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Abstract 
 

 We created a voice-controlled camera system, composed of a video camera and three 

microphones, that responds to a user’s voice. While we were unsuccessful in our goal of a system which 

responded to different words as distinct voice commands, we were able to create a system that could 

either automatically track a speaker by measuring differential volume levels between microphones on 

either side of the camera, or could respond to manual commands through the lab kit hardware to either 

move the camera or apply color filters to displayed video.  
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Overview 
 

Our project was a voice-controlled camera system, which automatically tracked a speaker 

standing in front of it, and which could respond to user input by adjusting both the camera position and 

various video filters being applied to the on-screen display. 

 

The camera assembly contained a video camera with a composite video connection to the lab 

kit, as well as two microphone assemblies, one on either side of the camera. The entire apparatus was 

mounted on a servo, which was then plugged into a lab power supply for ± 5V and controlled via digital 

signals from the lab kit. The signal levels from the side microphones were used to determine whether 

the camera was aimed at the speaker, and control logic adjusted the servo position to keep the camera 

centered on the sound source. Our original design also included a voice control system to give 

commands to the camera processing and tracking modules, discussed below; unfortunately, we were 

not able to finish this module completely and add it to the rest of the system.  

 

 



Audio Tracking Module  (Jonathan) 
    

 

Figure 2: This is the Camera setup used for the audio tracking. The NTSC camera is taped on top of a HS-311 servo 

motor which is then taped on top of the camera’s stand to raise the camera to a better viewing angle. On top of 

the camera a small steel tube is centered with two different microphones. The microphones send their data to the 

FPGA boards which allow the motor to turn towards the source of sound. 

 

The audio tracking module used a setup of camera placed on top of a motor with two 

microphones on either side in order to have the camera track the motion of someone who is speaking. 

By turning towards where sound is louder, the camera will center on the person speaking since that is 

when both sources will be at equal amplitude. The final camera set up can be seen in figure 2 above. The 

farther apart the microphones the better the centering can work. Everything was attached to the 

structure with scotch tape in order to make things easy to change while still being sturdy.  

 



The block diagram of the final set up of the audio tracking is shown in figure 3 below. Before 

being processed by any of my modules the audio from each of the mics is processed by the AC97 codec 

provided for Lab 5. The audio tracking hardware consists of 4 modules, listed in the order of completion: 

Servo Interface, Override Control Block, Audio Contorl Block, Amplitude2. In addition another two 

modules were written that took the place of the AC97 codec and Amplitude before the design had to be 

changed to accommodate issues with those components.  

 

 

Servo Interface 
In order to turn the camera to face in different directions we were provided with a Hitec HS-311 

servo motor to which the camera was mounted. The servo had a power which was attached to 5 volts, a 

ground attached to the ground of the labkit, and a signal line upon which a Pulse Width Modulated 

(PWM) signal was used to control the position of the motor. The specifications required that the signal 

have a period of 20ms and that the signal should start with a pulse in the range of 1-2ms which 

determines the position of the motor. The midpoint of the motor was defined at exactly 1.5 ms. Larger 

pulse sizes meant turning the motor to the right, while smaller pulse sizes meant turning the motor to 

the left. 



I implemented the creation of the pulse signal using a counter and two threshold values.The 

first threshold was pulse_count, which was the number of clock cycles that the pulse would be at a 1. 

This value therefore determined what the position of the motor would be. The other threshold was the 

constant MS20COUNT, which was set the the precise number of clock cycles required for the period of 

the entire signal to be 20ms. when the count went above this value is restarted the count, starting the 

next period of the signal and changing the value of pulse_count to its new value. 

 

Three other parameters were also found by testing in order to make the control of the servo 

motor a lot easier. The first two values, MAXPULSE and MINPULSE, are the values of the largest and the 

smallest pulse the motor can take before it starts making noises and being unhappy. If something tries 

to set the pulse width smaller than MINPULSE or larger than MAXPULSE, the pulse width was set to 

those values to prevent breaking the motor. The third additional parameter is CENTER which is the 

number of clock cycles required to make a pulse width of 1.5 ms. This therefore gives an easy value to 

which to center the motor, and in fact on every reset the motor resets to this CENTER position. 

 

In order to choose the value of pulse_count which determines the new position of the motor, 

the module is given 3 inputs from each of the two control modules. The dir flag (audio_dir and 

override_dir) determines which direction the motor should turn in by being 1 when the motor should 

turn to the right and 0 when the motor should turn to the left. The value (audio_val and override_val) 

determined the magnitude of the turn from the motor’s current position and would add or subtract that 

value depending on the dir flag. To account for the differences between the two value inputs, the value 

from the override input is scaled up by 16 allowing them to have similar effects. The last signal is the 

done signal (audio_done and override_done) which tells the module when the other two values are 

ready for taking. In order to select between the two sets of signals, an override flag is also input from a 

switch, which when 1 would take the override input data and when 0 would take the audio input data. 

 

Override Control Block 
    The override control block is a very simple block that translates commands given by the Voice Control 

Module into direction and value signals to be sent to the servo interface. This was implemented as a 

case statement that takes the command signals used for controlling the camera and outputs their 

proper values, while ignoring any commands that would be used for either the video interface or not 

used command signals. The encoding for these commands is discussed in the Integration section below. 

The commands were only processed by the module once the module received a done_in signal for the 

command signal by being stored in a command_register. Once a command was implemented the 

command_register was cleared to prevent a command from continuously running.  There were four 

commands that were implemented: LEFT, RIGHT, GO and STOP. 



The LEFT and RIGHT commands worked by sending out set values for the 3 signals, the value of 

the dir flag was chosen depending on whether the signal was to step to the left or to the right while the 

magnitude of the turn was a set parameter of STEPSIZE which determined how large of a step to take 

per clock cycle. The done signal was set to 1. This sent a signal for one clock cycle to the motor and had 

it take a single step in the desired direction.  

 

In order to have continuous motion with the GO and STOP commands, a simple two state, state 

machine was implemented. Whenever a GO command is received, the module sets a persist bit to 1 as 

well as setting the value to a parameter GOSIZE which allows a different speed between continuous 

motion and taking steps. Then as long as persist is true, done will remain 1, thereby continuously 

stepping the motor GOSIZE in the given direction until the STOP command is given at which point persist 

is set to 0 and done will be set to 0 on all clock cycles where no command is given.  

 

Go does not choose which direction to turn the motor, that is chosen by whichever one of LEFT 

or RIGHT has been said before the GO command was received. Therefore if after the GO command is 

received, a LEFT or RIGHT command is received, the direction in which the motor is panning can be 

changed to the given direction. However, this leads to a small problem, once the new command is said, 

the value being sent is changed to STEPSIZE instead of GOSIZE. This was not noticed in testing because 

STEPSIZE and GOSIZE were almost exactly the same size and therefore the change in speed was not 

noticeable. Though this is easy to change by having the value set to GOSIZE as long as persist is true. 

 

One additional change I would make to this module in the future would be that I would abstract 

away the override commands from the main code by having them as parameters. Since there a very few 

commands that is not really an issue at this moment, but if there were more commands that were more 

complicated, it would be a lot better to have the 4 bit command values just stored in parameters than 

could be changed and then implementing the case statement blind to those values themselves. 

 

Audio Control Block 
The audio control block was designed to take the inputs of the amplitude of two different mics 

and use them to send a signal to the servo interface telling it which direction and how much to turn the 

camera so that the signal is balance between the two microphones. In order to deal with difference 

between microphones two parameters are declared to make changes between different microphone 

setups. The first is THRESHOLD, which determines how large of a difference between the two levels of 

the microphone the incoming signal has to be before the camera will start turning. The second one is 

STEPUNIT which determines how large of a value should be sent to the servo_interface given a specific 

difference between the two input amplitudes. 



 

The implementation of the Block was really simple in that it compared the right and left 

amplitudes and if the difference was larger than THRESHOLD it would send out the direction towards 

the louder mic with a value of:  

 

(largerAmp - smallerAmp - THRESHOLD)*(STEPUNIT/32) 

 

This allowed the motor to turn towards the source of louder noise, but not turn so fast as to create its 

own source of additional noise. 

 

Audio Input and Amplitude 
Our design requires 2 mics to be attached to the camera assembly for audio tracking in addition 

to a third used for the voice control of the entire system. But since the labkits AC97 codec and chip can 

only handle a single microphone source per labkit, we initially decided to use to PmodMIC chips that 

contained their own preamp and 12bit ADC that could be attached to the setup and used for rotating 

the assembly. However, after overpowering one of the units and breaking it we were forced to change 

plans. I will discuss the initial progress we got with the PmodMIC chips and what lead to their failure 

before discussing the final design because a good portion of my time was spent working on this version 

before having to restart. 

 

PModMIC Interface 
The Digilent PmodMIC uses an TI ADCS7476AIM 12 bit A/D converter in order to take the audio 

input to the mic and output a serial digital signal. The mic included its own interface code written in 

VHDL for use in both creating a single 12 bit bus from the input signal as well properly clocking and 

enabling the mic. However, this codec was written specifically for Digilent’s boards and therefore did not 

match the clocking of our board. Additionally, the codec is just the simpler state machine shown in 

Figure 4, so it seemed easy to just implement my own version in verilog using their code andknowledge 

of the state machine.  



 

 

Figure 4: The state Machine for the PmodMIC interface as given by Digilent. After recieving a start signal 

data is serially shifted into the registers in the module before the data is output as a single parallel 

grouping of the 12 data bits from the A/D converter. (PmodMIC Reference Component, Digilent) 

 

The PmodMIC itself specified that it needed a 12.5Mhz clock signal. However, it was impossible 

to produce that speed of clock using a DCM and the 27Mhz signal. Therefore we looked at the specs of 

the TI A/D convertor which the clock was running and found that it could work at ranges from 10 kHz to 

20 MHz. Therefore we implemented the clock divider so it would simply do it by dividing by powers of 2 

in order to get a slower clock. We settled on a clock speed of 52 kHz because it provided the best data 

acquisition when used along with the integrator. But we also had used a 13.5 MHz signal initially to be as 

close to the original required signal as possible. 

The rest of the module ran off this slower clock in order to run the state machine, following the 

state machine shown above in Figure 4. In the IDLE state, the module waits for a start signal while the 

last collected data is stored in the data bits. once a start signal is recieved it goes to the SHIFT_IN state 

where the bits of data from the microphone are pushed in serially till 16 bits of data are collected (the 

12 data bits plus 4 leading zeros). Once 16 bits have been collected, the data goes to the SYNCDATA 

state where the 12 data bits are sent to the output and can be received by the integrator module.  

 



Integrator Module 
The encoding of the audio data from the PmodMic was in a weird unsigned form. When no 

audio data was picked up by the microphone the interface would output a constant baseline DC signal 

that would register at a magnitude of about 480. Then as an audio signal was input into the mic the 

wave of the signal would be added to this baseline with an added offset for how loud it was. This caused 

it so the signal was never below the baseline value of 480.  

In order to get a sense for how loud the audio coming into each mic was, I originally planned on 

having a circular buffer that would store the last N signals from the PMOD mic and would add up their 

magnitudes in order to get a good estimate as to the current amplitude of the signal. However, because 

the center of the signal increased as the volume increased, this method was unworkable at getting a 

consistent signal. Additionally the Pmod had very small changes in amplitude even for really loud 

sounds, rarely ever using all 12 bits of data. 

