
Laser Pinball

Final Report

MIT 6.111

Weston Braun, Jake Isenhart, and Pauline Varley

December 10, 2014

Professor: Gim P. Hom
Term: Fall 2014

1

Contents

1 Introduction 3

2 Summary 3

3 Modules 4
3.1 Vision Processing and Image Recognition . 4

3.1.1 The OV7670 Camera . 4
3.1.2 Image Recognition . 5

3.2 Physics and Game Engine . 6
3.2.1 The SNES Controller . 8

3.3 Laser Controller . 8
3.3.1 Galvanometers and DACs . 10
3.3.2 Testing . 11

4 Implementation Process 11
4.1 The µBeta Processor . 11
4.2 Debugging the OV7670 Camera . 12
4.3 Building a Laser Projector . 12
4.4 Xilinx ML505 FPGA Board . 13

5 Review and Recommendation 14

6 Conclusion 15

Glossary 16

7 Code and Schematics 17
7.1 Galvo DAC Schematic . 17
7.2 Full Block Diagram . 18
7.3 The Beta . 19

7.3.1 The Two-Stage Pipelined Beta . 19
7.3.2 Beta Address Decoding . 24
7.3.3 Memory-Mapped I/O . 25
7.3.4 Beta Instruction Set . 28
7.3.5 Laser Controller Assembly . 34
7.3.6 Tested Physics Engine for Checkoff: No implemented physics, paddle control only . . 41
7.3.7 Physics Engine Untested Working Copy . 47

7.4 Camera Module . 57
7.4.1 Find red, green, and blue loci in a frame . 62
7.4.2 Create signals for VGA IC . 65
7.4.3 VGA Drive for Lower Resolution . 65
7.4.4 I2C Setup for VGA . 66
7.4.5 Camera Configuration . 68
7.4.6 Capture a frame from the camera and dump into memory 69
7.4.7 Write object locations to the physics Beta . 71
7.4.8 Pixel cost function . 72

7.5 SNES Controller Interface . 73
7.6 Pulling it all together . 78

2

1 Introduction

For our final project, we wanted to create a pinball-like arcade game on an FPGA that would be displayed
on a wall by an RGB laser projector. The system would allow the user to reconfigure the gameboard by
recognizing colored objects on a wall; each color would correspond to a different game object, and the objects
would appear in-game in the location in which they were placed on the wall. This project was motivated
by a desire to use technology for enjoyment rather than academics: while discussing what we might want to
build for our final project we found that, over the course of our MIT education, we hadn’t had much of an
opportunity to just play around with tech in the way we do outside of class. We wanted a project that we
could get excited about and a project that we could share with our peers without too much explanation—a
laser-projected game is, undoubtedly, very cool and fits that criteria to a tee.

In our implementation of the proposed design we encountered a series of unexpected difficulties that
prevented us from finishing all planned elements of the project. Interfacing with the camera module was
particularly difficult (see sections 3.1.1 and 4.2), and implementing a physics engine in Verilog so complex
that we decided to scrap the initial architecture entirely and build the project on Beta processors that we
implemented using Verilog (section 4.1). These challenges will be discussed further in section 4.

We did, however, accomplish several exciting things: design and implementation of a ”Beta” processor;
functional image recognition that can detect red, green, and blue objects; physics emulation written entirely
in assembly; and a laser-projected gameboard with paddles that can be controlled with an NES controller.
These successes will be further discussed in sections 3 and 4.

2 Summary

Figure 1: High-level system diagram. Each module will be explained in greater depth later in this report,
and a full system diagram is included in the appendix.

Laser pinball was implemented as three discrete systems: a vision processing and object detect module, a
physics and game engine, and a laser display controller.1 Though we originally planned on implementing the
system entirely in Verilog, we realized about halfway through that the complexity of both the physics engine

1Weston was responsible for the vision processing module; Jake and Pauline were primarily responsible for the physics engine
and laser controller, respectively, but collaborated heavily on both. Weston also designed the external hardware interface and
brought up the Beta processors.

3

and the laser controller would be better suited to implementation on a microcontroller with a higher level
of abstraction from the hardware. Since a Verilog implementation of the Beta processor already existed (to
some degree–the bringup of the Beta will be discussed further in section 4.1), we decided to restructure both
modules as assembly language code running on two separate Beta processors communicating via a shared
memory interface. Despite this, the overall architecture of the system remained much the same.

The vision processing module takes input from an OV7670 camera, detects objects of three colors (one
red, one green, and one blue), and outputs the corresponding sprite IDs and locations to the physics Beta
processor over a shared memory interface. The physics engine detects collisions between the pinball and
game objects and adjusts its position and velocity according to the game’s internal physics. Finally, the
laser display module plots sprites at arbitrary locations received from the physics module using a laser
projector.

3 Modules

3.1 Vision Processing and Image Recognition

Figure 2: The camera interface module.

3.1.1 The OV7670 Camera

The OV7670 camera was chosen because of its low cost and small size, allowing it to be mounted inside the
laser projector case. The camera has an 8-bit output data bus, vertical (VSYNC) and horizontal (HREF)
sync pins, and an output clock, and outputs 16-bit color over a 640x480 frame. The camera’s output clock
is internally generated by the camera from an input clock. This output clock is the same frequency as the
input clock, but with different phasing. This required the crossing of clock domains within the FPGA. The
camera outputs 8-bit wide sections of a 16-bit wide pixel word at twice the pixel clock frequency. An FSM
was written in Verilog to synchronize the data capture of the camera with the start of the frame in order to

4

capture a complete image with the correct word alignment. The frame starts on the falling edge of VSYNC
and each line starts on the falling edge of HREF.

Data captured from the camera was scaled down to 9-bit color and 240x240 pixels and stored in a dual
port memory, which acted as a buffer to allow the crossing of clock domains. The down-sampling of color
and resolution were due to constraints on the amount of BRAM within the FPGA and 9-bit resolution was
used as the BRAM blocks have an input width of 9 bits: a byte plus a 9th bit storing a parity check value.
We used this 9th bit to store additional color data.

Unfortunately, the OV7670 camera has a quite complicated setup routine. The camera by default outputs
YCrCb data instead of RGB. Additionally, the color balance is quite off to the point of red and green showing
up reversed. The OV7670 camera contains a configuration interface called SCCB, which is essentially a
royalty-free clone of I2C and is I2C compatible. An open-source I2C core from the OpenCores project and
licensed under the BSD license was used for I2C configuration. The core uses a Wishbone interface, which
is an open source parallel bus standard. A Verilog FSM wrapper was written for the core to handle the
Wishbone interface and an additional FSM was created to send configuration commands to the OV7670
camera from a ROM.

After image capture, the stored image was output to VGA using the Chrontel CH7301C DVI IC on the
FPGA development board. This IC also required configuration over an I2C interface to be put in VGA pass-
through mode. A version of the FSM used for camera configuration was reused to configure the Chrontel
chip. 24-bit color is sent to the CH7301C through a 12-bit interface operating at twice the pixel clock by
sending 12 bits at a time on each rising clock. A modified version of the VGA drive module from 6.111 lab
3 was taken to generate hsync and vsync signals for a 640x480 image at the faster pixel clock required by
the CH7301C and to generate a pixel address to recall the stored image. A Verilog module was written to
take 24-bit pixels and drive the 12-bit bus of the CH7301C. Image quality was poor for reasons which will
be discussed further in section 4.2.

Figure 3: Camera output when an attempt
was made to put it into RGB output mode.

Figure 4: Camera output with the default
settings.

3.1.2 Image Recognition

The goal of image recognition for the project was to recognize red, green, and blue game piece objects on a
white background. As the game piece objects were to be small compared to the frame and were all primary
colors, several simplifications could be made to the image processing process.

First, instead of calculating the center of mass of a color, the image could be segmented into small
sections, and a color classifier could be applied for each color that needed to be detected. The section of the
image that had the the highest value for a given classifier was then detected as the center of a color block.

5

The second simplification that could be made was in the classification of colors. Traditionally, the image
is converted to the HSV color-space for classification. However, this process is computationally complex as
it is not a linear mapping and requires the use of division, which is difficult to implement on an FPGA. Due
to the low color resolution of the stored image and the need to only detect primary colors, a classifier was
created that would directly translate an RGB color value into a set of color classifiers for red, green, and
blue. This classifier also rejects mixtures of colors, such as white.

The classifier that was decided on for image recognition for each primary color was the value of the
desired color minus the value of one of the other colors, multiplied by its value minus the other color. For
red, this classifier would be (red − green) · (red − blue). This classifier worked well in distinguishing the
colored game objects on a white wall. For processing, the image was split into 3600 squares of 16 pixels
each. The 16 pixels in each block were averaged to remove noise and then run through the classifier. The
three blocks that had the highest classifier values for red, green, and blue respectively were output as the
coordinates of the detected objects.

Image processing was implemented using a Verilog FSM that was triggered by a button on the FPGA
board. Data was acquired from the read port of the dual port ram that the camera data was stored in,
allowing the user to press a button to see live video from the camera, release the button to capture the
frame, and then press a second button to analyze that particular frame. Once the frame was analyzed, a
sprite was overlaid onto the stored image at the location of three detected color objects so that the user
could confirm that the correct objects were recognized.

Additionally, the location of each object was written into the memory space of the physics engine beta
through the shared memory interface along with a done flag.

3.2 Physics and Game Engine

Figure 5: The physics and game engine module.

6

Initially, it was our intention to implement the entirety of the project in Verilog. Unfortunately, we had
incorrectly assumed that the game logic would be almost an afterthought—how hard could it be to decide
whether or not two objects are touching each other? Some cursory research on the subject of game engines
informed us that it is, in fact, a very high- level mathematical problem.

Unlike in the game of pong we put together in lab, we didn’t have the luxury of calculating our collisions
using fixed logic. Our plan was to have a game board which could be reconfigured without writing and
compiling a new Verilog module. It became apparent in very short order that this wasn’t going to be
possible with fixed logic. In addition, we hoped to make our physics simulation more complex than that
of the pong game; we wanted friction, gravity, and collisions with differing elasticities. In the pong game,
whenever our ball hit an object, it was simple to calculate the resulting trajectory and velocity of the ball,
because all of the collisions were perfectly elastic and took place with a surface perfectly aligned on either
the x or y axis. In these simple cases, negating either the x or y velocity is enough to simulate a realistic
collision. Collision detection with angled surfaces (like the triangular bumpers of our gameboard) requires
vector math which would be prohibitively complicated to implement as a state machine. In addition, we
wanted to have a variable number of game objects—the more we discussed what we needed in order to
properly build our dream pinball game, the more we realized we were essentially describing a processor.

With the realization that we wanted to be able to define parts of our project purely in software, we
decided to look into the Verilog implementations of the 6.004 Beta core available on past versions of the
6.111 website. The Beta fit our specifications well. Its 32-bit architecture was adequate for doing complex
math in the physics module, as well as precisely controlling the laser galvos in the projection module. In
addition, it was free, and all of us had experience writing assembly code for it from 6.004. We also considered
using other free cores like Xilinx PicoBlaze, but were discouraged by its 8-bit architecture, which would not
afford us the precision to do accurate physics modeling, or even make full use of the 12-bit DACs we used to
drive the laser galvos. The Beta architecture used for the project will be discussed in more detail in section
4.1.

While designing the physics engine, our hope was to keep the system as simple and as modular as
possible. Using lookup tables, we divided the code in to loops intended to iterate over the list of existing
sprite objects on the current game board and execute each object’s personal ”update” function. We wrote
routines to take input from the camera and instantiate different sprite objects in memory, so that the list
could be repopulated whenever we started a new game. While the communication between the camera and
the physics module was never used for anything due to time constraints, the camera and Beta communicate
through the exact same model of two-port shared memory as the Beta and the laser projector do. As such,
we have every reason to believe that this functionality could be implemented with relative ease, following
some further calibration of the camera module.

As the design of the lower-level functional blocks of our system were more imperative to producing a
viable demo, the actual functions intended to define the physics of the game were not successfully completed.
Due to the complex math involved, coding a physics engine in assembly proved to be a highly difficult task—
so much so that we spent a fairly significant amount of time early in the testing stages attempting to get the
old 6.004 C to Beta assembly compilers working. Unfortunately, the compilers have not been maintained in
recent years, and updates to Athena have rendered them impossible to work with.

By far the most complicated part of implementing a physics engine turned out to be collision detection.
Detecting a collision with an angled surface requires several numerically demanding steps of vector multi-
plication which we were ultimately unable to implement in time. Essentially, collision detection boils down
to calculating the minimum distance between the center of the pinball the all of the other line segments
and corners on the board. We successfully built functions to handle acceleration due to gravity and position
updates based on velocity, but the more complex physics functions have yet to be debugged. With perhaps
a few more days worth of testing, we would certainly have a playable game. Perhaps in the future we’ll be
able to further debug this module and run a playable pinball game on the board.

7

3.2.1 The SNES Controller

Though we had originally wanted to use accelerometers to control the pinball game’s paddles, we instead
decided to use an SNES controller because it was far simpler to read. The SNES controller has a three
wire interface that allows the output state of all the pins to be shifted out. A latch signal is applied to one
controller pin and shortly after a clock is applied and a 16 bit word is shifted out containing the state of
each pin. An FSM was created in Verilog to continuously sample the controller and output the pin states
over a parallel bus. This was connected to of the Beta’s memory-mapped input ports, allowing us to read
digital values from the controller.

3.3 Laser Controller

Figure 6: The block diagram for the laser display module. Unless noted, all blocks were designed in Beta
assembly language.

The laser display module was implemented primarily on a Beta processor, with the exception of the SPI
interface module, which was implemented in Verilog as a simple state machine. The SPI module was then
treated as a memory-mapped I/O device accessible by the laser Beta. Each frame, the laser Beta received
form the physics Beta a series of one-word (32-bit) sprite descriptions detailing the ID of the sprite to be

8

drawn, its color, and its x and y location within the frame.2 A frame was known to be over if a null sprite
ID was received; the physics and laser Betas could then easily coordinate frames by jumping back to the
beginning of the shared memory space at the end of each frame, so first sprite in a frame was always stored
at and read from shared memory location zero.

For each sprite received, the laser controller first registered each part of the input word (sprite ID, color,
x location, and y location) into separate registers. Sprite ID was then translated into an offset into the laser
Beta’s local sprite lookup table, a portion of which is shown below:

Figure 7: The frame outline entry from the laser Beta’s sprite lookup table.

Each sprite was broken up into line segments, and each line segment was broken up into sub-segments in
order to not overdrive the galvos (which could only be driven a small distance at a time). The first item of
each sprite (here ”LONG(26)”) is the number of line segments in that sprite. This was used as a countdown
so the laser Beta knew when it had reached the end of the sprite. The numbers in the left column describe x

2Location was defined as the point in the upper left corner of the sprite, and sprites were drawn clockwise from this point.

9

(most significant two bytes) and y (least significant two bytes) offsets, and the numbers in the right column
are the number of times the corresponding offset is repeated. These offsets describe the length and direction
of each sub-segment.

To draw the sprite, each offset in the table was split into its x and y components, sign-extended, and
added to the initial x and y location received from the physics Beta; the initial location, which was registered,
was then overwritten to store the current location. This new x-y point was then written to the galvos via the
SPI module. A timer was set at 20kHz and the program delayed sending a new value to the galvos until the
timer flag went high; during this period of time, the laser Beta polled two reserved shared memory locations
for flipper trigger information, overwriting its stored paddle offsets in the sprite tables with new ones that
appeared in the shared memory location. This allowed for the paddles to be updated to either their ”up” or
”down” positions every frame. This process was repeated with the same offset the specified number of times
(drawing each sub-segment one at a time) until the end of the segment was reached; the next set of offsets
was then loaded and the entire process was repeated until the segment counter ran out and the end of the
sprite was reached. The process then began again with the next sprite.

Null offsets were inserted into the sprite table at the beginning and end to account for laser travel and
power toggle time; null offsets were also added at sharp corners to counter the effects of the galvos’ inertia.

3.3.1 Galvanometers and DACs

The external hardware for the laser displaythe DAC used to control the galvanometers, the laser, and the
galvanometers themselveswere treated as memory-mapped peripherals and controlled simply by writing to
and reading from the corresponding location in memory. Generating a coherent display on a laser projector,
however, has a fair share of problems inherent to the hardware that must be solved. The two main problems
were issues of inertia: the galvanometers are extremely slow compared to the 50MHz clock of the Beta,
and driving them any faster than about 20kHz could break them; similarly, the laser has a not-insignificant
power on and off time. These are some of the problems with commercial laser projection systems, as well:
the inertia of the galvos tends to round out sharp corners, and the designer has to be careful of laser power
during travels between sprites. These issues were accounted for in the sprite drawing process described above
with the addition of ”null offsets”: the effects of these offsets can be clearly seen in the images below.

