Matthew Fox, Michael Kelessoglou, Evangelos Taratoris
6.111 Final Project Report
11 December 2013

Virtual Pitch and Catch

Project Overview

For our final project, we decided to make a highly interactive pitch and catch
game. The game of pitch and catch resonates deeply within many cultures as a shared
experience. Whether it be strengthening a parent-child relationship, passing time with a
friend, or training for the upcoming season, people across the world engage in this
game on a regular basis. On another strain, the tech community and the gaming
industry as a whole are moving towards virtual reality as the next avenue for the new
generation of games. One only has to look as far as the Nintendo Wii, XBox Kinect,
Oculus Rift, or Playstation Move to see the trend of virtual reality sweeping the gaming
industry.

Our idea for virtual pitch and catch lies at the intersection of these two cultural
practices, the analog game of pitch and catch and the digital storm of virtual reality. We
hope to bring the interactive game that has been so beloved for over a hundred years to
the twenty-first century by creating a virtual interface for two players to throw and catch
a digitally produced ball. We will use trackable gloves with multiple types of sensors to
track and monitor the user’s actions while playing the game, allowing us to show the
game’s progress on a monitor and simulate the actions of the virtual ball.

Furthermore, the implementation of the pitch and catch game provides a
framework that is highly configurable for interesting applications. Some of these include
a virtual basketball game, a three-dimensional pitch and catch game, a blue screen
addition to the original game, and many more. This flexibility that the implementation
allows supports the creation of this project that, in its basis, is already strong.

Design Decisions

We divided the project into three main parts. These are the “Smart Glove”
module, the Hand Tracking module, and the Physics and Display module. The project
runs on two FPGA's, one of which is the master. The master is connected to one
camera, one glove, and the VGA display, and runs the game logic. The other is
connected to the other glove and another camera, and feeds the data from the Glove
and Hand Tracking modules to the master. We opted to use two FPGA'’s because
running hand-tracking from two different cameras on the same FPGA would be too
memory intensive. The reason we decided to use two cameras rather than track both
gloves with one, is that having one camera would severely restrict the distance at which
the two players could be standing apart from each other. Figure 1 below shows a block

diagram, which indicates how these modules are interconnected. Though we did not
consider it essential, we did also plan to include sound in the project, specifically a
sound to indicate catching. At first we expected that we might need some sophisticated
method of communication between the two FPGA'’s, perhaps even serial
communication. However, we found out that the cameras and the gloves could easily be
attached to really long wires, which allowed us to put the two FPGA’s next to each other
without restricting the distance between the players. Since the FPGA'’s don’t run long
wires between them, we found that simply sending the signals in parallel worked very
well.

Another important design decision was making the game 2-dimensional to make
the hand tracking, the physics, and especially the rendering simpler. If the game were
3D, the hand tracking would require two cameras for each glove, and would be very
sensitive to their placement. The physics would not change much, as an extra
component would just need to be added to all its position and velocity vectors. The
display module would be completely different though, and would look less natural if
implemented with sprites. If implemented without sprites, then gloves would have to
somehow be represented by polygons, which would look too simplistic.

’ | Disnlav

Figure 1: Pitch and Catch Block Diagram — This block diagram shows how two instances
of the glove module and two instances of the hand-tracking module will interact with the
Physics and Display module to simulate the game logic. The Physics/Display module will be
able to render the game from the sensor data from the gloves and the tracking data from the
cameras to show the progress of the game.

Glove Module — Matthew Fox

Figure 2: The “Smart Glove” setup. Accelerometer mounted on the glove and flex sensors
attached to the ring and index fingers.

The glove and its surrounding circuitry are one of the major modules of this
project. We fitted two gloves that were intended to be tracked by the FPGA camera
provided (one for each player). Because of this, we chose to buy a pair of bright orange
gloves to serve as a bright indicator for the camera to track. These gloves were fitted
with three sensors, namely two flex sensors and an accelerometer each. The flex
sensors created a variable resistance that increases with bending. We fitted these to
the outside of the index and ring fingers (see Figure 2 above) of the glove so as to
discern when the hand closed. In the datasheet of these flex sensors, a suggested
circuit is provided for producing an output voltage that will inform us of the level to which

the hand is closed. This circuit contained a voltage divider of which the flex sensor is
half (it is the resistor connected to power). We paired the flex sensor with a 5.1 kQ
resistor as suggested in the datasheet. When the flex sensor bends, it gains resistance,
so the voltage measured between the flex sensor and the other resistor drops from
around 3.1 volts to 2.4 volts. After creating this circuit, we buffered the output to isolate
the voltage divider from the following circuitry.

We then utilized an operational amplifier to push this output to the rails so that we
could have a binary output from this module of the hand’s openness. In order to do this,
we chose 2.7 volts as the initial cutoff voltage to use in the operational amplifier circuit.
By using a voltage divider (with a 4.7 kQ and a 5.6 kQ resistor), we generated the cutoff
voltage and compared it to the voltage from our flex sensor circuit, creating our digital
signal. By debouncing and synchronizing this signal with the system clock, we were
able to complete this portion of the smart glove, having a reliable digital signal for the
hand’s state. Although we had chosen to have two flex sensors per hand to approach
assuredness that the hand was intentionally being closed rather than partially flexed, we
realized that taking the AND of the two signals would require absolute confidence that
closing the hand would produce a low signal for both sensors every time. Because, in
testing, this was proven to be incorrect, we decided instead to take the OR of these two
values and modified the initial cutoff voltages to ensure that the circuits were not
oversensitive. Each flex sensor was connected slightly differently because of the
inexactness of sewing the sensors to the gloves, so we used slightly different voltage
dividers for each sensor circuit to obtain the best signal possible. In this way, we
created a flex sensor signal that both showed intention as well as ensuring near perfect
accuracy with detecting a closing event. A picture of the wiring from the glove to the
FPGA is shown in Figure 3 below.

Figure 3: Wiring from “Smart Glove” to FPGA.

In addition to the bright glove and the flex sensors, we outfitted each glove with
an accelerometer to capture the acceleration of the glove leading up to a throwing
event. We ordered two accelerometers and breakout boards that were mounted on the
back of the hand and intended to factor into the acceleration given to the ball in the
physics module. We initially thought that the accelerometer should give reliable and
near noise-free data that could counteract any issues that arise with noise in the hand-
tracking module, allowing us to have multiple options should either the accelerometer or
tracking fail to produce reliable results. However, soon after taking a look at the data
outputted by the accelerometer, we realized that it is impossible to calculate position

just from the accelerometer. Because the accelerometer is but a force sensor, it is
impossible to get a velocity measurement from just this data. In light of this new
discovery, we repurposed the accelerometer to send a signal to the game engine about
the orientation of the glove. We were able to discern whether the hand was palm up or
down by setting a threshold value for the data from the z axis of the accelerometer.
This method proved successful in telling if a player’s hand was in a position where the
ball could be caught or if the palm was facing away from the ball.

The act of getting the data from the accelerometer proved much more difficult
than anticipated. Firstly, we made a design decision to place the two FPGAs close
together to avoid the need to serialize our data that travels between the two (the
canCatch signal, open signal, and glove position signal from the hand-tracking module).
This decision was made possible by a long camera cord for the hand-tracking NTSC
camera and necessitated a long cord from the glove sensors to the labkit.
Unfortunately, the 3D accelerometer that we purchased originally was a digital
accelerometer. Sending a digital signal across a long wire could compromise the
integrity of the signal, so we opted to switch over to an analog accelerometer. The
change to this analog accelerometer required an analog to digital conversion before we
could input the data to the labkit. We decided to use an available ADC in lab that we
put into a continuous conversion mode as per the datasheet to continuously update the
data we received from the accelerometer for the z axis. This was one of the most
difficult parts of this module as the circuit from the datasheet did not work as shown for
some reason. By slightly changing the inputted clock data to synchronize the ADC to
the labkit and adding a pull down resistor for the WR and INTR nodes, we were able to
get correct functionality from the ADC and gain access to data for hand orientation.

Soldering the sensors onto the glove also proved to be much more difficult than
we expected. Because of the length of the wire that we required, we opted to use a
ribbon cable to neatly transfer all seven circuits together (2 circuits for each flex sensor
and 3 circuits for the accelerometer — z data, power, and ground). This decision made
soldering the sensors together much more difficult as the ribbon cable we acquired had
multiple cores which forced us to use heat shrink tubing to isolate the circuits. Since the
lab did not have heat shrink tubing or a heat gun, we borrowed supplies from the media
lab and spent a large amount of time ensuring the complete connection of each circuit.
After finally soldering these circuits to ensure strength and reliability, we had a working
“Smart Glove” module that could be tested and integrated with the physics, display, and
hand-tracking modules.

The glove module did not need inputs from the FPGA as it simply sent data back
to the FPGA from the user’s actions. The glove’s outputs were an open signal and a
canCatch signal. These inputs were synchronized between FPGAs before they could
be used. Refer to Figure 4 below for the block diagram of the “Smart Glove” module.

_Accel
Accel

open

x_Accel

y_Accel

open

Figure 4: The “Smart Glove” Module — the “smart glove” will monitor
its two flex sensors as well as its accelerometer. It will then convert
these analog signals to digital signals and synchronize them with the
system clock. These outputs will then go to the physics and display

module.

