Virtual Rock Climbing:
A video game using tracking and tactile

feedback

Turner Bohlen Chris Lang
November 20, 2013

1 Introduction

This project aims to create a rock climbing video game in which the player
can climb a virtual wall by making motions in the real world. The player
will be able to reach up, down, left, and right in reality in order to find and
grasp the virtual handholds. A force feedback system will provide tactile
information about the location of holds, and a computer display will provide
visual cues. If the player lets go, they will fall back to the beginning. The
game is over when the player reaches the top of the virtual wall.

Hand tracking will be achieved using two colored gloves, one for each
hand, and a video camera. Force feedback will be provided by one or more
small vibrating motors. Finally, a button placed on the glove will register
when the player has grabbed a virtual hold.

Stretch goals include creating a three dimensional environment, a map
editor, and adding head tracking in order to create a virtual headlamp that
allows the user to only see a small number of holds at a time.

2 High-Level Design

The system will have three major components: the tracking block, the game-
play block, and the glove block. See Figure 1 for their interactions.

2.1 Tracking Block

The tracking block will analyze video input from a camera and determine the
position of the players hands on screen. It will take the frames and ancillary
information as inputs and output the position of the players to the gameplay
block. This section will be constructed by Turner Bohlen.

2.2 Gameplay Block

The gameplay block will handle the physics of the game, as well as outputting
video information to the VGA display. The gameplay block will take as input
the hand position from the camera block as well as grab information from the
glove block and control information from the display. From this information,
it will determine the location of the player on the rock wall, the objects
to display on screen, whether or not the user is grabbing a handhold, and

0O

Gameplay utputs ’
Block

Inputs

Tracking
’ Block

il

a

Inputs <

’ Glove
Block

Outputs
»

Figure 1: The high level block diagram shows the three major components
of the system: the tracking block, the glove block, and the gameplay block.
It also indicates information flow throughout the system

the pixel information to display in the next frame. This section will be
constructed by Chris Lang.

2.3 Glove Block

The glove block will manage inputs to and outputs from the gloves. It will
take information from the gameplay block describing if and how the user is
touching objects on screen and output feedback signals to the glove. It will
also debounce and output signals from the gloves’ buttons. This section will
be constructed by Turner Bohlen.

3 Hardware

This system requires a significant amount of additional hardware.

First, two gloves are required to allow for hand tracking and tactile feed-
back. Two colored gloves will be borrowed from the 6.111 lab supply, one
red and one green.

Second, a number of vibration motors will be purchased. The 6.111 staff
has confirmed that the cost of these components will be reimbursed. The
following model sold by Adafruit will has been chosen for the project. :
http://www.adafruit.com/products/12017gclid=CPz6gY TAwroCFZGf4AodCi8AGw.

Third, two push-buttons will also be used. These will be borrowed from
the 6.111 supply. We still need to confirm that these are available.

Forth, and finally, one video camera will be used to gather position infor-
mation from the real world and insert it into the game world. This will be
borrowed from the 6.111 lab supply.

If possible, a virtual headlamp will be added to the game, allowing the
user to tilt their head in order to see different portions of the wall in front
of them. The entire wall will never be visible. To accomplish this stretch
goal, a styrofoam ball will be purchased online and painted blue to provide
a trackable color mass.

Turner Bohlen will construct the hardware components of this system.
Parts should be received by November 15, 2013 and construction of the first
version of the hardware system should be completed by November 22, 2013.
Additional modifications may be necessary after this date.

4 Tracking Block Design

The tracking block uses camera inputs to calculate hand positions. Four
modules will comprise the block. These can be seen in Figure 2.

4.1 Camera Module

The camera module will process inputs from the camera and down-sample
them. The basis for this module will be the already implemented 6.111
camera module provided by the course staff. Modifications on top of this
base will allow for the functionality necessary for this game. Inputs will
come directly from the camera. Outputs will be control signals and pixel
data.

4.2 Frame Buffer

A frame buffer will use ZBT memory to store two down-sampled frames from
the camera. It will take as input the control signals and pixel data from the
camera module and a number of bits from the downstream center of mass
module specifying which pixel to output next. It will output a single pixel
of information and any necessary control signals.

The complexity of this module is low, although it will use a significant
amount of ZBT memory and therefore require careful clock manipulation.

