatively few iterations of the product. Anticipating unexpected issues, the
team member responsible for this module cleared out the last week before the checkoff (from
other coursework and activities) to dedicate to debugging and polishing the object recognition
system. As a result, the object recognition component was mostly finalized a few days before
the checkoff. This allowed the team member to spend most of the last few days managing the
integration and helping with the other modules.

Another key factor in controlling the debugging time is writing clean code. Because of the
long compile times, messy code becomes very costly – simple, elusive bugs waste many iterations
of the development process. In hindsight, we were fortunate that we had invested the time to
produce well-organized code – this made mistakes much easier to catch later on.

One aspect in which we could have improved in was utilizing our resources. We might have
attempted to complete our work a bit too independently, when asking for guidance from the
TAs and instructors might have saved us a large amount of time. For example, understanding
and modifying the staff-provided ntsc to zbt might have consumed much less time if we had
asked for a bit of guidance. Similarly, we had a very brief conversation with Luis about the high
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level approach of object detection. We likely would have been much more efficient if we had
requested more involved discussions about our implementation details or about our methods
for handling camera noise.

3.2 Physics

3.2.1 Overview

Figure 13: The physics module. The physics module handles calculating new object locations and
velocities given old ones. In some cases the input variable name equals the output variable name. These
represent cases where the variable is not modified and is fed directly out of the module. One of the
outputs of the collision detection module is a boolean denoting whether a collision occurred.

The physics engine module, shown in Figure 13 will be responsible for calculating the pro-
jected velocity and location of the puck based on the current velocity and locations of the
objects. The goal during the design phase of the project was to have the collision of the puck
against the walls and mallets determine the new velocity and locations of the puck. The ex-
tended goal was to change the velocity and location of the puck also by considering the friction
between the puck and the table. During the time given, we were able to meet the intended
goals, but could not find a way to implement friction on time. More on this will be discussed
in a later section.

This module receives all the necessary information from game logic module and, upon com-
pletion of all the calculations, sends the updated data back to the game logic module. Therefore,
the communication between the game logic module and the physics module is as important as
ensuring that the physics module functions as expected. Since it takes several cycles for the
physics module to calculate its result, we created two variables, “pdone” (short for “physics
done”) and “newdata” (short for “new data to be sent”). “Newdata” will be set to 1 whenever
the game logic module is ready to send all the necessary data to the physics module. “Pdone”
is set to 1 when the physics module has finished calculating the new location and velocity of
the puck. Both variables will be set to 0 in the clock cycle following the cycle where either of
the variables are set to 1. We paid extra attention to this part in coding to make sure that the
game logic module sets “newdata” only after “pdone” is set by the physics module, and vice
versa.

The actual internal workings of the physics module is divided into 4 different states: standby
state(0), collision state(1), friction state(2), and send state(3). In the standby state, the module
waits for a “newdata” to be set by the game logic module. Once set, the physics module enters
collision state, during which the module determines any collision between the puck and other
objects and adjust the new velocity accordingly to the laws of collision. Then, it enters the
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friction state, which is connected to a switch that determines whether the puck will be slowing
down as it travels. Once all updates to the new puck velocity is done, the module enters send
state where it sends back the new puck location to the game logic module.

3.2.2 Module Details

3.2.2.1 Collision against the Wall As the physics module enters the collision state, it
will immediately check whether the puck is near a wall. Determining the new velocity after
the collision is very simple: if the puck hits the top or bottom wall, its y-directional velocity
switches its sign while the x-directional velocity changes its sign when the puck hits the left or
right wall. The module, however, must be careful of the case when the puck enters the goal
region on the wall, during which case the velocity of the puck must be set to 0 to keep it in the
goal.

The tricky part of wall collision is determining exactly when the puck hits the wall. We
came up with two separate schemes for this detection. The first method examines the puck’s
current location and determines if the puck is sufficiently close to the wall. In this case, the
walls would be padded with extra bits, or “pads”, so that the puck is in collision with the wall if
the distance between the puck and a wall is less than (radius + pad). The second way predicts
where the the puck will be in the next cycle if the puck did not collide with anything in the
current cycle, then declare collision if the next location is outside the coordinates for the table.
We determined pros and cons for each implementation by testing both schemes in a simulation.

