Daniel Mendelsohn
November 4, 2013
6.11 Final Project Proposal Draft

An interactive plug-in game for an electric keyboard

Overview

[plan to build a plug in game for an electric keyboard. It is essentially a
Guitar Hero variant, but unlike Guitar Hero, it will use an actual working instrument
as an input device rather than a faux-instrument game controller

When learning to play a new instrument, it's important for novices to become
deeply engaged in the music from an early stage. For experienced players, such
engagement comes naturally with the satisfaction of creating music. Novices,
however, must work through a significant period of struggle before realizing any
impressive results. It is natural to feel somewhat discouraged. Many people fail to
get over the learning “hump”. Many parents who pay for their children’s music
lessons have experienced the challenge of motivating a new learner through this
difficult period.

In many fields of education, games help drive the learning process and
motivate students. This is particularly effective with regards to children. The
massive proliferation of educational kids’ games have demonstrated the
effectiveness of gamification in teaching math, reading, language, typing and myriad
other subjects. Thanks to my new 6.111 knowledge, I now see a new opportunity to
gamify piano playing.

The user interface is modeled after other popular instrument-based video
games, such as Rock Band and the aforementioned Guitar Hero. In the game, notes
will flow horizontally across the screen from right to left. There will be a vertical
bar near the left edge of the screen. When a note reaches that bar, the user must
press the corresponding key on the keyboard. If the user plays the note
successfully, he or she is rewarded. If the user fails to play a note, plays the wrong
note, or plays a note when no note should be played, he or she is penalized. This
format allows for a wide range of difficulty settings; selecting a song with more
notes or a higher tempo increases the challenge.

The hardware setup is simple from the user perspective. The user simply
plugs in the MIDI output of the keyboard into the FPGA, and connects the VGA
output of the FPGA to a monitor. All game data, such as images and note sequences,
is stored in memory on the FPGA. The MIDI output is a good choice for the interface
to the FPGA due to its simple, compact, and low traffic protocol. Similarly, I chose to
output display information via VGA because of its simplicity and familiarity (and
because we already have a module to do this thanks to Lab 3). Itis important to
note that the scope of this project, at least initially, is limited to just one octave, in
order to ensure the completion minimum viable product.

IMPLEMENTATION
My design is comprised of four major blocks, as seen in Figure 1, namely a
MIDI interface block, an action interpretation block, a game logic block, and a

display block. A MIDI interface block receives input from the keyboard and
interprets it, relaying that data in a more concise, usable format. An action
interpretation block compares game input information from the MIDI interface
block (what notes the user is playing) to internal game state information (what note
the user should be playing). Based on that comparison, the action interpretation
block analyzes when events (e.g. score changes) must take place, and relays
information about such events. A state-less display block, which receives relevant
game state data, produces an RGB value to be displayed at a specified coordinate. A
game logic FSM ties it all together; it reads data from memory, performs operations
such as tallying score, holds the state of the game, and controls the other blocks. It
does this by providing data about which notes are in the song and at what times.
Different peripheral blocks have different needs; for example, the display block
needs information about a note many seconds before the user must play that note
(so it can be shown at the top of the screen).

Serial MIDlinput from keyboard | - wyp| interpretation Module Keyspressed | Action Interpretation Module

A

Inputevents [Nearby notes

Y

RGB output to VGA module Upcoming Notes

< Display Module < Game Logic Module

Figure 1. This is a block diagram depicting the largest components of the system. MIDI input is parsed
and the notes that the user is playing are compared to the correct notes. The action interpretation
block performs this comparison. Based on that comparison, the action interpretation block tells the
game logic if the user performed a correct action, an incorrect action, or no action at all. The game
logic block reads song data from memory, and distributes it to its neighboring blocks at the correct

time. It also incorporates already-interpreted actions into the game state. The display block receives

data for upcoming notes from the game logic block, and creates a user interface that visually represents
that data (using VGA output).

MIDI Interface Block

This block receives electrical signals from the MIDI output port of an electric
keyboard, and interprets it using the MIDI standard’s specification. It produces an
array of registers, where each register represents the “press/un-pressed” state of a
single note.

A simple circuit must be constructed on the proto-board. It must meet the
electrical specification for MIDI, so that the signal can be interpreted digitally. The
specified circuit can be seen in Figure 2.

+ =24

250 shens

. . 220 Oben [
!.'(":r‘ +8Y - A — ——————————

F@welA%MkadﬂwdeHo@mwﬁﬂmﬂﬁmnMmhmmwmrMWHMMmﬂmmmwﬂmwe
as converting the MIDI standard voltage levels to TTL voltage levels.

The block will then interpret the digital signal according to the MIDI
standard. The standard calls for a data transmission rate of 31,250 baud. Digital
words consist of eight bits, plus a start and stop bit. The first of the eight bits
indicates whether this word is a command word or a data word. A MIDI message
consists of a command word, along with up to two data words that serve as
parameters for the command. The four most significant bits are often enough to
specify a number of commands; the least significant four bits allow for us to specify
one of 16 channels. This is useful when multiple devices are involved, but in our
case we only need one channel. Refer to Table 1, below; it gives more detail about
these commands.