4.3 Center of Mass Module

The center of mass module calculates the center of mass of red, green, and
blue color in each frame fed from the camera. It takes as input pixel data
and any necessary control signals from the frame buffer and outputs the x
and y coordinates of the center of mass of each color.

This module is somewhat complex. It must do a weighted sum over
all pixels on screen. It will loop through all pixels on screen at 27 Mhz,
storing in a set of registers the running value of each center of mass. Division
will be necessary for the weighting calculation, significantly increasing the
complexity of this module. An approximation may be used that rounds all
values to powers of two if that is deemed accurate enough.

hcount >

veount

heount '
Camera Data / '

:

heount
Camera

Center of Mass
Calculation

Frame
Buffer

green

red

CoM f’

Position
Algorithm

veount }

right hand position / >
7

left hand position /
4 4

Figure 2: The tracking system has four primary steps. First information is
processed from the raw camera input. Second, frames are stored for later
use. Third, center of mass information is calculated for each color. Finally, a
smoothing function using past velocity and position information to prevent
errors. The result is accurate information describing the position of the

player’s hands.

4.4 Position Module

The position module will take as input the center of mass information from
the center of mass module. It will output the position of each hand. This
algorithm will store the last position and velocity of each hand and use that
information to calculate the updated positions and velocities. This should
allow for improved accuracy when compared with a simply center of mass
position calculation.

This module will be fairly simple, using two registers to store past posi-
tions and velocities, and running short algorithm to calculate a next position
and next velocity.

4.5 Timeline

This block will be the first goal for Turner Bohlen. Construction will proceed
in the order shown above, starting with the camera module and proceeding
until the position module is completed. A first working version of this block
will be completed before Thanksgiving. The specifics of the timeline can be
seen in figure 3.

5 Gameplay Block Design

The gameplay module will model the physics of the game, as well as output
video information to be displayed on screen. Based on information from the
grab button, player hand position, and hcount and vcount signals, it will see
which of the player’s hands are grabbing holds, and simulate their movement
accordingly. The hcount and vcount signals indicate which pixel on screen
is currently being evaluated, and will be the same as used in the tracking
module. It will then send this information to the VGA out component of the
labkit. Additionally, a feedback signal will be sent to the glove module to
signal when a player is grabbing.

The gameplay module will be broken up into four submodules: hand-
holds, grabbing, movement, and pixel information, which can be seen in
figure 4. The hand-holds module will keep track of where the hand holds
are on the game map, and which onscreen pixels are occupied by hand holds.
The grabbing module will take information from the hand holds, player hand
positions, and grab button, to decide whether the player is grabbing onto
any of the holds. If he is, the corresponding glove will be sent a haptic

7

Nov 19

Nov 24

Nov 27

Dec 5

- Begin Blocks
- Preliminary Tracking Block
- Pixel Information Submodule
- Hand-Hold Submodule

- Finish Individual Blocks
- Glove block finished
- Remaining submodules in Gameplay block
- Grabbing and Movement

- Integration and Minor Debugging
- Integrating each major block
- Gameplay testing

- Additional Features
- Smoother movement and tracking
- Map editor
- Better graphics

Figure 3: The projected timeline for the game. The first two weeks will be
devoted to creating the major blocks. The third will be devoted to debugging
and integration. The final will be used to add additional features to the game.

feedback signal. This information will also be sent to a movement module.
The movement module will use the players hand positions, and whether each
hand is grabbing onto a hold to simulate movement of the player. Finally,
the pixel information module will take the pixel by pixel information from
the hand holds, as well as of the positions of the players hands, to output
pixel by pixel information, as well as its corresponding hcount and vcount
signals, to the VGA out component of the labkit.

Hcount, Veount

Pixel Info

Hcount, Veount Player Position
———————t) |Hand-Holds| ¢———— | Movement

Hcount, Vcount ’ l
Grab Button ’

Grab
Hand Position } 2x Grabbing

Hand Position

VN

OJu] [9X1d

Pixel Information

Hcount, Vcount’

Pixel ’

Figure 4: The gameplay block is comprised of four modules: hand-holds,
grabbing, movement, and pixel information

The internal game map will be large, and only a portion of it, centered
around the position of the player, will be shown on the screen. Because of
this, there will be a mixing of relative and absolute positions during calcu-
lations. The absolute positions are in relation to the map as a whole, and
relative positions are in relation to what is shown on the screen.