The first case was quite simple to implement and did not take many lines. It reliably
detected wall collision as long as the puck was not moving so fast that the puck would simply
travel through the padding in one cycle. The anticipated draw back was seeing the effect
of padding on the screen by having the puck change its velocity far from the wall, but the
simulation showed that there wasn’t much noticeable gap between the wall and where the puck
bounces. The second case did not go “through” the wall and appeared on the other side of
the field as in the first case in high speed, but the simulation showed a noticeable gap between
the wall and when the puck bounced. In certain conditions, the puck ended up going through
another object, such as a mallet or a different wall. Since this second case led to more problems
in simulation, the first scheme was implemented for all collision detection.

3.2.2.2 Collision against Mallets Calculating the effects of the collision between the puck
and users’ mallets are more complicated than the one against the wall. Unlike the walls, which
are flat surfaces, the mallets are circular objects. If the puck bounces off of a mallet at an
angle normal to the circumference, the resulting velocities would only change in their signs.
If the puck collides the circumference at an angle, however, we need to calculate the angle of
reflection/incidence and change the direction of the resulting velocity accordingly, which requires
using two trigonometric expressions: one to determine the angle of the point on mallet at which
the collision happens and another to determine the angle of reflection/incidence. Although this
was complicated to code, I still implemented this method to see if it was possible.

The biggest challenge here was emulating a trigonometric equations. Since we could not find
a way to implement sine and cosine functions using circuits, we instead calculated the values of
the functions corresponding to different angles from 0 to 2π in Matlab and created a look-up
table. For testing purposes, we created 24 samples from π

12 to 24π
12 . This method was unsuccessful

because the module often had trouble pinpointing exactly where on the circumference of the
mallet the collision had occurred and preserving the magnitude of the puck’s velocity throughout
the process created too much latency due to the amount of multiplications and divisions that
needed to be done.

Instead, we modeled the mallet as a simple octagon, as shown in the figure below. The
octagon is sized so that the sides that are parallel to the walls are shorter in length compared
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to the other sides to make it interact more as a circle than a regular octagon. Some examples
shown in Figure 14 shows how the mallet’s direction will change after the impact.

Figure 14: Collision example.

Another important phenomenon we paid attention to with mallet collisions is the momentum
transfer. In an actual air hockey game, players move the mallet towards the puck to make
the puck travel faster after the impact, and we wanted to emulate this behavior. Our initial
implementation was to detect if there is mallet collision and then add half of the mallet’s velocity
to the puck’s velocity. This scheme proved to be problematic when the mallet or the puck was
traveling at a high speed during an impact. When the objects are moving at high speed relative
to each other, the mallet and the puck are detected to be colliding multiple times during a
collision since it is possible for the objects’ coordinates to be overlapping after a cycle. When
this occurred, the puck’s velocity changed too rapidly, so as for it to come to a halt or starting
traveling so fast that the pucks would be seen in continuous motion on the screen.

After the checkoff, however, we found a way around this problem by transferring the mallet’s
momentum only after the puck and the mallet have stopped colliding. This way, even if the
objects were to “collide” multiple times during one impact, the mallet’s velocity affects the
puck only once. Further, we capped the maximum velocity possible to be contributed to the
puck. Since the object recognition module can be noisy at times, the velocity of the mallet may
be calculated to be much bigger than it should be, creating an unrealistic momentum transfer.
After limiting the change in velocity due to momentum, the puck’s interaction with the mallets
looked much smoother and realistic in the simulation and the final product. We arrived at the
point where one could use the mallet to slow down or speed up the puck using the momentum.

3.2.2.3 Incorporating Friction Providing an option to slow the puck down as it travels
was an extended goal. Since we had completed the implementation and simulation of the basic
physics module before Thanksgiving, we decided to tackle this problem. The very first method
was to decrement the new velocity by a small fraction if the puck did not have any collision in
that cycle. To avoid using dividers, we simply shifted both the x-velocity and y-velocity of the
puck by a certain amount and subtracted that from the original velocity.

The problem with this implementation came from the fact that we were dealing with digital
circuits. All the velocity values, as well as any other variables, are represented as a string of 1’s
and 0’s, so using shift-and-subtract on big numbers worked reasonably well, while the method
failed to slow down already small numbers (slow puck). For example, the initial velocity of the
puck was 10 in x-direction and 20 in y-direction and the friction shifted each velocity values by
2 each time:

10102, 101002 → 10002, 11112 → 1102, 11002 → 1012, 10012 → 1002, 1112
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As shown above, the proportionality of the velocity in x-direction and y-direction are not
preserved with each cycle. Therefore, the above implementation made the puck change the
course of its trajectory every time shift-and-subtract was done. Since we could not find a way
to preserve the direction of the velocity while accounting for friction without representing the
velocity with a lot of number of bits, this extension was not implemented in our final design.