Therefore we switched to finding the local maximum of the signal and holding at that value till 

another local maximum was found. This had the benefit of requiring less data be stored (only the 

previous bit rather than the previous N) and worked well for a signal where the maximum of the signal 

was raised based on how loud the signal was, even when it was a very small amount. However, in order 

to deal with the different clock speeds of the PmodMIC and the integrator, we had to make sure that a 

single signal was only processed once instead of 512 times. Therefore, once a signal has been processed 

a done_stop bit is raised to tell the circuit not to run the integrate till the next time done is raised after 

done has been at 0 for at least a clock cycle. Through this method we were able to implement something 

that got realistic audio levels for the two mics. 

 

Testing the System and Breaking the Pmod 
As each module was added to the system, I tested them to make sure they worked together. I 

first tested the servo_motor interface with the override control block, but the audio control block would 

be meaningless without audio data to run it, so I first tested one PmodMIC interface with one 

integrators to make sure I would get good values. Then I attached in another PmodMIC and tested to 

see that the output integrated to appropriately weighted values for each of the two microphones. At 

this point everything for the audio tracking had been implemented, so it was time to test the system all 

together. 

 

Rather than attaching the mics to the camera to test it, I just placed the microphones some 

distance apart and spoke into them while the motor was running over towards the side. As soon as the 

motor was attached the microphones started to act funny, having their levels change by large margins, 

which caused the motor to move a lot and changed the audio level even more creating a weird 

oscillating effect for the motor. 

 



It turned out that whenever the motor was running, it would change the readout from the 

PmodMICs because the motor drew so much of the power from the labkit there wasn’t enough to 

power the microphones which caused some wonky results. In order to prevent this I tried attaching the 

additional 5 volt power supply to the servo motor rather than the lab kits 5 volts. This causes the motor 

to turn and not work properly on it’s own, because the ground of the pulse signal and the ground of the 

servo were not the same ground. However I did not realize this at the time and thought that if I couldn’t 

run the motor off the external power supply maybe I could run the PmodMICs off of it. 

This was a really bad idea, because once again, the ground of the Pmod did not match the 

ground of the digital signals it was receiving, it completing overpowered the device and burnt out one of 

the mics before I was able to shut it off. This left us with a huge problem less than a week before our 

checkoff since we no longer had two mics for the audio tracking. After a bit of discussion and realizing 

there was no way we were going to be able to get a replacement Pmod, decided that we could use the 

AC97s on multiple boards in order to get the required mic inputs by using two old desk microphones 

that Gim found for us. The changing of the system to use these required changing from one board to 

three boards, one board for each mic input of the two audio tracking mics and one board to handle the 

audio from the voice control, because each labkit only one microphone preamp hooked up to the AC97. 

 

Amplitude2 
Now, the audio from each of the mics is processed by the AC97 chip on each of the two boards 

using the codec provided for Lab 5. The right mic is processed on the main board, where the rest of the 

tracking and video logic was encoded. On the other hand, the left mic is processed on an auxilary board, 

that just processes the audio signal. The audio from both mics is sampled at 48kHz by the AC97 and is 

sent to the Amplitude2 module which needed to replace the Integrator module from before in order to 

get the amplitude data from the new audio output of the AC97. The two biggest changes from the 

PmodMIC to the AC97 was that instead of 12 bits of data from the Pmod, we were not dealing with only 

8 bits or data giving us a smaller range. More importantly though, was that the data output from the 

AC97 was signed and centered at 0 which allowed the possibility of actually integrating of the audio 

signal to get the amplitude. 

 

However, the biggest reason we couldn’t use the integrator module was because now that we 

needed to send data from one board to another, we couldn’t send it over at such a high bitrate when 

dealing with two different clock domains. Therefore we decided to implement the system so that we 

could send over the amplitude data from one board to the other at only 60Hz which is slow enough to 

deal with the different clock domains of the two lab kits.  

 

In order to get a 60Hz amplitude signal, I took the easiest route possible and decided that I 

would integrate the square of the magnitude over (48kHz/60Hz =) 800 clock cycles and at the end of 



those 800 cycles I would take the sum and output the higher order 16 bits as the amplitude. This created 

a signal that was 60 Hz and properly represented the amplitude of the data. 

 

In order to deal with differences between the microphones and the different lab kits, two 

parameters were implemented to scare the system. The first parameter is THRESHOLD, which 

determines if the integrated value after 800 cycles is not larger than this THRESHOLD, it’s amplitude is 

set to 0 instead. The other parameter is MULTIPLY which scales of the signal just in case there are 

differences in scaling between the two microphones and lab kits. In our case, the values for the 

Threshold were set really high because the right microphone had a lot of noise even when no mic was 

connected to the system. This forced the Threshold to be as high as 6500 for both mic to prevent no 

signal from being seen as a difference between the two mic and turn the camera. This additionally 

forced the threshold for the audio control module to be larger than 6500 in order to not mistake that 

cutoff as being the two mics being at different levels. This overall made the camera less responsive since 

it takes a really loud different between the mics to get it centered. 

 

Inter-FPGA Communication 
    After the use of amplitude2, the 16 bit amplitude data from the left mic is still on the auxiliary 

board and needs to be sent over to the main board. Since the information is so slow and relatively small, 

I decided to use more wires rather than more Verilog code by sending a parallel signal using 17 wires 

from one board to the other. The 17 signals were the 16 bits from the amplitude_left data as well as a 

done signal so that the data from amplitude_left would only be taken when there was new data 

available. The 16 bits were reversed going out of the left board so because the two boards were back to 

back, this enabled the main board to read them in without any additional hassle. 

 

    This changed also required a small change to the audio_control_block on the main board. 

rather than comparing the two amplitude values every clock cycle, which would cause the motor to turn 

too much for a single input, it will only compare the values and send out a signal whenever the done 

signal from the auxiliary board is active meaning only once there is new data from the left. These two 

changes were all that was needed to deal with the additional board, making the entire implementation a 

lot easier. 

 

Testing notes 
    In order to test the assembly as a whole there were two main things to be tested. First in 

order to test the override control, the command signal was implemented using the switch[3:0] and the 

done signal was implemented by using button0 on the main board. The override switch was attached to 

switch[7]. Then it was as simple as seeing the output of what position the motor was turning towards on 



the 16hex display to make sure that the motor is moving towards where we want it to move for each of 

the different signals. This can also be seen by witnessing if the motion of the motor is as expected. 

 

    The testing of the second component, the audio tracking was a lot more complicated. The 

most useful thing for seeing the audio coming in to the microphones was the logic analyzer. It allowed 

us to see the magnitude of the audio signals during all the different stages of processing from output of 

the AC97 through the signal after the amplitude module or stages in between. In order to gauge the 

threshold and multiply values within the amplitude modules, audio data was given into the mics from 

different positions while the override switch was turned on in order to get data in the logic analyzer 

without worrying about the camera turning. An output from such a run can be seen in Figure 5. 

 

Figure 5: Output from the Logic analyzer when speaking directly into the left tracking mic. As can be seen the 

amplitude data from the left mic is a lot larger than the amplitude data on the right; the motor will therefore turn 

towards the left to try and balance out the levels. 

 

Once the audio levels matched what would be expected with higher values when the speaker 

was closer to one or the other, it was time to try it out with the camera moving. It was found that 

whether or not the camera moved towards a voice depended on the tone of the speaker greatly. For 

example, If I talked to the camera like it was a baby, or made weird noises or sand, the camera would 

successfully turn to face towards me. However, if I shouted at the camera or whistled it would 

occasionally turn away from me. Clearly this shows that the system has already gained sentience and 

needs to be treated kindly. More seriously this shows that the audio signal coming in should probably 

have more signal processing in order to distinguish between the different sorts of ways one can sound 

while making noises as a microphone and deal with stray echoes.  

 

Additionally the camera turned a bit too slowly, it takes multiple times of talking at the camera 

to get it to face you rather than a single moment of speaking. This would be helped by both a larger step 



size and smaller threshold, but because of the noise in the right microphone this was not possible, 

though more analysis could have made the final result better than it turned out.  

 

Overall the Audio Tracking Module was a complete success, doing everything it was designed to 

do even though the audio tracking had to be redesigned at the last step. In fact the transition to using 

the AC97 made the audio processing so much easier that if I was restarting the project now I would 

rather stick with 3 boards than try using a different mic to restrict on the number of lab kits. though 

maybe that would change if we had fully implemented the voice recognition system. 

Voice Control Module  (Ben/Jonathan) 
The voice control module was responsible for taking in audio data from a third microphone, not 

mounted on the audio tracking assembly, and processing it to recognize spoken commands. While we 

were unable to complete and test all of the modules in the system, and thus were unable to actually 

recognize commands, we did complete or make substantial progress toward completion on all. The 

infrastructure of the other modules in the system was configured such that a completed voice command 

interface would be able to run off an entirely separate lab kit if required, with 5 data lines running 

between this module and the rest of the system. 

 

 

The top-level module (voice_main.v) was intended to contain three main submodules; the 

feature extractor, the comparison scoring module, and the control logic module. Each of these is 

described in more detail below. On the recording of a voice sample, the overall flow of the system would 



be to divide the data into overlapping chunks of about 30 ms of data (with the start of each chunk 

separated by about 10 ms, such that adjacent chunks overlap), and operate on each chunk to generate a 

feature vector based on the frequency content of the chunk. Based on whether the module was set to 

recording or training mode, this feature vector would either be stored as a template in one of the 

comparison blocks, or simultaneously compared to all existing templates; in the latter case, the control 

logic would then read in each of these comparison scores, and output the command with the best 

comparison score to the other modules in the system (or no command if none of the comparisons gave 

a value within a threshold). 

     

    For feature extraction, we chose to use Mel spectral coefficients, after consulting with our 

project mentor and looking at examples of successful previous 6.111 projects that dealt with speech 

recognition. The Mel scale is an alternative frequency scale, logarithmic with hertz, that is suitable for 

spectral analysis of speech. Mel coefficients represent the total power of spectral data within a number 

of bins, covering the full frequency range with bins at higher frequencies covering a larger span of 

frequencies. To calculate these coefficients, a series of overlapping triangular filters are constructed, 

with endpoints spaced equally on the Mel scale (such that higher-frequency filters are wider on the 

hertz scale), and multiplied with the Fourier transform of the data being analyzed. The filters overlap 

such that each section of the spectrum is included by two bins, along with both higher and lower 

frequencies. The picture below gives an idea of what these filters look like, for a smaller number of 

filters than our design. The set of coefficients generated from all of the filters forms a vector in “feature 

space”, and the series of vectors generated from calculating the coefficients on many chunks of speech 

data can be compared to a template to determine whether the words being said during the two 

separate audio samples was the same.  

     



     

Figure 7: Triangular filters for a 10-filter system with max frequency of 8 kHz. From 

<http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-

mfccs/>. 

 

Our system used 20 filters, with endpoints spaced by 135 Mels; this gave a top frequency of 

2835 Mels, almost exactly 8000 Hz, the maximum frequency content available in our system. 

 

For audio input, we used a standard headset microphone, plugged into the lab kit’s microphone 

jack. The AC 97 audio interface code, as used in a previous lab, was modified to take in data at 16 kHz, 

and store 16000 samples (exactly 1 second of data) in a BRAM. The sampling frequency was chosen to 

cover a full representative range of human speech, while being easily obtainable from the standard 

sampling frequency of 48 kHz by only recording every third sample.  

 

Feature extraction (Ben) 
 



A block diagram of the feature extraction module is included below. The major components are 

the Mel coefficient generator and the FFT; additional calculation would be done in this module as well, 

to multiply the values computed by the FFT by the filter coefficients and sum the results to give a 

measure of the total spectral content of each bin. The order of the calculations was enforced by an 

internal state machine, with one major state per computation step, as well as secondary states within 

each of those for keeping track of progress. 

