
Matthew Fox, Michael Kelessoglou, Evangelos Taratoris
6.111 Project Proposal
2 November 2013
	

	

Virtual Pitch and Catch
	

	

	

Overview
	

	

 The game of pitch and catch resonates deeply within many cultures as a shared
experience. Whether it be strengthening a parent-child relationship, passing time with a
friend, or training for the upcoming season, people across the world engage in this game
on a regular basis. On another strain, the tech community and the gaming industry as a
whole are moving towards virtual reality as the next avenue for the new generation of
games. One only has to look as far as the Nintendo Wii, XBox Kinect, Oculus Rift, or
Playstation Move to see the trend of virtual reality sweeping the gaming industry.

Our idea for virtual pitch and catch lies at the intersection of these two cultural
practices, the analog game of pitch and catch and the digital storm of virtual reality. We
hope to bring the interactive game that has been so beloved for over a hundred years to
the twenty-first century by creating a virtual interface for two players to throw and catch
a digitally produced ball. We will use trackable gloves with multiple types of sensors to
track and monitor the user’s actions while playing the game, allowing us to show the
game’s progress on a monitor and simulate the actions of the virtual ball.

Furthermore, the implementation of the pitch and catch game will provide a
framework that is highly configurable for interesting applications. Some of these include
a virtual basketball game, a three dimensional pitch and catch game, a blue screen
addition to the original game, and many more. This flexibility that the implementation
allows supports the creation of this project that, in its basis, is already strong.
	

	

	

Design Decisions
	

	

 In our exploration of this project, we have laid out an overall block diagram
detailing the modules of our project and how they interconnect (See Figure 1). The first
design decision that we have made is to create a “smart glove” for each player that will
inform our system of the hand’s acceleration and openness. To detect whether the hand
is opened or closed, we have decided to use a pair of flex sensors on each glove with
surrounding circuitry to give a clean output to the module. The glove will also have an
accelerometer so that we have some reliable data for tracking the glove.
 The next major portion of the project is the physics module and rendering. We
have made the design decision of making a two dimensional game as to simplify the hand

tracking and the physics involved but mostly to simplify the on-screen
rendering. Because of this decision, we will be able to provide a real-time visual
approximation of the ball’s location to inform the players of the progress of the game.
 The last major design decision that we’ve made prior to starting the project is to
track the bright color of each glove through a camera near to the glove. This data
combined with the data from the glove’s accelerometer should give us a very reliable and
robust way of tracking the player’s hands throughout the game. In order to allow the
cameras to track each player’s hand, we’ve made the decision to fit two cameras to this
project, one in front of each player, with the image processing for each done on a separate
labkit to avoid running into issues with processing power. Overall, the decisions we’ve
made should allow us to complete a working version of a fun and compelling game.
	

	

	

Implementation
	

	

Glove Module – Matthew Fox
 The glove and its surrounding circuitry are one of the major modules of this
project. We are planning on fitting two gloves that will be tracked by the FPGA camera
provided (one for each player). Because of this, we have chosen to buy a pair of bright
orange gloves to serve as a bright indicator that the camera can track. These gloves will
be fitted with a few sensors, namely two flex sensors and an accelerometer each. The
flex sensors (purchased from sparkfun - https://www.sparkfun.com/products/10264)
create a variable resistance that increases with bending. We plan to fit these to the
outside of the index and ring fingers of the glove so as to discern when the hand
closes. In the datasheet of these flex sensors, a suggested circuit is provided for
producing an output voltage that will inform us of the level to which the hand is
closed. We plan on using an operational amplifier to push this output to the rails so that
we can have a binary output from this module of the hand’s openness. We have chosen
to have two flex sensors per hand to approach assuredness that the hand is intentionally
being closed rather than partially flexed. By using a NAND gate as we did in Lab1
(74LS00), we will only accept a hand as closed when both signals are low, showing an
intentional closing.
 In addition to the bright glove and the flex sensors, we will outfit each glove with
an accelerometer to capture the acceleration of the glove leading up to a throwing
event. We have ordered two accelerometers and breakout boards (purchased from
sparkfun - https://www.sparkfun.com/products/10955). These small boards will be
mounted on the back of the hand and will serve to factor into the acceleration given to the
ball in the physics module. The accelerometer should give reliable and near noise-free
data that can counteract any issues that arise with noise in the hand-tracking module,
allowing us to have multiple options should either the accelerometer or tracking fail to
produce reliable results.
 The glove module will not need inputs from the FPGA as it is simply sending data
back to the FPGA from the user’s actions. The glove’s outputs will be as follows: open,
x_Accel, and y_Accel. Because we are currently completing a two dimensional game,

the z acceleration will not matter, and will not appear as an output. These inputs will
need to be synchronized to the rest of the FPGA before they may be used. Refer to
Figure 2 for the block diagram of this module.
	