3.2.2.4 Updating New Positions After calculating the new puck velocity after the colli-
sion state and friction state (which does not have any effect on the velocity due to the lack of its
functionality), the module arrives at the send state, during which the module must determine
the next puck location based on the current location and the newly calculated velocity. During
the same cycle, the state sets “pdone” so that the game logic module can finally accept the
information being output by the physics module.

3.2.3 Implementation Process and Testing

A lot of difficulties we faced while designing and testing this module, such as collision detection,
circular collision, and communication between the physics and game logic module, was predicted
from the beginning of the process, but the most annoying and persistent challenge we faced was
variable treatment.

Resolving the conflict between signed and unsigned variables took the most time to debug.
We knew that all the positions will be represented as unsigned numbers while all the velocities
will be represented as signed numbers, but we made many assumptions about how operations
work with the two kinds of numbers. For example, when calculating the new puck position using
the puck’s old location, an unsigned number, and the puck’s new velocity, a signed number,
we thought we could simply add the two numbers together, and verilog would somehow make
the numbers unsigned in the end. As it turned out whenever there is an operation between an
unsigned and a signed number, the result is usually a signed number or sometimes ambiguous.
Because we did not expect this to be the source of many odd behaviors observed during sim-
ulation, it took a long time to track and fix these bugs by forcing them into being signed or
unsigned numbers using the appropriate procedures in verilog.

Other similar bugs arose when we started doing operations on numbers with different number
of bits and many other. After fixing the first few bugs, we had become more familiar with how
to track down the sources of bugs not only from typos and accidental commenting but also from
the conflicts in the nature of variables.

Testing of this module was done by replacing the physics part of 6.111 Lab 3, during which
we designed a pong game. In this testing simulation, we can control the movement of the mallet
using the up, down, left, and right buttons on the labkit. We changed the dimension and goal
areas of the field to reflect our air hockey dimension of 1:2. During the debugging process, we
checked various values, such as puck velocity and distance between objects, by connecting those
outputs to the display and LEDs on the labkit.

3.2.4 Review and Recommendations

The physics module worked well as long as the velocity of the puck did not exceed about 15
pixels by cycle. After the specified speed, the speed of the puck was too fast to be seen in
smooth motion on the graphics. Further, the high speed puck starts going through walls and
objects. The only way to fix this is to use higher definition and the faster clock to make the
pixels per cycle smaller for the same velocity. If we were to do a similar project in the future,
we would pay more attention to the declaration of each wires and registers to make sure than
any operations I do with them don’t produce unexpected outcomes.

If given more time to work on the module, we would try to find a way to implement friction
and angular momentum in the physics module. As discussed above, we have not found a way to
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decrease the velocity of the puck in both x and y direction while preserving the direction, but
this slowing down motion is often seen in many video game applications, so we may be able to
find a way to implement friction if we conduct a research on how this is done in other publicly
available games.

In a real-life air hockey game, avid players utilize angular momentum in various ways to
manipulate the trajectory of the puck after the collision following the mallet hit. Our model
disregarded any angular velocity so that the angle of incidence and the angle of reflection are
the same, but finding a way to determine and use the angular velocity information of the puck
to calculate the change in direction after the collision may be a challenging yet exciting problem
to tackle.

3.3 Graphical Interface (Alex)

3.3.1 Overview

Figure 15: A mockup of what the air hockey graphical interface is supposed to look like. Player 1’s view
is on the left, and player 2’s view is on the right. The blue and green objects represent the mallets and
the black circle represents the puck. The white rectangles are the tables and they feature decorations,
depicting the midway line and the goals.

The primary purpose of the graphical interface module is to convert information about the
air hockey game into something displayable on a monitor (resolution 1024x768) through VGA.
Internally, the game is represented on a table with width 1024 and height 512, and the game
objects, the mallets and the puck, are circles. The additional information that needs to be
displayed are the player scores as well as messages that come with the current game state. The
goal is to display this information as cleanly and as elegantly as possible. A mock of the target
layout is shown in Figure 15. The actual implementation looks like the one in Figure 16.
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Figure 16: Our 2-dimensional rendering of the air hockey game. If you look closely, you can see the array
of dots on the air hockey table.