 

    

 

 

    The FFT module was provided by Michael Price, with minor modifications for compatibility between 

different versions of ISE. This code is unfortunately not licensable for redistribution, but ISE’s built-in 

core generation tools are also capable of providing similar functionality. We used a 512-point FFT, with 

8-bit audio data, which output 8-bit signed real and imaginary coefficients. These coefficients would 

then be squared and added to produce a magnitude. 

 

    From the 512-point FFT, only the first 256 coefficients were saved to module state; these correspond 

to the positive-frequency signal component, of the most relevance to the speech data.  

     

    The Mel frequency coefficients were calculated in a separate module, called mel_filter. The 

inputs to this module were filter_num (ranging from 0 to 18) and coeff_num (ranging from 0 to 255); on 

each clock cycle, the module would output the Mel filter coefficient corresponding to the FFT point at 

position coeff_num, as it would be in the filter_num’th triangular filter. A Python script was used to 

generate these coefficients, and is included in the appendix. Each coefficient is a 10-bit value, between 0 

and 1023. 



 

    The next step in the calculation would be to combine the Mel filters with the FFT data, and 

then sum the results in each bin to generate a feature vector of all the results. This is about the point in 

implementation where we ran up against deadlines, and were not able to complete the design. The 

results from this calculation were to be pushed to a BRAM buffer, to be read out by the vector 

comparison blocks described in the next section. 

 

Vector comparison (Jonathan) 
 

    Our initial design called for using the Dynamic Time Warping (DTW) algorithm to compare samples of 

audio data to templates. The DTW algorithm uses dynamic programming to calculate the best mapping 

between two series of vectors, such that different ways of saying the same word would get similar 

scores in the voice recognition. However, due to time constraints, we simplified our comparison blocks 

to use Euclidean distance between feature vectors as the comparison metric. This type of system would 

not be ideal for an actual recognition application, as it would require exact time matching between 

different recordings of the same word, but would serve for a proof-of-concept prototype.  

 

    In DTW the comparison between feature vector and the stored value occurs for each possible word in 

the vocabulary of the system. Each DTW engine therefore needs to be trained with the word that is 

supposed to be compared to for the audio information. This means that each engine also needs a 

training mode, which is why each module has a training enable switch. 

 

 

Figure 10: The state machine for each DTW engine. The four states take care of waiting for new data in 

WAIT, storing the data as training for given word in TRAIN, storing in data for the comparison while 

calculating the Euclidian distance of each point in DATA_IN and finally in the adding these values up and 

returning the score in ADD. 



 

    In order to implement the reduced Euclidean distance scoring for the voice recognition, the 

module DTW_score was implemented at a State Machine with four different states as viewed in Figure 

X. During WAIT, the DTW engine waits for a start signal. If the Training enable bit is one when start set to 

high, the engine enters the TRAIN mode. If train_enable is not enabled than the state machine enters 

the DATA_IN state. In the TRAIN mode the data is serially inputted into the test array of registers to 

store the data where is can be compared to an actual input signal. The ordering is following the length 

12 feature vectors times the number of Frames taken (which is a parameter to allow changing) each 

containing 8 bits. Once all the bits have been stored in the test register, the state returns to WAIT to 

wait for an actual feature vector to compare.  

 

    Once in the DATA_IN state, the data is brought in serially from the feature extraction and as 

each 8 bit value is brought in, the magnitude of the difference squared between this value and the 

stored test data is calculated and stored in a temp register array. Once all the data has be brought in and 

the calculation stored in tmp, the module enters the ADD state. In the ADD state the module simply 

goes through all the entries in tmp and adds them together to get the final euclidean distance between 

the two vectors. This calculated value is then sent back to the control logic along with a done signal. 

Nine of these DTW engines would have been implemented, eight for each of the eight signals and a 

ninth for background noise so we could see if the signals did not match any of them well. 

 

Control Logic (Jonathan) 
     

    The control logic takes care of organizing and ordering the use of the Voice control system, as 

well as interfacing with the other two major components through the use of the command signal and 

deciding which of the DTW scores is the best thereby choosing the command signal. The command 

signals were chosen to be 4 bits in order to hold all of the 8 commands we wanted to implement for the 

camera motion and the video filters and leave additional space for any other commands we wanted to 

implement, especially a command to let both components know no real command was recorded. These 

commands were separated into two groups based on the higher order bits so that all commands with 

only bit[2] high would change the video filter and any command with only bit[3] high would only control 

the motion of the camera. The commands chosen for each of the Modules is shown in Table 1. 

 

Table 1: Voice Command Table: This is a reference between the internal code for each command, the Voice 

command word that creates that command and what each command should do. Better descriptions of each 

command is given in each components own section. 



Command[3:0] Command Word Command Description 

0100 None No Video Filter 

0101 Red Red Filter 

0110 Blue Blue Filter 

0111 Black Greyscale Filter 

1000 Left Step the Camera to the Left 

1001 Right Step the Camera to the Right 

1010 Go Continuous Camera motion is last given direction 

1011 Stop Stop the camera at the current position 

 

In order to implement the control logic and control the flow of the voice recongnition, a state 

machine with four states was implemented as seen below in Figure Y. During the initial state of WAIT, 

the logic simply waits for the talk button to be pressed and once the talk button has been pressed starts 

the feature extration described above, At this point the system goes to the state RECORD. In the state 

RECORD, it waits for the feature extraction to send its done signal, Once it recieves the done signal it 

sends the data off the the needed DTW engines. If the training enable switch is on, it chooses the 

appropriate DTW engine and both enables the training enable on that DTW engine and only starts that 

single engine. If its a normal signal it starts all of the DTW engines. At this point it enters the DTW state. 

This state is just a state to wait for the DTW engines to complete. Once all of the activated engines 

complete, if training enable is on, it returns to the WAIT state. However, if the training switch is off, the 

scores need to be compared to determine which command to send. At this point therefore the logic 

enters the COMPARE state which is where this module does most of its work. 



 

 

Figure 11: The state machine for the control logic of the voice recognition component. It goes through the states of 

Waiting for something to start to be recorded in WAIT, then waiting for that recoding and feature extraction to 

finish in RECORD. After that it starts the DTWs the number they start depending on training_enable in the DTW 

state. If the system is in training it then returns to the WAIT state. If it is actually running, it will go the COMPARE 

state where it will choose which DTW score is the lowest thereby choosing that message before returning to the 

initial WAIT step.  

 

The COMPARE state itself has a number of substates which separates the comparing of all the 

scores into 4 steps. In the first 3 steps the scores are compared in tournament style with the lower score 

winning. In the first quarter finals round DTW1 is compared to DTW2, DTW3 is compared to DTW4 and 

so on. the lowers scores value and number are also stored for the following round. In the second and 

third rounds the winners of the previous rounds face off in a similar manner so that by the end of the 

third cycle only one DTW score remains and it is the lowest score.  

 

However before this winner sends its command out, it is compared to the score from DTW9 in 

the fourth cycle to confirm the signal is more like one of the words that background noise. If the signal is 

a better signal than random noise than the command corresponding with that DTW (ordered exactly as 

the commands are in Table 1) and the system returns to the WAIT state. 

 

This module and the DTW module were unable to be tested because we were never able to get 

a signal through the feature extraction to really see a good signal worth comparing. However in the 

future with more time this would be nice to see so that both of these modules could be improved into a 

better form. 



Video Interface Module (Ben) 
 

The video interface module dealt with everything between the camera, which was plugged into 

the lab kit’s composite video port, and the VGA display. An overall block diagram of the system is below. 

 

 

 We started with the lab-provided template code for converting NTSC video data to black and 

white data for an RGB monitor, storing the intermediary data in the lab kit’s onboard ZBT memory to 

allow the pixel data to be pushed to the screen asynchronously from it being sent from the camera to 

account for different clocks and timings between the NTSC and VGA standards. The lab-provided code 

stores four samples of 8-bit intensity data in each 36-bit entry of the ZBT memory. This intensity data 

can be directly read out from the decoded NTSC data, which uses YCrCb encoding, the Y corresponding 

to intensity (and thus the brightness of a grayscale pixel).  

 

Our first modification was adding in another lab-provided module to convert the full 30-bit 

YCrCb data into 24 bits of RGB data, 8 bits for each of the three color channels. However, to store the 

full 24 bits of data would require a separate entry in the ZBT memory for each pixel of video, for which 

the size of the ZBT memory is insufficient. To account for this, we truncated the RGB data to 18 bits (6 

for each channel), and then modified the NTSC interface code such that only two pixels were stored per 

memory entry, which used twice as much memory as the original black and white video but could still be 

accommodated by the kit. The memory addresses used to read out data were also modified to account 

for this change in storage location. During this conversion, we encountered a persistent bug which 

caused vertical bars to appear in the displayed image; it turned out to be a mismatch between the 

clocking signals used to access the ZBT memory and to read out raw camera data. 



 

The filter module took in a 2-bit value to select which (if any) filter would be applied, 24-bit 

buses for RGB input and output data, and a single bit value in_frame generated by the top-level module 

which signified whether the pixel currently being operated on was in the portion of the screen occupied 

by the camera video display. The in_frame bit was necessary to prevent unintended display artifacts 

caused by the ZBT interface process, such as partially duplicated displays or seemingly random color 

values in the area outside the video display. From the 1024x768 VGA screen, we used only pixels in 

columns 35 to 743, and rows 79 to 563, and otherwise displayed black, which made a frame around the 

display (cutting off a couple pixels on each edge). All of the filters used operated on a per-pixel basis; 

this was done for simplicity of implementation, as the filters were not intended as a major goal of the 

project. However, the system was easily expansible to select for more filters by adding additional control 

lines to this module. 

 

The interface for sending commands to the video interface module was designed to 

accommodate commands being sent from a completely external module (possibly on another board), 

from which as few connecting wires would be desirable. The only command inputs were a 2-bit bus and 

a command_lock line to indicate that the command currently on the bus was valid data. The integrated 

main module described below generated each of these from the full 4-bit command bus and global 

command lock line. 

Integration (Ben) 
 

    The video and tracking master modules were combined into a single integrated module, for 

programming onto the same lab kit. The only functionality added to this module was to distinguish 

which commands were intended for the tracking module and which were for the video module. Four of 

the kit switches were used as an input bus to encode the command, with one of the buttons providing a 

command_lock line. Each module recognized 4 distinct commands, encoded using the two lower-order 

bits of the command. The two higher-order bits encoded the target device, a value of “10” 

corresponding to the tracking module and “01” to the video module; other combinations would be an 

invalid command, and not generate a command locking signal on either. This was consistent with the 

design for the voice recognition module, which used 4 lines to encode a command and a single line 

which would pulse high on a recognized command to indicate completion to other modules. The 

integrated file, track_and_video.v, is included in the appendix. The device encoding was used to 

generate a single control bit for each module to use, raised high when that module should be paying 

attention to the command. 

 



Conclusions 
 

We were able to create a functioning video console, which automatically tracked a user’s voice 

to keep a camera pointed toward them, and which could take in commands to both override the 

automatic camera tracking to adjust position and apply filters to the video display. Although we were 

ultimately not successful in adding a voice recognition system, we were able to implement two of the 

three main modules, and make substantial progress toward the third. 

    

If starting the project over again from scratch, we would definitely want to think again about the 

allocation of time to the different modules, and what additional components to have alongside the voice 

recognition system. We ended up spending more time toward the beginning on finishing both the video 

and tracking modules first, when this might have been better spent on prototyping the voice recognition 

module (using Matlab or Python) for easier implementation later on. 

 

We also found the AC 97 codec, and the mics that used it, better suited for the audio tracking module. 

Although it did require an extra lab kit to use, if the resources are available, it made the task of 

extracting audio data much easier, and the mics were of better quality for the particular application. 

  



Appendix 
Note that some lab-provided code has been redacted from the below. 