If we were to start this module from the beginning, we would instead order an
accelerometer and gyroscope pair to mount on the back of the hands. This would allow
us to have enough data to calculate velocity and to have reliable tracking of the gloves
regardless of the success of the hand-tracking module. We also think that the addition
of the gyroscope would have made for better game play as we could have integrated
sprites that move with your hand’s exact orientation (just accelerometer data cannot
exactly specify orientation). Unfortunately, we did not come to this idea until after the

project had ended and we were evaluating ways to improve our performance.

Nonetheless, the “Smart Glove” module proved to be a success and completed its

purpose within the project as a whole.

Hand-Tracking Module - Evangelos Taratoris

Overview

The hand tracking module takes input from the camera. After locating the pixels that
comprise the glove, it should calculate the center of mass and it should output a pair of
values (X_COM, Y_COM) that correspond to the location of the center of mass.

Implementation Details

The input from the NTSC camera is in 10 bit Y, Cr, Cb colour format. Using the
module ycrcb2rgb we translate those values into 8 bit red, green and blue values
(R,G,B) in order to feed those signals to the screen display. We store two pixels worth
of data in a single ZBT memory address. Since each location is 36 bits long, we have to
store 18 bits of value for each pixel. Therefore we just drop the two least-significant-bits
from each of the R,G and B signals.

When we read pixel data from the ZBT, it is helpful for our purposes, to translate the
R,G and B values into H,S and V values (hue, saturation, value) using the module
rgb2hsv. The H,S and V signals are 8 bits long and therefore range from 0-255 each. In
general, this colour scheme performs well when we want to track a colour range, such
as from red to orange. In the H,S,V space, after trying various ranges, we decided that
an “acceptable” range for the orange colour should be:

14 <h<30, 235<s<255, 240<v<255

The xvga module outputs horizontal and vertical count signals (hcount and vcount).
These are 11 bits and 10 bits long respectively. The visible range on our display is for
O<hcount<1024 and for O<vcount<768. However, the camera output does not utilize this
entire range. Instead only 30<hcount<750 and 30<vcount<510 are used to display the
image from the camera.

The in_range module

This module takes as input the horizontal and vertical count (hcount,vcount) from the
xvga module. In addition it takes as input the H,S and V values that we have calculated
in the rgb2hsv module. It outputs a single bit named valid. Valid is 1 when the H,S and
V values fall in the acceptable range and when the hcount and vcount fall in the range
utilized by the camera. Otherwise valid is zero. This procedure in essence calculates
whether we are going to accept a pixel as being within the colour range required to be
considered orange and also within the hcount and vcount range to be considered in the
camera display.

Following is the Verilog for this module:

module in_range(clk,h,s,v,hcount,vcount,valid);

reg valid;
always @(posedge clk)

valid <=
((hcount>11'd30)&&(hcount<11'd750)&&(vcount<10'd510)&&(vcount>10'd30)&&(h>8'd14)&&(h
<8'd30)&&(s>8'd235)&&(v>8'd240));

endmodule

The hand_tracker module

This module takes as input hcount and vcount. In addition it takes as input the
current valid value in addition to the last 7 valid values. We have saved those in a 8 bit
register named valid 8. We update the values every clock cycle.

always @(posedge clk)
if ((hcount==11'd30)&&(vcount>10'd30)&&(vcount<10'd510))
begin
valid8<=8'd0;
end
else
begin
valid8[7]<=valid8[6];

valid8[1]<=valid8[0];
valid8[0]<=valid;

end

The hand_tracker module outputs x_sum,y sum and counter which are all 32 bit values.
The module operates as follows:

At every clock cycle it checks whether the current valid bit as well as the previous 7
valid bits are all equal to 1. If this is the case, then it means that both the current pixel
as well as the previous 7 pixels on the same line were all valid pixels. Hence it is highly
likely that this pixel belongs to the glove. Therefore we increment two accumulators
(x_accum, y_accum) with the value of the hcount and vcount of that pixel respectively.
In addition we increment the value of a counter (counter_temp) to illustrate the fact that
we encountered a pixel belonging to the glove. Every time that hcount and vcount are

equal to 30 (and therefore we begin a new camera frame) we set x_sum equal to
x_accum, y_sum equal to y_accum and counter equal to counter_temp. We set the
accumulators and the counter_temp to zero so that they can start again for the new
frame. Therefore the outputs of this module change once per frame. We will use those
outputs to calculate the center of mass of the glove.

Following is the Verilog for this module:
module hand_tracker(clk,valid8,hcount,vcount,x_sum,y_sum,counter);
always @(posedge clk)
begin
if ((hcount==11'd30)&&(vcount==10'd30))
begin
X_sum<=x_accum;
y_sum<=y_accum;
counter<=counter_temp;
x_accum<=32'd0;
y_accum<=32'd0;
counter_temp<=32'd0;
end

else if (valid8==8'b11111111)

begin
x_accum <= x_accum + {21'd0,hcount};
y_accum <=y_accum + {22'd0,vcount};
counter_temp <= counter_temp + 32'd1 ;
end
end
endmodule

Calculating the center of mass

We use a 32-bit divider module which is provided by ISE to find the Center of Mass
(COM_X,COM_Y) by dividing the accumulated values of x and y coordinates by the
counter value.

Below is a simple implementation using Verilog:
wire [31:0] x_com,y_com,x_rem,y_rem;
wire ready_x,ready_y;

final_divider divider_x(.clk(clk),.dividend(x_sum_out),.divisor(counter_out),.quotient(x_com),
fractional(x_rem),.rfd(ready_x));

final_divider divider_y(.clk(clk),.dividend(y_sum_out),.divisor(counter_out),.quotient(y_com),
fractional(y_rem),.rfd(ready_y));

Low-Pass Filtering

Even the most careful implementation of a colour-tracking algorithm may be
problematic due to noise inherent in the video input. In order to tackle this, a simple low
pass filter was created, where we just stored the previous 7 values of the calculated
center of mass, and at each clock cycle, instead of returning the value of the recently
calculated center of mass, we return the average of the previous 7 values and the
current one. This does not require a divider since dividing by 8 is just a right shift of 3
bits.

assign x_com_out=(x_com+x_1+x_2+x_3+x_4+x_5+x_6+x_7)>>3;

assign y_com_out=(y_com+y_1+y 2+y 3+y 4+y 5+y 6+y 7)>>3;

Testing/Debugging

In order to check whether we were calculating the correct coordinates we utilized
the blob module which outputs a square on screen whose upper left corner is specified
as a pair of inputs (x,y). In our instance of the blob module we just set those values to
be the x_com_out and y_com_out calculated by the low pass filter above.

Below is the code for the module and the instance we created.

module blob
#(parameter WIDTH = 64, [/l default width: 64 pixels
HEIGHT = 64, /I default height: 64 pixels

COLOR = 24'hFF_FF_FF) // default color: white

(input [10:0] x,hcount,
input [9:0] y,vcount,
output reg [23:0] pixel);

always @ * begin
if ((hcount >= x && hcount < (x+WIDTH)) &&
(vcount >=y && vcount < (y+HEIGHT)))
pixel = COLOR;
else pixel = 0;
end

endmodule

blob #(.WIDTH(64),.HEIGHT(64),.COLOR(24'hFF_FF_00)) // yellow!
paddle1(.x({x_com[10:2],2'b0}),.y({y_com[9:2],2'b0}),.hcount(hcount),.vcount(vcount),

.pixel(blob_pixel));

The hand tracking module in its entirety did not function as intended. Most of the
time there appeared to be tracking (i.e. the blob was close to the center of the glove).
However the blob was flickering a lot, even when the glove was stable and sometimes it
appeared really far away from the glove for brief instances of time. This problem can be
due to the following 2 reasons or their combination:

i) The H, S, V range we defined as acceptable is too inclusive and therefore
pixels that shouldn’t be counted in the center of mass are actually taken into
consideration.

ii) The filter mentioned above is not elaborate enough to prevent random noise
affecting our center of mass calculation.

Even though various ranges were tested for the H,S,V inputs, we still didn’t get a
sufficiently good result. The mentioned filter was in essence the only one that we used
due to time considerations. A member of the team is shown demonstrating the
functionality of the tracking module in Figure 5 below.

__}: L ol

7

L o .
L

5

S5
a7
x

:
?‘
p

¥

Figure 5: The flickering of the square blob is obvious in this picture. In addition, the square
would appear far away from the center of the glove for brief but visible periods.

Implementation Process

A considerable amount of time went into understanding how to get the video input
from the camera, save it in the ZBT memory and then use it to perform the actual
tracking.

In addition finding the correct range of H,S,V was a problem until the very end. A
possible alternative would be to use R,G,B instead. Even though it appears that H,S,V
is superior for colour tracking, using R,G,B ranges might end up giving us better
tracking results.

The calculation of the center of mass uses dividers. Dividers in Verilog are really
complicated objects and in general we try to avoid them. When we are generating the
programming file, the dividers result in a long process that takes almost 15 minutes for

each programming file generation. However, we did not see a better way to perform this
task that would not make use of the divider module.

In theory we could have made it so that we accept only a number of pixels that is a
power of 2. Then, we could have easily calculated the center of mass of those pixels by
using the shift operation, and the center of mass calculated would still be close to the
actual center of mass. This is something that we would change, if we were to perform
color tracking again.

Physics Module — Michael Kelessoglou

Overview

The Physics module uses the inputs from the Glove and Hand-Tracking modules
to determine the game state. The game mechanics attempt to emulate real-world
physics, with some exceptions to make the game more playable. One such exception is
that there are invisible walls to which the ball sticks. This prevents the ball from flying
sideways off the screen, which could potentially cause it to loop back and appear on the
other side, which would be game-breaking.