Figure 8: The display without corner stalls
or stalls for laser power.

Figure 9: Adding corner stalls to sharpen
corners and wait periods for laser power
toggle.

We also encountered less common issues, such as one of our first figures being rotated by 90° because of
a swapped pair of wires on the board. Additionally, an error in the schematic for the laser control board

10

resulted in a limited rotation field for the galvos–the board couldn’t drive negative voltage and so was clipping
the reachable field to the lower right quadrant. This resulted in our first few tests being much smaller than
expected given the values we were sending to the galvos. Coding bugs (like underflow and overflow) also
became painfully obvious during laser display testing.

Figure 10: One of the first laser tests, both
small and rotated.

Figure 11: An assembly bug resulting in the
drawing of only half of a sprite.

Figure 12: Problematic register underflow causing the laser beam to shoot to the maximum extent of its
range.

3.3.2 Testing

Testing the laser driver would have been impossible without the 6.004 testing program BSIM. With BSIM
we were able to step through the assembly program and verify that it was doing exactly what we wanted it
to. This was most helpful in the drawing of the sprites; mapping each sprite to a list of signed hexadecimal
offsets by hand was highly prone to error, which caused problematic overflow and underflow as in the figures
above.

4 Implementation Process

4.1 The µBeta Processor

The µBeta processor was based on the two-stage Beta from the old 6.111 course website. First, the core
was modified to have correct register initialization values to allow for simulation in ModelSim. We then
discovered that the BEQ and BNE opcodes were incorrect, and fixed them. We added multiply to the Beta
and remapped the memory space.

11

We also replaced the original memory mapping of the beta and added a shared memory space as well as
memory-mapped I/O to turn it into a real microcontroller. Our memory-mapped I/O consisted of two 32 bit
wide input ports, two 32 bit wide output ports, SPI, and a timer capable of triggering Beta interrupts. The
operating frequency and number of bits to be transmitted for the SPI were both fully configurable though
register settings. The timer period and interrupt enable could both be set from register settings and an
overflow flag can be both read and cleared.

Timing analysis of the µBeta processor revealed that it could be operated at slightly below 100MHz on
the Virtex-5 FPGA used in the project with a few extra edits, but we chose to clock it at 50MHz to avoid
any undesirable effects resulting from a faster clock speed.

We found that we could build a large number of 2-stage pipeline Beta cores on our Virtex-5 board (almost
40). However, the number of processors that can feasibly be used is limited more realistically by the amount
of memory each processor needs for program memory and storage. The two Beta cores that we used were
given 16k words of memory each (implemented using BRAM), which proved to be sufficient with ample grow
room for future modifications. The 50MHz clock speed chosen was more than adequate for our needs. Due
to the physical limitations of our galvanometers, the highest estimate we could make for our frame rate was
around 20Hz. In the Beta, all instructions are executed in a single cycle; running at 50MHz, we wouldn’t
have to worry about meeting our frame rate requirements.

To program the Betas, we needed to pre-load the program memory with .coe files detailing the assembled
instructions. Conveniently, the 6.004 BSIM program, readily available on the 6.004 course website, outputs
both .bin and .coe files. The latter format is a list of comma-delimited hex values which represent the
compiled Beta assembly code, which can be used to compile memories for use in Verilog modules by the
ISE CoreGen program. With these memory files converted into memories for the Verilog Beta to read, we
were able to simulate the Beta running through arbitrary code in ModelSim. Together with the infinitely
useful BSIM simulation module that comes free with your copy of the 6.004 Beta assembler, our Verilog test
benches proved invaluable to our testing process.

4.2 Debugging the OV7670 Camera

The use of the OV7670 camera in this project became a major hindrance. The cameras are poorly docu-
mented, poorly constructed, and require extensive setup; the default configuration settings were unusable,
as we needed the camera to output data in RGB format. This required writing configuration registers over
I2C. When put into RGB mode image first displayed green as red, red as green, and blue as black. Many
hours were spent debugging the camera frame capture Verilog before it was discovered (after much searching
the Internet for answers) that the inverted colors were a configuration issue and not an issue with any of
the project’s Verilog. The C source code for a Linux driver was found for the camera and many of the
configuration values were copied from this file. As a testament to the uselessness of the original camera,
many of the registers written to were marked as reserved in the data sheet with no other documentation
given. Even using the configuration settings found outline, the camera image was of poor quality, which
made image recognition difficult.

4.3 Building a Laser Projector

The laser projector was built inside a project box scavenged from the Stata loading dock with new front,
top, and bottom panels designed in SolidWorks and lasercut. We ordered the cheapest RGB laser and galvos
we could off of eBay, which proved sufficient for the project. The main issue with these was the lack of
mounting holes in the power supplies and galvo drivers. Luckily, liberal application of double-sided sticky
tape solved the problem. The finished product was a professional-looking box which contained the entire
system. A custom board was built to house the galvo-controlling DACs, a schematic of which can be found
in the appendix. An image of the PCB is included below.

12

Figure 13: The galvo DAC PCB.

Figure 14: The housing for the laser and camera system, FPGA mounted on top.

4.4 Xilinx ML505 FPGA Board

In lieu of the 6.111 labkit, our project used a ML505 Virtex 5 FPGA board that a team member acquired
from a previous internship. The Virtex 5 FPGA on this board has only a slightly smaller gate count than the
the Virtex-II used on the labkit. This is in comparison to the other common FPGA boards, which typically
have much smaller gate counts.

Using our own FPGA board allowed us to work on the project at any time and place of our choosing and
to build the FPGA into the laser projector. However, using this board came with its own set of challenges.
Unlike the student-targeted boards that Digilent and other companies make, the ML505 had no examples
on how to use any of the interfaces other than pin assignments and part numbers. As a consequence, getting
interfaces like VGA up and running took several days. Once over the biggest hump of the learning curve,
however, we were able to use the board quite competently to implement what we needed.

13

5 Review and Recommendation

As is likely obvious, we deeply underestimated the complexity of this project. Things that we assumed would
be quick—like getting the camera working at a basic level, for example—ended up taking us weeks of work.
We realized fairly late in the game that our project really required a processor; though we did manage to get
a working Beta implementation, it took up so much of our time that we had little time left to work on the
relevant parts of our project (object recognition, physics, and laser control). It’s no surprise, then, that we
didn’t finish all parts of our project. Thinking back, we should have been less ambitious and scrapped the
camera section entirely. Without having to fight with the camera and deal with vision processing, we would
have had enough time to generate a working physics engine and laser controller, even with the necessary
Beta implementation.

On the plus side, though, implementing the Beta processor on an FPGA did teach us a lot. It was also
truly amazing to be able to write code in assembly, load it into BRAM, and watch the processor behave
as expected. Even things like simulating in ModelSim were exciting since we were effectively simulating a
multicore processor at the gate level.

Figure 15: The first test with the two Betas interacting correctly. You can see the SPI transmission occurring
and the two Betas (the physics Beta as the host and the laser Beta as the client) using the shared memory
space.

And once we implemented the Beta processor we actually did manage to get fairly close to completing
all parts of our project. With an extra week, we likely could have finished, even with the hangups from the
camera—had we initially decided on a multicore Beta architecture rather than restarting halfway through
the project we would have made much more progress towards our original goal.

One thing that would have helped tremendously (and could help in the future, if further iterations of
this project are attempted) was a C-to-Beta-assembly compiler. Because the Beta instruction set is non-
standard, no such industry-standard compiler exists and past students have relied on a compiler that is no
longer maintained by its authors. Our attempts to revive this compiler for use on modern systems failed,
but if we had had a compiler writing the physics engine would have been comparatively trivial. Fixed-point
math in assembly language is not in any way intuitive and would have been much easier in a high-level
language like C.

14

Something else that could have sped up out testing process was a custom bootloader for the Betas on the
FPGA. In order to test new code, we had to rebuild the two 16k word program memories (BRAMs) in ISE,
then rebuild the entire project. This process took about 15 to 20 minutes, which held up our code testing
frequently. Though we thoroughly simulated in both BSIM and ModelSim, one of our biggest sources of
error was the physical system itself, which could only be tested by running the assembly code. Had we been
able to serially load in a memory initialization, we would have been able to test code on the system much
more often without having to rebuild the entire project.

6 Conclusion

All things considered, our project came together surprisingly well. Though not all elements of the project
were integrated, most of them were fully functional as of the checkoff. The only exception to this was
the physics engine, which was close to functional but not yet fully debugged. Though our pinball game is
unplayable, the fact that we managed to design object recognition software with a terrible camera and build
effectively a commercial laser projector (to display a gameboard with controllable paddles) is fairly amazing.
While we’re disappointed that we weren’t able to get everything finished, we are extremely proud of the
work that we did pull together.

And, of course, we achieved our goal of making something really cool—a 400mW laser projecting a pinball
board and an SNES controller to toggle the paddles is nothing to scoff at.

15

Glossary

Beta A 32-bit processor designed in the MIT course 6.004. RISC architecture with a limited instruction
set.

Galvo Short for galvanometer.

Game object A sprite included as part of the game.

I2C A common communication protocol used for communicating between the FPGA and the OV7670
camera and the DVI/VGA Chrontel chip.

Laser Beta A Beta processor running code to control the laser display.

Lookup table A dedicated chunk of memory within the Beta program memory used to hold information
about sprites.

Memory-mapped I/O A way of mapping a memory location in the Beta processor to an I/O port of the
FPGA. Used to allow Beta code to interface with peripherals in the same way a standard microcontroller
would.

Physics Beta A Beta processor running code to control the physics and game behavior.

SPI A common communication protocol used for communicating between the FPGA and the DACs to drive
the galvos.

Sprite An individual object to be displayed by the laser projector (for example, the left paddle).

16

7 Code and Schematics

7.1 Galvo DAC Schematic

17

7.2 Full Block Diagram

18

7.3 The Beta

7.3.1 The Two-Stage Pipelined Beta

///

//

// 2-stage pipelined Beta (one bidirectional memory port) [cjt]

//

///

module beta2(clk,reset,irq,xadr,ma,mdin,mdout,mwe);

input clk,reset,irq;

input [30:0] xadr;

output [31:0] ma,mdout;

input [31:0] mdin;

output mwe;

// beta2 registers

reg [31:0] npc = 0;

reg [31:0] pc_inc = 0;

reg [31:0] inst = 0;

reg [4:0] rc_save = 0; // needed for second cycle on LD,LDR

// internal buses

wire [31:0] rd1,rd2,wd;

wire [31:0] a,b,xb,c,addsub,cmp,shift,boole,mult;

// control signals

wire wasel,werf,z,asel,bsel,csel;

wire addsub_op,cmp_lt,cmp_eq,shift_op,shift_sxt,boole_and,boole_or;

wire wd_addsub,wd_cmp,wd_shift,wd_boole,wd_mult;

wire msel,msel_next,branch,trap,interrupt;

// pc

wire [31:0] npc_inc,npc_next;

assign npc_inc = npc + 4;

assign npc_next = reset ? 32’h80000000 :

msel ? npc :

branch ? {npc[31] & addsub[31],addsub[30:2],2’b00} :

trap ? 32’h80000004 :

interrupt ? {1’b1,xadr} :

{npc[31],npc_inc[30:0]};

always @ (posedge clk) begin

npc <= npc_next; // logic for msel handled above

if (!msel) pc_inc <= {npc[31],npc_inc[30:0]};

end

// instruction reg

always @ (posedge clk) if (!msel) inst <= mdin;

// control logic

decode ctl(.clk(clk),.reset(reset),.irq(irq & !npc[31]),.z(z),

.opcode(inst[31:26]),

.asel(asel),.bsel(bsel),.csel(csel),.wasel(wasel),

.werf(werf),.msel(msel),.msel_next(msel_next),.mwe(mwe),

.addsub_op(addsub_op),.cmp_lt(cmp_lt),.cmp_eq(cmp_eq),

.shift_op(shift_op),.shift_sxt(shift_sxt),

.boole_and(boole_and),.boole_or(boole_or),

19

.wd_addsub(wd_addsub),.wd_cmp(wd_cmp),

.wd_shift(wd_shift),.wd_boole(wd_boole),.wd_mult(wd_mult),

.branch(branch),.trap(trap),.interrupt(interrupt));

// register file

wire [4:0] wa;

always @ (posedge clk) if (!msel) rc_save <= inst[25:21];

assign wa = msel ? rc_save : wasel ? 5’d30 : inst[25:21];

regfile rf(inst[20:16],rd1,inst[15:11],rd2,inst[25:21],mdout,

wa,wd,clk,werf);

assign z = ~| rd1; // used in BEQ/BNE instructions

// alu

assign a = asel ? pc_inc : rd1;

assign b = bsel ? c : rd2;

assign c = csel ? {{14{inst[15]}},inst[15:0],2’b00} :

{{16{inst[15]}},inst[15:0]};

wire addsub_n,addsub_v,addsub_z;

assign xb = {32{addsub_op}} ^ b;

assign addsub = a + xb + addsub_op;

assign addsub_n = addsub[31];

assign addsub_v = (addsub[31] & ~a[31] & ~xb[31]) |

(~addsub[31] & a[31] & xb[31]);

assign addsub_z = ~| addsub;

assign cmp[31:1] = 0;

assign cmp[0] = (cmp_lt & (addsub_n ^ addsub_v)) | (cmp_eq & addsub_z);

mul32 mpy(a,b,mult);

wire [31:0] shift_right;

// Verilog >>> operator not synthesized correctly, so do it by hand

shift_right sr(shift_sxt,a,b[4:0],shift_right);

assign shift = shift_op ? shift_right : a << b[4:0];

assign boole = boole_and ? (a & b) : boole_or ? (a | b) : a ^ b;

// result mux, listed in order of speed (slowest first)

assign wd = msel ? mdin :

wd_cmp ? cmp :

wd_addsub ? addsub :

wd_mult ? mult :

wd_shift ? shift :

wd_boole ? boole :

pc_inc;

// assume synchronous external memory

assign ma = msel_next ? {npc[31],addsub[30:0]} : npc_next;

endmodule

///

//

// 3-port register file

//

///

20

// Beta register file: 32 registers of 32 bits

// R31 always reads as 0

// 3 read ports, 1 write port

module regfile(ra1,rd1,ra2,rd2,ra3,rd3,wa,wd,clk,werf);

input [4:0] ra1,ra2,ra3,wa;

output [31:0] rd1,rd2,rd3;

input [31:0] wd;

input clk,werf;

(* ram_style = "distributed" *)

reg [31:0] regfile[31:0];

//this may be required for simulation?

integer i; initial for (i = 0; i < 32; i = i + 1) regfile[i] = 32’h0;

assign rd1 = regfile[ra1];

assign rd2 = regfile[ra2];

assign rd3 = regfile[ra3];

always @ (posedge clk)

if (werf && wa != 31) regfile[wa] <= wd;

endmodule

///

//

// Instruction decode (inst => datapath control signals)

//

///

module decode(clk,reset,irq,z,opcode,

asel,bsel,csel,wasel,werf,msel,msel_next,mwe,

addsub_op,cmp_lt,cmp_eq,

shift_op,shift_sxt,boole_and,boole_or,

wd_addsub,wd_cmp,wd_shift,wd_boole,wd_mult,

branch,trap,interrupt);

input clk,reset,irq,z;

input [5:0] opcode;

output asel,bsel,csel,wasel,werf,msel,msel_next,mwe;

output addsub_op,shift_op,shift_sxt,cmp_lt,cmp_eq,boole_and,boole_or;

output wd_addsub,wd_cmp,wd_shift,wd_boole,wd_mult;

output branch,trap,interrupt;

reg asel,bsel,csel,wasel,mem_next;

reg addsub_op,shift_op,shift_sxt,cmp_lt,cmp_eq,boole_and,boole_or;

reg wd_addsub,wd_cmp,wd_shift,wd_boole,wd_mult;

reg branch,trap,interrupt;

// a little bit of state...

reg annul,msel,mwrite;

//always @ (opcode or z or annul or msel or irq or reset)

always@(*)

begin

// initial assignments for all control signals

asel = 1’hx;

bsel = 1’hx;

csel = 1’hx;

addsub_op = 1’hx;

21

shift_op = 1’hx;

shift_sxt = 1’hx;

cmp_lt = 1’hx;

cmp_eq = 1’hx;

boole_and = 1’hx;

boole_or = 1’hx;

wasel = 0;

mem_next = 0;

wd_addsub = 0;

wd_cmp = 0;

wd_shift = 0;

wd_boole = 0;

wd_mult = 0;

branch = 0;

trap = 0;

interrupt = 0;

if (irq && !reset && !annul && !msel) begin

interrupt = 1;

wasel = 1;

end else casez (opcode)