In addition, in order for both players to get a good view of the game, the graphical interface
should render the air hockey table from two perspectives, one from each player. This way both
players have a table to look at, as if they were actually playing the game against each other in
real life.

As a note, the original goal of this project was to implement the graphical interface to
provide a 3-dimensional view of the air hockey table. However, during the implementation
phase we decided to just render the 2-dimensional version. This decision process is described
further in the “Implementation Process (addendum)” section.

Figure 17 shows the block diagram for the graphics module.

3.3.2 Module Details

For an idea of what the resulting graphical interface looked like, see Figure 16. On each side
of the middle divider is a view of the air hockey table from the perspective of each player. In
addition, Figure 18 shows what happens when the game is paused and what happens when a goal
is scored. In both cases, text is overlaid on the screen along with possibly other modifications.

The graphical interface was contained in standalone module called graphics2d. This module
took as input the locations of the 3 game objects, both player scores, and information from the
xvga module used to interface with the VGA. During each clock cycle, the graphics2d was given
a location of a pixel on the screen and the module had to output the color to be assigned to
that pixel. For a 60Hz refresh rate on a 1024x768 pixel display, we used a clock cycle of 65MHz
and aimed to generate one pixel per clock cycle (with a throughput of 1 pixel per clock cycle).
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Figure 17: Block diagrams for graphics. The graphical interface module accepts player scores, object
positions, other game information (whether the game is paused or in replay mode), and a current pixel
location as input and outputs to the color that the pixel should be. The main logic uses several groups
of modules (on the left) that each accept a pixel position and a geometric object and output the color
of the geometric object at that location. These pixels are then combined to decide the finalized pixel.

Figure 18: Two examples of the text overlay for the air hockey game. In the left, the player score flashes
when a goal is scored. On the right, when the game is paused, the rest of the screen is alpha-blended
with a white rectangle.

It would be very difficult to use this model for graphics if the throughput was less than 1 pixel
(or 1/2 of a pixel) per clock cycle, so we tried to keep pixel generation fast and pipelined.

The graphics2d module was implemented in 3 sections. In the first part, various parame-
ters were specified, such as the table size and the window size. In addition, many additional
parameters were calculated from these parameters. For example, we had to compute the coor-
dinates for both rectangular tables, as well as the dimensions of the rectangles and the game
objects (mallets and pucks) to display on the screen, making sure that their relative sizes were
consistent with that of the internal representation. The last part of these parameters included

16



specifying the coordinates of the centers of the mallets and pucks, which we computed via basic
math.

Table 1: The list of graphical objects and the respective module used to generate the pixel values for the
graphical object.

Graphical Ob-
ject

Description Modules Used

Text The text includes the title, the player
scores, and the overlaid “PAUSED”,
“REPLAY”, and “GOAL!!” text.

char string display,
char string display 2x,
char string display 8x

Air hockey table This was essentially a rectangle with a
border.

rectangle

Dot array on the
air hockey table

This created a grid of dots within a
bounding rectangle.

dotrectangle

Goal indicators on
the table border

rectangle

Mallets The mallets were drawn as 3 concen-
tric circles, similar to how one would
look in real life when viewed from
above.

circle, circle outline

Puck The puck consisted of two concentric
circles.

circle

Table decorations These were red markings that ap-
peared on the air hockey table to mark
the goals and the midway line.

horizontal segment, semicir-
cle, circle

In the second part of the graphics2d module, we computed a pixel value for each of the
individual graphical objects on the screen. These objects included text, the air hockey table
(rectangles), the game objects (2 mallets and a puck), the dot array on the air hockey table, and
the table markings (goal lines and the midway line). Two copies of everything were rendered, one
for each player. Each individual graphical object pixel was generated by some sort of module,
as shown in Table 1. These modules all accepted a geometric object specification and a pixel
location as input, and outputted the relevant pixel color at the location. If the pixel location
was not on the object, then the output pixel would be black. We were careful to make sure
that each pixel-coloring module took exactly 4 clock cycles to generate, and pipelined each of
these modules so that one pixel color could be outputted during each clock cycle. For example,
due to the multiplications required, we needed more than one clock cycles to calculate whether
a pixel was within a circle. However, calculating whether a pixel was inside a rectangle could
be done easily one clock cycle, so we used a synchronizer module to delay the output signal
a number of clock cycles such that the latency would be exactly 4 clock cycles for each pixel
to generate. The workings of each of the geometric object modules were relatively simple and
just involved performing a pipelined computation to evaluate whether the input was contained
within the geometric object. The text modules (which came in 3 different sizes) were adapted
from 6.111 sample tools, and read text information from memory and outputted pixel colors
accordingly.

