Motion Capture System on an FPGA

6.111 Final Project Report

Lauren Gresko
Elliott Williams
December 11, 2013

Table of Contents

Overview 3
Design Overview 4-19
1. Video System 4-9
1.a Motion Detection
1.b Serial Interface
1.c 3D Mapping
2. 3d Graphics System 9-19
Design Process and Experience 20-28
Testing 29
Results 30
Conclusion 37
Acknowledgements 37
References 37
Appendix 38
A: System Block Diagram
B: Video System
B1: Video System Sender
B1.a Detection Module
B1.b Center of Mass Module
B1.c Cross Hair Module
B1.d Clock Divider
B2: Video System Receiver
B2.a Recieve data
B2.b Match
B2.c Match bones
C: 3D Graphics System

Overview

Motion capture, or recording and animating an object or person, is a commonly
researched technology with a variety of applications. Motion capture is often employed in
the fields of computer animation, video games, films, music, medicine, sports, robotics,
and defense. For our final project, we designed and attempted to implement our own
‘mocap’ system that would capture a user's movements and animate them on the
monitor. While the image capture was implemented successfully, time and hardware
constraints prevented the graphics system from being realized. Theoretically, our
mocap system would have captured position data accurately and displayed a simple
animation in real-time. This simplified mocap system offers a robust solution to a
commonly studied problem of replicating human motion. Our mocap system covers the
basics of motion capture, while also offering the challenge of implementing a complex
system on the 6.111 lab kit.

To create a 3D motion capture system, we used two cameras that face the user at 90
degree angles from each other. Using either colored sweat bands, we track the user’s
joints and generate a list of 3D coordinates that are used to reconstruct a skeletal model
of the user. We will then attempted to use this model to generate a 3D model of the
user’'s movements on a computer screen. In the final product, the user were able to
move around their arms, and observe as there joint coordinates were tracked. With an
additional week or so of work, the 3D graphics system could have been completed,
allowing the used to view a 3D image on the monitor mimicking their motions.

In our minimal design we tracked a user's forearms. This required the tracking of four
separate points. The generated 3D model would have been a simple collection of
rectangular prisms to represent the user's arms. Further iteration of this design could be
improved to include the tracking all of the user's body parts, for a total of eleven points (if
we are clever, it might not be necessary to track 11 colors (an impossible task)).

Design Overview

This document describes the proposed design of our motion capture system. The project
is partitioned into two sections: the video system module and the graphics system
module. The video system processes the video received from our two cameras into a
usable format for our 3D graphics system. The 3D graphics system creates a 3D model
based on the information it received from the video system. Figure 1 depicts the overall
block diagram of our motion capture system.

Video System

3D Graphics System

Figure 1: The Overall Block Diagram for the Motion Capture System. Above is a block
diagram of the various modules that comprise the motion capture system. The Motion
Capture System is composed of two blocks, the Video System (containing the Motion
Detection and 3D Mapping subsystems) and the #D Graphics System (containing the 3D
Model Generator and the Frame Rendering subsystems). The arrows represent the inputs
and outputs of the modules. Additionally, the clock will connect to all of the blocks in the
system; however for simplicity, the clock arrow connections have not been displayed.

1. Video System (Lauren)

The video system captures the location of the user's joints, generating a 3D skeleton to
be displayed by the 3D graphics system. As shown in Figure 1, the functionality of the
video system depends on two main modules, the motion detection module and the 3D
mapping module. The motion detection system tracks the colors sources on the user,
therefore tracking the points and movement of the user’s arms. The 3D mapping module
processes the resulting position data to determine the (x,y,z) skeletal coordinates of the
user.

Figure 2 depicts the submodules of the Motion Detection and the 3D mapping modules,
as well as introduces a new module: the Serial FPGA Interface. As shown in Figure 2,
The Video System incorporates two cameras which are each wired to their own FPGA.
To combine the data from each camera, a serial interface was created to transfer data
from one FPGA to the other. As depicted in Figure 2, one FPGA has a sender module,
while the other FPGA has a receiver module. Once the receiver FPGA receives the (y,z)
coordinates from the sender FPGA, the 3D Coordinate generator maps the (x,z, color)
bits with the (y,z,color) bits based on color. The submodules of the Motion Detection,
Serial FPGA Interface, and 3D Mapping modules are described in the following section.