6’b011000: begin // LD

asel = 0; bsel = 1; csel = 0;

addsub_op = 0;

mem_next = 1;

end

6’b011001: begin // ST

asel = 0; bsel = 1; csel = 0;

addsub_op = 0;

mem_next = 1;

end

6’b011011: begin // JMP

asel = 0; bsel = 1; csel = 0;

addsub_op = 0;

branch = !annul && !msel;

end

6’b011100: begin // BEQ //incorrect was 011101

asel = 1; bsel = 1; csel = 1;

addsub_op = 0;

branch = !annul && !msel && z;

end

6’b011101: begin // BNE //incorrect was 0111100

asel = 1; bsel = 1; csel = 1;

addsub_op = 0;

branch = !annul && !msel && ~z;

end

6’b011111: begin // LDR

asel = 1; bsel = 1; csel = 1;

addsub_op = 0;

mem_next = 1;

end

6’b1?0000: begin // ADD, ADDC

asel = 0; bsel = opcode[4]; csel = 0;

addsub_op = 0;

wd_addsub = 1;

end

22

6’b1?0001: begin // SUB, SUBC

asel = 0; bsel = opcode[4]; csel = 0;

addsub_op = 1;

wd_addsub = 1;

end

6’b1?0010: begin // MUL, MULC

asel = 0; bsel = opcode[4]; csel = 0;

wd_mult = 1;

end

6’b1?0100: begin // CMPEQ, CMPEQC

asel = 0; bsel = opcode[4]; csel = 0;

addsub_op = 1;

cmp_eq = 1; cmp_lt = 0;

wd_cmp = 1;

end

6’b1?0101: begin // CMPLT, CMPLTC

asel = 0; bsel = opcode[4]; csel = 0;

addsub_op = 1;

cmp_eq = 0; cmp_lt = 1;

wd_cmp = 1;

end

6’b1?0110: begin // CMPLE, CMPLEC

asel = 0; bsel = opcode[4]; csel = 0;

addsub_op = 1;

cmp_eq = 1; cmp_lt = 1;

wd_cmp = 1;

end

6’b1?1000: begin // AND, ANDC

asel = 0; bsel = opcode[4]; csel = 0;

boole_and = 1; boole_or = 0;

wd_boole = 1;

end

6’b1?1001: begin // OR, ORC

asel = 0; bsel = opcode[4]; csel = 0;

boole_and = 0; boole_or = 1;

wd_boole = 1;

end

6’b1?1010: begin // XOR, XORC

asel = 0; bsel = opcode[4]; csel = 0;

boole_and = 0; boole_or = 0;

wd_boole = 1;

end

6’b1?1100: begin // SHL, SHLC

asel = 0; bsel = opcode[4]; csel = 0;

shift_op = 0;

wd_shift = 1;

end

6’b1?1101: begin // SHR, SHRC

asel = 0; bsel = opcode[4]; csel = 0;

shift_op = 1; shift_sxt = 0;

wd_shift = 1;

end

6’b1?1110: begin // SRA, SRAC

asel = 0; bsel = opcode[4]; csel = 0;

shift_op = 1; shift_sxt = 1;

wd_shift = 1;

end

default: begin // illegal opcode

trap = !annul && !msel; wasel = 1;

23

end

endcase

end

// state

wire msel_next = !reset && !annul && mem_next && !msel;

wire mwrite_next = msel_next && opcode==6’b011001;

always @ (posedge clk)

begin

annul <= !reset && (trap || branch || interrupt);

msel <= msel_next;

mwrite <= mwrite_next;

end

assign mwe = mwrite_next; // assume synchronous memory

assign werf = msel ? !mwrite : (!annul & !mem_next);

endmodule

///

//

// 32-bit signed/unsiged right shift

//

///

module shift_right(sxt,a,b,shift_right);

input sxt;

input [31:0] a;

input [4:0] b;

output [31:0] shift_right;

wire [31:0] w,x,y,z;

wire sin;

assign sin = sxt & a[31];

assign w = b[0] ? {sin,a[31:1]} : a;

assign x = b[1] ? {{2{sin}},w[31:2]} : w;

assign y = b[2] ? {{4{sin}},x[31:4]} : x;

assign z = b[3] ? {{8{sin}},y[31:8]} : y;

assign shift_right = b[4] ? {{16{sin}},z[31:16]} : z;

endmodule

7.3.2 Beta Address Decoding

‘timescale 1ns / 1ps

module beta_addr_decode(

input wire [31:0] addr,

output reg sel_ram = 0,

output reg sel_IO =0,

output reg sel_read_shared =0,

output reg sel_write_shared =0,

output reg [2:0] read_select =0

);

always@(*)

begin

24

//remove the supervisor bit dummy

case(addr[30:16])

0: begin //RAM select

sel_ram <=1;

sel_IO <= 0;

sel_read_shared <= 0;

sel_write_shared <= 0;

read_select <= 0;

end

1: begin //Memory mapped IO select

sel_ram <=0;

sel_IO <= 1;

sel_read_shared <= 0;

sel_write_shared <= 0;

read_select <= 1;

end

2: begin //read block select

sel_ram <=0;

sel_IO <= 0;

sel_read_shared <= 1;

sel_write_shared <= 0;

read_select <= 2;

end

3: begin //write block select

sel_ram <=0;

sel_IO <= 0;

sel_read_shared <= 0;

sel_write_shared <= 1;

read_select <= 3;

end

default : begin //this should never happen

sel_ram <=1; //read from main mem? I could trigger error IRQ

sel_IO <= 0;

sel_read_shared <= 0;

sel_write_shared <= 0;

read_select <= 0;

end

endcase

end

endmodule

7.3.3 Memory-Mapped I/O

//this is a basic memory mapped IO, SPI, inputs, and outputs

module mapped_IO(

input wire clk,

input wire [31:0] addr,//from beta

input wire [31:0] din, //from beta

input wire mwe, //memory write enable from beta

input wire [31:0] in_port_a, in_port_b, // general use input port

25

output reg [31:0] dout =0, //data to beta

output reg [31:0] out_port_a = 0,

output reg [31:0] out_port_b = 0, // general output ports

input wire spi_miso, //spi stuff

output wire spi_sclk,

output wire spi_mosi,

output reg irq

);

//this is on word offset

//registers:

// 0000 - 0004 : in_port_a - in_port b

// 0008 - 000c : out_port_a - out_port_b

// 0010 - 001c : spi_config, spi_start, spi_tx, spi_rx

// 0020 - 002c : system timer 1

wire [31:0] spi_rx_data;

reg [31:0] spi_tx_data =0;

reg [31:0] spi_config = 32’h00_00_02_0a; //default to nice value

reg spi_start;

wire [31:0]spi_status;

//timer 1 inputs

reg [31:0] timer1_cin = 32’h00_00_FF_FF;

reg timer1_irq_enable = 0;

reg timer1_clear_overflow = 0; //in always * block

reg timer1_mwe = 0; //in always * block

//timer 1 outputs

wire [31:0] timer1_cout;

wire timer1_irq;

wire timer1_overflow;

spi_io beta_spi (

.clk(clk),

.start(spi_start),

.ctrl_reg(spi_config),

.din(spi_tx_data),

.dout(spi_rx_data),

.status_reg(spi_status),

.sclk(spi_sclk),

.miso(spi_miso),

.mosi(spi_mosi)

);

system_timer beta_timer1 (

.clk(clk),

.count_in(timer1_cin),

.count_out(timer1_cout),

.clear_overflow(timer1_clear_overflow),

.irq_enable(timer1_irq_enable),

.irq(timer1_irq),

.mwe(timer1_mwe),

.overflow(timer1_overflow)

);

26

//handle addresses with no readback

always @(*)

begin

//spi start trigger

spi_start <= (mwe&&(addr[15:0]==16’h0014)&&din[0]);

//timer1 overflow clear

timer1_clear_overflow <= (mwe&&(addr[15:0]==16’h002c)&&din[0]);

//timer1 mwe set to load new timer value

timer1_mwe <= (mwe&&(addr[15:0]==16’h0024));

//deal with irq

irq <= timer1_irq;

end

//decode address

always @(posedge clk)

begin

case(addr[15:0])

16’h0000: begin //in_port_a

//no write

dout <= in_port_a;

end

16’h0004: begin //in_port_b

//no write

dout <= in_port_b;

end

16’h0008: begin //out_port_a

dout <= out_port_a;

out_port_a <= mwe ? din : out_port_a;

end

16’h000c: begin //out_port_b

dout <= out_port_b;

out_port_b <= mwe ? din : out_port_b;

end

16’h0010: begin //spi_config reg

dout <= spi_config;

spi_config <= mwe ? din : spi_config;

end

16’h0014: begin //spi_start/status

//when wrote to, starts SPI

//does not retain data value

//spi start assignment occurs outside clocked logic

//when read, gives status

dout <= {31’b0,spi_status};

end

16’h0018: begin //spi_tx_data

dout <= spi_tx_data;

spi_tx_data <= mwe ? din : spi_tx_data;

end

16’h001c: begin //spi_rx_data

//read only

27

dout <= spi_rx_data;

end

16’h0020: begin // timer 1 cout

//read only

dout <= timer1_cout;

end

16’h0024: begin // timer 1 cin

//write and read

dout <= timer1_cin;

timer1_cin <= mwe ? din : timer1_cin;

end

16’h0028: begin // timer 1 irq enable

dout <= {31’b0,timer1_irq_enable};

timer1_irq_enable <= mwe ? din[0] : timer1_irq_enable;

end

16’h002c: begin //timer 1 overflow flag

//clearing is write only and occurs in unclocked block

//read only

dout <= {31’b0, timer1_overflow};

end

default: begin

dout <= 0;

end

endcase

end

endmodule

7.3.4 Beta Instruction Set

||

||| 6.004 BETA Macro package - revised 9/28/11 SAW |||

||| This file defines our 32-bit Beta instruction set. |||

||

| Global instruction definition conventions:

| * DESTINATION arg is LAST

| Instruction set summary. Notation:

| ra, rb, rc: registers

| CC: 16-bit signed constant

| label: statement/location tag (becomes PC-relative offset)

| ADD(RA, RB, RC) | RC <- <RA> + <RB>

| ADDC(RA, C, RC) | RC <- <RA> + C

| AND(RA, RB, RC) | RC <- <RA> & <RB>

| ANDC(RA, C, RC) | RC <- <RA> & C

| MUL(RA, RB, RC) | RC <- <RA> * <RB>

| MULC(RA, C, RC) | RC <- <RA> * C

28

| DIV(RA, RB, RC) | RC <- <RA> / <RB>

| DIVC(RA, C, RC) | RC <- <RA> / C

| OR(RA, RB, RC) | RC <- <RA> | <RB>

| ORC(RA, C, RC) | RC <- <RA> | C

| SHL(RA, RB, RC) | RC <- <RA> << <RB>

| SHLC(RA, C, RC) | RC <- <RA> << C

| SHR(RA, RB, RC) | RC <- <RA> >> <RB>

| SHRC(RA, C, RC) | RC <- <RA> >> C

| SRA(RA, RB, RC) | RC <- <RA> >> <RB>

| SRAC(RA, C, RC) | RC <- <RA> >> C

| SUB(RA, RB, RC) | RC <- <RA> - <RB>

| SUBC(RA, C, RC) | RC <- <RA> - C

| XOR(RA, RB, RC) | RC <- <RA> ^ <RB>

| XORC(RA, C, RC) | RC <- <RA> ^ C

| XNOR(RA, RB, RC) | RC <- ~(<RA> ^ <RB>)

| XNORC(RA, C, RC) | RC <- ~(<RA> ^ C)

| CMPEQ(RA, RB, RC) | RC <- <RA> == <RB>

| CMPEQC(RA, C, RC) | RC <- <RA> == C

| CMPLE(RA, RB, RC) | RC <- <RA> <= <RB>

| CMPLEC(RA, C, RC) | RC <- <RA> <= C

| CMPLT(RA, RB, RC) | RC <- <RA> < <RB>

| CMPLTC(RA, C, RC) | RC <- <RA> < C

| BR(LABEL,RC) | RC <- <PC>+4; PC <- LABEL (PC-relative addressing)

| BR(LABEL) | PC <- LABEL (PC-relative addressing)

| BEQ(RA, LABEL, RC) | RC <- <PC>+4; IF <RA>==0 THEN PC <- LABEL

| BEQ(RA, LABEL) | IF <RA>==0 THEN PC <- LABEL

| BF(RA, LABEL, RC) | RC <- <PC>+4; IF <RA>==0 THEN PC <- LABEL

| BF(RA, LABEL) | IF <RA>==0 THEN PC <- LABEL

| BNE(RA, LABEL, RC) | RC <- <PC>+4; IF <RA>!=0 THEN PC <- LABEL

| BNE(RA, LABEL) | IF <RA>!=0 THEN PC <- LABEL

| BT(RA, LABEL, RC) | RC <- <PC>+4; IF <RA>!=0 THEN PC <- LABEL

| BT(RA, LABEL) | IF <RA>!=0 THEN PC <- LABEL

| JMP(RA, RC) | RC <- <PC>+4; PC <- <RA> & 0xFFFC

| JMP(RB) | PC <- <RB> & 0xFFFC

| LD(RA, CC, RC) | RC <- <<RA>+CC>

| LD(CC, RC) | RC <- <CC>

| ST(RC, CC, RA) | <RA>+CC <- <RC>

| ST(RC, CC) | CC <- <RC>

| LDR(CC, RC) | RC <- <CC> (PC-relative addressing)

| MOVE(RA, RC) | RC <- <RA>

| CMOVE(CC, RC) | RC <- CC

| HALT() | STOPS SIMULATOR.

| PUSH(RA) | (2) <SP> <- <RA>; SP <- <SP> - 4

| POP(RA) | (2) RA <- <<SP>+4>; SP <- <SP> + 4

| ALLOCATE(N) | Allocate N longwords from stack

| DEALLOCATE(N) | Release N longwords

| CALL(label) | Call a subr; save PC in lp.

| CALL(label, n) | (2) Call subr at label with n args.

| Saves return adr in LP.

| Pops n longword args from stack.

| RTN() | Returns to adr in <LP> (Subr return)

29

| XRTN() | Returns to adr in <IP> (Intr return)

| WORD(val) | Assemble val as a 16-bit datum

| LONG(val) | Assemble val as a 32-bit datum

| STORAGE(NWORDS) | Reserve NWORDS 32-bit words of DRAM

| GETFRAME(F, RA) | RA <- <<BP>+F>

| PUTFRAME(RA, F) | <BP>+F <- <RA>

| Calling convention:

| PUSH(argn-1)

| ...

| PUSH(arg0)

| CALL(subr, nargs)

| (return here with result in R0, args cleaned)

| Extra register conventions, for procedure linkage:

| LP = 28 | Linkage register (holds return adr)

| BP = 29 | Frame pointer (points to base of frame)

| Conventional stack frames look like:

| arg[N-1]

| ...

| arg[0]

| <saved lp>

| <saved bp>

| <other saved regs>

| BP-><locals>

| ...

| SP->(first unused location)

| Convention: define a symbol for each arg/local giving bp-relative offset.

| Then use

| getframe(name, r) gets value at offset into register r.

| putframe(r, name) puts value from r into frame at offset name

||

||| End of documentation. Following are the actual definitions... |||

||

| Assemble words, little-endian:

.macro WORD(x) x%0x100 (x>>8)%0x100

.macro LONG(x) WORD(x) WORD(x >> 16) | little-endian for Maybe

.macro STORAGE(NWORDS) . = .+(4*NWORDS)| Reserve NWORDS words of RAM

| register designators

| this allows symbols like r0, etc to be used as

| operands in instructions. Note that there is no real difference

| in this assembler between register operands and small integers.

r0 = 0

r1 = 1

r2 = 2

r3 = 3

r4 = 4

r5 = 5

r6 = 6

30

r7 = 7

r8 = 8

r9 = 9

r10 = 10

r11 = 11

r12 = 12

r13 = 13

r14 = 14

r15 = 15

r16 = 16

r17 = 17

r18 = 18

r19 = 19

r20 = 20

r21 = 21

r22 = 22

r23 = 23

r24 = 24

r25 = 25

r26 = 26

r27 = 27

r28 = 28

r29 = 29

r30 = 30

r31 = 31

bp = 27 | frame pointer (points to base of frame)

lp = 28 | linkage register (holds return adr)

sp = 29 | stack pointer (points to 1st free locn)

xp = 30 | interrupt return pointer (lp for interrupts)

| understand upper case, too.