Appendix A – video_filter Verilog 
/* 
Basic video filter module. Applies various color filters to RGB data, and selects between outputs. 
Filters (from value of "option" bus): 
0 - none 
1 - red tint 
2 - blue tint 
3 - grayscale 
 
in_frame input makes display black outside of video area 
 
*/ 
 
module video_filter(clk, rgb_in, option, rgb_out, in_frame); 
 
   input clk; 
   input [23:0] rgb_in; 
   input [1:0] option; 
 
   input in_frame; 
 
   output reg [23:0] rgb_out; 
 
 
 
   // Individual color components for RGB in/outs 
   wire [7:0] r_in, g_in, b_in; 
   assign r_in = rgb_in[23:16]; 
   assign g_in = rgb_in[15:8]; 
   assign b_in = rgb_in[7:0]; 
 
/* 
   wire [7:0] r_out, g_out, b_out; 
   assign r_out = rgb_out[23:16]; 
   assign g_out = rgb_out[15:8]; 
   assign b_out = rgb_out[7:0]; 
*/ 
 
   // Recalculate intensity value from RGB coefficients 
   wire [7:0] intensity; 
   assign intensity = (r_in >> 2) + (r_in >> 5) 
                     + (g_in >> 1) + (g_in >> 4) 
                     + (b_in >> 4) + (b_in >> 5); 
 
   // Mux between outputs 
   always @(posedge clk) begin 
      if (~in_frame) begin 
         rgb_out <= 24'b0; 
      end 
      else begin 
         case (option) 
            2'd1: rgb_out <= {r_in, g_in >> 2, b_in >> 2}; 
            2'd2: rgb_out <= {r_in >> 2, g_in >> 2, b_in}; 
            2'd3: rgb_out <= {intensity, intensity, intensity}; 
            default: rgb_out <= rgb_in; 
         endcase 
      end 
 
   end // always 
 
 



endmodule 

Appendix B – audio_amplitude2 Verilog 
module audio_amplitude2( 
    input clock,//system clock 
    input reset,//system reset 
    input ready,//ready signal from ac97 
    input [7:0] audio_in,//audio data from ac97 
    output [15:0] amplitude,//integrated output data 
  output [17:0] temp,//temp value used for debugging 
  output done//done output 
    ); 
 
 //PARAMETERS 
 parameter MULTIPLY = 1; //multiply value for right mic 
 parameter THRESHHOLD = 6500;//Threshhold for right mic 
 
 reg [9:0] count;//count for data coming in 
 reg [15:0] amplitude_reg;//register for amplitude data 
 reg [17:0] tmp_reg;//tmp register holding the sum 
 reg done_reg;//done register 
   
 wire [7:0] data; 
  
 assign data = ((audio_in[7])? (~audio_in + 1): audio_in); //data comes in signed so take the magnitude 
  
 always @(posedge clock)begin 
  if(reset) begin//if reset clear the values 
   amplitude_reg <= 0; 
   count <= 0; 
   tmp_reg <= 0; 
   done_reg <= 0; 
  end 
  else begin 
   if(ready) begin//when ready take in data entry square it and divide by 2^6 
    tmp_reg <= tmp_reg + ((data*data)>>6); 
    count <= count+1; 
    done_reg <= 0; 
   end 
   else if(count == 10'd800) begin //once 800 sample have been taken multiply by MULTIPL value and take upper 
16 bits 
    amplitude_reg <= MULTIPLY*((tmp_reg[17:2] > THRESHHOLD)? tmp_reg[17:2]: 0); 
    tmp_reg <= 0; 
    count <= 0; 
    done_reg <= 1; 
   end 
  end 
 end 
  
 //assignment of registers to outputs 
 assign amplitude = amplitude_reg; 
 assign temp = tmp_reg;  
 assign done = done_reg; 
 
endmodule 

Appendix C – audio_control Verilog 
module audio_control( 
    input clock,//system clock 
    input reset,//system reset 
    input [15:0] intL,//integrated data from left mic 
    input [15:0] intR,//integrated data from right mic 
  input intL_done,//ready signal from left mic (since sent from other board) 
    output dir,//output direction 0 for left, 1 for right 



    output [7:0] val,//output value (how many step to turn) 
    output done//output done signal 
    ); 
 
 //registers for outputs 
 reg dir_reg, done_reg; 
 reg [7:0] val_reg; 
 
 //PARAMETERS 
 parameter THRESHHOLD = 16'd8000; //threshhold difference needs to be for motor to turn 
 parameter STEPUNIT = 8'd16; //how large a step should be taken for each unit of amplitude difference 
 
 
always @ (posedge clock) begin 
 if (reset) begin// on reset clear the registers 
  dir_reg <= 0; 
  val_reg <= 0; 
  done_reg <= 0; 
 end 
 else if(intL_done) begin//when we've gotten data from the left mic 
  if(intR > THRESHHOLD + intL) begin //if the right mic is louder turn right 
   dir_reg <= 1; 
   val_reg <= STEPUNIT*((intR-intL-THRESHHOLD)/32); 
   done_reg <= 1; 
   end 
  else if(intL > THRESHHOLD + intR) begin// if the left mic is louder turn left 
   dir_reg <= 0; 
   val_reg <= STEPUNIT*((intL-intR-THRESHHOLD)/32); 
   done_reg <= 1; 
   end 
  else done_reg <= 0; 
 end 
 
end 
 
//Assign output registers  
assign dir = dir_reg; 
assign val = val_reg; 
assign done = done_reg; 
 
endmodule 

Appendix D – track_and_video Verilog 
 
   //////////////////////////////////////////////////////////////////////////// 
   // 
   // Reset Generation 
   // 
   // A shift register primitive is used to generate an active-high reset 
   // signal that remains high for 16 clock cycles after configuration finishes 
   // and the FPGA's internal clocks begin toggling. 
   // 
   //////////////////////////////////////////////////////////////////////////// 
   wire power_on_reset; 
   SRL16 reset_sr(.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset), 
            .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1)); 
   defparam reset_sr.INIT = 16'hFFFF; 
   
   // ENTER button is user reset 
   wire reset,user_reset; 
   debounce db1(power_on_reset, clock_27mhz, ~button_enter, user_reset); 
   assign reset = user_reset | power_on_reset; 
 
   //////////////////////////////////////////////////////////////////////////// 
   // 



   // Control logic 
   // 
   //////////////////////////////////////////////////////////////////////////// 
 
   // for non-voice command selection 
   //  
   wire set_tracking, set_filter; 
   assign set_tracking = switch[3] & ~switch[2]; 
   assign set_filter = ~switch[3] & switch[2]; 
 
   wire [1:0] param_sel; 
   assign param_sel = switch[1:0]; 
 
   // Button 0 locks in commands 
   debounce button0_dbounce(.clk(clock_27mhz), .reset(reset),  
                           .noisy(~button0), .clean(b0_db)); 
 
   wire cmd_lock; // gives positive pulse on debounced button press 
   reg b0_db_prev; 
   always @(posedge clock_27mhz) 
      b0_db_prev <= b0_db; 
       
   assign cmd_lock = b0_db & ~b0_db_prev; 
    
  
  //////////////////////////////////////////////////////////////////////////// 
  // 
  // Audio tracking modules 
  // 
  ////////////////////////////////////////////////////////////////////////////  
  
 wire readymic; //is 1 when data from lab5audio is ready 
 wire [7:0] audio_right; //audio in from right mic 
 wire [15:0] amplitude_right; //integrated value from right mic 
 wire [17:0] temp;//temp value for debugging 
  
 reg [7:0] audio_right_reg; //register to reduce noise for debugging of audio_right 
 reg [15:0] amplitude_left; //integrated value from left mic sent over from other board 
  
 //lab5audio takes in the audio from the mic and outputs the digital data for use 
 lab5audio a(.clock_27mhz(clock_27mhz), .reset(reset), 
     .volume(0), .audio_in_data(audio_right), 
     .audio_out_data(0), .ready(readymic), 
        .audio_reset_b(audio_reset_b), .ac97_sdata_out(ac97_sdata_out) 
    , .ac97_sdata_in(ac97_sdata_in),.ac97_synch(ac97_synch), 
    .ac97_bit_clock(ac97_bit_clock)); 
  
 //audio_amplitude2 takes the audio from the mic and integrates every 800 samples to get 60Hz of amplitude data 
 audio_amplitude2 amp2(.clock(clock_27mhz),  
                         .reset(reset || !button_down), 
         .ready(readymic), .audio_in(audio_right), 
         .amplitude(amplitude_right), .temp(temp)); 
  
  
 always@(posedge clock_27mhz) begin 
  if(readymic)begin 
   audio_right_reg <= audio_right; // storing audio in audio_right_reg for debugging 
   end 
  if(user2[16]) begin 
   amplitude_left <= user2[15:0]; // amplitude data from second board 
  end 
 end 
   
  
  
 //Logic Analyzer data 



   assign analyzer3_data = {amplitude_left}; 
   assign analyzer3_clock = clock_27mhz; 
  
 assign analyzer1_data ={amplitude_right}; 
 assign analyzer1_clock = readymic; 
  
  
 //CONTROL LOGICs 
 wire audio_dir, override_dir,done_in;// 
 wire override; 
 debounce dir_bounce(.clk(clock_27mhz), .reset(reset), .noisy(~button0), .clean(done_in)); 
 debounce over_bounce(.clk(clock_27mhz), .reset(reset), .noisy(switch[7]), .clean(override)); 
 
 wire [15:0] count, new_count; 
 wire ready, override_done,audio_done; 
 wire [7:0] override_val,audio_val; 
 wire [3:0] command; 
 
 
 //audio control module takes amplitude data and returns a direction and value for the motor to turn 
 audio_control aud_control(.clock(clock_27mhz), .reset(reset |!button_down), 
          .intL(amplitude_left), 
.intR(amplitude_right), 
          .intL_done(user2[16]), 
.dir(audio_dir), .val(audio_val), 
          .done(audio_done)); 
           
 //over_ride control takes a command and uses it to output a direction and value for the motor to turn 
 override_control over_control(.clock(clock_27mhz),  
                         .reset(reset || !button_down), 
         .command(switch[3:0]), .done_in(done_in), 
         .dir(override_dir), .com_debug(command), 
         .val(override_val), .done(override_done)); 
  
 //servo_interface takes the value and direction information and uses it to create PWM and control the servo 
 servo_interface servo(.clock(clock_27mhz),  
                .reset(reset || !button_down), 
      .audio_dir(audio_dir), .audio_val(audio_val), 
      .audio_done(audio_done), .override_done(override_done), 
      .override(override), 
      .motor_out(user4[0]), .override_dir(override_dir), 
      .override_val(override_val), .count(count), .new_count(new_count)); 
  
 //DISPLAY INFORMATION 
  
 assign led[7] = !done_in; 
 assign led[6] = !override_done; 
 assign led[0] = !override; 
  
 assign led[5:1] = 5'b11111; 
  
 //16 hex dispay 
 display_16hex disp(.reset(reset), .clock_27mhz(clock_27mhz), 
.data_in({amplitude_right,audio_val,3'b0,audio_dir,3'b0,audio_done,override_val,command,4'b0,count}),  
  .disp_blank(disp_blank), .disp_clock(disp_clock), .disp_rs(disp_rs), .disp_ce_b(disp_ce_b), 
  .disp_reset_b(disp_reset_b), .disp_data_out(disp_data_out)); 
   
   
   
   //////////////////////////////////////////////////////////////////////////// 
   // Demonstration of ZBT RAM as video memory 
 
   // use FPGA's digital clock manager to produce a 
   // 65MHz clock (actually 64.8MHz) 
   wire clock_65mhz_unbuf,clock_65mhz; 
   DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf)); 



