6.111 Proposal - Voice Controlled Game Sprite

Aakanksha Sarda and William Huffman
November 5, 2013

Project Overview

The primary goal of this project is to implement a system which takes as input a user’s voice saying
one of a few commands and produces as output a visual representation of a game sprite following those
commands on a computer monitor. This specific implementation seeks to use four spoken directional
commands (“up”, “down”, “left”, and “right”) as well as one additional movement-halting command
(“stop”) to drive a pixel representation of a car on a computer screen.

In addition to requiring the use of the FPGA to implement the logic component of this project, a
mic is required to record user input and a computer monitor is required to display the output of the
FPGA. Both the mic and the computer monitor are part of the standard 6.111 lab kit, and have been
used successfully in previous labs. The mic will be incorporated through the FPGA’s audio microphone
input in a way similar to that used in lab 5. The computer monitor will receive data via the VGA output
on the FPGA in a way similar to that used in lab 3.

The bulk of the project is broken into two major components: a speech recognition component and a
visualization component (See Figure 1 for the block diagram). The speech recognition component takes
as input the audio in from the mic, as well as a listening signal which indicates that the user is ready to
input a command (this will be done via holding down the enter key, as in lab 5). From this, the speech
recognition module will interpret the mic input into one of the five legal commands and output that
command into a 3-bit bus connecting to the visualization module. The speech recognition module will
also output a 1-bit signal that is high for one clock cycle when a new legal command has been received
- this serves to tell the visualization module that its current command information is out of date and
should be refreshed.

The visualization component takes as input the 3-bit command bus from the speech recognition
module and the 1-bit new command signal, and produces as output XVGA data for a 1024x768 pixel
display. Upon a new command from the speech recognition module, the visualization module waits
until the current frame has been drawn and then updates its internal state to begin executing the new
command. In addition to having the primary goal of drawing a moving car to the screen, the visualization
module has the additional goal of incorporating a map with walls and a finish line into the display. These
additional goals require the visualization module to incorporate basic collision detection to determine
when the car has hit a wall (at which point it will stop) and when the car has crossed the finish line (at
which point the visualization will briefly display a message and then reset).

Block Diagram

—> Screen Output

User Input—

Figure 1: Block Diagram Describing the Relationship between the Visualization and Speech
Recognition Components. The project uses a linear flow of data from the initial user input into the
speech recognition component. Inside, the speech recognition component uses two main sub-components:
one for detecting user input features, and the other for conducting inference on the user input using these
features. The inference results are sent to the visualization component, which translates the identified
command into an on-screen change in the car sprite’s location.

Speech Recognition Module - led by Aakanksha Sarda

The speech recognition module is broken into two major submodules: the feature detection and the
inference components (See Figure 2 for the wiring diagram). The feature detection component is
responsible for taking audio input from the microphone, and converting it into a stream of feature
vectors, which is an intermediate representation used by the inference component to decide which word
was spoken.

Feature Detection

The feature detection component takes as input a signal indicating that the user is speaking (from a
button press), and audio sampled at 44.1 KHz from the labkit mic input. The audio recording module
is responsible for down-sampling the audio to 16 KHz (which is standard for human speech signals),
breaking it up into chunks of 512 samples, and passing the chunks on to the FFT module. The chunks
will be stored temporarily in the labkit BRAM, as lab 5. We will use a pre-existing implementation
for the FFT module. The output of the FFT module (the amplitudes of the different frequencies) will
also be temporarily stored in the labkit BRAM, and passed on to the peak detection module. The
peak detection module will make use of a common comparator tree structure to detect the 6 highest-
amplitude frequency components in the speech sample. The tuple of frequencies corresponding to the 6

peaks comprise the ”feature vector”, which is passed on to the inference module.