5.1 Hand-Holds

The hand-hold submodule will in fact be multiple submodules, however they
will act as one. Each instance of the hand-hold module will represent a
single hold in the map, and will have an x and y coordinate associated with
it, indicating its absolute position. The holds will also have a width and a
length, over which the holds are present.

Each hold sub-module will take in an hcount and vcount signal, as well
as the screen’s absolute position information and determine, pixel by pixel,
whether a hand hold is present. This will be done by adding the screen x
and y coordinates to the hcount and vcount coordinates, and seeing if they
lie within the width and height of each modules x and y coordinates. If
it does, it will output a one, associated with the corresponding hcount and
veount signal. If not it will output a zero. The outputs of all of the individual
hand hold modules with then be anded together to signal if the current pixel,
indicated by hcount and vcount, is occupied by any hand hold.

Initially, the placement of the hand holds will be predetermined. However,
if time permits, a map editor module will also be implemented. By flipping
a switch, the player can enter this editing state. While in this state, the
virtual camera position will be controlled by onboard buttons, and a cursor
will be controlled by the right hand position. Clicking the right hand grab
button will create a hand hold, and clicking a left hand button will delete
one. This is a lofty goal, and the details are not yet worked out, but could
be implemented if there is time.

5.2 Grabbing

For each hand, a grabbing module will determine whether or not the player
is currently grabbing onto a hand hold, updating its output at every vsync.
It will do it in a similar, pixel by pixel, manner as done in the hand-hold
module. Its inputs will be hcount and vcount signals, the pixel by pixel
information coming from the holds, hand positions relative to the screen,
and signals coming from both of the grab buttons. It will have one output
registers, grab, for each of the two hands. When hcount and vcount are
equal to one of the relative hand positions, it will check to see if the player
is pressing the corresponding grab button and if there is a hand hold at that
pixel. If these are all true, then it will signal to make the next output a one.
Otherwise it will be made a zero. Additionally, this will be send to the glove

10

to signal haptic feedback, as well as to the movement module.

5.3 Movement

The movement module will be in charge of determining the players absolute
position. It will use the player’s relative hand positions, which of his hands
are grabbing holds, and his previous velocity to do so. In actuality, the players
position will always be fixed in relation to the camera, and will always be
displayed as a fixed-position circle onscreen, so the movement module will
actually be updating the screen position. The screen position is then fed
back to the hand-hold modules at every vsync.

The movement module will have two different states: one for when the
player is currently grabbing a hold, and one for free-fall. If the player is
grabbing a hold, their position will be determined by an anchoring hand. This
is to avoid complications due to the player grabbing holds with both hands,
and moving them in a way that violates the game. Typically, the anchoring
hand will be the hand that the player most recently grabbed a hold with.
However, if the player lets go with the anchoring hand, the movement module
will assign the other as the anchoring hand. Whenever a hand becomes
the anchoring hand, its current relative position will be stored, as will the
absolute position of the screen.

When a player is grabbing a hand hold, the movement module will update
the camera position based on how far the anchoring hand has moved since
it first anchored. It will subtract the current relative hand position from its
relative anchored position and add it to the stored absolute screen position.
If a player moves his anchored hand down, the screen will also shift down,
allowing the player to reach a higher hand-hold with his non-anchored hand.

If the player is not grabbing any hand-hold, he will be in freefall, with a
corresponding x and y velocity. When he first releases his hand, the game-
play module will take an average of his most recent velocities in the x and y
directions, and set that to his freefall velocity. With each frame, the move-
ment module will update the camera position based on this velocity, and the
y velocity will be decremented in order to simulate gravity. This will allow
the player to quickly pull down and release his grip, propelling him high into
the air in order to grab a previously unreachable hold.