The Video System

FPGA #1 Motion Detection

(y.z, color)

(y.z.color)

Camera

#9 (x.z, color)

FPGA #2

3D Mapping

coordinates
for bones

(xy.z.color)

(x1,y1, z1,color,
X2, y2, z2, color2) (y,z, color)

Frame

Y

3D Graphics Serial FPGA
System Interface

Figure 2: The Block Diagram for the Video System. Above is a block diagram of the
various modules that comprise the video system. The video system is composed of five
main processing modules and two modules for interfacing the two FPGAs used. Green
blocks are located on the first FPGA, i.e. the sender, while blue blocks are used to depict
modules on the second FPGA, i.e. the receiver. The (x4) or (x2) depicts how many
instances of each module were used. The arrows represent the inputs and outputs of the
modules. Additionally, the clock will connect to all of the blocks in the system; however
for simplicity, the clock arrow connections have not been displayed.

a. Motion Detection Module

The motion detection module decodes the video signals from both cameras to generate
(x,z) and (y,z) coordinates for each of the four different color sources. As depicted in
Figure 3, the user wears four different color sources (terry cloth bands) at four different
points on their body: the right wrist, right elbow, left wrist, and left elbow. The module first
detects the pixels that match the hue, saturation, and value limits (hsv values) that
correspond with each color. It then performs a center of mass calculation on these pixels
to determine the coordinates of the color source's center. This process is completed
twice, once for each camera, to get both the (x,z) and (y,z) coordinate pairs.

i.';b
XZ View from YZ View from
Camera Camera

Figure 3: User input: four color sources. This diagram shows the four color sources (blue,
yellow, red, and green) that the user of the motion capture system will be wearing, as
viewed from the two camera inputs to the system. By placing color sources on the user’s
wrists and elbows, the motion detection module tracks the endpoints of the user's forearm
and upper arm in two coordinate planes (x,z) and (y,z).

The motion detection module is made up of four sub modules, the Video Decoder, RGB
to HSV, Point Detection, and the Center of Mass Detection sub modules. The following
section contains the details and processes for each of the sub modules. All of these
modules were designed by Lauren. These sub modules, along with the rest of the
system's sub modules, are depicted in Figure 4 in the appendix.

Video Decoder:

The video decoder converts the NTSC and Ycrcb input video data to RGB video data.
This step is necessary to allow further conversion into HSV video data. This module is
provided by the 6.111 staff, and has been modified to output color video in RGB rather
than the black and white. This module is used twice; it will be used on the (x, z) video
data and the (y, z) video data.

Input: clock, video camera stream

Output: RGB bit stream

RGB to HSV:

The RGB to HSV converts video data using the RGB color space protocol into video data
using the HSV color space protocol. This conversion is important because the HSV color
space provides more space between color values, making subsequent point detection
easier. This module is used twice; it will be used on the (x, z) video data and the (y, z)
video data. This module is also provided by the 6.111 staff.

Inputs: clock, RGB bit stream

Outputs: HSV bit stream

Point detection:

This module takes the HSV stream of bits and detects which pixels correspond to the
color source, accumulating the correct color locations to enable the center of mass
detection module to determine the location of each color source. This detection is done
by comparing the hue, saturation, and value of the HSV bit stream to the color sources
that the user would be wearing. In this project, this module is instantiated 4 times; and
parameters (the hue_min, hue_max, sat_min, and val_min) determine which of the 4
colors the instance is looking to match and therefore which of the 4 points (R wrist, R
elbow, L wrist, L elbow). This module is used twice; it is used on the (x, z) video data and
the (y, z) video data.