In the final part of the graphics2d module, all the pixels generated from the second part
were combined. Instead of somehow aggregating all the pixels, we ordered each pixel in terms
of priority, and picked the highest priority pixel color that was not the default color (black),
since black was used to specify a pixel that did not need to be colored. In the special case in
which the game was paused, the pixels were alpha-blended with a white rectangle in order to
give the effect that the game is behind some sort of a translucent screen.
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The final part also contained a simple computation to make it obvious when a goal was
scored. The graphics module detects when a goal is scored by tracking when the scores change.
When this happens, the “GOAL!!” text is displayed on the screen for a small number of seconds,
and the score that changed is blinked. The module kept track of the number of blinks remaining
for each goal text, and every time a player score increased, the number of blinks was changed
from 0 to something positive so that the player score text would flash. See Figure 18 for a
sample image of this behavior.

3.3.3 Implementation Process and Testing

The implementation process consisted of using the VGA framework from the pong module and
overhauling it to produce a more complex version for air hockey.

In order to get the 2-dimensional graphics working, we first performed all the mathematical
calculations necessary to draw game objects in the correct locations with the correct sizes.
Next, we converted all the game objects from rectangles to circles. This brought about a lot
of incorrect pixels, due to both sign errors and the fact that computing whether a pixel lies in
a circle might take more than one clock cycle. At this point, we incorporated the synchronizer
module and modified both rectangle and circle to use four clock cycles but not cause any timing
issues.

At this point, the graphics looked like it did in Figure 19. It was useful enough to be
integrated but definitely nowhere near ready for presentation. Following that, we adapted the
circle module to support semicircles and circle outlines, and from there we implemented the
rest of the graphics. After handling all the geometries, we shifted focus to rendering text.

The graphical interface is very useful for testing the integrated module as well as the indi-
vidual components. In order to actually test the graphical interface itself, we used the labkit
and a monitor. As an input to the graphics module, we used the arrow keys to input mallet
locations and very basic physics (from the pong lab) to control the movement of the puck. First,
the modified pong game module was tested using the original pong graphics to ensure that no
objects could leave the game boundaries (which are not the same as in pong). Once the pong
game module was verified, we used it to test the implementation of the graphical interface.

To test the other inputs to the graphical interface, we used switches. Some of the switches
would allow us to input the scores of each player, and other switches specified whether the game
was paused or in replay mode. We made sure that only one of the textual elements (“paused”
or “replay” or “goal scored”) was ever displayed at once. For example, we tried to score a goal
and then immediately pause the game, and we tried to pause the game while in replay mode.
In both cases only one text object should be overlaid. It was also important to verify that the
score blinking worked properly, even if both players just increased their score in a short period
of time.

3.3.4 Review and Recommendations

One idea for this project that was not fully implemented but was suggested by the course
instructors was the possibility of displaying the two air hockey tables on two different monitors.
Then, each player would see his or her own perspective on just one screen, instead of both
players having to share one monitor. This would improve the user interface. We implemented
a version of the game that could take the game coordinates from the FPGA inputs rather than
from the physics engine and render game objects at those coordinates, but did not integrate
this. The transfer of game coordinate information could either be done in parallel by sending
all 60 bits of coordinate information, 6 bits of player score information, and 2 bits of game
state information from one FPGA to the other, but it could also have been done by using two
connections and carefully executing a serial method of data transfer. In hindsight, this would
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Figure 19: An incomplete 2-dimensional graphics rendering. The two tables are present, as are the
mallets and puck. Elliptical objects were implemented, but not used in the final product.

have been a great addition to the game and more focus should have been given to implementing
this.

The primary lessons from this module came from our failure to implement 3-dimensional
graphics. In general, the attempt at 2-dimensional graphics was quite straightforward and
went smoothly. However, the original goal was to implement 3-dimensional graphics, and that
goal was not achieved. We underestimated the complexity of trying to display 3-dimensional
graphical renderings of air hockey. We think it would have certainly been possible, especially
if we had more time (started earlier) and experience. We created two different attempts at
rendering 3-dimensional graphics but decided to scrap both of them in favor of 2-dimensional
graphics. An unfortunate consequence was that a lot of time was lost on 3-dimensional graphics
that could have instead been spent helping debug the integrated modules.