   // synthesis attribute CLKFX_DIVIDE of vclk1 is 10 
   // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24 
   // synthesis attribute CLK_FEEDBACK of vclk1 is NONE 
   // synthesis attribute CLKIN_PERIOD of vclk1 is 37 
   BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf)); 
 
//   wire clk = clock_65mhz;  // gph 2011-Nov-10 
 
 
 wire locked; 
 
 //assign clock_feedback_out = 0; // gph 2011-Nov-10 
    
   ramclock rc(.ref_clock(clock_65mhz), .fpga_clock(clk), 
     .ram0_clock(ram0_clk),  
     //.ram1_clock(ram1_clk),   //uncomment if ram1 is used 
     .clock_feedback_in(clock_feedback_in), 
     .clock_feedback_out(clock_feedback_out), .locked(locked)); 
 
   
 
   // generate basic XVGA video signals 
   wire [10:0] hcount; 
   wire [9:0]  vcount; 
   wire hsync,vsync,blank; 
   xvga xvga1(clk,hcount,vcount,hsync,vsync,blank); 
 
   // wire up to ZBT ram 
 
   wire [35:0] vram_write_data; 
   wire [35:0] vram_read_data; 
   wire [18:0] vram_addr; 
   wire        vram_we; 
 
   wire ram0_clk_not_used; 
   zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr, 
     vram_write_data, vram_read_data, 
     ram0_clk_not_used,   //to get good timing, don't connect ram_clk to zbt_6111 
     ram0_we_b, ram0_address, ram0_data, ram0_cen_b); 
 
   // generate pixel value from reading ZBT memory 
   wire [17:0]  vr_pixel; 
   wire [18:0]  vram_addr1; 
 
   vram_display vd1(reset,clk,hcount,vcount,vr_pixel, 
      vram_addr1,vram_read_data); 
 
   // ADV7185 NTSC decoder interface code 
   // adv7185 initialization module 
   adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),  
         .source(1'b0), .tv_in_reset_b(tv_in_reset_b),  
         .tv_in_i2c_clock(tv_in_i2c_clock),  
         .tv_in_i2c_data(tv_in_i2c_data)); 
 
   wire [29:0] ycrcb; // video data (luminance, chrominance) 
   wire [2:0] fvh; // sync for field, vertical, horizontal 
   wire       dv; // data valid 
    
   ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset), 
         .tv_in_ycrcb(tv_in_ycrcb[19:10]),  
         .ycrcb(ycrcb), .f(fvh[2]), 
         .v(fvh[1]), .h(fvh[0]), .data_valid(dv)); 
 
 
   // convert ycrcb to RGB 
   wire [7:0] R, G, B; 



   wire [9:0] Y, Cr, Cb; 
   assign Y = ycrcb[29:20]; 
   assign Cr = ycrcb[19:10]; 
   assign Cb = ycrcb[9:0]; 
   YCrCb2RGB rgb_conv ( .R(R), .G(G), .B(B),  
                        .clk(tv_in_line_clock1), .rst(0),  
                        .Y(Y), .Cr(Cr), .Cb(Cb) ); 
 
   // for storage, take highest-order RGB bits 
   wire [17:0] RGB_trunc; 
   assign RGB_trunc = {R[7:2], G[7:2], B[7:2]}; 
 
   // code to write NTSC data to video memory 
 
   wire [18:0] ntsc_addr; 
   wire [35:0] ntsc_data; 
   wire        ntsc_we; 
   ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, RGB_trunc, 
      ntsc_addr, ntsc_data, ntsc_we, 1'b1); 
 
   // code to write pattern to ZBT memory 
   reg [31:0]  zbt_count; 
   always @(posedge clk) zbt_count <= reset ? 0 : zbt_count + 1; 
 
   wire [18:0]  vram_addr2 = zbt_count[0+18:0]; 
   wire [35:0]  vpat = ( switch[5] ? {4{zbt_count[3+3:3],4'b0}} 
    : {4{zbt_count[3+4:4],4'b0}} ); 
 
   // mux selecting read/write to memory based on which write-enable is chosen 
 
   wire  sw_ntsc = 1;//~switch[7]; 
//   wire  my_we = sw_ntsc ? (hcount[1:0]==2'd2) : blank; 
   wire  my_we = sw_ntsc ? hcount[0] : blank; 
   wire [18:0]  write_addr = sw_ntsc ? ntsc_addr : vram_addr2; 
   wire [35:0]  write_data = sw_ntsc ? ntsc_data : vpat; 
 
//   wire  write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we; 
//   assign  vram_addr = write_enable ? write_addr : vram_addr1; 
//   assign  vram_we = write_enable; 
 
   assign  vram_addr = my_we ? write_addr : vram_addr1; 
   assign  vram_we = my_we; 
   assign  vram_write_data = write_data; 
 
   // select output pixel data 
 
   reg [17:0]  pixel; 
   reg  b,hs,vs; 
    
 
   always @(posedge clk) 
      begin 
//         pixel <= switch[0] ? {hcount[8:6],15'b0} : vr_pixel; 
         pixel <= vr_pixel; 
         b <= blank; 
         hs <= hsync; 
         vs <= vsync; 
      end 
 
   // Video filter module for each pixel 
   wire[23:0] pixel_filtered; 
 
   // Only generate pixel values for in-frame locations; otherwise, black. 
   wire in_frame; 
   assign in_frame = (hcount > 34) & (hcount < 744) 
                   & (vcount > 78) & (vcount < 564); 



 
 
   // Control logic to change filter only on voice command (or simulated) 
   wire [1:0] video_option; 
   reg [1:0] video_option_prev; 
    
   assign video_option = (cmd_lock & set_filter) ? param_sel : video_option_prev; 
    
   always @(posedge clk) 
      video_option_prev <= video_option; 
       
    
 
   video_filter filter(.clk(clk),  
      .rgb_in({pixel[17:12], 2'b0, pixel[11:6], 2'b0, pixel[5:0], 2'b0}), 
      .rgb_out(pixel_filtered), 
      .option(video_option), 
      .in_frame(in_frame)); 
 
 
   // VGA Output.  In order to meet the setup and hold times of the 
   // AD7125, we send it ~clk. 
 
   assign vga_out_red = pixel_filtered[23:16]; 
   assign vga_out_green = pixel_filtered[15:8]; 
   assign vga_out_blue = pixel_filtered[7:0]; 
   //assign vga_out_sync_b = 1'b1;    // not used 
   assign vga_out_pixel_clock = ~clk; 
   assign vga_out_blank_b = ~b; 
   assign vga_out_hsync = hs; 
   assign vga_out_vsync = vs; 
 
   // debugging 
    
//   assign led = ~{vram_addr[18:13],reset,switch[0]}; 
 
 
endmodule 

Appendix E -  servo_interface Verilog 
module servo_interface( 
    input clock,//system clock 
    input reset,//system reset 
    input audio_dir,//input direction from audio control 
    input [7:0] audio_val,//input value from audio control 
    input audio_done,// done input from audio contorl 
    input override_dir,//input direction from override_control 
    input [7:0] override_val,//input value from override_control 
    input override_done,//done signal from over_ride control 
    input override,//override signal (when 1 use data from override, otherwise data from audio) 
    output motor_out,//output signal to the servo motor 
  output [16:0] new_count, //new pulse width count for debugging 
  output [16:0] count //old pulse width count for debugging 
    ); 
 
 //PARAMETERS 
 parameter MS20COUNT = 20'd540000; //number of counts needed for the 20ms 
 parameter MAXPULSE = 17'd67500; //Largest pulse width count 
 parameter MINPULSE = 17'd13500;//smallesr pulse width count 
 parameter CENTER = 17'd40500; //pulse width needed to center the servo 
  
 //output registers 
 reg motor_reg; 
 reg [19:0] cycle_count; 
 reg [16:0] pulse_count; 



 reg [16:0] new_pulse_count; 
  
  
 always @(posedge clock) begin 
  if(reset) begin//on reset center the camera 
   motor_reg <= 0; 
   pulse_count <= CENTER; 
   cycle_count <= 0; 
   new_pulse_count <= CENTER; 
  end 
  else begin //make the pulse by having the signal be a 1 till the pulse count 
   if(cycle_count == 0)begin 
    motor_reg <= 1; 
    cycle_count <= cycle_count + 1; 
    end 
   else if(cycle_count == pulse_count) begin 
    motor_reg <= 0; 
    cycle_count <= cycle_count + 1; 
    end 
   else if(cycle_count >= MS20COUNT) begin //and then 0 till the full 20ms passes 
    cycle_count <= 0; 
    motor_reg <= 1; 
    if(new_pulse_count > MAXPULSE) pulse_count <= MAXPULSE; //keep pulse size within the set 
bounds 
    else if(new_pulse_count < MINPULSE) pulse_count <= MINPULSE; 
    else pulse_count <= new_pulse_count; 
    end 
   else cycle_count <= cycle_count + 1; 
   
   if(override) begin //if override take new pulse count from override signals 
    if (override_done) begin 
    new_pulse_count <= (override_dir)? pulse_count + (override_val<<4): pulse_count - 
(override_val<<4); 
    end 
    else new_pulse_count <= new_pulse_count; 
    end 
   else if (audio_done)begin //otherwise take new pulse count from audio signals 
    new_pulse_count <= (audio_dir)? pulse_count + (audio_val): pulse_count - (audio_val);   
    end 
   else new_pulse_count <= new_pulse_count; 
   
    
   end 
 
end 
 
//output assignments to registers 
assign motor_out = motor_reg; 
assign new_count = new_pulse_count; 
assign count = pulse_count; 
 
endmodule 

Appendix F – override_control Verilog 
module override_control( 
    input clock,//system clock 
    input reset,//system reset 
    input [3:0] command, //voice (or switches) command 
    input done_in,// command is ready for use signal 
    output dir,//output direction (0 is left, 1 is right) 
    output [7:0] val, //output value of how much to turn 
    output done,//output saying val and dir are ready 
  output[3:0] com_debug//output of the stored command for debugging purposes; 
    ); 
  



 //PARAMETERS 
  parameter STEPSIZE = 8'b00000010; //step size when direction is said 
  parameter GOSIZE = 8'b00000001; //step per clock cycle when in GO mode 
   
  //module registers including output registers 
  reg [3:0] command_reg; 
  reg dir_reg, done_reg; 
  reg [7:0] val_reg; 
  reg persist; 
   
  always @(posedge clock)begin 
  if (reset)begin//on reset clear all the registers 
   dir_reg <= 0; 
   done_reg <= 0; 
   command_reg <= 0; 
   val_reg <= 0; 
   persist <= 0; 
  end 
  else begin//choose outputs based on the given command 
   case(command_reg) 
   4'b1000: begin //Step Right 
    dir_reg <= 0; 
    val_reg <= STEPSIZE; 
    done_reg <= 1; 
    command_reg <= 0; 
    end 
   4'b1001: begin //Step Left 
    dir_reg <= 1; 
    val_reg <= STEPSIZE; 
    done_reg <= 1; 
    command_reg <= 0; 
    end 
   4'b1010: begin //Go 
    val_reg <= GOSIZE; 
    persist <= 1; 
    done_reg <= 1; 
    command_reg <= 0; 
    end 
   4'b1011: begin //STOP 
    val_reg <= 8'b00000000; 
    persist <= 0; 
    done_reg <= 0; 
    command_reg <= 0; 
    end 
   default: begin//for GO keep sending the signal otherwise stop after one clock cycle 
    if(persist) begin 
     done_reg <= 1; 
     val_reg <= GOSIZE; //added after checkoff, makes it so changing direction while in GO 
does not change speed 
     end 
    else begin 
     done_reg <= 0; 
     val_reg <= 8'b000000; 
    end 
   end 
   endcase 
  end 
 
  if (done_in && !reset)command_reg <= command; //only store command when given the done_in signal 
 end 
 