R0 = r0

R1 = r1

R2 = r2

R3 = r3

R4 = r4

R5 = r5

R6 = r6

R7 = r7

R8 = r8

R9 = r9

R10 = r10

R11 = r11

R12 = r12

R13 = r13

R14 = r14

R15 = r15

R16 = r16

R17 = r17

R18 = r18

R19 = r19

R20 = r20

R21 = r21

R22 = r22

R23 = r23

R24 = r24

R25 = r25

31

R26 = r26

R27 = r27

R28 = r28

R29 = r29

R30 = r30

R31 = r31

XP = xp

LP = lp

BP = bp

SP = sp

.macro betaop(OP,RA,RB,RC) {

.align 4

LONG((OP<<26)+((RC%0x20)<<21)+((RA%0x20)<<16)+((RB%0x20)<<11)) }

.macro betaopc(OP,RA,CC,RC) {

.align 4

LONG((OP<<26)+((RC%0x20)<<21)+((RA%0x20)<<16)+(CC%0x10000)) }

.macro ADD(RA, RB, RC) betaop(0x20,RA,RB,RC)

.macro ADDC(RA, C, RC) betaopc(0x30,RA,C,RC)

.macro AND(RA, RB, RC) betaop(0x28,RA,RB,RC)

.macro ANDC(RA, C, RC) betaopc(0x38,RA,C,RC)

.macro MUL(RA, RB, RC) betaop(0x22,RA,RB,RC)

.macro MULC(RA, C, RC) betaopc(0x32,RA,C,RC)

.macro DIV(RA, RB, RC) betaop(0x23,RA,RB,RC)

.macro DIVC(RA, C, RC) betaopc(0x33,RA,C,RC)

.macro OR(RA, RB, RC) betaop(0x29,RA,RB,RC)

.macro ORC(RA, C, RC) betaopc(0x39,RA,C,RC)

.macro SHL(RA, RB, RC) betaop(0x2C,RA,RB,RC)

.macro SHLC(RA, C, RC) betaopc(0x3C,RA,C,RC)

.macro SHR(RA, RB, RC) betaop(0x2D,RA,RB,RC)

.macro SHRC(RA, C, RC) betaopc(0x3D,RA,C,RC)

.macro SRA(RA, RB, RC) betaop(0x2E,RA,RB,RC)

.macro SRAC(RA, C, RC) betaopc(0x3E,RA,C,RC)

.macro SUB(RA, RB, RC) betaop(0x21,RA,RB,RC)

.macro SUBC(RA, C, RC) betaopc(0x31,RA,C,RC)

.macro XOR(RA, RB, RC) betaop(0x2A,RA,RB,RC)

.macro XORC(RA, C, RC) betaopc(0x3A,RA,C,RC)

.macro XNOR(RA, RB, RC) betaop(0x2B,RA,RB,RC)

.macro XNORC(RA, C, RC) betaopc(0x3B,RA,C,RC)

.macro CMPEQ(RA, RB, RC) betaop(0x24,RA,RB,RC)

.macro CMPEQC(RA, C, RC) betaopc(0x34,RA,C,RC)

.macro CMPLE(RA, RB, RC) betaop(0x26,RA,RB,RC)

.macro CMPLEC(RA, C, RC) betaopc(0x36,RA,C,RC)

.macro CMPLT(RA, RB, RC) betaop(0x25,RA,RB,RC)

.macro CMPLTC(RA, C, RC) betaopc(0x35,RA,C,RC)

.macro BETABR(OP,RA,RC,LABEL) betaopc(OP,RA,((LABEL-.)>>2)-1, RC)

.macro BEQ(RA, LABEL, RC) BETABR(0x1C,RA,RC,LABEL)

.macro BEQ(RA, LABEL) BETABR(0x1C,RA,r31,LABEL)

.macro BF(RA, LABEL, RC) BEQ(RA,LABEL,RC)

.macro BF(RA,LABEL) BEQ(RA,LABEL)

.macro BNE(RA, LABEL, RC) BETABR(0x1D,RA,RC,LABEL)

.macro BNE(RA, LABEL) BETABR(0x1D,RA,r31,LABEL)

.macro BT(RA,LABEL,RC) BNE(RA,LABEL,RC)

32

.macro BT(RA,LABEL) BNE(RA,LABEL)

.macro BR(LABEL,RC) BEQ(r31, LABEL, RC)

.macro BR(LABEL) BR(LABEL, r31)

.macro JMP(RA, RC) betaopc(0x1B,RA,0,RC)

.macro JMP(RA) betaopc(0x1B,RA,0,r31)

.macro LD(RA, CC, RC) betaopc(0x18,RA,CC,RC)

.macro LD(CC, RC) betaopc(0x18,R31,CC,RC)

.macro ST(RC, CC, RA) betaopc(0x19,RA,CC,RC)

.macro ST(RC, CC) betaopc(0x19,R31,CC,RC)

.macro LDR(CC, RC) BETABR(0x1F, R31, RC, CC)

.macro MOVE(RA, RC) ADD(RA, R31, RC)

.macro CMOVE(CC, RC) ADDC(R31, CC, RC)

.macro PUSH(RA) ADDC(SP,4,SP) ST(RA,-4,SP)

.macro POP(RA) LD(SP,-4,RA) ADDC(SP,-4,SP)

.macro CALL(label) BR(label, LP)

.macro RTN() JMP(LP)

.macro XRTN() JMP(XP)

| Controversial Extras

| Calling convention:

| PUSH(argn-1)

| ...

| PUSH(arg0)

| CALL(subr, nargs)

| (return here with result in R0, args cleaned)

| Extra register conventions, for procedure linkage:

| LP = 28 | Linkage register (holds return adr)

| BP = 29 | Frame pointer (points to base of frame)

| Conventional stack frames look like:

| arg[N-1]

| ...

| arg[0]

| <saved lp>

| <saved bp>

| <other saved regs>

| BP-><locals>

| ...

| SP->(first unused location)

| Convention: define a symbol for each arg/local giving bp-relative offset.

| Then use

| getframe(name, r) gets value at offset into register r.

| putframe(r, name) puts value from r into frame at offset name

.macro GETFRAME(OFFSET, REG) LD(bp, OFFSET, REG)

.macro PUTFRAME(REG, OFFSET) ST(REG, OFFSET, bp)

.macro CALL(S,N) BR(S,lp) SUBC(sp, 4*N, sp)

.macro ALLOCATE(N) ADDC(sp, N*4, sp)

.macro DEALLOCATE(N) SUBC(sp, N*4, sp)

33

|--

| Privileged mode instructions

|--

.macro PRIV_OP(FNCODE) betaopc (0x00, 0, FNCODE, 0)

.macro HALT() PRIV_OP (0)

.macro RDCHAR() PRIV_OP (1)

.macro WRCHAR() PRIV_OP (2)

.macro CYCLE() PRIV_OP (3)

.macro TIME() PRIV_OP (4)

.macro CLICK() PRIV_OP (5)

.macro RANDOM() PRIV_OP (6)

.macro SEED() PRIV_OP (7)

.macro SERVER() PRIV_OP (8)

| SVC calls; used for OS extensions

.macro SVC(code) betaopc (0x01, 0, code, 0)

| Trap and interrupt vectors

VEC_RESET = 0 | Reset (powerup)

VEC_II = 4 | Illegal instruction (also SVC call)

VEC_CLK = 8 | Clock interrupt

VEC_KBD = 12 | Keyboard interrupt

VEC_MOUSE = 16 | Mouse interrupt

| constant for the supervisor bit in the PC

PC_SUPERVISOR = 0x80000000 | the bit itself

PC_MASK = 0x7fffffff | a mask for the rest of the PC

7.3.5 Laser Controller Assembly

.include beta.uasm

| REGISTER MAP

| r0: x location

| r1: y location

| r2: current sprite id

| r3: rgb value for laser

| r4: current offset into shared memory

| r5: counter

| r6: length of sprite

| r7: scratch

| r8: scratch

| r9: current location in local sprite lookup table

| r10: spi tx data, daca

| r11: spi tx data, dacb

| r12: holds remaining number of points in current segment

| r13: scratch

| r14: scale factor - currently inactive

| r15: laser power flag for implementing travels

| r16: reserved for copy of rgb data

| r17: scratch

| r18: scratch

| r19: holds scaling factor

| r20: travel time

34

| r21: stall time

| Define parameters

NEXT_SPRITE_OFFSET = 0x04

|TIMER_VALUE = 0x0D05 | 15kHz

TIMER_VALUE = 0x09C4 | 20kHz

|TIMER_VALUE = 0x01 | DEBUG

| External address offsets

SPI_CONFIG = 0x10

SPI_STATUS = 0x14

INPUT_PORT_A = 0x0

DAC_CTL_OUT = 0x08

SPI_TX = 0x18

TIMER_SET = 0x24

TIMER_OVERFLOW = 0x2C

SHARED_MEM_WRITE_STATUS = 0x100

SHARED_MEM_READ_STATUS = 0x101

SWITCHES = 0x00

STALL_TIME = 0x04 | DEBUG

TRAVEL_TIME = 0x16 | DEBUG

SCALING_FACTOR = 0x0 | full scale (DEBUG)

|SCALING_FACTOR = 0x1 | half scale (DEBUG)

LEFT_PADDLE_UPDATE = 0xF8 | location of left and right paddle offset update values

RIGHT_PADDLE_UPDATE = 0xFC

. = 0

BR(init)

. = 4

INTERRUPT:

ADD(r31, r31, r31)

XRTN()

| Output port B (0008): {ADC_CSN, ADC_latch_n, R, G, B}

| Input port A (0000): { [31:24] TRAVEL_TIME, [23:16] STALL_TIME, [15:8] UNUSED, [7:0]

SCALING_FACTOR }

| Initialize sprite location in shared memory, initialize SPI, get scale factor

init:

CMOVE(stack, SP) | Initialize stack

CMOVE(2, r4) | initialize sprite location in shared memory

SHLC(r4, 16, r4)

CMOVE(1, r7) | initialize output port location in shared memory

SHLC(r7, 16, r7)

CMOVE(0x0810, r8) | configure SPI

ST(r8, SPI_CONFIG, r7)

LD(r7, INPUT_PORT_A, r19) | load input port A into r19

CMOVE(0xFF, r8)

SHLC(r8, 24, r8)

AND(r8, r19, r20) | load travel time value into r20

SHRC(r8, 8, r8)

AND(r8, r19, r21) | load stall time into r21

CMOVE(0xFF, r8)

AND(r8, r19, r19) | load scaling factor into r19

35

| Draws every sprite in a frame

check_data_available:

LD(r4, SHARED_MEM_WRITE_STATUS, r7) | check shared memory write status

BNE(r7, check_data_available)

CMOVE(1, r7)

ST(r7, SHARED_MEM_READ_STATUS, r4) | set the read flag

draw_frame:

| Load sprite IDs until you find a null-terminated one

LD(r4, 0, r7) | load new sprite data into r7

SHRC(r7, 27, r2) | get just the sprite ID

BEQ(r2, frame_done) | if sprite ID is null then we’re done, otherwise continue loading

SUBC(r20, 1, r8) | store 0xFFFFFFFF in r8

SHRC(r8, 8, r8) | 0x00FFFFFF in r8

AND(r7, r8, r0) | mask off the sprite ID and RGB data

SHRC(r0, 12, r0) | store only x data in r0

SHRC(r8, 12, r8) | 0x00000FFF in r8

AND(r7, r8, r1) | store only y data in r1

SHRC(r7, 24, r16) | mask off x and y data

ANDC(r16, 0x07, r16) | rgb data in r16

CALL(draw_sprite)

ADDC(r4, NEXT_SPRITE_OFFSET, r4) | get next sprite location in shared memory

BR(draw_frame)

frame_done:

CMOVE(2, r4)

SHLC(r4, 16, r4) | clear frame offset (shared memory)

CMOVE(0, r7)

ST(r7, SHARED_MEM_READ_STATUS, r4) | clear busy flag

BR(check_data_available)

|| Start the timer, wait for it to finish, and clear the flag (have to reload counter to reset)

set_timer:

| Initialize and reset timer

CMOVE(1, r7) | store timer address in r7

SHLC(r7, 16, r7)

CMOVE(TIMER_VALUE, r8) | load for gavlo update frequency

ST(r8, TIMER_SET, r7)

wait_timer:

LD(r7, TIMER_OVERFLOW, r8)

| update paddles while we’re waiting for the timer

SHLC(r7, 1, r13) | address into shared memory

LD(r13, LEFT_PADDLE_UPDATE, r17) | update left paddle

ST(r17, left_paddle_hops, r31)

LD(r13, RIGHT_PADDLE_UPDATE, r17) | update right paddle

ST(r17, right_paddle_hops, r31)

| BNE(r8, wait_timer) | DEBUG

BEQ(r8, wait_timer) | flag should be set when timer is done

CMOVE(0x0, r8) | clear flag

ST(r8, TIMER_OVERFLOW, r7)

36

RTN()

|| Draw a single sprite

draw_sprite:

| Get length of sprite from lookup table, store in r6

|.breakpoint

SHLC(r2, 8, r8) | translate sprite ID into lookup table offset

ADDC(r8, sprite_lookup, r9)

LD(r9, 0, r6) | first entry in lookup table is sprite length

ADDC(r9, 0x4, r9) | store location of first point for get_next_point routine

LD(r9,0x4,r12) | load number of points in next segment into r12

SHLC(r12, SCALING_FACTOR, r12) | multiply the number of points by the scaling factor

CMOVE(0x1, r15) | set flag signaling laser turn on after next segment

| Draw the sprite:

draw_loop:

PUSH(LP)

CALL(go_to_point)

CALL(get_next_point)

CALL(set_timer)

POP(LP)

BNE(r6, draw_loop)

RTN()

|| Go to a single point by writing its location over SPI

go_to_point:

CMOVE(0x02, r8) | put SPI address in r8

SHLC(r8, 16, r8)

SHRC(r0,SCALING_FACTOR,r17) | restore scaling

SHRC(r1,SCALING_FACTOR,r18)

ORC(r3, 0b01000, r7) | Store CS & RGB data in r7

CMOVE(0b0011, r10) | Store config data (1) in r10

SHLC(r10, 12, r10) | Shift left to bit 15

OR(r10, r17, r10) | r10 now contains config data for write to DACA

CMOVE(0b01011, r11) | Store config data (2) in r11

SHLC(r11, 12, r11) | Shift left to bit 15

OR(r11, r18, r11) | r11 now contains config data for write to DACB

|.breakpoint

CMOVE(0x01, r8) | put SPI address in r8

SHLC(r8, 16, r8)

ST(r7, DAC_CTL_OUT, r8) | Write to output port A (memory location 8)--lower CS

ST(r10, SPI_TX, r8) | Write configuration and X data to SPI TX (0018)

CMOVE(1, r13) | Store 1 (start flag) in r13

ST(r13, SPI_STATUS, r8) | Start SPI

spi_wait_x: | Wait for SPI completion flag

LD(r8, SPI_STATUS, r13)

BF(r13, spi_wait_x)

ORC(r7, 0b10000, r7)

ST(r7, DAC_CTL_OUT, r8) | Write to output port A (memory location 8)--raise CS

ADD(r31, r31, r31)

ANDC(r7, 0b01111, r7)

ST(r7, DAC_CTL_OUT, r8) | Write to output port A--lower CS

ADD(r31, r31, r31)

37

ST(r11, SPI_TX, r8) | Write configuration and Y data to SPI TX (0018)

ST(r13, SPI_STATUS, r8) | Start SPI

spi_wait_y: | Wait for second SPI completion flag

LD(r8, SPI_STATUS, r13)

BF(r13, spi_wait_y)

ORC(r7, 0b10000, r7)

ST(r7, DAC_CTL_OUT, r8) | Write to output port A (memory location 8)--raise CS

ADD(r31, r31, r31)

SUBC(r7, 0b01000, r7)

ST(r7, DAC_CTL_OUT, r8) | Lower ADC latch

ADD(r31, r31, r31)

ADD(r31, r31, r31)

ADD(r31, r31, r31)

ADD(r31, r31, r31)

ADDC(r7, 0b01000, r7)

ST(r7, DAC_CTL_OUT, r8) | Raise ADC latch

ADD(r31, r31, r31)

ADD(r31, r31, r31)

ADD(r31, r31, r31)

ADD(r31, r31, r31)

RTN()

|| Get the location of the next point within a shape and store the updated location in registers 0

and 1 (x and y)

get_next_point:

LD(r9, 0, r8) | load next point into r8

MOVE(r8, r7) | copy point

SUBC(r12,0x1,r12) | decrement remaining points in the line

SRAC(r8, 16, r8) | Get only x data

SHLC(r7, 16, r7) | Get only y data, preserving sign bit

SRAC(r7, 16, r7)