11

5.4 Pixel Information

The pixel information module will output a color, along with appropriately
pipelined hcount, vcount, and vsync information to a VGA output. It will
take hcount and vcount signals, pixel information from the hand-hold mod-
ule, and player hand position to determine the value of the current pixel
output. It will first check to see if the hcount and vcount signals are within
a small radius from the hand positions. If so, it will set the pixel output
to red, signifying player hand position. Otherwise it will check to see if the
hcount and vcount signals are within a small radius from the center of the
screen. If so it will set the pixel output to green, signifying the players posi-
tion. Otherwise, it check to see if the pixel information from the hand-hold
module is true. If so, it will set the pixel output to yellow, otherwise black.

5.5 Game Module Complexity

The game module is a relatively simple design. It does not rely on a large
number of multipliers or memory, and all buses between modules are at most
16 bits wide. The grab, movement, and pixel information modules each use
less than ten multiplexers, adders, and multipliers. The largest submodule is
most likely the hand hold module. The hand-hold module will be created by
many smaller modules, each representing a single hold on the map. Each of
these will be comprised of four 16 bit adders, and four 16 bit logic gates. If
there are 25 hand holds on the map, this will amount to 100 16 bits adders
and logic gates, which is still within the capacity of the labkit.

5.6 Module Timeline and Testing

There are four gameplay sub-modules that must be completed, all of which
will be done by Chris Lang. By the 19th, half of the submodules will be
completed. By the 24th, the entire gameplay block will be completed. In-
tegration with the other two blocks will then be finished by the 27th. The
remainder of the time will then be dedicated to adding additional features.
The timeline for which can be seen in figure 3.

Each sub-module will have to be tested individually. During testing,
onboard buttons will be used to simulate hand position. The pixel calculator
will be the first to be tested. Testing will ensure that the hand positions, as
well as the player position, are correctly being displayed on screen, and that

12

overall video output works. Then the hand-hold module can be tested. The
screen position will stay fixed, and a few hand-holds will be placed on the
game map. If the hand-hold modules work correctly, they will be displayed
on screen along with the hand and player positions. Next, the grabbing
module will be tested by using the the onboard buttons to simulate the hand
positions and the grab buttons. If the grab module detects that a hand
is currently grabbing, it will light up an led, signifying that it is working
correctly. Finally, the movement module will be tested by using the onboard
buttons to grab a hold, and move the player position. If this works, then
the entire gameplay module is functioning correctly, and it is ready to be
integrated with the tracking module.

6 Glove Block Design

The glove block will manage inputs from and outputs to the two gloves the
player wears while using the game. Two modules comprise the entire block.

6.1 Tactile Feedback

The tactile feedback module takes as input a short sequence of bits from the
gameplay block and outputs two signals to the gloves, one for each vibration
motor. The complexity of this system is minimal. It will use a divider and
a couple counting registers in order to control the duty cycles of the two
motors.

A stretch goal would be do add additional vibration motors to provide
more complex tactile feedback. This would require a simple expansion of
the inputs and outputs of this module, allowing for the use of more complex
information about the placement of hands and objects on screen.

6.2 Debounce

The debounce module will take the raw output of two buttons from the gloves
and prevent dirty or asynchronous input. The 6.111-provided debounce mod-
ule will be used.

13

Raw Button Input
> Debounce Debounced Button }

Feedback Code Tactile Feedback Control Signal
’ Feedback }

Figure 5: The glove system is comprised of two data processing steps, one
for the debouncing of button input and the other for processing of tactile
feedback duty cycles.

14

7 Conclusion

This project will be a 2D virtual reality rock climbing game. The player will
wear two gloves, each with grab buttons and a haptic feedback system, to be
tracked by a camera. The position of the players hands will be overlaid on-
screen, allowing the player to climb a virtual wall. The game will be broken
into two main blocks, in addition to the glove block, which simply controls
feedback and the grab button. The first block is the tracking module. It will
take in video information from a camera, store it in memory, then find the
center of mass of both hands for every frame. It will then send this to a posi-
tion module, which will be used to smooth out the hand position movement
before sending it to the gameplay module. The gameplay module will take
the hand position, to create and send video information to the VGA output
in the labkit. It will do this with four submodules. The handhold submodule
will keep track of the handholds on the map, the grab submodule will see if a
player is grabbing a handhold, the movement submodule will control the po-
sition of the camera, and the pixel information submodule will output video
information. Finally, a glove block will control the haptic feedback system, as
well send information from the grab button to the gameplay module. When
all three major modules are interfaced, the game will be ready to play.

15