Parameter: hue_min, hue_max, sat_min, and val_min

Inputs: clock, HSV bit stream

Outputs: matched pixels

Center of Mass Detection:

This module determines the center of mass of the user’s arm joints. This center of mass
determines the coordinate location of each color source in the (x,y) and (y,z) planes. This
does the by averaging the position of all the matching pixels. Then, in addition, every four
pixels are averaged in center_mass module. This module is used twice to calculate both
(x, z, color) and (y, z, color) coordinates.

Inputs: clock, matched pixels

Outputs: (x, z, color) or (y, z, color) which represent the coordinates of the designated
body part (the L wrist, L elbow, R wrist, or R elbow).

c. Serial Interface Module

As shown in Figure 2, The Video System incorporates two cameras which are each
wired to their own FPGA. To combine the data from each camera, a serial interface was
created to transfer data from one FPGA to the other. A frame_pulse signal is generated
every new frame, i.e. when hcount and vcount are equal to zero, while the

interface_clock was created by dividing the 40hz system clock by an 8 bit counter. The
two FPGAs are then linked by six wires that are connected via the user1[0:5] I/O pins on
each FPGA. Pin 1 is connected to interface_clock, pin 2 is connected to the frame_pulse,
and pin 0, pin 3, and pin 4 are connected to yellow_data, green_data, and blue data
respectively. As depicted in Figure 2, this serial interface is comprised of a sender
module and a receiver module, that processes these various signals.

Sender:

A 2D coordinate and its color index are sent every frame (i.e. on every frame_pulse). This
data is sent serially, i.e. one bit of the coordinate at every positive clock edge. Instead of
sending the full hsv or rgb value across the wire, the sender sends a color_index, which
is a 2 bit number corresponding to one of the four colors. In the implemented scheme,
the color_index for red, yellow, green, and blue are 0, 1, 2, and 3 respectively.

Inputs: (y,z, color)

Outputs: data, frame_pulse, clock_interface

Receiver:

Once the slowed down interface_clock, the frame pulse, and the data have reached the
receiver FPGA, the receiver module reconstructs the data sent using a 24 shift register
that is then split into y,z, and the color index.

Inputs: clock_interface, frame_pulse, data

Outputs: (y,z,color_index)

c. 3D Mapping Module

The 3D mapping module merges the coordinate data generated by the motion detection
module into a group of 3D coordinate pairs that comprises the user's joints. The 3D
mapping module first maps the (x,z) and (y,z) coordinates of the four color sources
together based on the color. The module then matches the (x,y,z) points of the right wrist
to the (x,y,z) of the right elbow, and the (x,y,z) points of the left wrist to those of the left
elbow. This matching results in a forearm “bone” that would have been passed to the
graphics module to generate a real-time 3D model of the user’s arms.

The 3D mapping module is made up of two sub modules, the 3D Coordinate Generator
and the Skeleton Generator. The following section contains the details and processes for
each of the sub modules. All of these modules are designed by Lauren. These sub
modules, along with the rest of the system's sub modules, are depicted in Figure 4 in the
appendix.

3D coordinate Generator:

This module creates the 3-dimensional (x,y,z) coordinates of each point from the (x,z,
color) and (y,z, color) coordinates, thus detecting the locations of all of the user's joints.
This module handles hidden points, i.e. when a color source is hidden from one or both
of the cameras, by setting the xyz coordinate to the previous xyz coordinate if one of the
coordinates have gone to zero (has not been detected).

Input: clock, (x, z, color) and (y, z, color) coordinates

Output: (x,y,z, color) coordinates

Skeleton Generator:

This module matches the (x,y,z, color) coordinates of the left wrist with the left elbow and
right wrist with the right elbow. These matched coordinates would have been outputted
as “bones” to be drawn, providing the 3D graphics system with a 3D skeleton of the
user's location.

Input: clock, (x,y,z) coordinates

Output: matched elbow and wrist (x, y, z), (X,y,z) coordinates

2. 3D Graphics System (Elliott)

The 3D graphics system generates and displays a 3D model of the user based on the

3D skeleton generated by the video system. As shown in Figure 1, the graphics system

is also divided into two parts, the 3D Model Generator and the Frame Rendering module.
The 3D Model Generator uses the skeleton generated by the video system to create a 3D
model of the user when viewed from a predetermined viewpoint. The frame renderer
draws this model to the display. Each of these systems are composed of submodules
built on mathematics wrapper modules. These modules provide the abstraction
necessary to design around the large number of signal wires necessary; a single
coordinate being composed of four, eighteen-bit, fixed point numbers, resulting in seventy
two wires per coordinate. The use of fractional math is necessary to produce the
necessary shading and transform effects.