Inference

The inference component takes in a stream of feature vectors, and needs to output a recognized command.
The feature vectors are first stored in a buffer, and from where they are accessed by the decision module.
The decision module takes pre-calculated, hard-coded, parameters from the vocabulary module (which
is just a ROM); these parameters correspond to each of the words in the vocabulary and will have been
pre-calculated on a computer with MATLAB.

The decision module will pass on the received feature vectors and the the vocabulary parameters to
the Gaussian Mixture Model PDF (GMM PDF) module. The GMM PDF module is contains a ROM
from where it can look up a similarity score based on the feature vectors and the vocabulary parameters.

An optional extension (time permitting) will have a Hidden Markov Model module producing the
similarity score instead. In either case, the similarity scores will be passed on to a common comparison
tree module which will return the closest-matching word (the word with the highest similarity score).
The decision module will then pass this matched word on to the Visualization module.

Testing

We will follow a hierarchical testing strategy for the Speech Recognition Module. First, the speech
recognition algorithm will be prototyped and tested in MATLAB. The MATLAB implementation will
use fixed point arithmetic and use no built-in functions in order to model the FPGA setup as closely
as possible. The algorithm will then be translated into Verilog, and implemented on the FPGA. Each
module (audio recording, FFT, peak detection etc) will be separately tested against the corresponding
MATLAB implementation, to make sure that it produces the correct output. We will rely heavily on
output to the Logic Analyzer in order to debug the modules. Then we will test the Feature Detection
component, the Inference component, and finally the Speech Recognition Module as a whole. This
integrated testing is vital because comparing each individual module with the MATLAB implementation
will only verify the numerical correctness of the outputs, but not whether they are produced at the correct
time. The timing could be verified by routing easily identifiable dummy data (say, a single-frequency
sine wave) through the system, and verifying that a valid result is produced at every stage and at the
end.

Clock Command_enable —»
Reset Command |——
Record_enable Audio
" udi -
- - Gaussian)
Mic audio input Recording Mbdure Hidden
(from_ac97 data) Model PDF Markov
lChunks ode Model
FFT o m— (optional)
Fealure | Frequency Similarity scores
- -amplitudel
Det:j:lliq histogram Essiina Vocabulary
ea vectors lel » | Matched
Detection || | Buffer -] (Eiecision o
£ 7
Paak
Highest simdarity
Comparison Comparison scores
Tree Tree

Figure 2: Organization of the Speech Recognition Module into Feature Detection and In-
ference components. The Feature Detection component is responsible for recording the audio input
and processing it to produce an intermediate representation (corresponding to the dominant frequencies
of the speech sample), which is used by the Inference module to decide which word from the vocabulary
was spoken. The Comparison Tree module is a common parameterized module that will be instantiated
by both the Feature Detection and Inference components (with different parameters).

Visualization Module - led by William Huffman

The visualization module is broken down into five major sub-components (See Figure 3 for the wiring
diagram). The offsets module contains the simple state machine for transforming between commands
from the speech recognition module and the state of the visual display. The collision module contains a
set of rules for determining if a particular position of the car will result in a collision with a wall or the
finish line, which is then sent back to the offsets module to be taken into account for determining the
car’s final position. The pixel logic module takes in an offset from the offsets module describing the final
position of the car, and uses this to offset the display of the car and the map in the appropriate places.
The car, map, and done modules each contain a pixel buffer corresponding to the size of that object
to be displayed, which tells the pixel logic module what color should be displayed for each pixel on the
screen. The VGA Display module takes the output from the pixel logic module, incorporates vsync and
hsync signals, and sends the entire frame buffer off to the display using the VGA connection.

In addition, two minor modules control the timing for the visualization component. A 65MHz clock
module provides a sufficiently fast clock signal for the visualization component to produce XVGA signals.
An input sanitization module synchronizes the input from the speech recognition module to the 65MHz
clock for use in the visualization module.