Implementation

The Physics module runs on a 65 MHz clock is divided into two submodules. The
first converts the glove position data from the hand-tracking module to global
coordinates. Global coordinates are unsigned and measured in millimeters to allow for
good accuracy and make manipulations easy. The x coordinate is zero two meters to
the left of the leftmost camera and the y coordinate is zero at ground level. Since hand
tracking was not implemented, we used a dummy module, in which glove position is
controlled by buttons on the FPGA. This module would have also taken the distance
between the cameras and whether each player was playing right-handed to give the
correct output, had we needed to implement it.

The second and much more complicated submodule of the Physics module is the
Ball State Machine. This module has the global glove positions and the glove state from
the Smart-Glove module as inputs and outputs the position and state of the ball and
whether there is a catching event or not (for sound purposes). Besides the ball position
and state, the module also keeps track of the ball’s velocity, which allows it to keep
track of its state. Ball velocity is kept in millimeters per second. Each velocity
component is represented as an unsigned variable coupled with a direction bit, since
that design is more robust than relying on signed arithmetic. The ball state is a two-bit

variable. When it is 0, it indicates that the ball is in the air. When it is 1, it indicates that
the first glove is holding the ball, and when it is 2, it indicates that the second glove is
holding the ball. The module uses a counter, which counts an appropriate number of
cycles to set an update variable to 1 at a 128Hz rate. 128 was picked because itis a
power of 2, which is convenient for calculation, and it is a high enough rate that it
always updates in between frames on the VGA screen. If the ball state is 0, when the
update signal is high, the y component of velocity is decreased by a constant (g*1s/128
in mm/s), and ball position is changed to its previous position plus velocity divided by
128. If the ball position is 1 or 2, then ball velocity is set to 128 times the difference
between the current ball position and the ball position at the previous update. This is
how initial velocity is set during a throw. Since ball position and velocity are unsigned
variables coupled with direction bits, appropriate direction checks need to be made
when manipulating these. When the ball is in state 0 and a glove closes (which is
checked by passing it and its delayed inversion through an AND gate) and the glove is
close enough to that ball, then the ball transitions to the state of being held by that glove
(with glove1 having priority over glove2). When the ball is in states 1 or 2 and the glove
holding it opens, it transitions to state 0.

Display Module — Michael Kelessoglou

Overview

The Display module gets the game state as an input from the Physics module
and outputs the appropriate pixels to be displayed on the VGA screen. The game’s
appearance is rather minimalistic and retro, which fits its simple nature. A screenshot of
the game and a close-up of one sprite are shown in Figures 6 and 7 below.

Figure 6: Screenshot of the game. Player 1 (left) is currently holding the ball, while Player 2
(right) has his hand closed. Ball seems yellow because of bad picture quality and is actually red.

Figure 7: Close-up of the sprite of Player 1 (left hand glove) holding the ball.

Implementation

In order to display sprites, we had to first convert them to .coe files which are
used to initialize ROMs on the FPGA. To make rendering easier, all sprites used had
the same dimensions and the area in the sprite that was not part of the object was pure
black. Since the FPGAs we used provide limited ROM space, we had to compress the
sprite images first. To do this, each sprite was displayed using 16 colors, so that only 4
bits needed to be specified for each pixel. To convert bitmap images to .coe files, we
ran a MATLAB script provided by the course staff, which also turned the 2-dimensional
array of pixels into a 1-dimensional array.

The Display module runs on a 65 MHz clock in order to sync well with the VGA
display. It is constituted of two submodules, one to convert the global coordinates of
objects from the Physics module into pixel coordinates, and one to access the sprites
from ROM and render them. The first submodule also takes in the distance between the
two cameras as an input, so it knows how to scale the display. Specifically, the screen
scales so that its 1024 pixel length corresponds to the lowest power of 2 in millimeters
that is greater than the distance between the cameras plus 3 meters. The reason the
scaling works this way is to avoid having to include a divider. Only having to divide by
powers of 2 makes the module much simpler and faster, while the display scaling
remains reasonable. The scaling happens by first calculating the base 2 logarithm of the
length that will correspond to 1024 pixels and then right-shifting the coordinates by the
log minus 10, since this is equivalent to multiplying by 1024 and dividing by the
distance.

The second submodule of the Display module takes in hcount, vcount, the ball
state, the glove states, and the pixel coordinates of an object and outputs the pixel
corresponding to the object. It accomplishes this in 4 stages. The first stage checks
whether the current hcount and vcount is outside the range and returns the address in
the sprite's pixel map memory that the current pixel corresponds to. If the pixel is
outside the range, it returns an address of 0, since the first pixel in all the sprites is
black. The second stage is an instance of the sprite's pixel map ROM, which takes the
address that is output from the first stage and returns the 4-bit entry in that address
which corresponds to the address of the pixel's color in the sprite's color table. The third
submodule is an instance of the sprite's color table ROM, which takes the address that
is output from the second stage and outputs the 24-bit pixel entry. The first three stages
are instantiated once for each sprite that could possibly represent the object. The fourth
stage uses the ball state and glove states to determine which of the sprites is
appropriate. For example, if a glove is closed but not holding the ball, the sprite where it
is closed and not holding the ball will be chosen. The ball's output pixel will be black
when it is being held, since it will then be shown in the glove's sprite.

The output pixels of each object are then combined in the following way. If the
ball's pixel is not black, output the ball's pixel. Otherwise, if the left glove's pixel is not
black, output the left glove's pixel. Otherwise, output the right glove's pixel. The check of
whether it is black is very easy, as it is just a 24-bit NOR gate. The entire Display
module is finely pipelined, which helps prevent display glitches, even during
development, before we used the appropriate 65 MHz clock. The pipelining introduces 6

clock delays to the pixel output, so the hsync, vsync, and hblank signals are also
delayed 6 times, so that the picture is not shifted. A block diagram of the physics and
display modules is shown in Figure 8 below.

Relative glovel pos > ball pos

Relative glove2 pos _ 2 0 ball state
4 Reference Absolute glovel pos_ " "
Distance between cameras Logic Absolute glove2 p os' Physics LOS.IC
> . State Machine

>

glovel state (open/closed)

vy Vv

glove2 state (open/closed)

L\ A 4

A 4

pixel

v

Distance between cameras Obje D3

hcount
veount

$dd

Sprites from ROM

Figure 8: Physics/Display Module - The physics module is shown here with
its inputs, outputs, and internal signals. This module will keep track of the ball,
its motion, and its current state. The frame of reference will be computed in
this module given the glove positions and input distance between the
cameras. The ball will then be rendered by the object painter given its state
from the physics state machine.

Sound Module — Michael Kelessoglou, Matthew Fox

The Sound module gets a trigger signal from the ball state machine logic, which
is high when the ball is caught. Our initial plan was to create a ROM from a .coe file with
an appropriate sound, sampled at 44kHz (same as the AC97’s sampling rate) and feed
it to the AC97 sound chip to play it when triggered, but we could not get the right sound.
Most of the Verilog we used was copied directly from lab 5 and then modified to fit our
purpose. We debugged it to the point where we were sure that the problem was not in
the .coe file or in the interface with the AC97 chip. Due to time constraints, we elected to
use a pure tone generated by a mux with a sequentially incrementing set of select bits
to cycle through all the values of the sine wave. We also applied a cycles limit, so that
the tone would only last for a short period of time (about a second). Given more time we
perhaps could have implemented our input sound in that fashion, but we’re not sure that
is feasible given the large amount of entries of a sound sampled at 44kHz.

Conclusion

Though we were not able to make hand tracking reliable enough to interface with
the other modules, we were able to successfully interface the Glove, Physics, and
Display modules. The end result was the three modules listed above with button input
providing glove position. This made for a playable and fun 2-player game, which was
also easily expandable, and could be taken in various different directions, such as
basketball or dodgeball. Given more time, we could have implemented tracking, which
would have provided a much more immersive experience, as many modern game
systems do, without losing its minimalistic and retro appeal.

