Maestro

Team 4

Evie Kyritsis, Sabina Maddila, Janelle Wellons

The Theremin

- Early electronic musical instrument controlled without physical contact by the thereminist
- Has two metal antennas
 - Senses the relative position of the user's hands
 - Controls oscillators for frequency with one hand
 - Amplitude (volume) with the other

Overview

Our system is comprised of three components:

- Motion Tracking
 - Processes incoming user input data via NTSC camera
 - Outputs cartesian and polar coordinates
- Sound Generation
 - Takes in polar coordinate from Motion Tracker
 - Takes in data from accelerometers
 - Calculates and produces a tone
 - Outputs to ac97 on FPGA to external speakers
- Visualization
 - Takes in the cartesian coordinate from motion tracker
 - Generates objects that 'follow' the user's hands on the computer monitor

System Overview

Motion Tracking

Motion Tracking

Inputs:

NTSC Camera Data

Outputs:

- Polar coordinate
- Cartesian coordinate

Modules:

- Decoder that takes in NTSC Data -> Ycrcb format
- Ycrcb -> RGB
- Prepare data for loading into ZBT Ram Memory
- Thresholds color values to identify object & produce coordinate

Implementation:

- Gloves, brightly colored fingers
- Begin with shading tests & crosshair tracking
- Play around with color values to identify our colored gloves

Sound Generation

Sound Generation

Inputs:

- Polar Coordinate
- Accelerometer Data
- Keypad Input

Outputs:

- Tone
- ac97 on FPGA to external speakers

Modules:

- Frequency Calculation
- Sine Wave FFT Generator
- Output to ac97
- Debouncer

Implementation:

- Volume controlled by external keypad
- Begin by prototyping formula for sine waves in python first
- Will test not using the motion tracker but will instead have coordinates fed in by other means
- 3-axis accelerometer with SPI digital interface

Visualization

Visualization

Inputs

Cartesian coord

Outputs

• VGA output to computer monitor

Modules

- Generate XVGA signals
- Sprite Generator
- Send to VGA output

Implementation

- Use the same wheel described in Sound Gen, in order to represent certain tones as a color
- Will have objects that follow the hands
- Start with testing separate from Motion Tracker, will integrate later on
- Tricky bit: figuring out the timing between receiving the camera input and outputting the response

Timeline

Questions?