Note that the Python prototype is well commented and uses the exact same algorithms
(or slightly modified versions) as the hardware modules described below. Therefore, the
python code in Appendix C is highly recommended as a guide to better understand the
algorithms described below.

a. Model Generator Module

The 3D model generation module creates and manages a 3D model of the viewer. Figure
4 below provides a helpful illustration of the process this module used by comparing the
stages of the 3D graphics with the production of an image using a camera. First the
object that is to be viewed is created. Then the camera is placed to view the object from
a specified angle. Next the camera takes the picture, capturing the object in its viewing
volume and creating the effect of perspective. Finally, the negative is prepared so that the
object is centered in the photograph.

With a Camera With a Computer

viewing

IS

poaitlening the viewing volume
in the world

lspe projection

detarmining shaps of viewing valums
photograph viewport

Figure 4: An illustration of the model generation process. This diagram compares the
model generation process with the process of creating a photograph. The camera is first
positioned to capture the object in a specific location and orientation. Then the image is
captured, creating perspective. Finally the image is centered on the photograph. [2]

The Model Generator module is made up a state machine that manages the inputs and
outputs of its five different sub modules to perform the graphics operations described
above. These the Prism Generator, the Shader, the Vector Normalizer, and the View,
Projection, and Viewport Transformer sub-modules. Each of these sub-modules are
composed of matrix math wrapper modules which are themselves composed of fixed
point math wrapper modules. The Prism Generator module creates the rectangular
prism from the bone coordinates. The View Transformer alters the coordinates of this
prism to view it from a specified angle and orientation. Next the Projection Transformer
adjusts the coordinates further to create the perspective effect. This transformation
disrupts the homogeneous nature of the coordinates (discussed in detail in the
transformer module descriptions below). Therefore, the coordinates are normalized by
the Vector Normalizer module to restore the homogeneous property. Finally, the View
Port Transformer shifts the coordinates to be screen pixel coordinates, allowing the

10

Renderer to draw the image. To provide a greater sense of depth, the sides of the prism
are shaded to create the illusion that the prism is lit by a simple uniform light source.
This functionality is created by the Shader module using the side normal vectors
generated by the Prism Generator.

The following section contains the details and processes for each of the Model
Generator’s sub modules. All of these modules were designed by Elliott. The main
sub-modules of this system are depicted in Figure 5 below.

coordinates for bones

normal

vectors
—_—

Figure 5: An overview block diagram of the Model Generator module. This module
calculates the coordinates and colors of the image to be displayed on the screen by the
Rendering module.

Rectangular Prism Generator:

This module generates a set of eight vertexes (x,y,z) that compose a rectangular prism
centered around each provided “bone” and the corresponding normal vectors for each
side. These prisms represent the user's arm segments and are the objects on which the
rest of the 3D graphics system will operate on.

Iaj

——— 2

Figure 6: The vertex coordinate system chosen to generate the model and shade colors.

11

To create the vertex points and normal vectors, the Prism Generator first calculates
the bone vector by subtracting one point from the other. It then normalizes this vector
to create the unit bone vector which is the unit normal vector perpendicular to the
front and back of the cube as shown in figure 6 above. The cross product of this
vector and the unit x vector (1,0,0) is then calculated, creating an arbitrary vector
perpendicular to the bone vector. This vector is then normalized to create the unit normal
vector, Unit Perp A, of the top and bottom faces (the faces are illustrated in figure 6). The
cross product of the unit bone vector and Unit Perp A is then taken, generating the Unit
Perp B vector perpendicular to the left and right faces in figure 6. Note that the cross
product of two unit vectors is itself a unit vector. The resulting unit normal vectors are

then scaled by the prism width and added to the supplied points to produce the eight
vertices that define the rectangular prism. For example, P1 in figure 6 is generated by
adding Unit Perp B and Unit Perp A to P1. Note that if the result of the initial cross product
is (0, 0, 0), then the unit bone is parallel to the x axis and the two necessary
perpendicular vectors (Unit Perp A and Unit Perp B) can

be arbitrarily chosen to be the unit y and unit z coordinates.