Note: In the next few pages, we have provided the code for the combined Glove,
Physics, and Display modules by file

catch.v

module catch(beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, vga_out_pixel clock, vga_out_hsync,
vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1l,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,

tv_in_fifo_clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ram@_data, ram@_address, ram@_adv_ld, ram@ _clk, ram@_cen_b,

ram@_ce_b, ram@_oe_b, ram@_we_ b, ram@ bwe b,

raml_data, raml_address, raml_adv_1ld, raml_clk, raml_cen_b,

raml_ce_ b, raml_oe_b, raml_we_b, raml_bwe b,

clock_feedback out, clock feedback_in,

flash_data, flash_address, flash_ce_b, flash oe_b, flash we b,
flash_reset_b, flash_sts, flash_byte_b,

rs232 _txd, rs232_rxd, rs232_rts, rs232 cts,

mouse_clock, mouse_data, keyboard_clock, keyboard_data,

clock_27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce b,
disp_reset_b, disp_data_in,

buttone, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

userl, user2, user3, user4,

daughtercard,

output
input

output
output

output
output

input
input

output

inout

inout

output
output
output

inout

output
output
output

input
output

inout
output
output
input

output
input

systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

analyzerl_data, analyzerl_clock,
analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4_clock);

beep, audio_reset_b, ac97_synch, ac97_sdata_out;
ac97_bit_clock, ac97_sdata_in;

[7:0] vga_out_red, vga_out_green, vga_out_blue;
vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

vga_out_hsync, vga_out_vsync;

[9:0] tv_out_ycrcb;
tv_out_reset_ b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,

tv_out_subcar_reset;

[19:0] tv_in_ycrcb;

tv_in_data_valid, tv_in_line_clockl, tv_in_line clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

tv_in_i2c_data;

[35:0] ram@_data;

[18:0] ram@_address;

ram@_adv_1d, ram@_clk, ram@_cen_b, ram@ ce b, ram@_oe_b, ramd_we b;
[3:0] ram@_bwe_b;

[35:0] raml_data;

[18:0] raml_address;

raml_adv_1d, raml_clk, raml_cen_b, raml _ce b, raml_oe_b, raml_we_b;
[3:0] raml_bwe_b;

clock_feedback_in;
clock_feedback_out;

[15:0] flash_data;

[23:0] flash_address;

flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
flash_sts;

rs232_txd, rs232_rts;
rs232 rxd, rs232 cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

input clock 27mhz, clockl, clock2;

output disp _blank, disp clock, disp_rs, disp _ce_ b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input button@, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;

inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzerl_data, analyzer2_data, analyzer3_data,
analyzer4_data;

output analyzerl_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

L1117 777 7777777777777/

//

// I/0 Assignments

//

L1117 777 7777777777777/ 77/

// Audio Input and Output
assign beep= 1'bo;

/*assign audio_reset b = 1'bO;
assign ac97_synch = 1'beo;
assign ac97_sdata _out = 1'bo;*/
// ac97 _sdata_1in is an input

// Video Output

assign tv_out_ycrcb = 10'ho;
assign tv_out_reset_b = 1'bo;
assign tv_out_clock = 1'bo;
assign tv_out_i2c_clock = 1'bo;
assign tv_out_i2c_data = 1'bo;
assign tv_out_pal_ntsc = 1'bo;
assign tv_out_hsync_b = 1'bil;
assign tv_out_vsync_b = 1'bil;

assign tv_out_blank_b = 1'bil;
assign tv_out_subcar_reset = 1'b0;

// Video Input
assign tv_in_i2c_clock

1'bo;
1'bo;
assign tv_in_fifo_clock = 1'bo;

assign tv_in_fifo_read

assign tv_in_iso = 1'b0;

assign tv_in_reset_b = 1'bo;

assign tv_in_clock = 1'bo;

assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_1in_Lline_clock1l, tv_in_Line_clock2,
// tv_in_aef, tv_in_hff, and tv_1in_aff are 1inputs

// SRAMs

assign ram@_data = 36'hZ;
assign ram@_address = 19'ho;
assign ram@_adv_1ld = 1'bo;
assign ram@_clk = 1'bo;
assign ram@_cen_b = 1'b1l;
assign ram@_ce_b = 1'bl;
1'bl;
assign ram@_we_b = 1'bl;

assign ram@_oe_b

assign ram@_bwe_b = 4'hF;
assign raml_data = 36'hZ;
assign raml_address = 19'ho;
assign raml_adv_1ld = 1'bo;
assign raml_clk = 1'bo;
assign raml_cen_b = 1'b1l;
assign raml_ce_b = 1'b1l;
1'bl;
assign raml_we_b = 1'b1;

assign raml_oe_b

assign raml_bwe_b = 4'hF;
assign clock_feedback_out = 1'b0;
// clock_feedback_in 1is an 1input

// Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 24'ho;
1'b1;
assign flash_oe_b = 1'bil;

assign flash_ce_b

assign flash_we_b = 1'b1l;
assign flash_reset_b = 1'bo;
assign flash_byte_b = 1'b1;
// flash_sts is an input

// RS-232 Interface
assign rs232_txd = 1'bl;

assign rs232_rts = 1'bl;
// rs232 rxd and rs232_cts are 1inputs

// PS/2 Ports
// mouse_clock, mouse_data, keyboard clock, and keyboard data are inputs

// LED Displays

assign disp_blank = 1'b1;
assign disp_clock = 1'bo;
assign disp_rs = 1'bo;
assign disp_ce b = 1'b1;
assign disp_reset b = 1'bo;
assign disp_data_out = 1'b0;*/
// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//Llab3 assign led = 8'hFF;

// button@, buttonl, button2, button3, button_enter, button_right,
// button_Lleft, button_down, button_up, and switches are inputs

// User I/0s

assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3[24] = 0;
assign user4[29:0] = 30'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port
assign systemace_data = 16'hZ;
assign systemace_address = 7'ho;
assign systemace_ce_b = 1'b1;
1'b1;
assign systemace_oe_b = 1'bl;

assign systemace_we_b

// systemace_irq and systemace_mpbrdy are inputs

// Logic Analyzer

assign analyzerl_data = 16'ho;
assign analyzerl_clock = 1'bl;
assign analyzer2_data = 16'ho;
assign analyzer2_clock = 1'bl;
assign analyzer3_data = 16'ho;
assign analyzer3_clock = 1'bl;
assign analyzer4_data = 16'ho;
assign analyzer4 _clock = 1'bl;

LI11777 777777777777 777777777777 777777777777/ 777/ /7777 /777777
//

// Lab3 : a simple pong game

//

LI11777 7777777777777 777777777777 /7777777777777 /7777777

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz), .CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclkl is 10

// synthesis attribute CLKFX_MULTIPLY of vclkl is 24

// synthesis attribute CLK _FEEDBACK of vclk1l is NONE

// synthesis attribute CLKIN_PERIOD of vclk1l is 37

BUFG vclk2(.0(clock_65mhz),.I(clock_65mhz_unbuf));

// power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b@), .CLK(clock_65mhz), .Q(power_on_reset),
.AG(1'b1l), .A1(1'bl), .A2(1'bl), .A3(1'b1));

defparam reset_sr.INIT = 16 'hFFFF;

// ENTER button is user reset

wire reset,user_reset;

debounce
db1l(.reset(power_on_reset), .clock(clock_65mhz), .noisy(~button_enter),.clean(user_reset));

assign reset = user_reset | power_on_reset;

// UP and DOWN buttons for pong paddle

wire up,down;

debounce db2(.reset(reset),.clock(clock_65mhz), .noisy(~button_up),.clean(up));
debounce db3(.reset(reset),.clock(clock_65mhz),.noisy(~button_down),.clean(down));

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvgal(.vclock(clock_65mhz), .hcount(hcount), .vcount(vcount),
.hsync(hsync), .vsync(vsync), .blank(blank));

// feed XVGA signals to user's pong game
wire [23:0] pixel;
wire phsync,pvsync,pblank;

//Matt's stuff////////7/77/7/77777777777777777777777777777777777/77777777
wire adcClk, canCatch, canCatchClean, openIndex, openRing, open;

wire [7:0] xData;
wire [7:0] yData;
wire [7:0] zData;

assign xData = user3[7:0];
user3[15:8];
user3[23:16];

assign yData

assign zData

assign openIndex = user4[31];
assign openRing = user4[30];

assign open = openRing && openIndex;

clk_divide div(.clk(clock_27mhz), .adcClk(adcClk));
canCatch catcher(.clk(clock 27mhz), .zData(zData), .canCatch(canCatch));
assign user3[31] = adcClk;

//Debounce can Catch signal to make it more useful

wire canCatchsync;

debounce do(.reset(0), .clock(clock_65mhz), .noisy(canCatchsync), .clean(canCatchClean));
synchronize s@(.clk(clock_65mhz),.in(canCatch), .out(canCatchsync));

wire [63:0] display;
assign display = {3'b@, canCatch, 51'h@, open, zData};

// Hex display setup
display_16hex displayl(.reset(©), .clock_27mhz(clock_27mhz), .data(display),
.disp_blank(disp _blank), .disp_clock(disp_clock), .disp_rs(disp_rs),
.disp _ce _b(disp _ce_b),
.disp_reset_b(disp_reset b), .disp data_out(disp_data out));

LI11177777777 7777777777777 7/7777777777/7/777777/7/7777777
// signals for the game

wire glovelclosed;

wire glove2closed;

wire glovelx; // don't know format of coords yet
wire glovely;

wire glove2x;

wire glovey;

wire[5:0] dist;

wire can_catchil;

wire can_catch2;

wire right_handil;

wire right_hand2;

wire game_reset;

wire soundtrigger;

//will eventually be set by switches

assign dist = 6'd6;

assign can_catchl=canCatchClean;

assign can_catch2=userl[1];

assign glovelclosed=~open;

assign glove2closed=userl[0];

assign game_reset = ~button_enter;

L1117777777 7777777777777/ 7777777/77777/7/77777/77/777/777/7/

catch_game cg(.vclock(clock_65mhz),.reset(game_reset),

.glovelclosed(glovelclosed), .glove2closed(glove2closed),
.rel_glovelx(glovelx),.rel_glovely(glovely),
.rel_glove2x(glove2x), .rel_glove2y(glove2y),
.dist(dist),
.test@(~buttono), .testi(~buttonl),
.testright(~button_right), .testleft(~button_left),
.testup(~button_up), .testdown(~button_down),
.testright2(useri[3]), .testleft2(userli[2]),
.testup2(useri[4]), .testdown2(userli[5]),
.can_catchl(can_catchl),.can_catch2(can_catch2),
.right_hand1(right_handl), .right_hand2(right_hand2),