MIDI commands
Command Meaning #Parameters Paraml Param2
0x80 Note Off 2 key velocity
0x90 Note On 2 key velocity
0xA0 Aftertouch 2 key touch
0xBo0 Continuous controller 2 controller# value
0xCo Patch change 2 instrument# value
0xDo Channel Pressure 1 pressure
0xEo0 Pitch bend 2 lsb(7bits) msb(7bits)
0xFo (non-musical commands) O

Table 1. A detailed look at MIDI commands and their parameters

The system will include a simple Universal Asynchronous
Receiver/Transmitter (UART) circuit that will take the serial stream of bits and
convert them to data words. An FSM will interpret MIDI messages and continuously
keep track of which keys are being pressed. It then outputs that information.

As stated before, the system uses the MIDI output of the keyboard (rather
than the actual sound) because of the greater simplicity. Thorough testing requires

knowing when keys are pressed, and MIDI requires and easy and lightweight way to
do this. The implementation of this block should be quick and straightforward.

In addition to ModelSim testing, the system will be tested by simply
displaying it’s output on a bank of LED lights, and ensuring the lights go on when the
corresponding key is pressed and goes of when the key is released.

User Action Interpretation Block

The action interpretation block will take certain game state data as input. In
particular, the input will indicate which notes are to be played close to the current
time (either just previous to the current time or in the near future). The input will
also indicate the exact time at which those notes should be played. Furthermore,
the output of the MIDI interface block will also fed as input to the scoring block.

In total, the action interpretation block knows which notes should be played
at roughly the current time, and which keys are currently pressed. It combines this
information to determine if the correct keys are being pressed at the correct times.
[t also accounts for some tolerance; users should be allowed to press a key a short
amount of time (on the order of tenths of a second) before or after the exact time
specified by the game.

This block will output event information as a pulse. For example, when it
detects a scoring event such as a correct key press, and incorrect key press, or a
missed key press, it encodes the relevant information (type of event plus
parameters) into a binary array, and outputs it for one clock cycle. At all other
times, the output is 0.

This block will be mostly tested in ModelSim. In simulation, it must correctly
interpret each type of event (such as correct key press, etc.) at the appropriate time.
[t will be very hard to verify this block’s functionality via visual inspection since the
output information only persists for one clock cycle. This is an ideal situation to use
ModelSim.

Display Block

The display block is the interface between the internal logic of the game, and
a VGA output module identical to the one used in Lab 3. The graphics will depict a
musical staff on the screen, and upcoming notes will flow from right to left along the
musical staff. Notes will be depicted using an icon, which this block will retrieve
from memory. The final result will look somewhat like the depiction in Figure 3.
This format is standard in music and is very familiar to all musicians. For piano
players, the musical staff is a ubiquitous way to understand the notes to be played.

=GP
G_QL

~

Figure 3. A possible example of what the display might look like; notes flow leftward.

This block will take relevant game state data as input. Namely, its input will
be a binary encoding of all the notes that will occur in the next few beats. It will also
take as input a pair of numbers representing the location of a pixel. Given the all of
the notes, and the location of the pixel, the display block will determine an RGB
value for that pixel. Note that this block is state-less, its output is a function of its
current input. The VGA module handles the creation of an actual output signal to
the monitor.

Due to the large size of this block, and the complexity of its inputs, it is
difficult to test thoroughly via ModelSim. Unlike the action interpretation block, the
display block is very amenable to visual verification that it is meetings its
specification. A test circuit on the FPGA will allow a human operator to manually
tinker with the input to the display block. Using that test circuit, the operator will
be able to confirm that this block’s logic meets specification and the monitor
displays the proper image.

Game Logic Block

This block ties it all together. It reads data from memory; this data encodes
which notes are to be played and when. It provides relevant subsets of the notes to
various blocks (e.g. the display block and the action interpretation block) at the
appropriate times. It handles the “play/pause” logic and interprets events from the
event interpretation. Thus, it tallies the current score. It will also contain persistent
information that encodes various statistics such as note accuracy and high score.
This block is essentially a large FSM running the entire game.

The testing for this block will be complicated, and thorough. It will likely be
broken down into many small sub-blocks, each with a very specific function. Such
sub-modules might include a data-reading block, a game-pausing module, and a
scoring module. These sub-modules will mostly tested using ModelSim. Once the
individual functionality of each sub-module is correct, a large ModelSim simulation
will perform an integration test, thus confirming the correct behavior of the game
logic block as a whole.

TIMELINE
The timeline is somewhat aggressive and front-loaded. It is imperative that it
not be completed late. During the week of 11/18, each block will be individually

built. During the week of 11/25, each block will be thoroughly debugged and
refined. Finally, during the week of 12/2, the individually functioning blocks will be
integrated together. During the time at the end, user testing will help create a better
user experience.