	

	

Physics and Display Module – Michael Kelessoglou
	

	

 The physics module will implement all the logic necessary for the game
mechanics, which will attempt to emulate real-world physics. Using input from the visual
tracking logic, the flex sensors, and the accelerometer, it will keep track of the position of
the ball and the hands and output them to the VGA screen.
 The logic will implement a state machine for the ball’s position and velocity. It
will make it possible to use switches to input how far away the two players are standing,
so that the game can be played at various distances. During our first iteration, the hands’
positions will be derived solely from the visual tracking logic. If we find that it helps, we
may combine the accelerometer data with the visual tracking data to get a more accurate
and less glitchy estimate of position. The flex sensor input will determine whether the
hand is closed. This signal will most likely need to be synchronized. The ball can be in
two states, the “holding” state and the “thrown” state. If the ball is in the “thrown” state
and the hand is close enough to the ball when it closes, then we will transition to the
“holding” state, in which the ball’s position and velocity will match those of the hand.
When the hand opens, the ball transitions to the “thrown” state, during which its velocity
is affected only by the acceleration of gravity and possibly wind resistance if we decide
to implement it. Both state transitions will trigger appropriate sound events.
 The display module will display the ball and hands on the screen. The hands will
be displayed using two sprites, one for a closed fist and one for an open hand. If we
decide to implement more than two states for the hands, though that is not necessary for
the game mechanics, then there will be one sprite for each state. The ball will either also
be displayed as a sprite or as a monochromatic circle. We may use a separate sprite for a
hand holding the ball. The sprites will be stored in the ROM of the FPGA. There will be
an object module, similar the the “block module” in Lab 3, that takes in screen
coordinates (hcount, vcount, etc.), the the x and y coordinates of the object, and the
object’s sprite, and outputs the pixel for a particular object (a.k.a. black if the object is not
in the current hcount-vcount coordinates or the color of the sprite pixel that should be at
the current coordinates). The pixel outputs for each object will be combined to get the
output pixel. The method will be that if everything is black except for a single object,
then that object’s pixel is passed. If more than one object have non-black pixels, then
each object will have a priority variable, and the one that will be shown will be decided
by which one has the highest priority. The scale of the display will be dependant on the
distance between cameras. If this module requires pipelining to meet time constraints,
then this will not affect gameplay, as long as we apply the appropriate delays to the
screen coordinates (hcount, vcount, etc.). An unpipelined block diagram of the module is
shown in Figure 3.

 As an additional feature, we may decide to implement a floor or walls. The ball
may stick to them until someone picks it up, or it may bounce off them with variable
elasticity set by user input. We may also add a game mode in which the second player is
replaced by a target, a wall, a user controlled paddle, or an artificial intelligence “goalie.”
	

	

	

	

Hand-Tracking Module - Evangelos Taratoris
	

	

 The hand-tracking module will implement all the necessary logic that will enable
us to take a sensory input from a camera and output the correct position of a virtual hand
relative to our absolute defined coordinates. Upon initialization, we will create an
absolute coordinate system based on the acceptable visual range of the camera. Then the
module will take as input the image from the camera and it will output the location of the
hands in the previously defined coordinate system. It will do so using an algorithm that
will evaluate the position of the coloured gloves.
 The algorithm will operate as follows: We will define an acceptable range of
colours in the RGB scale to be perceived as “acceptable” orange. Then, the algorithm will
scan the input image and try to find a contiguous region where all the pixels will fall into
the acceptable range. We can define a “contiguous” region to be any of the following:
 1) A circular disk of diameter r_diam, where r_diam will be a parameter.
 2) A horizontal line segment of length l_seg, where l_seg will be a parameter.
 3) A square region of diagonal l_diag, where l_diag will be a parameter.
All of the above will be tested during the implementation steps of our module and we will
choose one based on how accurately it performs the tracking and how efficiently it does
so. The location where the glove is will be a relatively large region containing “orange”
pixels. This means that we will have to average over all the acceptable contiguous
regions that we have found. We can do so by finding the centroid of all the points
identified. This will give a good approximation of the actual location of the center of the
hand.
 There is an important thing to notice here. If in the background, there are things
that fall into the acceptable orange range, the algorithm will produce the wrong result.
Therefore it is important to be in a background where there are no orange things (orange
fruit, Princeton memorabilia etc)

	

	

Timeline
	

	
 After	
 two	
 weeks	
 we	
 expect	
 all	
 modules	
 to	
 be	
 fully	
 functioning.	
 	
 The	
 Glove	

should	
 output	
 consistent	
 and	
 valid	
 digital	
 signals	
 from	
 the	
 accelerometer,	
 and	
 flex	

sensors.	
 The	
 Hand-­‐tracking	
 module	
 should	
 work	
 for	
 static	
 and	
 moving	
 gloves.	
 	