Seeking out more guidance from instructors would have greatly helped resolve problems more
efficiently along the way and also would have helped us avoid losing time to things that would
have never worked. In addition, the 3-dimensional graphics may have been possible with better
planning at the very start, especially if we had given more thought to clock cycle requirements
and FPGA resources.
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3.3.5 Implementation Process (addendum)

In this section, which is mostly irrelevant to the actual 2-dimensional graphics that is now part
of the game, we detail the implementation process for the 3-dimensional graphics. We tried
several things but nothing to completion. We suspect that it was definitely doable, though.

3.3.5.1 Attempt 1: Ray Tracing From the start, a very basic 2-dimensional graphical
interface with nothing but a rectangle and 3 circular game objects was created. From there,
the goal was to take it to 3 dimensions. Initially, we went straight for the stretch goal of
implementing ray tracing, believing that this would be quite doable. The general layout of the
ray tracing module is as follows:

• For each table, decide on a location for the camera and the image plane. For each table
there was a raytracer module, which draws a ray from the viewpoint (camera) location
through each pixel on the image plane, such that every pixel on a 1024x768 rectangle on
the image plane has a ray going through it.

• For each pixel on the image plane, find the intersection of the corresponding ray and every
object that we wish to render (the table, two mallets, and the puck).

• Determine which object is the closest to the camera, and render the color of that object
at the pixel location.

Initially, to simplify the model, we assumed the objects had no special refractive or reflective
properties. That is, the rays never bounced off any objects, and we never considered any other
light sources. This would have been far too difficult, and we hoped to approximate shading some
other way. Following this plan, we implemented a ray collision module for both rectangular
prisms (which represented the table) and cylinders (which represented the mallets and the
puck). We also would have eventually implemented a collision module (ray and geometric
object intersections) for spheres so that we could use spheres to depict parts of mallets, since a
mallet can be rendered using a combination of spherical and cylindrical geometric objects.

In order to compute these intersections, we created a module to detect the intersection
between a ray and a plane. Here, we ran into trouble because accurate ray tracing involved a
lot of math, and it was difficult to make sure we could maintain a throughput of 1 pixel per clock
cycle. The primary reason we never integrated the ray tracing 3-dimensional implementation is
that we greatly underestimated how many pipelined dividers the implementation would require.
Once we were pretty close to having the ray and plane intersection implemented we realized that
there were not enough resources on the FPGA for all the dividers we wanted to use. We tried to
simplify the system (such as by letting the table be just a rectangle), and we managed to avoid
the usage of any square root modules, but this was not sufficient enough of a simplification
because at least 6 cylinders had to be rendered.

We also considered using a frame buffer. That is, since the FPGA comes with two ZBT
SRAM chips, we could use one to write pixel values to and one to read pixel values from. Every
time we were done writing pixel values to one of the ZBTs, we would switch the roles of the two
ZBT SRAMs. This would give us the freedom to compute the pixels with whatever speed we
needed, as long as the display updated quickly enough to give a good representation of the game.
The lack of timing constraints meant we could perform computations serially instead of all in
parallel, and we would not have to use as many dividers. Unfortunately, the object recognition
module already used one of the ZBT SRAM chips and this frame buffer idea would not have
been possible. A very promising possibility that we didn’t try was rendering the graphics on a
different FPGA than the one we used for object recognition.
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3.3.5.2 Attempt 2: Approximating 3D to 2D Projections The second main idea we
implemented but later scrapped was to approximate the objects as various quadrilaterals and
ellipses. A cylindrical mallet, when projected onto 2 dimensions, appears to be a combination
of ellipses and quadrilaterals. We implemented ellipses as well as very approximate ways to
map 3-dimensional coordinates onto a 2-dimensional planes. We could not be exact because
this would require using sines and cosines as well as a lot more division than we could afford.
Unfortunately, the approximations did not look very realistic. As a result, we did not complete
this idea for 3-dimensional rendering. Perhaps with better approximations, this method could
have worked.

3.3.5.3 Other Thoughts A much simpler implementation of 3-dimensional graphics could
have been done by pre-storing images of the mallets and the puck in memory, and then simply
rendering a scaled version of these images for the graphics. This was the original backup plan,
but we did not go down this route, deciding it would be more interesting just to get a solid
2-dimensional rendering working. In addition, this would have been an approximation since we
would have rendered a far away cylinder as simply a smaller version of the close-up cylinder.