.hcount(hcount), .vcount(vcount),
.sound(soundtrigger),

.hsync(hsync), .vsync(vsync), .blank(blank),
.debug(led[@]),

.phsync(phsync), .pvsync(pvsync), .pblank(pblank), .pixel(pixel));

// switch[1:0] selects which video generator to use:

// ©6: user's pong game

// ©1: 1 pixel outline of active video area (adjust screen controls)
// 16: color bars

reg [23:0] rgb;

wire border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767);

reg b,hs,vs;
always @(posedge clock_27mhz) begin
hs <= phsync;
VS <= pvsync;
b <= pblank;
rgb <= pixel;
end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send 1t ~clock_65mhz.

assign vga_out_red = rgb[23:16];

assign vga_out_green = rgb[15:8];

assign vga_out_blue = rgb[7:0];

assign vga_out_sync_b = 1'bil; // not used

assign vga_out_blank_b = ~b;

assign vga_out_pixel clock = ~clock_65mhz;
assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

assign led[7:1] = 7'b1111111;
wire [4:0] volume = 5'b11111;

reg synctrig;
always @(posedge clock_27mhz) synctrig <= soundtrigger;

sound s1(.clk(clock_27mhz),.trigger(synctrig), .ready(ready), .data(to_ac97_data));

//assign Lled[1] = canCatch;
// AC97 driver
lab5audio a(clock_27mhz, reset, volume, to_ac97_data,ready,
audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_clock);

endmodule

module canCatch(input clk, input [7:0] zData, output reg canCatch = 1);
always @(posedge clk) begin
if(zData > 8'h47 || zData == 8'h00 || zData == 8'h40) canCatch <= 1;
else canCatch <= 0;
end
endmodule

module clk_divide (input clk, output reg adcClk = 9);
reg [7:0] counter;

always @(posedge clk) begin
if(counter == 16) begin
adcClk <= ladcClk;
counter <= 0;
end
else counter <= counter + 1;
end
endmodule

module display_16hex (reset, clock_27mhz, data,
disp_blank, disp_clock, disp _rs, disp_ce_b,
disp_reset b, disp data out);

input reset, clock 27mhz; // clock and reset (active high reset)
input [63:0] data; // 16 hex nibbles to display

output disp _blank, disp_clock, disp_data_out, disp_rs, disp_ce_b,
disp_reset_b;

reg disp_data_out, disp_rs, disp_ce_b, disp_reset_b;

LI11777 77777777777 7777777777777 777777777/ /7777777777
//

// Display Clock

//

// Generate a 500kHz clock for driving the displays.

//

LI11777777 7777777777777 77777777777 7777777777777/ /7 /7777777777

reg [4:0] count;

reg [7:0] reset_count;
reg clock;

wire dreset;

always @(posedge clock_27mhz)

begin
if (reset)
begin
count = 0;
clock = 0;
end
else if (count == 26)
begin
clock = ~clock;
count = 5'hoo;
end

else
count = count+l;
end

always @(posedge clock_27mhz)
if (reset)
reset_count <= 100;
else
reset_count <= (reset_count==0) ? 0 : reset_count-1;

assign dreset = (reset_count != 0);

assign disp_clock = ~clock;

LI11777 77777777777 7777777777777 777777777/ /7777777777
//

// Display State Machine

//

L1117 77777777777777 7777777777777 77777777777/777777777777777777777777777777/77

reg [7:0] state; // FSM state

reg [9:0] dot_index; // index to current dot being clocked out
reg [31:0] control; // control register

reg [3:0] char_index; // index of current character

reg [39:0] dots; // dots for a single digit

reg [3:0] nibble; // hex nibble of current character

assign disp_blank = 1'b0; // Low <= not blanked

always @(posedge clock)
if (dreset)
begin
state <= 0;
dot_index <= 0;
control <= 32'h7F7F7F7F;
end
else
casex (state)
8'heo0:
begin
// Reset displays
disp_data_out <= 1'b0o;
disp_rs <= 1'b0; // dot register
disp_ce_b <= 1'bil;
disp_reset_b <= 1'bo;
dot_index <= 0;
state <= state+l;
end

8'heol:
begin
// End reset
disp_reset_b <= 1'bl;
state <= state+l;
end

8'h02:

begin
// Initialize dot register (set all dots to zero)
disp_ce_b <= 1'bo;
disp_data_out <= 1'b0; // dot_index[0];
if (dot_index == 639)

state <= state+l;

else

dot_index <= dot_index+1;

end

8'he3:

begin
// Latch dot data
disp_ce_b <= 1'bil;
dot_index <= 31; // re-purpose to init ctrl reg
disp_rs <= 1'bl; // Select the control register
state <= state+l;

end

8'ho4:
begin
// Setup the control register
disp_ce_b <= 1'bo;
disp_data_out <= control[31];
control <= {control[36:0], 1'b0o}; // shift Lleft
if (dot_index == 0)
state <= state+l;
else
dot_index <= dot_index-1;
end

8'he5:
begin
// Latch the control register data / dot data
disp_ce_b <= 1'bil;

dot_index <= 39; // init for single char
char_index <= 15; // start with MS char
state <= state+l;
disp_rs <= 1'bo; // Select the dot register
end
8'heo6:
begin

// Load the user's dot data into the dot reg, char by char
disp_ce_b <= 1'bo;
disp_data_out <= dots[dot_index]; // dot data from msb
if (dot_index == 0)
if (char_index == 0)

state <= 5; // all done, Llatch data
else
begin
char_index <= char_index - 1; // goto next char
dot_index <= 39;
end
else

dot_index <= dot_index-1; // else Lloop thru all dots
end

endcase

always @ (data or char_index)
case (char_index)

4'ho: nibble <= data[3:0];

4'h1: nibble <= data[7:4];

4'h2: nibble <= data[11:8];
4'h3: nibble <= data[15:12];
4'h4: nibble <= data[19:16];
4'h5: nibble <= data[23:20];
4'h6: nibble <= data[27:24];
4'h7: nibble <= data[31:28];
4'h8: nibble <= data[35:32];
4'h9: nibble <= data[39:36];
4'hA: nibble <= data[43:40];
4'hB: nibble <= data[47:44];
4'hC: nibble <= data[51:48];
4'hD: nibble <= data[55:52];
4'hE: nibble <= data[59:56];
4'hF: nibble <= data[63:60];

endcase

always @(nibble)
case (nibble)
4'h0: dots <= 40'b00111110 01010001 01001001 01000101 00111110;
4'hl: dots <= 40'b000000LOO_01000010 01111111 01000000 00000000 ;
4'h2: dots <= 40'b01100010_01010001 01001001 01001001 01000110,
4'h3: dots <= 40'b00100010_01000001 01001001 01001001 00110110;
4'h4: dots <= 40'b00011000_00010100 00010010 01111111 0©0010000;
4'h5: dots <= 40'b00100111 01000101 01000101 01000101 00111001;
4'h6: dots <= 40'b00111100_ 01001010 01001001 01001001 00110000;
4'h7: dots <= 40'b00000001_ 01110001 00001001 00000101 000O11;
4'h8: dots <= 40'b00110110_ 01001001 01001001 01001001 00110110;
4'h9: dots <= 40'bo0000110_ 01001001 01001001 00101001 00011110;
4'hA: dots <= 40'b01111110_ 00001001 00001001 00001001 01111110;
4'hB: dots <= 40'b01111111 01001001 01001001 01001001 00110110,
4'hC: dots <= 40'b00111110_ 01000001 01000001 01000001 00100010;
4'hD: dots <= 40'b01111111 01000001 01000001 01000001 00111110;
4'hE: dots <= 40'b01111111 01001001 01001001 01001001 01000001 ;
4'hF: dots <= 40'b01111111 00001001 00001001 00001001 00000001 ;
endcase

endmodule

catch_game.v

module catch_game (
input vclock, // 27MHz clock
input reset, // 1 to initialize module
input glovelclosed,

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

glove2closed,
rel_glovelx,
rel_glovely,
rel_glove2x,
rel_glove2y,
[5:0] dist,
can_catchil,
can_catch2,
right_hand1l,
right_hand2,
testo,
testl,
testright,
testleft,
testup,
testdown,
testright2,
testleft2,
testup2,
testdown2,

input [10:0] hcount, // horizontal index of current pixel (0..1023)

input [9:0]

vcount, // vertical index of current pixel (0..767)

input hsync, // XVGA horizontal sync signal (active Llow)

input vsync, // XVGA vertical sync signal (active Llow)
input blank, // XVGA blanking (1 means output black pixel)
output sound,

output debug,

output phsync, // bong game's horizontal sync

output pvsync, // pbong game's vertical sync

output pblank, // pong game's blanking

output [23:0] pixel // pong game's pixel // r=23:16, g=15:8, b=7:0

)5

wire[15:0] glovelx;

wire[15:0] glovely;

wire[15:0] glove2x;

wire[15:0] glovely;

wire[1:0] ball_state;
wire[15:0] ball x;

wire[15:0] ball_y;

wire[10:0] ballpixelx;
wire[9:0] ballpixely;
wire[10:0] glovelpixelx;
wire[9:0] glovelpixely;
wire[10:0] glove2pixelx;
wire[9:0] glove2pixely;

wire[23:0] ballpixel;
wire[23:0] glovelpixel;
wire[23:0] glove2pixel;

wire catch_event;

wire throw_event;
assign sound = catch_event;