//output registers assignments 
assign dir = dir_reg; 
assign val = val_reg; 
assign done = done_reg; 
assign com_debug = command_reg; 



    
   
 
endmodule 

Appendix G – feature_extract Verilog 
/* 
Computation engine for feature extraction. 
- Runs FFT on chunks of audio data stored in BRAM; stores squared magnitude  
-  
 
*/ 
module feature_extract(clock, reset, start, done, bram_addr, bram_data, chunk_num, debug_out, status, state); 
 
   input clock, start, reset; 
   output reg done; 
   output reg [13:0] bram_addr; 
 
   input [7:0] bram_data; 
   input [5:0] chunk_num; 
    
   output reg [15:0] debug_out; 
   output reg status; 
    
   // 3e80 is highest address of BRAM 
   parameter MAX_ADDR = 14'h3E80; 
 
   // Main state machine state; keeps track of computation step.   
   parameter IDLE_STATE = 4'h0; 
   parameter READING_AUDIO = 4'h1; 
   parameter COMPUTING_FFT = 4'h2; 
   parameter READING_FFT = 4'h3; 
   parameter FILTER_MULT = 4'h4; 
   output reg [3:0] state = IDLE_STATE; 
    
   parameter SAMPLES_PER_CHUNK = 200; 
    
   // Internal state 
   reg [8:0] sample_num; 
   reg [13:0] addr_base; 
   reg init; 
   reg [4:0] filter_num; 
    
    
   // FFT module I/O 
   reg fft_start, fft_reset; 
   reg [8:0] fft_addr_in, fft_addr_out; 
   reg fft_we, fft_re; 
   wire fft_done; 
   reg [7:0] fft_data_in; 
   wire [7:0] fft_real_out, fft_imag_out; 
    
   fft #(.M(9), .B(8)) fft_inst(.clk(clock), .reset(fft_reset), 
            .start(fft_start), .done(fft_done), 
            .addr_in(fft_addr_in), .addr_out(fft_addr_out), 
            .write_enable_in(fft_we), .read_enable_out(fft_re), 
            .data_real_in(fft_data_in), .data_imag_in(8'b0), 
            .data_real_out(fft_real_out), .data_imag_out(fft_imag_out)); 
             
             
   reg [15:0] fft_readout_in,  
               fft_real_sq, fft_imag_sq, fft_bram_addr; 
   wire [15:0] fft_readout_out; 
   reg fft_readout_enable; 
    



    
   mybram #(.LOGSIZE(9), .WIDTH(16)) fft_out_ram(.clk(clk), 
                     .din(fft_readout_in), .dout(fft_readout_out), 
                     .addr(fft_bram_addr),  
                     .we(fft_readout_enable));                  
    
   // Mel coefficient generator (from mel_filter.v) 
    
   reg [7:0] mel_coeff_num; 
   reg [4:0] mel_filter_num; 
   wire [7:0] mel_coeff; 
 
   mel_filter mel(.clock(clock), .coeff_num(mel_coeff_num), 
                  .filter_num(mel_filter_num), .coeff(mel_coeff)); 
    
   always @(posedge clock) begin 
      if (reset) begin 
         state <= IDLE_STATE; 
      end // reset 
      else begin 
      // Main FSM 
      case(state) 
         ////////////////////////////////////////////////////////////////////////// 
         IDLE_STATE: begin 
         // Waiting for signal to begin computation. 
            if (start) begin 
               init <= 1; 
               state <= READING_AUDIO; 
               status <= 1; 
            end // if 
            else 
               status <= 0; 
            fft_we <= 0; 
            fft_re <= 0; 
            done <= 0; 
            fft_reset <= 0; 
            debug_out <= 0; 
             
    
         end // IDLE_STATE 
 
         ////////////////////////////////////////////////////////////////////////// 
         READING_AUDIO: begin 
         // Read audio data from BRAM into FFT module, one per clock cycle. 
             
            // On first cycle, set BRAM address to start of relevant section. 
            if (init) begin 
               addr_base <= chunk_num * SAMPLES_PER_CHUNK; 
               init <= 0; 
               sample_num <= 0; 
            end // if 
            // TODO make sure timings work for getting first sample 
            else begin 
               fft_we <= 1; 
               bram_addr <= addr_base + sample_num; 
               sample_num <= sample_num + 1; 
               fft_addr_in <= sample_num; 
               debug_out <= {bram_data, 8'b0}; 
                
               // Go to next sample, or end  
                
            end // else 
             
            // If on last sample, start FFT running (after  
            if (sample_num == 9'd511) begin 
               state <= COMPUTING_FFT; 



               fft_start <= 1; 
            end // if 
             
             
         end // READING_AUDIO 
          
          
         ////////////////////////////////////////////////////////////////////////// 
         COMPUTING_FFT: begin 
         // Wait for FFT module to finish 
             
             
            if (fft_done) begin 
               state <= READING_FFT; 
               fft_re <= 1; 
               init <= 1; 
            end // if 
             
            fft_we <= 0; 
            fft_start <= 0; 
            fft_reset <= 0; 
            sample_num <= 0; 
    
         end // COMPUTING_FFT 
          
         ////////////////////////////////////////////////////////////////////////// 
         READING_FFT: begin 
         // Read out data from FFT, store results in a BRAM 
         // do multiplication on numbers being read out 
            // TODO 
             
            // 1: read out real & imag (needs sample_num set) 
            // 2: multiply both 
            // 3: store sum in BRAM 
             
            sample_num <= sample_num + 1; 
             
            // account for 2-cycle delay between readout sample and bram store 
            fft_bram_addr <= sample_num - 1; 
             
            // square numbers being read out             
                
            fft_real_sq <= fft_real_out * fft_real_out; 
            fft_imag_sq <= fft_imag_out * fft_imag_out; 
             
            // store sum of squares 
            fft_readout_in <= fft_real_sq + fft_imag_sq; 
            debug_out <= fft_readout_in; 
             
            // stop when writing last data point 
            if (~init & (sample_num == 0)) begin 
               state <= FILTER_MULT; 
            end // if 
    
    
         end // READING_FFT 
          
         ////////////////////////////////////////////////////////////////////////// 
         FILTER_MULT: begin 
         // Read through FFT data from BRAM and Mel filter coeffs 
         // Generate vector of feature values 
            // TODO 
    
    
    
         end // FILTER_MULT      



                       
      endcase 
      end // else 
   end // always 
 
endmodule 

Appendix H – mel_filter Verilog 
Note: the large lookup table blocks have been snipped; they can be generated via the script in Appendix I. 
 
/* 
Generate Mel filter coefficients, one per clock cycle, for 257-point FFT result (from 512-point transformation discarding negative frequencies). 
Parameterized by filter number. 
One cycle latency between receiving coefficient & filter number, and outputting Mel filter coefficient. 
*/ 
module mel_filter(clock, coeff_num, filter_num, coeff); 
 
   input clock; 
   input [7:0] coeff_num; 
   input [4:0] filter_num; 
    
   output [7:0] coeff; 
    
   reg [7:0] coeff_num_p;  // buffer coeff number for next cycle 
   reg [7:0] descending, ascending; 
   reg [7:0] low, mid, high; 
    
//   boundaries = [0,3,6,10,14,18,24,30,36,44,52,62,72,85,98,114,131,150,173,197,225,256] 
 
 
   // Implemented as 256-entry tables, with 2 entries for each index. 
   // Assumes fixed placements of bin edges, as determined by Mel scale. 
   // Based on low, mid, and high, assigns entry 0, 1023, or table entry.  
 
   // Select between possible values of coefficient based on bin selected 
   assign coeff = (coeff_num_p > mid) ? ((coeff_num_p < high) ? descending : 8'b0) 
                                    : ((coeff_num_p > low) ? ascending : 8'b0); 
 
   always @(posedge clock) begin    
    
      coeff_num_p <= coeff_num; 
       
      // Set boundaries for bins 
      case(filter_num) 
         5'd0: begin  
            low <= 0; 
            mid <= 3; 
            high <= 6; 
            end 
         5'd1: begin 
            low <= 3; 
            mid <= 6; 
            high <= 10; 
            end  
         5'd2: begin 
            low <= 6; 
            mid <= 10; 
            high <= 14; 
            end 
         5'd3: begin 
            low <= 10; 
            mid <= 14; 
            high <= 18; 
            end                
         5'd4: begin 



            low <= 14; 
            mid <= 18; 
            high <= 24;  
            end 
         5'd5: begin 
            low <= 18; 
            mid <= 24; 
            high <= 30; 
            end 
         5'd6: begin 
            low <= 24; 
            mid <= 30; 
            high <= 36;   
            end  
         5'd7: begin 
            low <= 30; 
            mid <= 36; 
            high <= 44; 
            end 
         5'd8: begin 
            low <= 36; 
            mid <= 44; 
            high <= 52;  
            end 
         5'd9: begin 
            low <= 44; 
            mid <= 52; 
            high <= 62; 
            end 
         5'd10: begin 
            low <= 52; 
            mid <= 62; 
            high <= 72;     
            end            
         5'd11: begin 
            low <= 62; 
            mid <= 72; 
            high <= 85; 
            end 
         5'd12: begin 
            low <= 72; 
            mid <= 85; 
            high <= 98;  
            end 
         5'd13: begin 
            low <= 85; 
            mid <= 98; 
            high <= 114; 
            end 
         5'd14: begin 
            low <= 98; 
            mid <= 114; 
            high <= 131;     
            end 
         5'd15: begin 
            low <= 114; 
            mid <= 131; 
            high <= 150; 
            end 
         5'd16: begin 
            low <= 131; 
            mid <= 150; 
            high <= 173;    
            end             
         5'd17: begin 
            low <= 150; 



            mid <= 173; 
            high <= 197; 
            end 
         5'd18: begin 
            low <= 173; 
            mid <= 197; 
            high <= 225;  
            end 
         default: begin 
            low <= 0; 
            mid <= 0; 
            high <= 0;     
            end                                    
      endcase 
       
    
      case(coeff_num) 
         // Values generated with python (create_coeffs.py) 
         8'd0: ascending <= 1023; 
        … 
         8'd255: ascending <= 990; 
      endcase    
       
      case(coeff_num) 
         8'd0: descending <= 1023; 
        … 
         8'd255: descending <= 33; 
      endcase 
   end //always 
 
endmodule //mel_filter 

Appendix I – Mel coefficient python script 
boundaries = [0,3,6,10,14,18,24,30,36,44,52,62,72,85,98,114,131,150,173,197,225,256] 
ascending = [0]*257 
descending = [0]*257 
 
for i in xrange(len(boundaries)-1): 
   left = boundaries[i] 
   right = boundaries[i+1] 
   for j in xrange(left, right): 
       
      ascending[j] = int(round(1023.0*(j-left)/(right-left))) 
      descending[j] = 1023 - int(round(1023.0*(j-left)/(right-left))) 
       
 
for b in boundaries: 
   ascending[b] = 1023 
 
# Generate verilog code for assignments 
 
''' 
for i in xrange(257): 
   print "assign ascending[" + str(i) + "] = " + str(ascending[i]) + ";"  
for i in xrange(257): 
   print "assign descending[" + str(i) + "] = " + str(descending[i]) + ";"  
''' 
 
for i in xrange(256): 
   print "  8'd" + str(i) + ": ascending <= " + str(ascending[i]) + ";"  
for i in xrange(256): 
   print "  8'd" + str(i) + ": descending <= " + str(descending[i]) + ";" 