 The	

physics	
 should	
 be	
 fully	
 implemented,	
 though	
 the	
 scaling	
 and	
 sprite	
 creation	
 will	
 be	

completed	
 by	
 the	
 end	
 of	
 the	
 third	
 week.	
 	
 	

	
 The	
 third	
 week	
 will	
 be	
 focused	
 on	
 debugging	
 and	
 combining	
 the	
 modules.	
 	
 	

We	
 are	
 giving	
 ourselves	
 a	
 full	
 week	
 to	
 implement	
 the	
 combination	
 of	
 the	
 modules	
 to	

deal	
 with	
 unexpected	
 consequences	
 of	
 miscommunication	
 or	
 bugs	
 in	
 the	
 code.	
 	
 	

	
 The	
 fourth	
 week	
 will	
 be	
 focused	
 on	
 improving	
 the	
 modules,	
 implementing	

new	
 features	
 or	
 more	
 complex	
 games,	
 and	
 implementing	
 sounds.	
 	
 By	
 this	
 point,	
 the	

project	
 should	
 be	
 ready	
 for	
 presentation.	
 	
 	

	

	

Testing
	

	

 Testing for the glove module will be fairly straightforward. To test the
effectiveness of the flex sensors, we will wear the glove and monitor the output with an
oscilloscope to ensure that we are getting the proper behavior for an open and closed
hand. We will then be able to test the accelerometer by connecting the acceleration
outputs to the oscilloscope and moving the hand around.

Testing for the Physics and Display module can be done by giving the ball various
initial velocities and observing whether it follows the expected parabolic motion.
Catching can be tested by placing one glove and the ball at the same x position, dropping
the ball into the glove, and controlling the glove state with a switch/button. After
catching, we can test dropping in the same setup, and perhaps throwing if using buttons
to control the glove can create a smooth enough motion.
 Testing for the hand-tracking module will involve two steps:
 1) The first step will be to check whether there is a location returned that
corresponds to the location of the actual hand relative to the defined coordinate system.
In essence this is a test for the static performance of the module.This can be done
statically, i.e. without moving the glove, and by comparing the physical distance of the
glove from the “corners” of our real coordinate rectangle to the distance of the (x,y)
coordinates from the corners of the virtual coordinate rectangle.
 2) The second part will involve testing the dynamic behaviour of the module. This
means that we will be now moving our glove and compare whether what is shown on the
screen corresponds to reality.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

Hand-­‐Tracking	

Hand-­‐Tracking	

	

Glove	

Glove	

Physics/Display	

Display	

Figure	
 1:	
 Pitch	
 and	
 Catch	
 Block	
 Diagram	
 –	
 This	
 block	
 diagram	
 shows	
 how	
 two	

instances	
 of	
 the	
 glove	
 module	
 and	
 two	
 instances	
 of	
 the	
 hand-­‐tracking	
 module	
 will	

interact	
 with	
 the	
 Physics	
 and	
 Display	
 module	
 to	
 simulate	
 the	
 game	
 logic.	
 	
 The	

Physics/Display	
 module	
 will	
 be	
 able	
 to	
 render	
 the	
 game	
 from	
 the	
 sensor	
 data	
 from	
 the	

gloves	
 and	
 the	
 tracking	
 data	
 from	
 the	
 cameras	
 to	
 show	
 the	
 progress	
 of	
 the	
 game.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

x_Accel	

Figure	
 2:	
 The	
 “Smart	
 Glove”	
 Module	
 –	
 the	
 “smart	
 glove”	
 will	

monitor	
 its	
 two	
 flex	
 sensors	
 as	
 well	
 as	
 its	
 accelerometer.	
 	
 It	
 will	

then	
 convert	
 these	
 analog	
 signals	
 to	
 digital	
 signals	
 and	
 synchronize	

them	
 with	
 the	
 system	
 clock.	
 	
 These	
 outputs	
 will	
 then	
 go	
 to	
 the	

physics	
 and	
 display	
 module.	

Accelerometer	

Flex	

Sensor	
 Synchronizer	

y_Accel	

open	

ADC	

x_Accel	

x_Accel	

y_Accel	

y_Accel	

open	

open	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	
 3:	
 Physics/Display	
 Module	
 -­‐	
 The	
 physics	
 module	
 is	
 shown	
 here	

with	
 its	
 inputs,	
 outputs,	
 and	
 internal	
 signals.	
 	
 This	
 module	
 will	
 keep	
 track	

of	
 the	
 ball,	
 its	
 motion,	
 and	
 its	
 current	
 state.	
 	
 The	
 frame	
 of	
 reference	
 will	
 be	

computed	
 in	
 this	
 module	
 given	
 the	
 glove	
 positions	
 and	
 input	
 distance	

between	
 the	
 cameras.	
 	
 The	
 ball	
 will	
 then	
 be	
 rendered	
 by	
 the	
 object	
 painter	

given	
 its	
 state	
 from	
 the	
 physics	
 state	
 machine.	