global_coords gc(.clk(vclock),
.rel_glovelx(rel_glovelx),.rel_glovely(rel_glovely),
.rel_glove2x(rel_glove2x),.rel_glove2y(rel_glove2y),
.dist(dist),.right_handl(right_handl),.right_hand2(right_hand2),
.testright(testright),.testleft(testleft),
.testup(testup), .testdown(testdown),
.testright2(testright2),.testleft2(testleft2),
.testup2(testup2), .testdown2(testdown2),
.glob_glovelx(glovelx),.glob_glovely(glovely),
.glob_glove2x(glove2x),.glob_glove2y(glove2y));

ballSM bsm(.clk(vclock),.reset(reset),
.glovelx(glovelx), .glovely(glovely),
.glove2x(glove2x), .glove2y(glove2y),
.glovelclosed(glovelclosed), .glove2closed(glove2closed),
.can_catchl(can_catchl),.can_catch2(can_catch2),
.testo(testO0),.testl(testl),
.dist(dist),
.debug(debug),
.catch_event(catch_event),.throw_event(throw event),
.ball_state(ball_state),.ball_x(ball_x),.ball_y(ball_ y));

coords_to_pixel bpc(.x_coord(ball_x),.y coord(ball_y),
.dist(dist),
.pixel_x(ballpixelx),.pixel_y(ballpixely));

coords_to_pixel glpc(.x_coord(glovelx),.y_coord(glovely),

/*

/*

.dist(dist),
.pixel_x(glovelpixelx),.pixel_y(glovelpixely));

coords_to_pixel g2pc(.x_coord(glove2x),.y_coord(glove2y),
.dist(dist),
.pixel_x(glove2pixelx),.pixel_y(glove2pixely));

blob bblob(.x(ballpixelx), .hcount(hcount),
.y(ballpixely), .vcount(vcount),
.color({8'hFF,16'b0}),
.pixel(ballpixel));*/

draw_ball db(.clk(vclock), .hcount(hcount),.vcount(vcount), .blank(blank),
.x(ballpixelx),.y(ballpixely),.ball_state(ball_state),
.pixel(ballpixel));

blob glblob(.x(glovelpixelx), .hcount(hcount),
.y(glovelpixely), .vcount(vcount),
.color({16'b0,8'hFF}),
.pixel(glovelpixel));*/

draw_p1l dpl(.clk(vclock), .hcount(hcount), .vcount(vcount),.blank(blank),

.x(glovelpixelx),.y(glovelpixely),.ball state(ball_state),

.closed(glovelclosed), .pixel(glovelpixel));

/*blob g2blob(.x(glove2pixelx), .hcount(hcount),
.y(glove2pixely), .vcount(vcount),
.color({16'b0,8'hFF}),
.pixel(glove2pixel));*/

draw_p2 dp2(.clk(vclock), .hcount(hcount), .vcount(vcount), .blank(blank),

.x(glove2pixelx), .y(glove2pixely),.ball state(ball_state),

.closed(glove2closed), .pixel(glove2pixel));

reg[23:0] outpixel;
reg hsyncldelay;
reg vsyncldelay;
reg blankldelay;

reg hsync2delay;
reg vsync2delay;
blank2delay;

hsync3delay;

reg
reg
reg vsync3delay;
blank3delay;
hsync4delay;

reg
reg
reg vsync4delay;
blank4delay;
hsync5delay;

reg
reg
reg vsync5delay;
blank5delay;
hsyncédelay;

reg
reg
reg vsyncédelay;
reg blankédelay;

always @(posedge vclock) begin

hsyncldelay <= hsync;

vsyncldelay <= vsync;

blankldelay <= blank;

hsync2delay <= hsyncldelay;
vsync2delay <= vsyncldelay;
blank2delay <= blankldelay;
hsync3delay <= hsync2delay;
vsync3delay <= vsync2delay;
blank3delay <= blank2delay;
hsync4delay <= hsync3delay;
vsync4delay <= vsync3delay;
blank4delay <= blank3delay;
hsync5delay <= hsync4delay;
vsync5delay <= vsync4ddelay;
blank5delay <= blank4delay;
hsyncédelay <= hsync5delay;
vsyncé6delay <= vsync5delay;
blank6delay <= blank5delay;

if (|ballpixel) outpixel <= ballpixel;
else if (|glovelpixel) outpixel <= glovelpixel;
else outpixel <= glove2pixel;

end

assign pixel = outpixel;

assign phsync = hsyncédelay;
assign pvsync = vsyncé6delay;
assign pblank = blankédelay;

endmodule

global_coords.v

module global_coords(

input clk,

input rel_glovelx,
input rel_glovely,
input rel_glove2x,

input rel_glove2y,

input[5:0]

dist,//in meters

input right_handil,
input right_hand2,

input
input
input
input
input
input
input
input

testright,
testleft,
testup,
testdown,
testright2,
testleft2,
testup2,
testdown2,

output reg[15:0] glob_glovelx,
output reg[15:0] glob_glovely,
output reg[15:0] glob_glove2x,
output reg[15:0] glob_glove2y

)s

//all distances except for dist are in millimeters; dist is in meters

reg[17:0] update_counter; //210937

LI11777777777777777777777777777777777777

//

//button inputs until we get input from hand-tracking

initial glob_glovelx

16'd2000;

initial glob_glovely = 16'd2000;
initial glob_glove2x = 16'd8000;
initial glob_glove2y = 16'd2000;
always @(posedge clk) begin

if (update_counter == 0) begin
glob_glovelx <= glob_glovelx + (testright-testleft)*15;

(testup-testdown)*15;

(testright2-testleft2)*15;

(testup2-testdown2)*15;

glob_glovely <= glob_glovely
glob_glove2x <= glob_glove2x

+ + o+ +

glob_glove2y <= glob_glove2y

update_counter <= 210937;
end else begin

glob_glovelx <= glob_glovelx;

glob_glovely <= glob_glovely;

end
end

glob_glove2x <= glob_glove2x;
glob_glove2y <= glob_glove2y;
update_counter <= update_counter-1;

L1117777777777777777777777777777/777777777

endmodule

ballSM.v

module ballSM(
input clk,
input reset,
input[15:0] glovelx,
input[15:0] glovely,
input[15:0] glove2x,
input[15:0] glove2y,
input glovelclosed,
input glove2closed,

input can_catchil,

input can_catch2,

input testo,
input testl,

input[5:0] dist,

output debug,

output reg catch_event,

output reg throw_event,
output reg[1:0] ball_state,//0 if ball is in the air,

glovel, 2 if held by glove2
output reg[15:0] ball_x,
output reg[15:0] ball_y

)s

parameter updatesPerSec = 128;
parameter tolerance = 300; //within how many mms a catch can be made

parameter ballRadius = 50;

//ALL distances in the 1inputs and outputs are in millimeters

//Ball's velocity in millimeters/second

//1 if held by

reg [15:0] ballvelx;

reg [15:0] ballvely;

reg ballvelxdir;//0 means right (positive x vel)
reg ballvelydir;//6 means up (positive y vel)

//This signal dictates when velocity and position are updated
reg update;
reg[18:0] update_counter;

//These variables keep track of past positions of the ball to determine
// its velocity

reg[15:0] pastposx;

reg[15:0] pastposy;

//These keep track of whether the glove has recently been opened
reg glovelopened;

reg glove2opened;

reg gloveledge;

reg glove2edge;

//These keep track of whether the ball is close enough to a glove to get caught
wire closeToGlovel;
wire closeToGlove2;

wire[15:0] mmdist;

//This keeps track of whether the ball is touching the floor or a wall
wire ballAtEdge;

assign debug = ~closeToGlovel;
assign mmdist = {10'b0,dist}*1000;
assign closeToGlovel =
((ball_x »>= glovelx && ball x - glovelx < tolerance)
|| (ball_x < glovelx && glovelx - ball x < tolerance)) &&
((ball_y »>= glovely && ball y - glovely < tolerance)
|| (ball_y < glovely && glovely - ball_ y < tolerance));
assign closeToGlove2 =
((ball_x >= glove2x && ball x - glove2x < tolerance)
|| (ball_x < glove2x && glove2x - ball x < tolerance)) &&
((ball_y »>= glove2y && ball y - glove2y < tolerance)
|| (ball_y < glove2y && glove2y - ball_ y < tolerance));
assign ballAtEdge =
(ball_x < ballRadius + 5) || (ball_x > mmdist + 4000 - ballRadius)
|| (ball_y < ballRadius + 5);

reg[3:0] trig_counter;

always @(posedge clk) begin
if (catch_event) trig counter <= 5;
if (throw_event) trig counter <= 5;
if (trig_counter == 0) begin
catch_event <= 0;
throw_event <= 0;
end else trig_counter <= trig_counter - 1;
glovelopened <= ~glovelclosed;
glove2opened <= ~glove2closed;
gloveledge <= glovelclosed && glovelopened;
glove2edge <= glove2closed && glove2opened;
if (update_counter == 0) begin
update <= 1;
update_counter <= 507811;//128Hz must be same as updatesPerSec
end else begin
update <= 9;
update_counter <= update_counter - 1;
end
//1f reset is asserted and the ball 1is in the air, it appears
//1in one of the gloves if either of them is closed
if (reset) begin
if (ball_state == ©) begin
if (glovelclosed) begin
ball state <= 1;
ball_x <= glovelx;
pastposx <= glovelx;
ball_y <= glovely;
pastposy <= glovely;
ballvelx <= 0;
ballvely <= 0;
end else if (glove2closed) begin
ball state <= 2;
ball_x <= glove2x;
pastposx <= glovelx;
ball_y <= glove2y;
pastposy <= glovely;
ballvelx <= 0;
ballvely <= 0;
end
end
end else if (test®) begin
ball state <= 0;
ball_x <= glovelx;
ball_y <= glovely;
ballvelx <= 0;

