Maestro

Team 4

Evie Kyritsis, Sabina Maddila, Janelle Wellons

The Theremin

e Early electronic musical instrument controlled
without physical contact by the thereminist

e Has two metal antennas
o Senses the relative position of the user’s

hands

o Controls oscillators for frequency with one
hand

o Amplitude (volume) with the other

Overview

Our system is comprised of three components:

e Motion Tracking
o Processes incoming user input data via NTSC camera
o Outputs cartesian and polar coordinates

e Sound Generation
o Takes in polar coordinate from Motion Tracker
o Takes in data from accelerometers
o Calculates and produces a tone
o Outputs to ac97 on FPGA to external speakers

e Visualization
o Takes in the cartesian coordinate from motion tracker
o Generates objects that ‘follow’ the user’s hands on the computer monitor

System Overview

=
NTSC camera Lo s é
Ycrcb =

pixel data a

Accelerometer

Motion Tracking

Visualization

re
coord.

—
S

volume
control

amplitude

_»

Threshold
Detector

hsync
vsync
vclock

* frequency

impulse

impulse
response

Pl data

Sound Generation

audio
output

hcount
vcount
blank

_»

visual

out

put

External Speakers

Motion Tracking

Motion Tracking

NTSC camera

’ Threshold

frame Detector

Ycrcb
pixel data

|
re I X,y coord.

=
¥
i_
o
N

coord.

Motion Tracking

Inputs:
e NTSC Camera Data | e
Outputs:
e Polar coordinate
e Cartesian coordinate
Modules:
e Decoder that takes in NTSC Data -> Ycrcb format
e Ycrcb -> RGB
e Prepare data for loading into ZBT Ram Memory
e Thresholds color values to identify object & produce coordinate

Implementation:

e Gloves, brightly colored fingers
e Begin with shading tests & crosshair tracking
e Play around with color values to identify our colored gloves

Sound Generation

r.o
coord.

Frequency Calculation
{ frequency

FFT Generator

=

volume
control

amplitude

i
impulse : e
response

% ‘to aco7
ac97

Y/

|

Accelerometer |y o g

SPI data

audio
output

Sound Generation

External Speakers

Sound Generation

Inputs:
° Polar Coordinate
° Accelerometer Data
e Keypad Input
Outputs:
° Tone
e ac97 on FPGA to external speakers
Modules:
e Frequency Calculation
° Sine Wave FFT Generator
e Output to ac97
° Debouncer

Implementation:

Volume controlled by external keypad

Begin by prototyping formula for sine waves in python first

Will test not using the motion tracker but will instead have coordinates fed in by other means
3-axis accelerometer with SPI digital interface

Visualization

Visualization

hsync hcount
vsync vcount
vclock blank

X,y coord.

ey 4 Monitor

VIE
output

Visualization

Inputs

e Cartesian coord
Outputs

e VGA output to computer monitor
Modules

e Generate XVGA signals
e Sprite Generator
e Send to VGA output

Implementation

° Use the same wheel described in Sound Gen, in order to represent certain tones as a
color
Will have objects that follow the hands
Start with testing separate from Motion Tracker, will integrate later on

e Tricky bit: figuring out the timing between receiving the camera input and outputting
the response

Timeline

5-Nov 12-Nov 19-Nov 25-Nov 30-Nov
Finish Prototyping Sound Gen
Acquire Threshold Vaules for Camera Input
Design and Create Simple Sprites that respond to Labkit Input
Generating Simple Sine Waves using FFT from Labkit Input
Basic Tracking with NTSC Camera; Outputting Coordinates
Implement Background Graphics
Integrate with Accelerometer Input : corporate Tamber
Coordinate with Visualization Block with Timing Outputs

Sprites Following Hands (Responding to Motion Tracker Block)

Integration
Debugging!

Questions?