ADD(r8, r0, r0) | Add x offset

ADD(r7, r1, r1) | Add y offset

BNE(r12, get_next_end) | if we’re done with this line segment,

.breakpoint

ADDC(r9, 0x8, r9) | increment location in local table

LD(r9,0x4,r12) | load point count for next segment

SUBC(r6, 0x01, r6) | decrement points left for sprite

CMPEQC(r6, 1, r8) | test to see if we’re about to do our last stall

BEQ(r8, check_laser_flag) | if we are, turn the laser off

|.breakpoint

CMOVE(0x0,r3) | turn laser off

CMOVE(0x0,r15) | clear flag so the laser doesn’t turn on during the next stall

check_laser_flag:

BEQ(r15, get_next_end)

|.breakpoint

MOVE(r16,r3) | reload RGB data to turn laser back on

get_next_end:

RTN()

| Sprite lookup tables: one table for each sprite, memory location corresponds to sprite ID

sprite_lookup:

38

. = sprite_lookup+0x100

LONG(7) | a four-pointed circle for the ball: 1

LONG(0x00000000), LONG(TRAVEL_TIME) | stall for travel time

LONG(0x00000000), LONG(STALL_TIME) | stall for laser on

LONG(0x00100000), LONG(0x08)

LONG(0x00000010), LONG(0x08)

LONG(0xFFF00000), LONG(0x08)

LONG(0x0000FFF0), LONG(0x08)

LONG(0x00000000), LONG(STALL_TIME)

. = sprite_lookup+0x200

LONG(7) | arbitrary circle (three times bigger): 2

LONG(0x00000000), LONG(TRAVEL_TIME) | stall for travel time

LONG(0x00000000), LONG(STALL_TIME) | stall for laser on

LONG(0x00300000), LONG(0x08)

LONG(0x00000030), LONG(0x08)

LONG(0xFFD00000), LONG(0x08)

LONG(0x0000FFD0), LONG(0x08)

LONG(0x00000000), LONG(STALL_TIME)

. = sprite_lookup+0x300 | the frame outline: 3

LONG(26)

LONG(0x00000000), LONG(TRAVEL_TIME) | stall for travel time

LONG(0x00000000), LONG(STALL_TIME) | stall for laser on

LONG(0x00500000), LONG(0x20)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00000030), LONG(0x20)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFD80018), LONG(0x8)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00280018), LONG(0x8)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00000030), LONG(0x12)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFBA0012), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFEC0000), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFBAFFEE), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x0000FFD0), LONG(0x12)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x0028FFE8), LONG(0x8)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFD8FFE8), LONG(0x8)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x0000FFD0), LONG(0x20)

LONG(0x00000000), LONG(STALL_TIME) | stall for laser off

. = sprite_lookup+0x400 | left triangle bumper: 4

LONG(8)

LONG(0x00000000), LONG(TRAVEL_TIME) | stall for travel time

LONG(0x00000000), LONG(STALL_TIME) | stall for laser on

LONG(0x001E0018), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFE20000), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x0000FFE8), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME) | stall for laser off

39

. = sprite_lookup+0x500 | right triangle bumper: 5

LONG(8)

LONG(0x00000000), LONG(TRAVEL_TIME) | stall for travel time

LONG(0x00000000), LONG(STALL_TIME) | stall for laser on

LONG(0x00000018), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFE20000), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x001EFFE8), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME) | stall for laser off

. = sprite_lookup+0x600 | left bumpery thing: 6

LONG(6)

LONG(0x00000000), LONG(TRAVEL_TIME)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00000022), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00220008), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

. = sprite_lookup+0x700

LONG(6) | right bumpery thing: 7

LONG(0x00000000), LONG(TRAVEL_TIME)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0x00000022), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

LONG(0xFFDE0008), LONG(0x10)

LONG(0x00000000), LONG(STALL_TIME)

. = sprite_lookup+0x800

LONG(4) | left paddle: 8

LONG(0x00000000), LONG(TRAVEL_TIME)

LONG(0x00000000), LONG(STALL_TIME)

left_paddle_hops:

LONG(0x00180008), LONG(0x20)

LONG(0x00000000), LONG(STALL_TIME)

. = sprite_lookup+0x900

LONG(4) | right paddle: 9

LONG(0x00000000), LONG(TRAVEL_TIME)

LONG(0x00000000), LONG(STALL_TIME)

right_paddle_hops:

LONG(0xFFE80008), LONG(0x20)

LONG(0x00000000), LONG(STALL_TIME)

stack:

STORAGE(128)

|.=0x10000 | DEBUG

|LONG(0x1)

|.=0x20000

|LONG(0x1B000000)

|LONG(0x151E01E0)

|LONG(0x0C600400)

|LONG(0x221E07E0)

|LONG(0x2A8207E0)

|.=0x40000

40

|LONG(0x1EEB)

7.3.6 Tested Physics Engine for Checkoff: No implemented physics, paddle control only

.include beta.uasm | Define Beta instructions, etc.

.options clock tty

|==

| REGISTER MAP

| r0: scratch

| r1: sprite ID (five bits)

| r2: position OR angle

| r3: x velocity

| r4: y velocity

| r5: color (RGB)

| r8: instance pointer

| r9: PC

| r10:

| r15: external base address

| r16: offset external

| r17: argument to write_external

| r18: byte offset sprite ID

|==

POSITION_OFFSET = 0x04

COLOR_OFFSET = 0x10

NEXT_SPRITE_OFFSET = 0x14

L_PADDLE_UPDATE = 0xF8

R_PADDLE_UPDATE = 0xFC

. = 0

BR(start)

. = 0x4

INT_V:

ADDC(R31, 0, R31)

XRTN()

. = 0x10

start:

CMOVE(stack, SP)

CMOVE(0xFFFF,R10)

SHLC(R10, 16, R10)

SHRC(R10, 16, R10)

CMOVE(0x3,R1)

CMOVE(0,R2)

CMOVE(0x7,R3)

CMOVE(0x9,R4)

CMOVE(0x3,R5)

CALL(build_object) | bounding box: cyan

|CMOVE(0x2,R1)

|CMOVE(0x01E0,R2)

|SHLC(R2,12,R2)

41

|CMOVE(0x01E0,R0)

|AND(R0,R10,R0)

|ADD(R0,R2,R2)

|CMOVE(0x9,R3)

|CMOVE(0x1,R4)

|CMOVE(0x5,R5)

|CALL(build_object) | arbitrary circle: purple

CMOVE(0x1,R1)

CMOVE(0x0600,R2)

SHLC(R2,12,R2)

CMOVE(0x0400,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x4,R5)

CALL(build_object) | arbitrary circle (puck): red

CMOVE(0x4,R1)

CMOVE(0x01E0,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x2,R5)

CALL(build_object) | left bumper: green

CMOVE(0x6,R1)

CMOVE(0x00F0,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x1,R5)

CALL(build_object) | left slide thing: blue

CMOVE(0x8,R1)

CMOVE(0x023E,R2)

SHLC(R2,12,R2)

CMOVE(0x0A80,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x7,R5)

CALL(build_object) | left paddle: white

CMOVE(0x5,R1)

CMOVE(0x0820,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

42

CMOVE(0x1,R4)

CMOVE(0x2,R5)

CALL(build_object) | right bumper: green

CMOVE(0x7,R1)

CMOVE(0x0910,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x1,R5)

CALL(build_object) | right slide thing: blue

CMOVE(0x9,R1)

CMOVE(0x07C2,R2)

SHLC(R2,12,R2)

CMOVE(0x0A80,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x9,R3)

CMOVE(0x1,R4)

CMOVE(0x7,R5)

CALL(build_object) | right paddle: white

loop:

CALL(update)

BR(loop)

update: | process next game object

update_start:

LD(instance_list,R8) | load the current offset into the list

LD(R8,0,R1) | load SPRITE_ID of next object

LD(R8,POSITION_OFFSET,R2) | load POSITION of next object

LD(R8,COLOR_OFFSET,R5) | load RGB of next object

| packet build routine

SHLC(R1,27,R17) | shift SPRITE_ID into upper five bits of R17

SHLC(R5,24,R0) | shift RGB into bits [26:24] of R17

ADD(R17,R0,R17) | combine

ADD(R17,R2,R17) | include POSITION: R17 now contains {SPRITE_ID[4:0], RGB[2:0],

POSITION_X[11:0], POSITION_Y[11:0]}

|.breakpoint

PUSH(LP) | gotta push LP before you call a function within a function!

CALL(write_external)

POP(LP) | restore LP

BNE(R1,cont_update,R31) | if SPRITE_ID != NULL, continue

CMOVE(instance_list+4,R8) | reset list pointer

ST(R8,instance_list)

CMOVE(0x0,R17)

CALL(write_external)

BR(update_start) | start over

cont_update:

LD(R8,4,R2) | load coordinates of next object

SHLC(R1,0x2,R18) | turn SPRITE_ID into a byte offset

LD(R18,object_routines,R18) | LD address of object-specific update routine

43

.breakpoint

JMP(R18, R9) | JMP to execute; save PC in R9

ADDC(R8,NEXT_SPRITE_OFFSET,R8) | point list pointer to next next object

ST(R8,instance_list)

RTN()

|+========

pinball:

JMP(R9) | return to update function

|+========

r_flipper:

.breakpoint

PUSH(LP)

CALL(paddle_update)

POP(LP)

JMP(R9) | return to update function

|+========

l_flipper:

.breakpoint

PUSH(LP)

CALL(paddle_update)

POP(LP)

JMP(R9) | return to update function

|+========

tri_bump:

JMP(R9) | return to update function

|+========

circ_bump:

JMP(R9) | return to update function

|+========

board:

JMP(R9) | return to update function

|+========

fixme_1:

JMP(R9) | return to update function

|+========

fixme_2:

JMP(R9) | return to update function

|+========

fixme_3:

JMP(R9) | return to update function

|==

| OBJECT ROUTINE LOOKUP

| index into list using SPRITE_ID*4

| load address, then JMP to execute update routine

|===

object_routines:

LONG(0xABCD)

LONG(pinball)

44

LONG(r_flipper)

LONG(l_flipper)

LONG(tri_bump)

LONG(circ_bump)

LONG(board)

LONG(fixme_1)

LONG(fixme_2)

LONG(fixme_3)

|==

| OBJECT INSTANCE LIST STRUCTURE:

| 0x00 pointer to object list: increment by 8 after

| processing an object

| 0x04 SPRITE_ID - indicates what class of object we are

| handling

| 0x08 POSITION - x and y data

| 0x0C VEL_X - x velocity

| 0x10 VEL_Y - y velcoity

| 0x14 RGB - sprite color

| ...

| ... list of objects to be processed

| ...

| 0x4n - NULL

|==

instance_list: LONG(.+4) | pointer to the object list

STORAGE(256) | allocated object memory

|+==========+

| for writing to the memory block shared with the laser projector

|===========

write_external:

CMOVE(0x3000,R15)

SHLC(R15,4,R15) | load R15 with the bottom address of the external mem

ADD(R15,R16,R15) | add offset into memory from R16

ST(R17,0,R15) | write the contents of R17 into memory

|.breakpoint

ADDC(R16,4,R16) | increment offset for next time

BNE(R17,write_end)

CMOVE(0x0,R16) | if we’re done with the frame, clear offset

write_end:

RTN()

|+==========+

| builds an object in the instance_list

| before calling, put the appropriate values in R1-5

|***********

build_object:

LD(count, R0)

ADDC(R0,1,R0) | increment the count for next time

ST(R0, count) | store the new count back in memory

SUBC(R0,1,R0)

MULC(R0,20,R0) | turn count in R0 into the offset into the object list

ST(R1,instance_list+4,R0) | store object attributes

ST(R2,instance_list+8,R0)

ST(R3,instance_list+12,R0)

ST(R4,instance_list+16,R0)

ST(R5,instance_list+20,R0)

ST(R31,instance_list+24,R0) | end list with NULL; gets overwritten by next object

.breakpoint

45

RTN()

count: LONG(0x0) | for storing the object instance count

paddle_update:

PUSH(r0)

PUSH(r1)

PUSH(r2)

PUSH(r7)

PUSH(r8)

CMOVE(0x1, r7) | right paddle mask

CMOVE(0x2, r8) | left paddle mask

CMOVE(0x1, r0)

SHLC(r0, 16, r0)

LD(r0, 0, r0) | get value from input port a. lsb is right paddle, second bit is left paddle.

CMOVE(0x3, r1)

SHLC(r1, 16, r1)

ORC(r1, 0x00F8, r3) | left paddle update location

ORC(r1, 0x00FC, r2) | right paddle update location

AND(r7, r0, r7)

BEQ(r7, right_paddle_down)

right_paddle_up:

LD(right_paddle_up_val, r13)

ST(r13, 0, r2)

AND(r8, r0, r8)

BEQ(r8, left_paddle_down)

BR(left_paddle_up)

right_paddle_down:

LD(right_paddle_down_val, r13)

ST(r13, 0, r2)

AND(r8, r0, r8)

BEQ(r8, left_paddle_down)

BR(left_paddle_up)

left_paddle_up:

LD(left_paddle_up_val, r13)

ST(r13, 0, r3)

POP(r8)

POP(r7)

POP(r2)

POP(r1)

POP(r0)

RTN()

left_paddle_down:

LD(left_paddle_down_val, r13)

ST(r13, 0, r3)

POP(r8)

POP(r7)

POP(r2)

POP(r1)

POP(r0)

RTN()

left_paddle_down_val:

LONG(0x00180008)

left_paddle_up_val:

LONG(0x0018FFF8)

right_paddle_down_val:

LONG(0xFFE80008)

46

right_paddle_up_val:

LONG(0xFFE8FFF8)

stack:

STORAGE(256)

|.=0x10000

|LONG(0xFE000001)

|. = 0x00400000

|LONG(0x1EEB)

7.3.7 Physics Engine Untested Working Copy

.include beta.uasm | Define Beta instructions, etc.

.options clock tty

|==

| REGISTER MAP

| r0: scratch

| r1: sprite ID (five bits)

| r2: position OR angle

| r3: x velocity --- both xvel and yvel are left shifted

| r4: y velocity --- by a byte to give fractional components

| r5: color (RGB)

| r6: accel due to gravity based on timestep

| r8: instance pointer

| r9: PC

| r10: 0x0000FFFF

| r11-14 : scratch

| r15: external base address

| r16: offset external

| r17: argument to write_external

| r18: byte offset sprite ID

|==

t0 = R19

t1 = R20

t2 = R21

t3 = R22

t4 = R23

t5 = R24

t6 = R25

t7 = r26

| Define parameters

TIMER_VALUE = 0x8000 | 1.526 kHz

|TIMER_VALUE = 0x1 | DEBUG

GRAV_FRACT = 0xC | .75 pixels/second^2 left shifted by a byte

FRACT_SHIFT = 0x8 | otherwise known as 3/4

POSITION_OFFSET = 0x04

COLOR_OFFSET = 0x10

NEXT_SPRITE_OFFSET = 0x14

TIMER_SET = 0x24

TIMER_OVERFLOW = 0x2C

INPUT_PORT_A = 0x0

47

. = 0

BR(start)

. = 0x4

INT_V:

ADDC(R31, 0, R31)

XRTN()

. = 0x10

start:

CMOVE(stack, SP)

CMOVE(0xFFFF,R10)

SHLC(R10, 16, R10)

SHRC(R10, 16, R10)

CMOVE(0x3,R1)

CMOVE(0,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x3,R5)

CALL(build_object) | bounding box: cyan

CMOVE(0x2,R1)

CMOVE(0x02E0,R2)

SHLC(R2,12,R2)

CMOVE(0x01E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x5,R5)

CALL(build_object) | arbitrary circle: purple

CMOVE(0x1,R1)

CMOVE(0x0600,R2)

SHLC(R2,12,R2)

CMOVE(0x0400,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x4,R5)

CALL(build_object) | arbitrary circle (puck): red

CMOVE(0x4,R1)

CMOVE(0x01E0,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x2,R5)

CALL(build_object) | left bumper: green

CMOVE(0x6,R1)

CMOVE(0x00F0,R2)

48

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x1,R5)

CALL(build_object) | left slide thing: blue

CMOVE(0x8,R1)

CMOVE(0x023E,R2)

SHLC(R2,12,R2)

CMOVE(0x0A80,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x7,R5)

CALL(build_object) | left paddle: white

CMOVE(0x5,R1)

CMOVE(0x0820,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x2,R5)

CALL(build_object) | right bumper: green

CMOVE(0x7,R1)

CMOVE(0x0910,R2)

SHLC(R2,12,R2)

CMOVE(0x07E0,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x1,R5)

CALL(build_object) | right slide thing: blue

CMOVE(0x9,R1)

CMOVE(0x06F0,R2)

SHLC(R2,12,R2)

CMOVE(0x0A80,R0)

AND(R0,R10,R0)

ADD(R0,R2,R2)

CMOVE(0x0,R3)

CMOVE(0x0,R4)

CMOVE(0x7,R5)

CALL(build_object) | right paddle: white

loop:

CALL(set_timer)

CALL(scan)

CALL(update)

BR(loop)

49

r_bump = R22

l_bump = R24

y_vel = R21

x_vel = R23

scan:

.breakpoint

CMOVE(0x1000,R15)

SHLC(R15,4,R15) | load R15 with the bottom address of the external mem

LD(R15,INPUT_PORT_A,R0)

scan_rbump:

CMOVE(0x0,r_bump)

ANDC(R0,0x1,R20)

BEQ(R20, scan_lbump)

CMOVE(0x1,r_bump)

scan_lbump:

CMOVE(0x0,l_bump)

ANDC(R0,0x2,R20)

BEQ(R20, scan_up)

CMOVE(0x1,r_bump)

scan_up:

ANDC(R0,0x4,R20)

BEQ(R20, scan_rarrow)

ADDC(y_vel,2,y_vel)

scan_rarrow:

ANDC(R0,0x8,R20)

BEQ(R20, scan_down)

ADDC(x_vel,2,x_vel)

scan_down:

ANDC(R0,0x10,R20)

BEQ(R20, scan_larrow)

SUBC(y_vel,2,y_vel)

scan_larrow:

ANDC(R0,0x20,R20)

BEQ(R20, end_scan)

SUBC(x_vel,1,x_vel)

end_scan:

RTN()

update: | process next game object

update_start:

LD(instance_list,R8) | load the current offset into the list

LD(R8,0,R1) | load SPRITE_ID of next object

LD(R8,POSITION_OFFSET,R2) | load POSITION of next object

LD(R8,COLOR_OFFSET,R5) | load RGB of next object

| packet build routine

SHLC(R1,27,R17) | shift SPRITE_ID into upper five bits of R17

SHLC(R5,24,R0) | shift RGB into bits [26:24] of R17

ADD(R17,R0,R17) | combine

ADD(R17,R2,R17) | include POSITION: R17 now contains {SPRITE_ID[4:0], RGB[2:0],

POSITION_X[11:0], POSITION_Y[11:0]}

50

|.breakpoint

PUSH(LP) | gotta push LP before you call a function within a function!