These problems would have likely been avoided by thinking more about the design from the
start and by the graphics implementer (Alex) having a better understanding of what is possible
on FPGAs. With better planning and more time, it would have been likely possible to have
gotten one of them working, since all the methods tried had actual workarounds and perhaps
better approximations / optimizations that we missed out on (things to save resources or clock
cycles). In the end it was disappointing to fall back onto 2-dimensional graphics but fortunately
a lot was learned in the process.

3.4 Game Logic (Abe)

3.4.1 Overview

The game logic module is the main state machine module that communicates with all the other
major modules. This module not only delivers important values from one module to another
but also provides user interface. As described in the design of our project, it delivers the mallet
locations received from the object recognition module to the physics module, waits for the newly
updated puck location from the physics modules, and transfers all the necessary data to the
graphics module. It also includes a BRAM memory to hold the past few seconds worth of
objects’ locations to be replayed later after a goal is scored.

The most important part of this module is relaying the data between other modules without
fail or repetition. Therefore, a lot of time was spent coming up with the most efficient design
for communication.

3.4.2 Module Details

3.4.2.1 Communicating with the Physics Module As described in the physics module
above, “pdone” and “newdata” variables are used to communicate between the physics module
and game logic module. While the game logic module operates on 65 MHz clock, the physics
module operates on a vsync clock, where the physics enters the next cycle at each negative
edge of vsync signal. Since these two have very different periods, we needed a way for them to
exchange data without any loss of information. We expected this to be a significant challenge,
but the simple implementation of “pdone” and “newdata” successfully solved this problem.
When checked on ModelSim, no data was being lost.

Whenever “pdone” is set by the physics module, the game logic module carries out most of
its functionality. It first checks if the signal “goal” is set, in which case it checks whether the
puck’s last location was in player 1’s side or player 2’s side and increments one of their scores
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accordingly. Further, the module sets the variable “stop capture” to 1, so that our BRAM
does not record any more locations until the game restarts. Then, it compares the current
mallet location with the past mallet location from one “pdone” ago to calculate the mallet’s
velocity and sends all the necessary information, velocity and locations of all the objects, to
the physics module, if the game is in playing state (states will be described in detail in a later
paragraph). Finally, if “stop capture” is 0, the module sets write enable to input a 60 bit long
data, which is a concatenated version of all the objects’ x and y location coordinates. It is
important to note that the object recognition module sends the mallet locations to the game
logic module every clock cycle, so many reported mallet locations between the two high’s of
“pdone” will be lost. We found out that this is not a problem since this implementation acts
as a downsampler, blocking out some high frequency noise that may be present in the output
of the object recognition module and smooth out the movement of the mallets in graphics.

Figure 20: Game logic block diagram.

3.4.2.2 Communicating with the Graphics Module When “pdone” is set, the game
logic module also sends the locations of the objects, two mallets and the puck, and the current
score to the graphics module. The locations of the objects sent to the graphics module depends
on the state of game logic module, which can be state 0 (playing state), state 1 (pause state),
state 2 (goal state), and state 3 (replay state). Playing state is a self-explanatory one in which
an air hockey game is in progress and the players are trying to score, so the module sends
the new puck location as well as the current mallet location to the graphics module. In the
pause state, the puck should remain at the same location until it goes back to playing state.
Since “newdata” is not being set in this state, no calculation is done by the physics module to
update the location of the puck. The same procedure is used in goal state, which the module
enters when a goal is scored: mallets are free to move around while the puck is stuck in the
goal. Lastly, when the module is in replay state, the output of the location storage BRAM
is deconcatenated and fed to the graphics module. Since we are using a circular BRAM, the
replay repeats itself in a constant loop until the module enters the playing state again. The
state transition is shown in Figure 20. As shown in the figure, the module changes from one
state to another either by a signal from the physics module or buttons and a switch that users
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can trigger.

3.4.3 Implementation Process and Testing

The design and coding of this module was finished during the week after the Thanksgiving
break. Since the module has to be tested on whether it communicates effectively with all the
major modules, we could not test the module in isolation. We considered using ModelSim and
wondered how plausible it would be to make a testbench for this module, but we decided that it
would be a huge time sink that might not be worth the effort since we would have to create all
the inputs for the module and whether the module is synchronized well with all major modules
could not be determined until all the other modules were ready. So, we decided to test and
debug (should there be problems) this during the integration after all the modules have been
completed.