ballvely + 77;

ballvely <= 4000;
ballvelydir <= 0;
end else if (testl) begin
ball state <= 0;
ball_x <= glovelx;
ball_y <= glovely;
ballvelx <= 4000;
ballvely <= 4000;
ballvelxdir <= 0;
ballvelydir <= 0;
end else begin
if (update) begin
pastposx <= ball x;
pastposy <= ball_y;
if (ball_state > ©) begin
if (ball_x > pastposx)begin
ballvelx <= (ball _x - pastposx)*updatesPerSec;
ballvelxdir <= 0;
end else begin
ballvelx <= (pastposx - ball x)*updatesPerSec;
ballvelxdir <= 1;
end
if (ball_y > pastposy)begin
ballvely <= (ball_y - pastposy)*updatesPerSec;
ballvelydir <= 0;
end else begin
ballvely <= (pastposy - ball_y)*updatesPerSec;
ballvelydir <= 1;
end
end else begin
ballvelx <= ballvelx; //no air resistance
if (ballvelydir == 0) begin
//77 = g*DeltaT = 9806 mm/s"2 * (1/128 s)
if (ballvely >= 77) ballvely <= ballvely - 77;
else begin
ballvelydir <= 1;
ballvely <= 77 - ballvely;
end
end else begin
if (ballvely <= 16'hFFFF - 16'd77) ballvely <=

else ballvely <= 16 hFFFF;

end
end
end
case (ball_state)
0:

begin

if (update) begin
if (ballAtEdge) begin
ball x <= ball_x;
ball_ y <= ball_y;
end else begin
//DeltaX = v*DeltaT
if (~ballvelxdir) ball_x <= ball_x +
(ballvelx / updatesPerSec);
else ball x <= ball x - (ballvelx /
updatesPerSec);
if (~ballvelydir) ball_y <= ball_ y +
(ballvely / updatesPerSec);
else begin
if (ball_y > (ballvely /
updatesPerSec)) ball_ y <= ball_y - (ballvely / updatesPerSec);
else ball_ y <= 5;
end
end
end
if (gloveledge && can_catchl && closeToGlovel) begin
ball state <= 1;
catch_event <= 1;
end else if (glove2edge && can_catch2 &&
closeToGlove2) begin
ball state <= 2;
catch_event <= 1;
end else ball state <= 0;

end
1:
begin
ball_x <= glovelx;
ball_y <= glovely;
if (glovelclosed) ball_state <= 1;
else begin
ball state <= 0;
throw_event <= 1;
end
end
2:
begin

ball_x <= glove2x;

ball_y <= glove2y;

if (glove2closed) ball_state <= 2;

else begin
ball state <= 0;
throw_event <= 1;

end

end

default:

begin
ball x <= ball_x;
ball y <= ball_y;

end

endcase
end
end

//for testing purposes
initial ball state = 0;
initial ball x = 16'd4000;
initial ball_ y = 16'd2000;
initial ballvelx = 500;
initial ballvely = 3000;
initial ballvelxdir = 0;
initial ballvelydir = 0;

endmodule

coords_to_pixel.v

module coords_to_pixel(
input[15:0] x_coord,//in mm
input[15:0] y_coord,//in mm
input[5:0] dist,//in meters
output reg[10:0] pixel x,
output reg[9:0] pixel_y
)

wire[6:0] maxdist;
//negative coords or coords greater than maxdist will not be on screen
assign maxdist = dist + 3;

reg[2:0] power0f2;

always @(*) begin
if (maxdist < 4) powerOf2 = 2;
else if (maxdist < 8) power0Of2 = 3;
else if (maxdist < 16) powerOf2 = 4;
else if (maxdist < 32) powerOf2 = 5;
else power0Of2 = 6;
//multiply by 1024 (number of pixels) and divide by 1024 for mm's per 1.024m
//so do nothing

pixel x = x_coord >> powerOf2;
pixel_y = 767 - (y_coord >> powerOf2);
end

endmodule

draw_ball.v

module draw_ball(
input clk,
input[10:0] hcount,
input[9:0] vcount,
input blank,
input[15:0] x,
input[15:0] vy,
input[1:0] ball_state,
output reg[23:0] pixel
)

wire[11:0] map_addr;//memory address in color map
reg[11:0] map_addr2;

wire[3:0] table_addr;//memory address in color table
reg[3:0] table_addr2;

wire[23:0] prepixel;

//get map address
get_map_address gma(.clk(clk),.hcount(hcount),.vcount(vcount),.blank(blank),
Xx(x),.y(y),.addr(map_addr));

//get table address
ball color_map map(.clka(clk),.addra(map_addr2),.douta(table_addr));

//get table entry
ball color_table ctable(.clka(clk),.addra(table_addr2),.douta(prepixel));

always @(posedge clk) begin
map_addr2<=map_addr;
table_addr2<=table_addr;
if (ball_state == @) pixel <= prepixel;
else pixel <= 24'de;

end

endmodule

draw_p1.v

module draw_pi(
input clk,
input[10:0] hcount,
input[9:0] vcount,
input blank,

input[15:0] x,
input[15:0] vy,
input[1:0] ball_state,
input closed,

output reg[23:0] pixel

)s

hctable(.

wire[11:0] map_addr;//memory address in color map
reg[11:0] map_addr2;

wire[3:0] table_addr;//memory address in color table
wire[3:0] table_addrh;

wire[3:0] table_addrc;

reg[3:0] table_addr2;

reg[3:0] table_addrh2;

reg[3:0] table_addrc2;

wire[23:0] prepixell;

wire[23:0] prepixel2;

wire[23:0] prepixel3;

//get map address
get_map_address gma(.clk(clk),.hcount(hcount),.vcount(vcount),.blank(blank),
x(x),.y(y),.addr(map_addr));

//get table address

open_hand_1 color_map map(.clka(clk),.addra(map_addr2), .douta(table_addr));
holding ball 1 color_map hmap(.clka(clk),.addra(map_addr2), .douta(table_addrh));
closed_hand_1 color_map cmap(.clka(clk),.addra(map_addr2),.douta(table_addrc));

//get table entry

open_hand_color_table ctable(.clka(clk),.addra(table_addr2),.douta(prepixell));
holding ball 1 color_table

clka(clk), .addra(table_addrh2), .douta(prepixel2));

closed_hand_color_table cctable(.clka(clk),.addra(table_addrc2),.douta(prepixel3));

always @(posedge clk) begin

map_addr2<=map_addr;
table_addr2<=table_addr;
table_addrh2<=table_addrh;
table_addrc2<=table_addrc;
if (ball_state == 1) pixel <= prepixel2;
else if (closed) pixel <= prepixel3;
else pixel <= prepixell;

end

endmodule

draw_p2.v

module draw_p2(

input clk,

input[10:0] hcount,

input[9:0] vcount,

input blank,
input[15:0] x,
input[15:0] vy,
input[1:0] ball_state,
input closed,

output reg[23:0] pixel

)s

wire[11:0] map_addr;//memory address in color map
reg[11:0] map_addr2;

wire[3:0] table_addr;//memory address in color table
wire[3:0] table_addrh;

wire[3:0] table_addrc;

reg[3:0] table_addr2;

reg[3:0] table_addrh2;

reg[3:0] table_addrc2;

wire[23:0] prepixell;

wire[23:0] prepixel2;

wire[23:0] prepixel3;

//get map address
get_map_address gma(.clk(clk),.hcount(hcount),.vcount(vcount),.blank(blank),
Xx(x),.y(y),.addr(map_addr));

//get table address

open_hand_color_map map(.clka(clk),.addra(map_addr2), .douta(table_addr));
holding ball color_map hmap(.clka(clk),.addra(map_addr2),.douta(table_addrh));
closed_hand_color_map cmap(.clka(clk),.addra(map_addr2),.douta(table_addrc));

//get table entry

open_hand_color_table ctable(.clka(clk),.addra(table_addr2),.douta(prepixell));
holding ball color_table hctable(.clka(clk),.addra(table_addrh2),.douta(prepixel2));
closed_hand_color_table cctable(.clka(clk),.addra(table_addrc2),.douta(prepixel3));

always @(posedge clk) begin
map_addr2<=map_addr;
table_addr2<=table_addr;
table_addrh2<=table_addrh;
table_addrc2<=table_addrc;
if (ball_state == 2) pixel <= prepixel2;
else if (closed) pixel <= prepixel3;
else pixel <= prepixell;

end

endmodule

get_map_address.v

module get_map_address(
input clk,
input[10:0] hcount,
input[9:0] vcount,
input blank,
input[15:0] x,
input[15:0] y,
output reg[11:0] addr
)

wire outofboundsi;
wire outofbounds2;
wire outofbounds3;
wire outofbounds4;
reg outofbounds;

reg[15:0] fulladdr;

reg[15:0] dx;
reg[15:0] dy;

parameter xoffset = 16'd35;
parameter yoffset = 16'd25;