Appendix J – Voice logic Verilog 
module logic( 
    input clock,//system clock 
    input reset,//syetm reset 
  input talk,//push to record button 
  output reg feature_start,//start trigger to record/feature vector extractor 
  input feature_done,//done signal from feature vector 
    input training_enable,//training_enable switch 
    input [3:0] training_select,//training select choices 
    input [25:0] DTW_score1,//scores for the 9 DTWS 
  input [25:0] DTW_score2, 
  input [25:0] DTW_score3, 
  input [25:0] DTW_score4, 
  input [25:0] DTW_score5, 
  input [25:0] DTW_score6, 
  input [25:0] DTW_score7, 
  input [25:0] DTW_score8, 
  input [25:0] DTW_score9, 
    input DTW_done1, //done and start for the 9 DTWs 
  output reg DTW_start1, 
  input DTW_done2, 
  output reg DTW_start2, 
  input DTW_done3, 
  output reg DTW_start3, 
  input DTW_done4, 
  output reg DTW_start4, 
  input DTW_done5, 
  output reg DTW_start5, 
  input DTW_done6, 
  output reg DTW_start6, 
  input DTW_done7, 
  output reg DTW_start7, 
  input DTW_done8, 
  output reg DTW_start8, 
  input DTW_done9, 
  output reg DTW_start9,  
    output reg DTW_train1,//NONE  //Training signals for the 9 DTWs 
  output reg DTW_train2,//RED 
  output reg DTW_train3,//BLUE 
  output reg DTW_train4,//BLACK 
  output reg DTW_train5,//LEFT 
  output reg DTW_train6,//RIGHT 
  output reg DTW_train7,//GO 
  output reg DTW_train8,//STOP 
  output reg DTW_train9,//NOISE no clear word? 
    output reg [3:0] command, //output command 
  output reg done //done output 
    ); 
 
 //STATES 
 parameter WAIT = 2'b00; 
 parameter RECORD = 2'b01; 
 parameter DTW = 2'b10; 
 parameter COMPARE = 2'b11; 
  
  
 reg [1:0] state; //overall state 
 reg [1:0] compare_state;//state in COMPARE section 
  
 wire all_done; 
 reg [2:0] min12, min34, min56, min78,min_next1, min_next2, min; //compare storage registers 
 reg [24:0] min12_value, min34_value, min56_value, min78_value, min_nextvalue1, min_nextvalue2, min_value;//compare value 
registers 
  
  



 //is true only once all 9 DTW engines are complete 
 assign all_done = (DTW_done1 & DTW_done2 & DTW_done3  
                   & DTW_done4 & DTW_done5 & DTW_done6  
                   & DTW_done7 & DTW_done8 & DTW_done9); 
  
  
 always @(posedge clock) begin 
  if(reset) begin // On reset clear all the train switches and starts 
   state <= WAIT; 
     command <= 0; 
   feature_start <= 0; 
   done <= 0; 
     DTW_train1 <= 0; 
   DTW_start1 <= 0; 
     DTW_train2 <= 0; 
   DTW_start2 <= 0; 
     DTW_train3 <= 0; 
   DTW_start3 <= 0; 
     DTW_train4 <= 0; 
   DTW_start4 <= 0; 
     DTW_train5 <= 0; 
   DTW_start5 <= 0; 
     DTW_train6 <= 0; 
   DTW_start6 <= 0; 
     DTW_train7 <= 0; 
   DTW_start7 <= 0; 
     DTW_train8 <= 0; 
   DTW_start8 <= 0; 
     DTW_train9 <= 0; 
   DTW_start9 <= 0; 
  end 
  else begin 
   case (state) 
   WAIT: begin //WAIT till talk button is pressed, then go to RECORD and start feature vector extraction 
    DTW_train1 <= 0; 
    DTW_train2 <= 0; 
    DTW_train3 <= 0; 
    DTW_train4 <= 0; 
    DTW_train5 <= 0; 
    DTW_train6 <= 0; 
    DTW_train7 <= 0; 
    DTW_train8 <= 0; 
    DTW_train9 <= 0; 
    if(talk) begin 
     state <= RECORD; 
     feature_start <= 1; 
     done <= 0; 
    end 
   end 
   RECORD: begin  
    //wait till Feature vector is generated , then if training activate only the respective DTW engine 
    if(feature_done) begin 
     if(training_enable) begin 
      case(training_select) 
       4'b0000: begin  //NOISE 
        DTW_train9 <= 1; 
        DTW_start9 <= 1; 
        state <= DTW; 
        end 
       4'b0100: begin //NONE 
        DTW_train1 <= 1; 
        DTW_start1 <= 1; 
        state <= DTW; 
       end 
       4'b0101: begin //RED 
        DTW_train2 <= 1; 



        DTW_start2 <= 1; 
        state <= DTW; 
        end 
       4'b0110: begin //BLUE 
        DTW_train3 <= 1; 
        DTW_start3 <= 1; 
        state <= DTW; 
        end 
       4'b0111: begin //BLACK 
        DTW_train4 <= 1; 
        DTW_start4 <= 1; 
        state <= DTW; 
        end 
       4'b1000: begin //LEFT 
        DTW_train5 <= 1; 
        DTW_start5 <= 1; 
        state <= DTW; 
        end 
       4'b1001: begin //RIGHT 
        DTW_train6 <= 1; 
        DTW_start6 <= 1; 
        state <= DTW; 
        end 
       4'b1010: begin //GO 
        DTW_train7 <= 1; 
        DTW_start7 <= 1; 
        state <= DTW; 
        end 
       4'b1011: begin //STOP 
        DTW_train8 <= 1; 
        DTW_start8 <= 1; 
        state <= DTW; 
        end 
       default: begin //DON'T TRAIN 
        DTW_train1 <= 0; 
        DTW_train2 <= 0; 
        DTW_train3 <= 0; 
        DTW_train4 <= 0; 
        DTW_train5 <= 0; 
        DTW_train6 <= 0; 
        DTW_train7 <= 0; 
        DTW_train8 <= 0; 
        DTW_train9 <= 0; 
        state <= WAIT; 
        end 
       endcase 
      end 
     else begin //if not training all the DTWs are activated 
      DTW_start1 <= 1; 
      DTW_start2 <= 1; 
      DTW_start3 <= 1; 
      DTW_start4 <= 1; 
      DTW_start5 <= 1; 
      DTW_start6 <= 1; 
      DTW_start7 <= 1; 
      DTW_start8 <= 1; 
      DTW_start9 <= 1; 
      state <= DTW; 
     end 
    end 
   end 
   DTW: begin //Wait till all the DTWs are done 
    if(training_enable) begin 
     if(all_done) state <= WAIT; 
     end 
    else if(all_done) begin 



     state <= COMPARE; 
     compare_state <= 2'd0; 
     end 
    end 
   COMPARE:begin //compare the scores to find the score with the lowest value 
    case(compare_state) 
    2'd0: begin //compare level 1: quarter finals 
     min12 <= (DTW_score1 < DTW_score2)? 0: 1; 
     min12_value <= (DTW_score1 < DTW_score2)? DTW_score1: DTW_score2; 
      
     min34 <= (DTW_score3 < DTW_score4)? 2: 3; 
     min34_value <= (DTW_score3 < DTW_score4)? DTW_score3: DTW_score4; 
      
     min56 <= (DTW_score5 < DTW_score6)? 4: 5; 
     min56_value <= (DTW_score5 < DTW_score6)? DTW_score5: DTW_score6; 
      
     min78 <= (DTW_score7 < DTW_score8)? 6: 7; 
     min78_value <= (DTW_score7 < DTW_score8)? DTW_score7: DTW_score8; 
      
     compare_state <= 2'd1; 
     end 
    2'd1: begin//compare level 2: semi finals 
     min_next1 <= (min12_value < min34_value)? min12: min34; 
     min_nextvalue1 <= (min12_value < min34_value)? min12_value: min34_value; 
      
     min_next2 <= (min56_value < min78_value)? min56: min78; 
     min_nextvalue2 <= (min56_value < min78_value)? min56_value: min78_value; 
      
     compare_state <= 2'd2; 
     end 
    2'd2:begin//compare level 3: finals 
     min <= (min_nextvalue1 < min_nextvalue2)? min_next1: min_next2; 
     min_value <= (min_nextvalue1 < min_nextvalue2)? min_nextvalue1: min_nextvalue2; 
      
     compare_state <= 2'd3; 
     end 
    2'd3: begin//compare level 4: compare to Noise and send out command 
     if( min_value < DTW_score9) begin 
      case(min) //MY LIST OF command values, change if you think neccesary 
       4'd0: command <= 4'b0100;//NONE 
       4'd1: command <= 4'b0101;//RED 
       4'd2: command <= 4'b0110;//BLUE 
       4'd3: command <= 4'b0111;//BLACK 
       4'd4: command <= 4'b1000;//LEFT 
       4'd5: command <= 4'b1001;//RIGHT 
       4'd6: command <= 4'b1010;//GO 
       4'd7: command <= 4'b1011;//STOP 
       default: command <= 4'b0000; //NO COMMAND 
      endcase 
     end // if 
     else command <= 4'b0000; 
     done <= 1; 
     state <= WAIT; 
     compare_state <= 0; 
     end 
    default: begin 
     compare_state <= 0; 
     end 
    endcase 
   end 
   default: begin 
    state <= WAIT; 
    end 
   endcase  
   // Each start is only active for 1 clock cycle 
   if(DTW_start1) DTW_start1 <= 0; 



   if(DTW_start2) DTW_start2 <= 0; 
   if(DTW_start3) DTW_start3 <= 0; 
   if(DTW_start4) DTW_start4 <= 0; 
   if(DTW_start5) DTW_start5 <= 0; 
   if(DTW_start6) DTW_start6 <= 0; 
   if(DTW_start7) DTW_start7 <= 0; 
   if(DTW_start8) DTW_start8 <= 0; 
   if(DTW_start9) DTW_start9 <= 0; 
   if(done) begin //done is only active for 1 cycle. 
    done <= 0; 
    command <= 4'b0000; 
   
  end // else 
   end // always 
     
    
 
 
endmodule 

Appendix K – voice_main Verilog 
   //////////////////////////////////////////////////////////////////////////// 
   // 
   // Reset Generation 
   // 
   // A shift register primitive is used to generate an active-high reset 
   // signal that remains high for 16 clock cycles after configuration finishes 
   // and the FPGA's internal clocks begin toggling. 
   // 
   //////////////////////////////////////////////////////////////////////////// 
   wire power_on_reset; 
   SRL16 #(.INIT(16'hFFFF)) reset_sr(.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset), 
                                     .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1)); 
  
   // button 3 is user reset 
   wire reset,user_reset; 
   debounce db1(power_on_reset, clock_27mhz, ~button3, user_reset); 
   assign reset = user_reset | power_on_reset; 
        
   wire [7:0] from_ac97_data, to_ac97_data; 
   wire ready; 
    
   // Alias main system clock for easier use below 
   wire clock; 
   assign clock = clock_27mhz; 
 
   // allow user to adjust volume 
   wire vup,vdown; 
   reg old_vup,old_vdown; 
   debounce bup(.reset(reset),.clock(clock_27mhz),.noisy(~button_up),.clean(vup)); 
   debounce bdown(.reset(reset),.clock(clock_27mhz),.noisy(~button_down),.clean(vdown)); 
   reg [4:0] volume; 
   always @ (posedge clock_27mhz) begin 
     if (reset) volume <= 5'd8; 
     else begin 
 if (vup & ~old_vup & volume != 5'd31) volume <= volume+1;        
 if (vdown & ~old_vdown & volume != 5'd0) volume <= volume-1;        
     end 
     old_vup <= vup; 
     old_vdown <= vdown; 
   end 
 