The integration did not occur until much later in the process than we had imagined and did
not have much time to check whether this module was functioning well. No major modifications
were done on this module after the initial design by the time we had the checkoff meeting. After
the integration, we found out that all the objects were moving as expected, but the states were
not functioning as expected. Whenever we turned on the pause switch, the graphics showed the
pause state signs, but the puck was still moving. After the goal was scored, even when we were
pressing the replay button, the objects in graphics were not moving as saved in the BRAM,
which we checked was storing all the data correctly.

3.4.4 Review and Recommendations

If given more time, we would try to find out why the communication between the graphics
module and the game logic module created some unexpected behaviors and debug to ensure
that the movements of the objects reflect the state of the module.

One idea we could not carry out because of the deadline was potentially combining the
game logic and physics module. Integrating two modules that are already lengthy may cause
the module to become a lot more complex, but it would decrease the amount of communication
to be done between the modules and shorten the critical path of data to be object recognition
→ physics→ graphics, which would get rid of the need to implement many protective measures.
Further this implementation will decrease the throughput between the object recognition and
graphics module, which may be necessary should we continue to make more improvements to
the game.

4 Integration: Review and Recommendations

As a team, we underestimated the amount of time required for integration. This can be at-
tributed to three causes. First, we were generally overconfident in the correctness of our individ-
ual components, simply underestimating the number of mishandled edge cases. Second, some
of our code was a bit messy, making it more difficult to catch simple bugs. With a compilation
time of 40 minutes, every small mistake costed us. Third, we had made assumptions about the
progress of other modules that were not expressed very clearly.

For example, the graphical interface is a key component for functional testing of our project
as a whole. The physics and game logic components were relatively cumbersome to test inde-
pendently, and for testing of those components we had assumed the completion of a functional
graphical interface. Unfortunately, we had failed to express that expectation during develop-
ment. By the time a functional graphics component was available, we had relatively little time
to fix the issues that were exposed. Combined with the first two reasons above, this made the
successful completion of our project difficult.

23



In retrospect, there a few ways in which this collaboration could have been carried out
more effectively. First, the expectation of the progress of another module could have been
expressed more explicitly. A clear expectation for a functional graphical interface for testing
purposes might have influenced the graphical interface development to produce a basic version
sooner. Second, upon realizing that a functional graphical interface would not be immediately
available, it might have been possible to create more comprehensive independent tests using the
hex display and VGA display.

Additionally, it would have been beneficial to attempt integration earlier on in the process.
Instead of wiring together nearly finalized modules at the end, integrating simpler and less
functional modules earlier in the pipeline would have been very helpful. It would have presented
us with a better idea of the type and scope of integration issues earlier on in the timeline, giving
us more flexibility in managing it.

Finally, we observed some issues during integration that we still do not understand. Al-
though the three main components were functional in our own individual testing, there were
issues when we combined all three. During the checkoff, we were able to present a successful
integration of the graphics and object recognition components. With very minor and seem-
ingly tangential changes, some later attempts produced functional objection recognition and
physics engine, while others produced a functional physics engine with graphics. We were able
to produce a version with all three components integrated for the video presentation.

Given the size of our project and the seemingly nondeterministic behavior of the integra-
tion, we suspect that we had violated some timing constraints during the integration process.
Unfortunately, we had identified this problem relatively late, and we were unable to pinpoint
the exact root cause.

5 Conclusion

Our finished product was a playable air hockey game with resets. The object recognition module
found the sent the mallet locations through the game logic module to the physics module, which
sent back the next puck location. The game logic module was then able to relay all the objects’
locations to the graphics as well as the state of the game.

Despite the challenges, we enjoyed working on this project overall. We have gained a much
deeper appreciation for the issues that arise when putting together large low-level projects. We
would like to thank the entire 6.111 staff for all of their help. In particular, we would like to
thank Luis for advising our project, Jose and Gim for investing many hours into the lab, and
Michael Trice for providing valuable feedback on our proposal and presentation.

Another fun option to implement is the sound effect. We can save the collision sound and
celebratory goal sound to a separate BRAM for the game logic to output whenever there is a
collision or a goal. Since we already have the information about the velocity of the puck before
and after the collision, we can make the loudness of the collision sound depend on the impulse
of the puck so that collisions with higher velocity change in puck (harder collision) will result
in a louder sound effect.

6 Code

All of our code is available at https://github.com/axc/6111_air_hockey.
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