CALL(write_external)

POP(LP) | restore LP

BNE(R1,cont_update,R31) | if SPRITE_ID != NULL, continue

CMOVE(instance_list+4,R8) | reset list pointer

ST(R8,instance_list)

CMOVE(0x0,R17)

CALL(write_external)

BR(update_start) | start over

cont_update:

LD(R8,4,R2) | load coordinates of next object

SHLC(R1,0x2,R18) | turn SPRITE_ID into a byte offset

LD(R18,object_routines,R18) | LD address of object-specific update routine

JMP(R18, R9) | JMP to execute; save PC in R9

ADDC(R8,NEXT_SPRITE_OFFSET,R8) | point list pointer to next next object

ST(R8,instance_list)

RTN()

|+========

pinball:

.breakpoint

LD(R8,8,R3) | load x and y velocities

LD(R8,12,R4)

PUSH(LP)

CALL(update_pos)

|CALL(detect_collision)

CALL(update_velocity)

POP(LP)

JMP(R9) | return to update function

pinball_x:

LONG(0x0) | memory for storing pinball x and y

pinball_y:

LONG(0x0) | coordinates 32 bit form, w/ last byte as fractional data

|+========

circ_bump:

JMP(R9) | return to update function

|+========

board_outline:

JMP(R9) | return to update function

|+========

l_tri_bump:

JMP(R9) | return to update function

|+========

r_tri_bump:

JMP(R9) | return to update function

|+========

l_slide:

JMP(R9) | return to update function

|+========

r_slide:

51

JMP(R9) | return to update function

|+========

l_paddle:

.breakpoint

PUSH(LP)

CALL(paddle_update)

POP(LP)

JMP(R9) | return to update function

|+========

r_paddle:

.breakpoint

PUSH(LP)

CALL(paddle_update)

POP(LP)

JMP(R9) | return to update function

|==

| OBJECT ROUTINE LOOKUP

| index into list using SPRITE_ID*4

| load address, then JMP to execute update routine

|===

object_routines:

LONG(0xABCD)

LONG(pinball)

LONG(circ_bump)

LONG(board_outline)

LONG(l_tri_bump)

LONG(r_tri_bump)

LONG(l_slide)

LONG(r_slide)

LONG(l_paddle)

LONG(r_paddle)

|==

| OBJECT INSTANCE LIST STRUCTURE:

| 0x00 pointer to object list: increment by 8 after

| processing an object

| 0x04 SPRITE_ID - indicates what class of object we are

| handling

| 0x08 POSITION - x and y data

| 0x0C VEL_X - x velocity

| 0x10 VEL_Y - y velcoity

| 0x14 RGB - sprite color

| ...

| ... list of objects to be processed

| ...

| 0x4n - NULL

|==

instance_list: LONG(.+4) | pointer to the object list

STORAGE(256) | allocated object memory

|+==========+

| for writing to the memory block shared with the laser projector

|===========

52

write_external:

CMOVE(0x3000,R15)

SHLC(R15,4,R15) | load R15 with the bottom address of the external mem

ADD(R15,R16,R15) | add offset into memory from R16

ST(R17,0,R15) | write the contents of R17 into memory

ADDC(R16,4,R16) | increment offset for next time

BNE(R17,write_end)

CMOVE(0x0,R16) | if we’re done with the frame, clear offset

write_end:

RTN()

|+==========+

| builds an object in the instance_list

| before calling, put the appropriate values in R1-5

|***********

build_object:

.breakpoint

LD(count, R0)

ADDC(R0,1,R0) | increment the count for next time

ST(R0, count) | store the new count back in memory

SUBC(R0,1,R0)

MULC(R0,20,R0) | turn count in R0 into the offset into the object list

ST(R1,instance_list+4,R0) | store object attributes

ST(R2,instance_list+8,R0)

ST(R3,instance_list+12,R0)

ST(R4,instance_list+16,R0)

ST(R5,instance_list+20,R0)

ST(R31,instance_list+24,R0) | end list with NULL; gets overwritten by next object

SHRC(R1,1,R11) | check to see if this object is the pinball

BNE(R11,build_done) | if not, we’re done

| if it’s the pinball, store its x and y in pinball_xy

SHRC(R2,0x10,R11) | x pos

SHLC(R11,0x8,R11) | shift left to represent fractional portion

AND(R2,R10,R12) | y pos

SHLC(R12,0x8,R12)

ST(R11,pinball_x)

ST(R12,pinball_y)

build_done:

RTN()

count: LONG(0x0) | for storing the object instance count

|| Start the timer, wait for it to finish, and clear the flag (have to reload counter to reset)

set_timer:

| Initialize and reset timer

CMOVE(1, r11) | store timer address in r7

SHLC(r11, 16, r11)

CMOVE(TIMER_VALUE, r12) | load for gavlo update frequency

ST(r12, TIMER_SET, r11)

wait_timer:

LD(r11, TIMER_OVERFLOW, r12)

| BNE(r12, wait_timer) | DEBUG

BEQ(r12, wait_timer) | flag should be set when timer is done

CMOVE(0x0, r12) | clear flag

ST(r12, TIMER_OVERFLOW, r11)

RTN()

update_pos:

LD(pinball_x,R11)

LD(pinball_y,R12)

|ADDC(R4, GRAV_FRACT, R4) | add acceleration due to gravity

53

ADD(R11,R3,R11) |

ADD(R12,R4,R12) | increase position by v*t

ST(R11,pinball_x) | store them back in pinball_x and _y

ST(R12,pinball_y)

SHRC(R11,0x8,R11) | shift out fractional byte

SHLC(R11,0x10,R2)

SHRC(R12,0x8,R12)

AND(R12,R10,R12)

ADD(R12,R2,R2)

ST(R2,4,R8) | update R2 with 16 bit approximations

RTN()

detect_collision:

PUSH(R8) | save offset into instance list

LD(pinball_x,R13)

LD(pinball_y,R14)

d_outer_loop:

ADDC(R8,NEXT_SPRITE_OFFSET,R8) | point R8 at the next sprite in the list

LD(R8,0,t7) | load next sprite id

BNE(t7, detect_continue)

CMOVE(0x0,R0)

BR(end_detect)

detect_continue:

SHLC(R20,0x10,t0) | R22 = O_y

SRAC(t0,0x10,t0)

SUB(R14,t0,t0)

LD(R8,POSITION_OFFSET,t1)

SRAC(t1,0x10,t1) | R21 = O_x

SUB(R13,t1,t1)

SHLC(R19,0x5,R19) | save R19 as an offset into the table

LD(R19,sprite_lookup,R11) | get face offset coordinates

BEQ(R11, d_outer_loop) | if NULL, look at the next sprite

end_detect:

POP(R8)

RTN()

detect_one:

| argument order: Xx, Xy, Radius_squared, Px, Py, Dx, Dy, L

| BP - 12 = L

| BP - 16 = Dy

| BP - 20 = Dx

| BP - 24 = Py

| BP - 28 = Px

| BP - 32 = Radius_squared

| BP - 36 = Xy

| BP - 40 = Xx

PUSH(LP)

PUSH(BP)

MOVE(SP,BP)

PUSH(R1)

PUSH(R2)

PUSH(R3)

LD(BP,-40,R0)

LD(BP,-28,R1)

SUB(R0,R1,R0)

LD(BP,-36,R1)

LD(BP,-24,R2)

SUB(R1,R2,R1)

LD(BP,-20,R2)

MUL(R2,R0,R2)

LD(BP,-16,R3)

54

MUL(R3,R1,R3)

ADD(R2,R3,R2)

MUL(R0,R0,R0)

MUL(R1,R1,R1)

ADD(R0,R1,R0)

SUB(R0,R2,R0) | R0 has distance from line

SHRC(R2,31,R1)

BT(R1,detect_one_false)

LD(BP,-12,R1)

CMPLT(R1,R2,R1)

BT(R1,detect_one_false)

LD(BP,-32,R1)

CMPLT(R1, R0,R1)

BT(R1,detect_one_false)

| call(update_velocity)

CMOVE(1,R0)

BR(detect_one_exit)

detect_one_false:

MOVE(R31,R0)

detect_one_exit:

POP(R3)

POP(R2)

POP(R1)

MOVE(BP,SP)

POP(BP)

POP(LP)

RTN()

update_velocity:

ADDC(R3,x_vel,R3)

ADDC(R4,x_vel,R4)

ST(R3,8,R8)

ST(R4,12,R8)

RTN()

| Sprite lookup tables: one table for each sprite, memory location corresponds to sprite ID

sprite_lookup:

. = sprite_lookup+0x20

LONG(0x00004000) | RADIUS^2

LONG(0x00000000) | null termination of segments

. = sprite_lookup+0x40 | arbitrary circle (three times bigger): 2

LONG(0x00009000) | RADIUS^2

LONG(0x00000000)

. = sprite_lookup+0x60 | the frame outline: 3

LONG(0x0A000000)

LONG(0x00000600)

LONG(0xFEC000C0) | right side

LONG(0x014000C0) | pointy bit

LONG(0x00000360)

LONG(0xFBA00120) |*

LONG(0xFEC00000) | bottom bit

LONG(0xFBA0FFE0) |*

LONG(0x0000FCA0)

LONG(0x0140FF40) | left side

LONG(0xFEC0FF40) | left side

LONG(0x0000FA00)

LONG(0x00000000) | NULL means end of sprite!

. = sprite_lookup+0x80

|. = 0x500 | left triangle bumper: 4

LONG(0x01E00180)

LONG(0xFE200000)

55

LONG(0x0000FE80)

LONG(0x00000000)

. = sprite_lookup+0xA0

|.= 0x600 | right triangle bumper: 5

LONG(0x00000180)

LONG(0xFE200000)

LONG(0x01E0FE80)

LONG(0x00000000)

. = sprite_lookup+0xC0 | left slidey thing: 6

LONG(0x00000220)

LONG(0x02200080)

LONG(0x00000000)

. = sprite_lookup+0xE0 | right slidey thing: 7

LONG(0x00000220)

LONG(0xFDE00080)

LONG(0x00000000)

|| TODO: figure out paddle representation

. = sprite_lookup+0x100 | left paddle: 8

LONG(0x00180008)

LONG(0x00000000)

. = sprite_lookup+0x120 | right paddle: 9

LONG(0xFFE80008)

LONG(0x00000000)

paddle_update:

PUSH(r0)

PUSH(r1)

PUSH(r2)

PUSH(r7)

PUSH(r8)

CMOVE(0x1, r7) | right paddle mask

CMOVE(0x2, r8) | left paddle mask

CMOVE(0x1, r0)

SHLC(r0, 16, r0)

LD(r0, 0, r0) | get value from input port a. lsb is right paddle, second bit is left paddle.

CMOVE(0x3, r1)

SHLC(r1, 16, r1)

ORC(r1, 0x00F8, r3) | left paddle update location

ORC(r1, 0x00FC, r2) | right paddle update location

AND(r7, r0, r7)

BEQ(r7, right_paddle_down)

right_paddle_up:

LD(right_paddle_up_val, r13)

ST(r13, 0, r2)

AND(r8, r0, r8)

BEQ(left_paddle_down,r8)

BR(left_paddle_up)

right_paddle_down:

LD(right_paddle_down_val, r13)

ST(r13, 0, r2)

AND(r8, r0, r8)

BEQ(left_paddle_down,r8)

BR(left_paddle_up)

left_paddle_up:

LD(left_paddle_up_val, r13)

ST(r13, 0, r3)

POP(r8)

56

POP(r7)

POP(r2)

POP(r1)

POP(r0)

RTN()

left_paddle_down:

LD(left_paddle_down_val, r13)

ST(r13, 0, r3)

POP(r8)

POP(r7)

POP(r2)

POP(r1)

POP(r0)

RTN()

left_paddle_down_val:

LONG(0x00180008)

left_paddle_up_val:

LONG(0x0018FFF8)

right_paddle_down_val:

LONG(0xFFE80008)

right_paddle_up_val:

LONG(0xFFE8FFF8)

stack:

STORAGE(128)

|. = 0x10000

|LONG(0x4)

|. = 0x400000

|LONG(0x1EEB)

7.4 Camera Module

module camera_full(

input wire clk_50,

input wire camera_pclk,

input wire reset,

input wire system_start,

input wire capture_frame,

input wire process_frame,

input wire camera_href,

input wire camera_vsync,

input wire [7:0] camera_data,

inout wire camera_scl,

inout wire camera_sda,

inout wire vga_scl,

inout wire vga_sda,

output wire camera_xclk,

output wire [11:0] vga_drive,

output reg vga_hsync,

output reg vga_vsync,

output reg vga_blank,

output wire beta_mwe,

output wire [31:0] beta_addr,

output wire [31:0] beta_din

);

57

wire [9:0] vga_hcount; //pixels counted from top left

wire [9:0] vga_vcount;

wire [15:0] vga_addr;

wire [9:0] camera_hcount;

wire [9:0] camera_vcount;

wire [15:0] camera_addr;

wire [9:0] proc_hcount;

wire [9:0] proc_vcount;

wire [15:0] proc_addr;

wire [15:0] buffer_read_addr;

wire local_vsync; //local signals for VGA, need to be delayed

wire local_hsync;

wire local_blank;

wire image_process; //controlls mux for frame buffer

wire [23:0] vga_data;

wire [8:0] vga_pixel;

wire [15:0] camera_pixel; //processed camera pixel

wire mwe_camera;

wire [8:0] frame_data;

wire image_hunt_mem_request;

//locations of detected objects

wire [9:0] red_x, red_y;

wire [9:0] green_x, green_y;

wire [9:0] blue_x, blue_y;

//detected object pixels

wire [8:0] red_blob_pixel;

wire [8:0] green_blob_pixel;

wire [8:0] blue_blob_pixel;

wire [8:0] output_pixel;

wire vga_pixel_invalid;

wire frame_proc_done;

assign output_pixel = vga_pixel_invalid ? 0 : vga_pixel | red_blob_pixel | green_blob_pixel |

blue_blob_pixel;

assign vga_data = {output_pixel[8:6], {5{output_pixel[6]}},

output_pixel[5:3], {5{output_pixel[3]}},

output_pixel[2:0], {5{output_pixel[0]}}};