   // AC97 driver 
   lab5audio a(clock_27mhz, reset, volume, from_ac97_data, to_ac97_data, ready, 
        audio_reset_b, ac97_sdata_out, ac97_sdata_in, 



        ac97_synch, ac97_bit_clock); 
 
   // push ENTER button to record, release to playback 
   wire playback; 
   debounce benter_db(.reset(reset),.clock(clock_27mhz),.noisy(button_enter),.clean(playback)); 
 
/* 
   // debouncer for enter (start record) 
   wire button_enter_db; 
   debounce benter_db(.reset(reset),.clock(clock_27mhz),.noisy(button_enter),.clean(button_enter_db)); 
 
   // debouncer for button 3 (start play) 
   wire button3_db; 
   debounce b3_db(.reset(reset),.clock(clock_27mhz),.noisy(button3),.clean(button3_db)); 
*/ 
 
   // switch 0 up for filtering, down for no filtering 
   wire filter; 
   debounce sw0(.reset(reset),.clock(clock_27mhz),.noisy(switch[0]),.clean(filter)); 
 
   // light up LEDs when recording, show volume during playback. 
   // led is active low 
   // assign led = playback ? ~{filter,2'b00, volume} : ~{filter,7'hFF}; 
   wire fft_status; 
   wire [3:0] fft_state; 
   assign led[7] = ~fft_status; 
   assign led[6:3] = ~fft_state; 
   assign led[2:0] = {3{1'b1}}; 
 
   // record module 
   wire [7:0] mem_out; 
   wire feature_start; 
   wire [13:0] fft_mem_addr; 
   recorder r(.clock(clock_27mhz), .reset(reset), .ready(ready), 
              .playback(playback), .filter(filter), 
              .from_ac97_data(from_ac97_data),.to_ac97_data(to_ac97_data),  
              .mem_out(mem_out), 
              .start_fft(feature_start), 
              .fft_addr(fft_mem_addr), .fft_override(fft_status)); 
 
   // output useful things to the logic analyzer connectors 
   assign analyzer1_clock = ac97_bit_clock; 
   assign analyzer1_data[0] = audio_reset_b; 
   assign analyzer1_data[1] = ac97_sdata_out; 
   assign analyzer1_data[2] = ac97_sdata_in; 
   assign analyzer1_data[3] = ac97_synch; 
   assign analyzer1_data[4] = feature_start; 
   assign analyzer1_data[15:5] = 0; 
    
   wire [15:0] debug_out; 
   assign analyzer3_clock = clock_27mhz; 
   assign analyzer3_data = debug_out; 
    
/////////////////////////////////////////////////////////////////////////////// 
// 
// Voice processing modules 
// 
///////////////////////////////////////////////////////////////////////////////    
    
// Feature extractor (feature_extract.v) 
// DTW scoring module (from dtw_score.v) 
// control logic (from logic.v) 
    
 
 
   wire feature_done; 



    
   reg [6:0] chunk_num = 0; 
    
    
   feature_extract extractor(.clock(clock), .reset(reset), .start(feature_start), 
         .done(feature_done), .bram_addr(fft_mem_addr), 
         .bram_data(mem_out), .chunk_num(chunk_num), 
          
         .debug_out(debug_out), .status(fft_status), .state(fft_state)); 
 
endmodule 
 
/////////////////////////////////////////////////////////////////////////////// 
// 
// Record/playback 
// 
/////////////////////////////////////////////////////////////////////////////// 
 
module recorder( 
  input wire clock,            // 27mhz system clock 
  input wire reset,                // 1 to reset to initial state 
  input wire playback,             // 1 for playback, 0 for record 
  input wire rec_button, 
  input wire play_button, 
  input wire ready,                // 1 when AC97 data is available 
  input wire filter,               // 1 when using low-pass filter 
  input wire [7:0] from_ac97_data, // 8-bit PCM data from mic 
  output wire [7:0] to_ac97_data,    // 8-bit PCM data to headphone 
  output wire [7:0] mem_out, 
  output reg start_fft, 
  input [13:0] fft_addr, 
  input fft_override 
);   
 
 
   // Internal wires for configuring memory 
   wire [13:0] mem_addr; 
   reg [13:0] rec_addr;    
   reg mem_we; 
   wire [7:0] mem_in; 
   reg [13:0] highest_addr; 
    
   //assign mem_addr = fft_override ? fft_addr : rec_addr; 
   assign mem_addr = rec_addr; 
 
   // 64K x 8 memory for storing samples 
   mybram #(.LOGSIZE(14),.WIDTH(8)) 
      audio_bram(.addr(mem_addr),.clk(clock),.we(mem_we),.din(mem_in),.dout(mem_out)); 
 
   // used to detect edges on ready signal 
   reg ready_prev; 
   reg playback_prev; 
 
   // Used to only take every 3rd audio sample 
   reg [1:0] upsample_counter; 
    
   reg enable_record; 
 
/* 
   // create pulse to start recording on release of enter 
   reg recording; 
   wire start_record; 
   reg button_enter_db_prev; 
 
   assign start_record = button_enter_db & ~button_enter_db_prev; 
 



   // create pulse to signal start of playback 
   reg playing; 
   wire start_play; 
   reg button3_db_prev; 
 
   assign start_record = button_enter_db & ~button_enter_db_prev; 
*/ 
 
/////////////////////////////////////////////////////////////////////////////// 
   always @ (posedge clock) begin 
 
////////////////////////////////////////// 
      // Reset memory address when switching modes; supercedes other actions 
      if (playback != playback_prev) begin 
         rec_addr <= 14'h0; 
         upsample_counter <= 2'h0; 
 
         // if recording, also reset highest address location 
         if (~playback) begin 
            highest_addr <= 14'h0; 
            enable_record <= 1; 
         end 
      end 
 
////////////////////////////////////////// 
      else if (ready && ~ready_prev) begin  // posedge on ready 
 
 
         // only update outputs every 3 ready cycles (downsample to 16 kHz) 
         if (upsample_counter == 2'b00) begin          
            if (playback) begin  // playback mode 
//               to_ac97_data <= mem_out;   // read sample from memory 
               rec_addr <= (rec_addr == highest_addr) ? 14'h0 : rec_addr + 1; 
            end // playback mode 
 
            else begin        // record mode 
               // stop recording after 16000 samples (1 second) 
               if (rec_addr == 14'h3E80) begin 
                  enable_record <= 0; 
                  start_fft <= 1; 
               end 
 
               if (enable_record) begin 
                  // pulse write enable high (returned to low outside loop) 
                  if (~mem_we) begin 
                     mem_we <= 1; 
                  end 
//                  mem_in <= from_ac97_data;     // taken care of by combo logic 
                  rec_addr <= rec_addr + 1;     // after recording at FFFF, will stop recording 
                  highest_addr <= rec_addr; 
 
               end // if enable_record  
 
 
            end // record mode 
 
         end   // upsample_counter 
 
 
 
          
         // state machine for upsample_counter to cycle every 3 clocks 
         case(upsample_counter) 
            2'b00: upsample_counter <= 2'b01; 
            2'b01: upsample_counter <= 2'b10; 
            2'b10: upsample_counter <= 2'b00; 



         endcase 
          
      end   // posedge ready 
 
      // make sure that write enable only pulsed for 1 cycle 
      if (mem_we) begin 
         mem_we <= 0; 
      end 
       
      // pulse feature extractor start for 1 cycle 
      if (start_fft) 
         start_fft <= 0; 
          
      // always update previous signals 
      ready_prev <= ready; 
      playback_prev <= playback; 
//      button_enter_db_prev <= button_enter_db; 
//      button3_db_prev <= button3_db; 
       
   end // always 
 
/////////////////////////////////////////////////////////////////////////////// 
   // Audio filtering 
 
   wire [7:0] filter_in; 
   wire [17:0] filter_out; 
 
   fir31 filter_inst(.clock(clock), .ready(ready), .x(filter_in), .y(filter_out));    
 
   // Combinational logic for implementing filtering 
   assign mem_in = filter ? filter_out[17:10] : from_ac97_data; 
   assign filter_in = playback ? mem_out : from_ac97_data; 
   assign to_ac97_data = playback ? (filter ? filter_out[17:10] : mem_out) : mem_in; 
 
// TODO: multiplex BRAM address and WE lines to let FFT read out 
 
 
 
 
endmodule 
 
 

Appendix L – dtw_score Verilog 
 
module dtw_score(clock,reset, in, train_enable, score, start, done); 
 
   // possible modification: take in data sequentially (since not all needs to be processed at once); would need next_data line, or something 
similar 
 
   input clock; //system clock 
 input reset; //system reset 
    
   // Sequences of feature vectors: 40 frames, 12 features, 8 bits each 
   input [7:0] in;  
   input train_enable; //when true sequence is stored rather than compared 
   output reg [25:0] score; //final DTW score 
 
   // receive high pulse to start, emit high pulse on completion 
   input start; 
   output reg done; 
  
 //STATES 
 parameter WAIT = 2'b00; 
 parameter DATA_IN = 2'b01; 



 parameter ADD = 2'b10; 
 parameter TRAIN = 2'b11; 
  
 parameter FRAMES = 50; 
  
 //Counting Registers 
 reg [3:0] j; 
 reg [5:0] i; 
  
 reg [1:0] state; 
 reg [7:0] test[FRAMES - 1:0][11:0]; //data just recorded 
 reg [25:0] tmp[FRAMES - 1:0][11:0]; //tmp storage of compared square values 
  
 //BEGIN STATE MACHINE 
 always @(posedge clock) begin 
  if(reset) begin //on reset clear out registers 
   for(i=0;i<FRAMES;i=i+1) begin 
    for(j=0; j<12; j=j+1) begin 
     test[i][j] <= 8'b0; 
     tmp[i][j] <= 26'b0; 
     end 
    end 
   score <= 0; 
   state <= WAIT; 
   done <= 0; 
  end 
  else begin 
   case (state)  
   WAIT: begin //WAIT until start signal then if train is enabled go to TRAIN, otherwise go to DATA_IN 
    if(train_enable && start)begin 
     state <= TRAIN; 
     i<=0; 
    end 
    else if(start) begin 
     state <= DATA_IN; 
     score <= 0; 
     done <= 0; 
     i <= 0; 
    end 
    else state <= WAIT; 
    end 
   TRAIN:begin//Store the incoming 40*12 bytes in test[i][j] then go back to WAIT 
     if(i < FRAMES) begin 
      if(j < 12) begin 
       test[i][j] <= in; 
       j <= j+1; 
      end 
      else begin 
       j<= 0; 
       i <= i +1; 
      end 
     end 
     else begin 
      state <= WAIT; 
      done <= 1; 
     end 
    end 
   DATA_IN: begin //Square the difference between test[i][j] and the input (EUCLIDIEAN DISTANCE) once done 
for all 480 bytes go to ADD 
     if(i < FRAMES) begin 
      if(j < 12) begin 
       tmp[i][j] <= (in>test[i][j])? ((in - test[i][j])*(in - test[i][j])):((test[i][j] 
- in)*(test[i][j] - in)); 
       j <= j+1; 
       end 
      else begin 



       j <= 0; 
       i <= i + 1; 
       end 
      end 
     else begin 
      state <= ADD; 
      i<= 0; 
     end 
    end 
   ADD: begin //ADD together the 480 square bytes to get a full DTW score, then return the value and go back to 
WAIT 
      if(i < FRAMES) begin 
       if(j < 12) begin 
        score <= score + tmp[i][j]; 
        j <= j + 1; 
        end 
       else begin 
        j <= 0; 
        i <= i + 1; 
        end 
      end 
      else begin 
       state <= WAIT; 
       done <= 1; 
       i<= 0; 
      end 
     end 
   default begin 
    state <= WAIT; 
    end 
   endcase 
  end 
 end 
endmodule 