//determines whether current pixel 1s within object sprite
assign outofboundsl = ((hcount < x) && hcount < x - xoffset+l);
assign outofbounds2 = (hcount > x & hcount > x + xoffset-1);
assign outofbounds3 = (vcount < y & vcount < y - yoffset+l);
assign outofbounds4 = (vcount > y & vcount > y + yoffset-1);

always @(posedge clk) begin

outofbounds <= blank || outofboundsl || outofbounds2 || outofbounds3 ||
outofbounds4;
dx <= (hcount + xoffset - x);
dy <= (vcount + yoffset - y)*70;
if (outofbounds) begin
fulladdr <= 0;
end else begin
fulladdr <= dy + dx;
end
addr <= fulladdr[11:0];
end
endmodule
sound.v

module sound(
input clk,
input trigger,
input ready,
output reg[7:9] data);

reg[13:0] address = 0;

reg playing;
wire [7:0] predata;

soundrom sr(.clka(clk),.addra(address), .douta(predata));

always @(posedge clk) begin
if (trigger && ~playing) begin
playing <= 1;
address <= 0;

data <= 09;
end else if (playing) begin
if (address == 8999) playing <= 0;
else if (ready) begin
address <= address + 1;

end
data <= predata;

end
else data <= 0;

end
endmodule
//
// bi-directional monaural interface to AC97
//

L1117 777777777777777777 7777777777777 777777777777777777777/7777/7777777777777777

module lab5audio (
input wire clock_27mhz,
input wire reset,
input wire [4:0] volume,
//output wire [7:0] audio_1in_data,
input wire [7:0] audio_out_data,
output wire ready,
output reg audio_reset_b, // ac97 interface signals
output wire ac97_sdata_out,
input wire ac97_sdata_in,
output wire ac97_synch,
input wire ac97_bit_clock

)5

wire [7:0] audio_in_data;

wire [7:0] command_address;

wire [15:0] command_data;

wire command_valid;

wire [19:0] left_in_data, right_in_data;
wire [19:0] left_out_data, right_out_data;

// wait a Llittle before enabling the AC97 codec
reg [9:0] reset_count;
always @(posedge clock_27mhz) begin
if (reset) begin
audio_reset_b = 1'be;
reset_count = 0;
end else if (reset_count == 1023)
audio _reset_b = 1'bl;
else
reset_count = reset_count+1;
end

wire ac97_ready;

ac97 ac97(.ready(ac97_ready),
.command_address(command_address),
.command_data(command_data),
.command_valid(command_valid),
.left_data(left_out_data), .left valid(1'bl),
.right_data(right_out_data), .right_valid(1'b1l),
.left_in_data(left_in_data), .right_in_data(right_in_data),
.ac97_sdata_out(ac97_sdata_out),
.ac97_sdata_in(ac97_sdata_in),
.ac97_synch(ac97_synch),
.ac97_bit _clock(ac97_bit clock));

// ready: one cycle pulse synchronous with clock_27mhz

reg [2:0] ready_sync;

always @ (posedge clock_27mhz) ready_sync <= {ready_sync[1:0], ac97_ready};
assign ready = ready_sync[1l] & ~ready_sync[2];

reg [7:0] out_data;
always @ (posedge clock_27mhz)
if (ready) out_data <= audio_out_data;
assign audio_in_data = left_in_data[19:12];
assign left_out_data = {out_data, 12'b000000000000};
assign right_out_data = left_out_data;

// generate repeating sequence of read/writes to AC97 registers
ac97commands cmds(.clock(clock_27mhz), .ready(ready),

.command_address(command_address),

.command_data(command_data),

.command_valid(command_valid),

.volume(volume),

.source(3'boe0)); // mic
endmodule

// assemble/disassemble AC97 serial frames
module ac97 (
output reg ready,
input wire [7:0] command_address,
input wire [15:0] command_data,
input wire command_valid,
input wire [19:0] left_data,
input wire left_valid,
input wire [19:0] right_data,
input wire right_valid,
output reg [19:0] left_in_data, right_in_data,
output reg ac97_sdata_out,
input wire ac97_sdata_in,
output reg ac97_synch,
input wire ac97_bit_clock
)
reg [7:0] bit_count;

reg [19:0] 1_cmd_addr;

reg [19:0] 1_cmd_data;

reg [19:0] 1_left_data, 1_right_data;
reg 1 _cmd_v, 1_left_ v, 1_right_v;

initial begin
ready <= 1'bo;
// synthesis attribute init of ready is "0";
ac97_sdata_out <= 1'be;
// synthesis attribute init of ac97_sdata_out is "0";
ac97_synch <= 1'bo;
// synthesis attribute init of ac97_synch is "0";

bit_count <= 8'heo;

// synthesis attribute 1init of bit_count is "0000";
1 cmd_v <= 1'be;

// synthesis attribute init of L_cmd_v is "0";

1 left v <= 1'bo;

// synthesis attribute 1init of L_Lleft v is "0";

1 right_v <= 1'bo;

// synthesis attribute init of L_right_v is "0";

left_in_data <= 20'h00000;

// synthesis attribute init of left_in data is "00000";

right_in_data <= 20'h00000;

// synthesis attribute init of right_in_data is "00000";
end

always @(posedge ac97_bit_clock) begin
// Generate the sync signal
if (bit_count == 255)
ac97_synch <= 1'b1l;
if (bit_count == 15)
ac97_synch <= 1'bo;

// Generate the ready signal
if (bit_count == 128)

ready <= 1'bl;
if (bit_count == 2)

ready <= 1'bo;

// Latch user data at the end of each frame. This ensures that the
// first frame after reset will be empty.
if (bit_count == 255) begin

1 cmd_addr <= {command_address, 12'h000};

1 cmd_data <= {command_data, 4'ho};

1 cmd_v <= command_valid;

1 left _data <= left_data;

1 left v <= left_valid;

1 right_data <= right_data;

1 right_v <= right_valid;
end

if ((bit_count >= 0) && (bit_count <= 15))
// Slot @: Tags
case (bit_count[3:90])
4'h@: ac97_sdata_out <= 1'bl; // Frame valid
4'hl: ac97_sdata_out <= 1 _cmd_v; // Command address valid
4'h2: ac97_sdata_out <= 1 _cmd_v; // Command data valid
4'h3: ac97_sdata_out <= 1 _left v; // Left data valid
4'h4: ac97_sdata_out <= 1_right_v; // Right data valid
default: ac97_sdata_out <= 1'b0;
endcase
else if ((bit_count »>= 16) & & (bit_count <= 35))
// Slot 1: Command address (8-bits, left justified)
ac97_sdata_out <= 1 cmd_v ? 1 cmd_addr[35-bit_count] : 1'bo;
else if ((bit_count »>= 36) & & (bit_count <= 55))
// Slot 2: Command data (16-bits, left justified)
ac97_sdata_out <= 1 cmd_ v ? 1 cmd_data[55-bit_count] : 1'bo;
else if ((bit_count >= 56) && (bit_count <= 75)) begin
// Slot 3: Left channel

ac97_sdata_out <= 1 left v ? 1 left data[19] : 1'be;

1 left data <= { 1_left_data[18:0], 1_left_data[19] };
end
else if ((bit_count »>= 76) & & (bit_count <= 95))

// Slot 4: Right channel

ac97_sdata_out <= 1 _right_v ? 1 _right data[95-bit_count]
else

ac97_sdata_out <= 1'bo;

bit _count <= bit_count+1;
end // always @ (posedge ac97 bit_clock)

always @(negedge ac97_bit_clock) begin
if ((bit_count >= 57) && (bit_count <= 76))
// Slot 3: Left channel
left_in_data <= { left_in_data[18:0], ac97_sdata_in };
else if ((bit_count »>= 77) & & (bit_count <= 96))
// Slot 4: Right channel
right_in_data <= { right_in_data[18:0], ac97_sdata_in };
end
endmodule

// 1ssue 1initialization commands to AC97
module ac97commands (
input wire clock,
input wire ready,
output wire [7:0] command_address,
output wire [15:0] command_data,
output reg command_valid,
input wire [4:0] volume,
input wire [2:0] source
)

reg [23:0] command;

reg [3:0] state;

initial begin
command <= 4'ho;
// synthesis attribute init of command is "0";
command_valid <= 1'bo;
// synthesis attribute init of command_valid is "©";
state <= 16'h0ooo;
// synthesis attribute init of state is "0000";

end

assign command_address = command[23:16];
assign command_data = command[15:0];

wire [4:0] vol;

: 1'b0;

assign vol = 31-volume; // convert to attenuation

always @(posedge clock) begin
if (ready) state <= state+1;

case (state)
4'ho: // Read ID
begin
command <= 24'h80_0000;
command_valid <= 1'b1;
end
4'hl: // Read ID
command <= 24'h80_0000;
4'h3: // headphone volume
command <= { 8'ho4, 3'booo, vol, 3'boeo, vol };
4'h5: // PCM volume
command <= 24'h18_0808;
4'h6: // Record source select
command <= { 8'hlA, 5'b00000, source, 5'bO000O, source};
4'h7: // Record gain = max
command <= 24'h1C_OF0F;
4'h9: // set +20db mic gain
command <= 24'hOE_8048;
4'hA: // Set beep volume
command <= 24'hoA_0000;
4'hB: // PCM out bypass mix1
command <= 24'h20_8000;
default:
command <= 24'h80_0000;
endcase // case(state)
end // always @ (posedge clock)
endmodule // ac97commands