//mux for frame buffer

assign vga_pixel = image_hunt_mem_request ? 9’b000_000_000: frame_data;

assign buffer_read_addr = image_hunt_mem_request ? proc_addr : vga_addr ;

reg blank_temp;

reg hsync_temp;

reg vsync_temp;

//assign vga_vsync = local_vsync;

//assign vga_hsync = local_hsync;

58

//assign vga_blank = local_blank;

//solve output delay, delay by two clock cycles

always@(posedge clk_50)

begin

blank_temp <= local_blank;

hsync_temp <= local_hsync;

vsync_temp <= local_vsync;

vga_blank <= blank_temp;

vga_hsync <= hsync_temp;

vga_vsync <= vsync_temp;

end

image_hunt process_a_frame (

.clk(clk_50),

.mem_pixel_data(frame_data),

.start(process_frame),

.mem_request(image_hunt_mem_request),

.done(frame_proc_done),

.mem_hcount(proc_hcount),

.mem_vcount(proc_vcount),

.red_x(red_x),

.red_y(red_y),

.green_x(green_x),

.green_y(green_y),

.blue_x(blue_x),

.blue_y(blue_y)

);

//generate clock for camera

camera_clk clk12_5_gen (

.CLKIN_IN(clk_50),

.RST_IN(0),

.CLKDV_OUT(camera_xclk),

.CLK0_OUT(),

.LOCKED_OUT()

);

//create signals for VGA IC

vga_pixel_drive drive_vga (

.hsync(local_hsync),

.pixel_clk_2x(clk_50),

.pixel_data(vga_data),

.vga_out(vga_drive)

);

//generate pixel count for VGA

vga_drive vga_signal_gen (

.vclock(clk_50),

.hcount(vga_hcount),

.vcount(vga_vcount),

.vsync(local_vsync),

.hsync(local_hsync),

.blank(local_blank)

);

59

//i2c setup for vga

vga_setup vga_monitor (

.clk(clk_50),

.reset(reset),

.start(system_start),

.scl(vga_scl),

.sda(vga_sda)

);

//i2c setup for camera

camera_configure camera_setup(

.clk(clk_50),

.reset(reset),

.start(system_start),

.scl(camera_scl),

.sda(camera_sda)

);

//capture a frame from camera and dump to memory

camera_capture get_a_frame (

.camera_clk(camera_pclk),

.start(capture_frame),

.camera_vsync(camera_vsync), //input from camera

.camera_href(camera_href), //input from camera

.camera_dout(camera_data), //input data from camera

.mem_we(mwe_camera), //mwe for frame buffer

.mem_din(camera_pixel), //data to memory for frame buffer

.vcount(camera_vcount), // used to generate memory address

.hcount(camera_hcount), //used to generate camera memory address

.done() // done signal

);

image_addr_gen camera_addr_gen (

.hcount(camera_hcount),

.vcount(camera_vcount),

.addr(camera_addr),

.blank()

);

image_addr_gen buffer_read_addr_gen (

.hcount(vga_hcount),

.vcount(vga_vcount),

.addr(vga_addr),

.blank(vga_pixel_invalid)

);

image_addr_gen image_proc_gen(

.hcount(proc_hcount),

.vcount(proc_vcount),

.addr(proc_addr),

.blank()

);

//240x240 9 bit color

//image is half resolution

shared_video_mem frame_buff (

60

.clk_read(clk_50),

.clk_write(camera_pclk),

.write_addr(camera_addr),

.read_addr(buffer_read_addr),

.dout_camera(camera_pixel),

.mwe_camera(mwe_camera),

.dout_pixel(frame_data)

);

camera_write_to_beta beta_dump (

.clk(clk_50),

.start(frame_proc_done),

.red_x(red_x),

.red_y(red_y),

.green_x(green_x),

.green_y(green_y),

.blue_x(blue_x),

.blue_y(blue_y),

.beta_addr(beta_addr),

.beta_data(beta_din),

.beta_mwe(beta_mwe)

);

color_blob red_blob (

.clk(clk_50),

.hcount(vga_hcount),

.vcount(vga_vcount),

.x_loc(red_x),

.y_loc(red_y),

.enable(1’b1),

.color(9’b111_000_000),

.pixel(red_blob_pixel)

);

color_blob green_blob (

.clk(clk_50),

.hcount(vga_hcount),

.vcount(vga_vcount),

.x_loc(green_x),

.y_loc(green_y),

.enable(1’b1),

.color(9’b000_111_000),

.pixel(green_blob_pixel)

);

color_blob blue_blob (

.clk(clk_50),

.hcount(vga_hcount),

.vcount(vga_vcount),

.x_loc(blue_x),

.y_loc(blue_y),

.enable(1’b1),

.color(9’b000_000_111),

.pixel(blue_blob_pixel)

);

61

endmodule

7.4.1 Find red, green, and blue loci in a frame

‘timescale 1ns / 1ps

//processes a 240x240 pixel frame

//outputs locus of red, green, and blue

module image_hunt(

input wire clk,

input wire [8:0] mem_pixel_data,

input wire start,

output reg mem_request = 0,

output reg done = 0,

output wire [9:0] mem_hcount,

output wire [9:0] mem_vcount,

output reg [9:0] red_x = 0,

output reg [9:0] red_y = 0,

output reg [9:0] green_x = 0,

output reg [9:0] green_y = 0,

output reg [9:0] blue_x = 0,

output reg [9:0] blue_y = 0

);

parameter block_max = 58; //number of blocks minus 1

reg [3:0] FSM_state = 0;

//storage for cost function values

reg [31:0] red_cost;

reg [31:0] green_cost;

reg [31:0] blue_cost;

reg [31:0] red_cost_max;

reg [31:0] green_cost_max;

reg [31:0] blue_cost_max;

reg [7:0] block_x = 0;

reg [7:0] block_y = 0; //current image segment

wire [8:0] pixel_0, pixel_1, pixel_2, pixel_3;

wire [8:0] pixel_4, pixel_5, pixel_6, pixel_7;

wire [8:0] pixel_8, pixel_9, pixel_a, pixel_b;

wire [8:0] pixel_c, pixel_d, pixel_e, pixel_f;

reg start_fetch = 0;

//pipeline values

reg[7:0] super_pixel_red;

reg[7:0] super_pixel_green;

reg[7:0] super_pixel_blue;

wire load_done;

always@(posedge clk)

62

begin

case(FSM_state)

0: begin //reset and wait for start

FSM_state <= start ? 1 : 0;

mem_request <= start ? 1 : 0;

done <= 0;

block_x <= 2;

block_y <= 2;

red_cost <= 0;

green_cost <= 0;

blue_cost <= 0;

red_cost_max <= 0;

green_cost_max <= 0;

blue_cost_max <= 0;

end

1: begin //fetch_data;

FSM_state <= 2;

start_fetch <= 1;

end

2: begin //wait for memory read

FSM_state <= load_done ? 3 : 2;

start_fetch <= 0;

end

3: begin //process data //I think I should limit the number of cascaded adds?

FSM_state <= 4;

super_pixel_red <= pixel_0[8:6]+pixel_1[8:6]+pixel_2[8:6]+pixel_3[8:6]

+pixel_4[8:6]+pixel_5[8:6]+pixel_6[8:6]+pixel_7[8:6]

+pixel_8[8:6]+pixel_9[8:6]+pixel_a[8:6]+pixel_b[8:6]

+pixel_c[8:6]+pixel_d[8:6]+pixel_e[8:6]+pixel_f[8:6];

super_pixel_green <= pixel_0[5:3]+pixel_1[5:3]+pixel_2[5:3]+pixel_3[5:3]

+pixel_4[5:3]+pixel_5[5:3]+pixel_6[5:3]+pixel_7[5:3]

+pixel_8[5:3]+pixel_9[5:3]+pixel_a[5:3]+pixel_b[5:3]

+pixel_c[5:3]+pixel_d[5:3]+pixel_e[5:3]+pixel_f[5:3];

super_pixel_blue <= pixel_0[2:0]+pixel_1[2:0]+pixel_2[2:0]+pixel_3[2:0]

+pixel_4[2:0]+pixel_5[2:0]+pixel_6[2:0]+pixel_7[2:0]

+pixel_8[2:0]+pixel_9[2:0]+pixel_a[2:0]+pixel_b[2:0]

+pixel_c[2:0]+pixel_d[2:0]+pixel_e[2:0]+pixel_f[2:0];

end

4: begin //process data

FSM_state <= 5;

red_cost <= ((super_pixel_red>super_pixel_green) && (super_pixel_red>super_pixel_blue)) ?

(super_pixel_red-super_pixel_green)*(super_pixel_red-super_pixel_blue) : 0;

green_cost <= ((super_pixel_green>super_pixel_red) && (super_pixel_green>super_pixel_blue)) ?

(super_pixel_green-super_pixel_red)*(super_pixel_green-super_pixel_blue) : 0;

blue_cost <= ((super_pixel_blue>super_pixel_green) && (super_pixel_blue>super_pixel_red)) ?

(super_pixel_blue-super_pixel_red)*(super_pixel_blue-super_pixel_green) : 0;

63

end

5: begin //process results of block

FSM_state <= (block_y >= block_max) && (block_x >= block_max) ? 6 : 1;

red_cost_max <= (red_cost > red_cost_max) ? red_cost : red_cost_max;

green_cost_max <= (green_cost > green_cost_max) ? green_cost : green_cost_max;

blue_cost_max <= (blue_cost > blue_cost_max) ? blue_cost : blue_cost_max;

red_x <= (red_cost >= red_cost_max) ? (block_x<<3) : red_x;

red_y <= (red_cost >= red_cost_max) ? (block_y<<3) : red_y;

green_x <= (green_cost >= green_cost_max) ? (block_x<<3) : green_x;

green_y <= (green_cost >= green_cost_max) ? (block_y<<3) : green_y;

blue_x <= (blue_cost >= blue_cost_max) ? (block_x<<3) : blue_x;

blue_y <= (blue_cost >= blue_cost_max) ? (block_y<<3) : blue_y;

//go x, then y,

block_x <= (block_x >= block_max) ? 0 : block_x+1;

block_y <= (block_x >= block_max) ? block_y+1 : block_y;

//reset

red_cost <= 0;

green_cost <= 0;

blue_cost <= 0;

end

6:begin //end state

FSM_state <= 0;

done <= 1;

end

endcase

end

load_pixel_block data_fetch (

.clk(clk),

.start(start_fetch),

.block_x(block_x),

.block_y(block_y),

.memory_in(mem_pixel_data),

.mem_hcount(mem_hcount),

.mem_vcount(mem_vcount),

.done(load_done),

.pixel_0(pixel_0),

.pixel_1(pixel_1),

.pixel_2(pixel_2),

.pixel_3(pixel_3),

.pixel_4(pixel_4),

.pixel_5(pixel_5),

.pixel_6(pixel_6),

.pixel_7(pixel_7),

.pixel_8(pixel_8),

.pixel_9(pixel_9),

.pixel_a(pixel_a),

.pixel_b(pixel_b),

.pixel_c(pixel_c),

64

.pixel_d(pixel_d),

.pixel_e(pixel_e),

.pixel_f(pixel_f)

);

endmodule

7.4.2 Create signals for VGA IC

//this contains some trick logic delays

module vga_pixel_drive(

input wire hsync,

input wire pixel_clk_2x, //50 MHz

input wire [23:0] pixel_data,

output reg [11:0] vga_out

);

reg pixel_ab; //0 for a, 1 for b

reg hsync_last = 0;

reg [23:0] stored_pixel;

reg [11:0] pixel_b;

always@(posedge pixel_clk_2x)

begin

hsync_last <= hsync;

pixel_ab <= ((hsync_last==0)&&(hsync==1)) ? 1 : ~pixel_ab;

//latch input data on pixel_ab = a

pixel_b <= pixel_data[11:0];

vga_out <= pixel_ab ? pixel_b : pixel_data[23:12];

end

endmodule

7.4.3 VGA Drive for Lower Resolution

//taken from 6.111 lab and altered for lower resolution

//need to make this double the vclock

module vga_drive(

input vclock, //twice the pixel clock

output wire [9:0] hcount, // pixel number on current line

output wire [9:0] vcount, // line number

output reg vsync = 0,

output reg hsync = 0,

output reg blank = 0

);

// horizontal: 800 pixels total

// display 640 pixels per line

65

reg hblank = 0;

reg vblank = 0;

reg [10:0] vcount_d = 0;

reg [10:0] hcount_d = 0;

assign vcount = vcount_d[10:1];

assign hcount = hcount_d[10:1];

wire hsyncon,hsyncoff,hreset,hblankon;

assign hblankon = (hcount_d == (639*2)); //blank after display width

assign hsyncon = (hcount_d == (655*2)); // active video + front porch

assign hsyncoff = (hcount_d == (751*2)); //active video + front portch + sync

assign hreset = (hcount_d == (799*2)); //plus back porch

// vertical: 806 lines total

// display 480 lines

wire vsyncon,vsyncoff,vreset,vblankon;

assign vblankon = hreset & (vcount_d == (479*2));

assign vsyncon = hreset & (vcount_d == (489*2));

assign vsyncoff = hreset & (vcount_d == (491*2));

assign vreset = hreset & (vcount_d == (524*2));

// sync and blanking

wire next_hblank,next_vblank;

assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

always @(posedge vclock) begin

hcount_d <= hreset ? 0 : hcount_d + 1;

hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount_d <= hreset ? (vreset ? 0 : vcount_d + 2) : vcount_d;

vblank <= next_vblank;

vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);

end

endmodule

7.4.4 I2C Setup for VGA

module vga_setup(

input wire clk,

input wire reset, //reset on signal going high

input wire start,

inout scl,

inout sda

);

parameter device_id = 8’hEC;

// reg [7:0] write_id;

reg [7:0] write_reg;

reg [7:0] write_data;

reg [7:0] write_id;

66

reg [4:0] FSM_state = 0;

wire done;

reg start_write = 0;

i2c_configure_reg instance_name (

.clk(clk),

.reset(reset),

.start(start_write),

.write_reg(write_reg),

.write_id(write_id),

.write_data(write_data),

.done(done),

.scl(scl),

.sda(sda)

);

always@(posedge clk)

begin

case(FSM_state)

0: begin //start

FSM_state <= start ? 1 : 0;

start_write <= 0;

end

1: begin //configure clk mode reg

FSM_state <= 2;

write_id <= device_id;

write_reg <= 8’h9C; //clk setup

//write_data <= 8’h00; //clk is at pixel frequency

write_data <= 8’h01; //clk is at double pixel frequency

start_write <= 1;

end

2: begin //wait for finish

FSM_state <= done ? 3 : 2;

start_write <= 0;

end

3: begin //input data format

FSM_state <= 4;

write_id <= device_id;

write_reg <= 8’h9F; //input data format

write_data <= 8’b1000_0000; //Vsync, Hsync are active low

start_write <= 1;

end

4: begin //wait for finish

FSM_state <= done ? 5 : 4;

start_write <= 0;

end

5: begin //VGA bypass mode

FSM_state <= 6;

write_id <= device_id;

67

write_reg <= 8’hA1; //input data format

write_data <= 8’b0000_1001; //enable sync outputs, VGA bypass enabled

start_write <= 1;

end

6: begin //wait for finish

FSM_state <= done ? 7 : 6;

start_write <= 0;

end

7: begin //power enable

FSM_state <= 8;

write_id <= device_id;

write_reg <= 8’hc9; //power register

write_data <= 8’b0000_0000; //negate FPD

start_write <= 1;

end

8: begin //wait for finish

FSM_state <= done ? 9 : 8;

start_write <= 0;

end

9: begin //return to start

FSM_state <= 0;

end

endcase

end

endmodule

7.4.5 Camera Configuration

module camera_configure(

input wire clk,

input wire reset, //reset on signal going high

input wire start,

inout scl,

inout sda

);

parameter device_id = 8’h42; //camera address for writes

parameter rom_locations = 30;

wire [7:0] write_reg;

wire [7:0] write_data;

reg [4:0] FSM_state = 0;

wire done;

reg start_write = 0;

reg [5:0] rom_addr = 0;

i2c_configure_reg camera_i2c (

68

.clk(clk),

.reset(reset),

.start(start_write),

.write_reg(write_reg),

.write_id(device_id),

.write_data(write_data),

.done(done),

.scl(scl),

.sda(sda)

);

camera_setup_rom config_rom (

.clk(clk),

.addr(rom_addr),

.register(write_reg),

.value(write_data)

);

always@(posedge clk)

begin

case(FSM_state)