The offsets and collision modules

The offsets module is a relatively simple FSM that changes its state based on the speech recognition
output. The state is then used to increment the offset output, which is a 20-bit bus that contains
information concerning the position of the car and the state for the display: 10-bits for the horizontal

position, 9-bits for the vertical position, and 1-bit for whether or not to display the done screen.

The offsets FSM has six states: five of which correspond to the five input commands recognized by
the speech recognition module, and one of which corresponds to the done screen to be displayed after
the car crosses the finish line. In the stop state, the car’s offset does not change. In each of the four
directional states, the car should update its position to have moved a number of pixels (based on a
hardcoded velocity to be determined during testing - this value will be roughly 5-10) in that direction.
This updated position is sent to the collision module, which responds with whether this new updated
position is valid (if not, the updated position is reset to the previous position). Finally, the updated
position is loaded into the offset module, which is sent off to the pixel logic module to display the car
in the appropriate position onscreen. Finally, the sixth state is the done state, which should set the
done bit in the offset bus high. The done state is triggered by the collision module detection a collision
between the car and the finish line, and contains a counter which counts down five seconds, after which
the offset module resets to the car’s initial position in the stop state.

The collision module takes as input a 19-bit position (encoded in a similar manner to the offset bus
described above), and gives a 2-bit output describing one of three possible outcomes: 0 is no collision,
1 is a collision with a wall, and 2 is a collision with the finish line. It contains a series of conditional
statements checking whether the queried position is in a valid region or in the finish line area.

The offsets module will be initially tested independent of the collisions module in order to run the
state machine through all of its state transitions. This is done by simulating the speech recognition
output and checking whether the offset matches what is expected. Once this testing is completed, the
collision module will be incorporated and the entire offset-collision combination will be tested through
simulated sequences of commands testing the offsets FSM states and collisions with walls and the finish
line.

The Pixel Logic; VGA Display; and Car, Map, and Done modules

The car, map, and done modules are all simply ROMs which contain information about pixel colors at
different locations in the image. The car module contains pixel data for representing a car on screen, the
map module contains pixel data for representing the map on the screen, and the done module contains
pixel data for representing a done screen upon crossing the finish line. Each pixel location contains 8
bits for each of red, green, and blue. These modules require little testing beyond confirmation that they
contain the correct data, as there is no actual logic involved, only data storage.

The pixel logic module is responsible for querying the car, map, and done modules to grab color data
for each pixel to be drawn to the screen, and outputting a combination of these pixel colors to finally
be drawn to the screen. As the car moves around the screen, the specific pixels queried for the car are
offset from the pixels being drawn by an amount equal to the car’s position, which is taken into account
through the offset input from the offsets module. The car and map pixels will be combined via a simple
OR, as the car and map will not overlap. The done pixels will override the car and map pixels if the
done bit is asserted in the offset output, otherwise they will be ignored.

This pixel logic module will be tested initially in combination with the car, map, and done modules
by checking its pixel output through a testbench which uses various offset inputs and expected pixel
output values.

The VGA Display module is a basic module which takes in the combined pixel data from the pixel
logic module, incorporates vsync and hsync signals for VGA communication, and outputs the final signal
through the VGA Display. As this module is very similar to that used in lab three, testing should be
minimal and will be reduced to running the pixel logic module output through the VGA Display module
to ensure that the correct image is displayed on the monitor.

Visualization Module

Clock (to
Clock — all
modules) |, VGA
Display

Command,

Command —

Received n ;
Command, Received Combined Pixels

Offset

Position | cCollision Pixels Pixels Pixels

Figure 3: Organization of the Visualization Component into Modules Handling Movement
Logic and Display. The input from the speech recognition component is sanitized and sent into the
offsets module, which uses its internal FSM in conjunction with a collision detection module to determine
where the car sprite should move. This position, in terms of an offset for the car sprite to be displayed
on screen, is sent to the pixel logic and VGA Display modules to be rendered appropriately to the screen.
The 66MHz clock module produces a sufficiently fast clock signal to output 1024x768 VGA frames.