0: begin //start

FSM_state <= start ? 1 : 0;

start_write <= 0;

rom_addr <= 0;

end

1: begin //check rom value, give time for rom load

FSM_state <= (rom_addr>=rom_locations) ? 5 : 2;

end

2: begin //start I2C

FSM_state <= 3;

start_write <= 1;

end

3: begin //wait for end

FSM_state <= done ? 4 : 3;

end

4: begin

FSM_state <= 1;

rom_addr <= rom_addr +1;

end

5: begin //end state

FSM_state <= 0;

end

endcase

end

endmodule

7.4.6 Capture a frame from the camera and dump into memory

69

//takes 12.5Mhz camera clk, writes to memory, then frees up memory

//wrapper for camera

//stored as r[2:0]g[2:0]b[1:0]

module camera_capture(

input wire camera_clk,

input wire start,

input wire camera_vsync,

input wire camera_href,

input wire [7:0] camera_dout,

output reg mem_request = 0,

output reg mem_we =0,

output reg [15:0] mem_din =0,

output reg [9:0] vcount,

output reg [9:0] hcount,

output reg done = 0

);

reg [3:0] FSM_state = 0;

reg camera_start = 0;

wire [15:0] pixel_data;

wire pixel_done;

wire camera_done;

wire [9:0] camera_vcount;

wire [9:0] camera_hcount;

camera_read camera_reader (

.p_clock(camera_clk),

.vsync(camera_vsync),

.href(camera_href),

.p_data(camera_dout),

.start(camera_start),

.pixel_data(pixel_data),

.pixel_done(pixel_done),

.done(camera_done),

.hcount(camera_hcount),

.vcount(camera_vcount)

);

always@(posedge camera_clk)

begin

case(FSM_state)

0: begin //start state

FSM_state <= start ? 1 : 0;

done <= 0;

end

1: begin //start camera read

FSM_state <= 2;

camera_start <= 1;

mem_request <= 1;

hcount <=0;

vcount <=0;

70

mem_we <= 0;

end

2: begin //wait

FSM_state <= camera_done ? 3:2;

camera_start <= 0;

mem_we <= pixel_done ? 1 :0;

//mem_din <= {pixel_data[14:12],pixel_data[9:7], pixel_data[4:3]};

mem_din <= pixel_data;

hcount <= camera_hcount;

vcount <= camera_vcount;

end

3: begin //free up memory

FSM_state <= 0;

mem_request <= 0;

mem_we <= 0;

done <= 1;

end

endcase

end

endmodule

7.4.7 Write object locations to the physics Beta

module camera_write_to_beta(

input wire clk,

input wire start,

input wire [9:0] red_x,

input wire [9:0] red_y,

input wire [9:0] green_x,

input wire [9:0] green_y,

input wire [9:0] blue_x,

input wire [9:0] blue_y,

output reg [31:0] beta_addr =0,

output reg [31:0] beta_data =0,

output reg beta_mwe = 0

);

reg [5:0] FSM_state = 0;

always@(posedge clk)

begin

case(FSM_state)

0: begin //wait for start signal

FSM_state <= start ? 1 : 0;

end

1: begin //write red

FSM_state <= 2;

beta_addr <= 0;

71

beta_data <= {6’b0, red_x, 6’b0, red_y};

beta_mwe <= 1;

end

2: begin //write green

FSM_state <= 3;

beta_addr <= 1;

beta_data <= {6’b0, green_x, 6’b0, red_y};

beta_mwe <= 1;

end

3: begin //write blue

FSM_state <= 4;

beta_addr <= 2;

beta_data <= {6’b0, blue_x, 6’b0, blue_y};

beta_mwe <= 1;

end

4: begin //write status register

FSM_state <= 5;

beta_addr <= 32’b100;

beta_data <= 1; //done!

beta_mwe <= 1;

end

5: begin //end state

FSM_state <= 0;

beta_mwe <= 0;

end

endcase

end

endmodule

7.4.8 Pixel cost function

module pixel_cost_function(

input [8:0] pixel_data,

output [8:0] pixel_red_cost,

output [8:0] pixel_green_cost,

output [8:0] pixel_blue_cost

);

wire [2:0] red = pixel_data[8:6];

wire [2:0] green = pixel_data[5:3];

wire [2:0] blue = pixel_data[2:0];

assign pixel_red_cost = ((red>(green<<1)) && (red>(blue<<1)) && (red>(blue+red)) && (red>2)) ?

(red<<2)-(green<<1)-(blue<<1) : 0;

assign pixel_blue_cost = ((blue>(green<<1)) && (blue>(red<<1)) && (blue>(red+green)) &&

(blue>2)) ?

(blue<<2) - (green<<1) - (red<<1) : 0;

72

assign pixel_green_cost = ((green>(blue<<1)) && (green>(red<<1)) && (green>(red+blue))

&&(green>2)) ?

(green<<2) - (red<<1) - (blue<<1) : 0;

endmodule

7.5 SNES Controller Interface

module nes_interface(

input wire clk_50,

input wire controller_dout,

output reg controller_clk,

output reg controller_latch,

output reg updated,

output reg button_A,

output reg button_B,

output reg button_X,

output reg button_Y,

output reg button_L,

output reg button_R,

output reg button_N,

output reg button_E,

output reg button_S,

output reg button_W,

output reg button_START,

output reg button_SELECT

);

parameter timer_state = 36;

parameter clk_period = 300;

parameter update_delay = 30000;

reg [31:0] counter = 0;

reg [5:0] FSM_state_return = 0;

reg [5:0] FSM_state = 0;

//sample data on falling clock edge

always@(posedge clk_50)

begin

case(FSM_state)

0: begin //start state

FSM_state <= 1;

updated <= 0;

end

1: begin //set latch and set timer

FSM_state <= timer_state;

FSM_state_return <= 2;

controller_latch <= 1;

counter <= 2*clk_period; //12us

end

73

2: begin //latch goes low

FSM_state <= timer_state;

FSM_state_return <= 3;

controller_latch <= 0;

counter <= clk_period;

end

3: begin //latch B and clk go low

FSM_state <= timer_state;

FSM_state_return <= 4;

controller_clk <= 0;

button_B <= ~controller_dout;

counter <= clk_period;

end

4: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 5;

controller_clk <= 1;

counter <= clk_period;

end

5: begin //latch Y, clk go low

FSM_state <= timer_state;

FSM_state_return <= 6;

controller_clk <= 0;

button_Y <= ~controller_dout;

counter <= clk_period;

end

6: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 7;

controller_clk <= 1;

counter <= clk_period;

end

7: begin //latch SELECT, clk go low

FSM_state <= timer_state;

FSM_state_return <= 8;

controller_clk <= 0;

button_SELECT <= ~controller_dout;

counter <= clk_period;

end

8: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 9;

controller_clk <= 1;

counter <= clk_period;

end

9: begin //latch START, clk go low

FSM_state <= timer_state;

FSM_state_return <= 10;

controller_clk <= 0;

button_START <= ~controller_dout;

counter <= clk_period;

end

74

10: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 11;

controller_clk <= 1;

counter <= clk_period;

end

11: begin //latch N, clk go low

FSM_state <= timer_state;

FSM_state_return <= 12;

controller_clk <= 0;

button_N <= ~controller_dout;

counter <= clk_period;

end

12: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 13;

controller_clk <= 1;

counter <= clk_period;

end

13: begin //latch S, clk go low

FSM_state <= timer_state;

FSM_state_return <= 14;

controller_clk <= 0;

button_S <= ~controller_dout;

counter <= clk_period;

end

14: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 15;

controller_clk <= 1;

counter <= clk_period;

end

15: begin //latch W, clk go low

FSM_state <= timer_state;

FSM_state_return <= 16;

controller_clk <= 0;

button_W <= ~controller_dout;

counter <= clk_period;

end

16: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 17;

controller_clk <= 1;

counter <= clk_period;

end

17: begin //latch E, clk go low

FSM_state <= timer_state;

FSM_state_return <= 18;

controller_clk <= 0;

button_E <= ~controller_dout;

counter <= clk_period;

75

end

18: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 19;

controller_clk <= 1;

counter <= clk_period;

end

19: begin //latch A, clk go low

FSM_state <= timer_state;

FSM_state_return <= 20;

controller_clk <= 0;

button_A <= ~controller_dout;

counter <= clk_period;

end

20: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 21;

controller_clk <= 1;

counter <= clk_period;

end

21: begin //latch X, clk go low

FSM_state <= timer_state;

FSM_state_return <= 22;

controller_clk <= 0;

button_X <= ~controller_dout;

counter <= clk_period;

end

22: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 23;

controller_clk <= 1;

counter <= clk_period;

end

23: begin //latch L, clk go low

FSM_state <= timer_state;

FSM_state_return <= 24;

controller_clk <= 0;

button_L <= ~controller_dout;

counter <= clk_period;

end

24: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 25;

controller_clk <= 1;

counter <= clk_period;

end

25: begin //latch R, clk go low

FSM_state <= timer_state;

FSM_state_return <= 26;

controller_clk <= 0;

button_R <= ~controller_dout;

76

counter <= clk_period;

end

26: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 27;

controller_clk <= 1;

counter <= clk_period;

end

27: begin //clock go low //empty 1

FSM_state <= timer_state;

FSM_state_return <= 28;

controller_clk <= 0;

counter <= clk_period;

end

28: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 29;

controller_clk <= 1;

counter <= clk_period;

end

29: begin //clock go low //empty 2

FSM_state <= timer_state;

FSM_state_return <= 30;

controller_clk <= 0;

counter <= clk_period;

end

30: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 31;

controller_clk <= 1;

counter <= clk_period;

end

31: begin //clock go low //empty 3

FSM_state <= timer_state;

FSM_state_return <= 32;

controller_clk <= 0;

counter <= clk_period;

end

32: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 33;

controller_clk <= 1;

counter <= clk_period;

end

33: begin //clock go low //empty 4

FSM_state <= timer_state;

FSM_state_return <= 34;

controller_clk <= 0;

counter <= clk_period;

end

77

34: begin //clock go high

FSM_state <= timer_state;

FSM_state_return <= 35;

controller_clk <= 1;

counter <= clk_period;

end

35: begin //wait for next update interval

FSM_state <= timer_state;

FSM_state_return <= 0;

counter <= update_delay;

end

timer_state: begin //count down and return to stored state

FSM_state <= (counter == 0) ? FSM_state_return : timer_state;

counter <= (counter == 0) ? 0 : counter - 1;

end

endcase

end

endmodule

7.6 Pulling it all together

module laser_projector_full(

input wire clk,

input wire reset,

input wire [7:0] dip_sw,

input wire paddle_l,

input wire paddle_r,

input wire up_button,

input wire down_button,

input wire left_button,

input wire right_button,

input wire [31:0] camera_addr,

input wire [31:0] camera_dout,

input wire camera_mwe,

output wire [2:0] laser_rgb,

output wire dac_mosi,

output wire dac_csn,

output wire dac_latchn,

output wire dac_sclk,

output wire [7:0] debug_led

);

parameter xadr_physics = 31’h04;

parameter xadr_laser = 31’h04;

//wires for physics beta

wire mwe_physics;

wire irq_physics;

wire [31:0] ma_physics;

wire [31:0] mdin_physics;

78

wire [31:0] mdout_physics;

//memory mapped devices for physics beta

wire [31:0] ram_dout_physics;

wire [31:0] IO_dout_physics;

wire [31:0] shared_read_dout_physics;

wire [31:0] shared_write_dout_physics;

//selects for multiplexing the buss

wire [2:0] read_select_physics;

wire sel_ram_physics;

wire sel_IO_physics;

wire sel_read_shared_physics;

wire sel_write_shared_physics;

//wires for laser beta

wire mwe_laser;

wire irq_laser;

wire [31:0] ma_laser;

wire [31:0] mdin_laser;

wire [31:0] mdout_laser;

//memory mapped devices for laser beta

wire [31:0] ram_dout_laser;

wire [31:0] IO_dout_laser;

wire [31:0] shared_read_dout_laser;

wire [31:0] shared_write_dout_laser;

//selects for multiplexing the buss for laser beta

wire [2:0] read_select_laser;

wire sel_ram_laser;

wire sel_IO_laser;

wire sel_read_shared_laser;

wire sel_write_shared_laser;

wire [31:0] IO_port;

assign debug_led = IO_port[7:0];

//memory mdin is data into beta

//memory mdout is data from beta to be written

beta2 cpu_physics(

.clk(clk),

.reset(reset),

.irq(irq_physics),

.xadr(xadr_physics),

.ma(ma_physics),

.mdin(mdin_physics),

.mdout(mdout_physics),

.mwe(mwe_physics)

);

//16k mem

//14 bits wide, takes beta [15:2] because memory is byte aligned

physics_beta_mem physics_beta_ram (

.clka(clk),

.dina(mdout_physics),

.addra(ma_physics[15:2]),

.wea(mwe_physics && sel_ram_physics && (~reset)),

.douta(ram_dout_physics)

);

79

//decode data adress for reads

beta_addr_decode physics_decode (

.addr(ma_physics),

.sel_ram(sel_ram_physics),

.sel_IO(sel_IO_physics),

.sel_read_shared(sel_read_shared_physics),

.sel_write_shared(sel_write_shared_physics),

.read_select(read_select_physics)

);

//select mdin for beta

beta_read_decode physics_read_decode (

.clk(clk),

.reset(reset),

.read_select(read_select_physics),

.ram_dout(ram_dout_physics),

.IO_dout(IO_dout_physics),

.shared_read_dout(shared_read_dout_physics),

.shared_write_dout(shared_write_dout_physics),

.beta_mdin(mdin_physics)

);

//memory mapped IO for physics beta

mapped_IO physics_beta_IO (

.clk(clk),

.addr(ma_physics),

.din(mdout_physics),

.mwe(mwe_physics & sel_IO_physics),

.in_port_a({26’b0,left_button,down_button,right_button,up_button,paddle_l,paddle_r}),

.in_port_b({24’b0,dip_sw}),

.dout(IO_dout_physics),

.out_port_a(),

.out_port_b(),

.spi_miso(1’b0),

.spi_sclk(),

.spi_mosi(),

.irq(irq_physics)

);

//interface between camera fsm(host) and physics_beta (client)

memory_share physics_shared_memory (

.clk(clk),

.mwe_host(camera_mwe), //camera we

.mwe_client(mwe_physics&&sel_read_shared_physics),

.host_addr(camera_addr), //connection to camera FSM

.client_addr(ma_physics),

.host_din(camera_dout), //dout of camera

.client_din(mdout_physics), //input to memory, output of beta

.host_dout(), //no camera yet

.client_dout(shared_read_dout_physics) //output from memory

);

//laser beta

beta2 cpu_laser(

.clk(clk),

.reset(reset),

.irq(irq_laser),

.xadr(xadr_laser),

80

.ma(ma_laser),

.mdin(mdin_laser),

.mdout(mdout_laser),

.mwe(mwe_laser)

);

//16k mem

//14 bits wide, takes beta [15:2] because memory is byte aligned

hardware_beta_mem laser_beta_ram (

.clka(clk),

.dina(mdout_laser),

.addra(ma_laser[15:2]),

.wea(mwe_laser&&sel_ram_laser&&(~reset)),

.douta(ram_dout_laser)

);

//decode memory addresses

beta_addr_decode laser_decode (

.addr(ma_laser),

.sel_ram(sel_ram_laser),

.sel_IO(sel_IO_laser),

.sel_read_shared(sel_read_shared_laser),

.sel_write_shared(sel_write_shared_laser),

.read_select(read_select_laser)

);

//write data back

beta_read_decode laser_read_decode (

.clk(clk),

.reset(reset),

.read_select(read_select_laser),

.ram_dout(ram_dout_laser),

.IO_dout(IO_dout_laser),

.shared_read_dout(shared_read_dout_laser),

.shared_write_dout(shared_write_dout_laser),

.beta_mdin(mdin_laser)

);

//memory mapped IO for laser beta

mapped_IO laser_beta_IO (

.clk(clk),

.addr(ma_laser),

.din(mdout_laser),

.mwe(mwe_laser & sel_IO_laser),

.in_port_a({24’b0,dip_sw}),

.in_port_b(32’b0),

.dout(IO_dout_laser),

.out_port_a({dac_csn,dac_latchn, laser_rgb}),

.out_port_b(IO_port),

.spi_miso(1’b0),

.spi_sclk(dac_sclk),

.spi_mosi(dac_mosi),

.irq(irq_laser)

);

//laser_beta is client, physics_beta is host

memory_share laser_shared_memory (

.clk(clk),

81

.mwe_host(mwe_physics&&sel_write_shared_physics),

.mwe_client(mwe_laser&&sel_read_shared_laser),

.host_addr(ma_physics),

.client_addr(ma_laser),

.host_din(mdout_physics), //input to memory out of beta

.client_din(mdout_laser),

.host_dout(shared_write_dout_physics),

.client_dout(shared_read_dout_laser)

);

endmodule

82