The hardware inplemetation of this modules is a massive pipeline that updates the
inputs of the math submodules whenever all of the outputs all ready. This pipeline allows
for the maximum throughput with minimum resources, though a slower state machine
implementation could have been used to consume less resources.

Input: clock, matched elbow and wrist (X, y, z), (X,y,z) coordinates
Output: the eight vertexes (x,y,z) of a rectangular prism in standard coordinates

View Transformer:

This module performs the matrix multiplication necessary to transform standard
coordinates based around the origin into coordinates based around the camera's
point of view. This transformation includes three rotation transformations around the
X, Y, and z axis before a translocation transformation that shifts everything to the right
coordinates. This is accomplished by using four matrix multipliers in a row with the
proper transform matrix shown in figure 7 below. Note that this module has a
propagation delay of four clock cycles, once for each transform, yet has a throughput of
one. Because each matrix multiplier uses up 16 multipliers, the size of this module could
have been greatly reduced by using only one matrix multiplier and changing the input
matrix. This would have been a slower module, yet this would go unnoticed because the
View Transformer is not the system’s bottleneck.

12

1o0x 1 0 0o 0l

- [010y |0 cosa -sinae 0

T ool g Rx = 0 sina cosa 0O
oool 0 0 0 1

_cosa 0 sina 0 _cosa, —smer 0 CI_
Ry=|0 1 0 0 Rz = |sina cosa O 0
y sma 0 cosa O 0 0 1]
0 0 0 1 0 0 0 1

Figure 7: The trans-location and x,y,z rotation matrices used to calculate the view
transform. [2]

Input: clock the eight vertexes (x,y,z) of a rectangular prism in standard coordinates
Output: the eight transformed vertexes (x,y,z) of a rectangular prism

Projection Transformer:

This module performs the matrix multiplication necessary to transform view coordinates
into projection coordinates that account for perspective. This transformation includes a
single matrix multiplication. The effect of this transformation is to stretch the
coordinates by proportions of the viewing frustum depicted in figure 8 below.
Objects closer to the view take up proportionally more space in the viewing frustum
and thus appear larger than distant objects. This creates the effect of perspective.
This transformation is accomplished by using the transform matrix shown in figure
NUMBER below.

aspect =

T

-« T -

-

far

Figure 8: The view frustum that defines the projection transform. [2]

13

= n, f = distances to near, far planes
- e = focal length =1 / tan(FOV / 2)
= a = viewport height / width

e O 0 0

0 efa 0 0

. fen 2
f-n f-n

0 0 -1 0 |

Figure 9: The transform matrix for the projection transform. [1]

Input: clock, the eight vertexes (x,y,z) of a rectangular prism in camera coordinates
Output: the eight transformed vertexes (x,y,z) of a rectangular prism

Normalizer:

This module normalizes the coordinates of a homogeneous vector by dividing all of
its components by W. This restores the homogeneous property and allows further
transformations to be performed. This is module is implemented as a buffer that
feeds a divider with the proper inputs one at a time.

Input: clock, a scaled homogeneous vector
Output: the normalized homogeneous

Viewport Transformer:

This module performs the matrix multiplication necessary to transform projection
coordinates into pixel coordinates to be drawn to the screen. This transformation
includes a single matrix multiplication. The effect of this transformation is to shift the
center of the coordinate system to be at the center of the screen and to scale the
coordinates so that the maximum and minimum world coordinate values appear at
the edges of the screen.

Depending on the coordinate inputs from the Motion Capture system this module
might be used twice, once to map the input coordinates to center around the origin
for the graphics transformations and once to shift the coordinates back to pixel
coordinates. However, the necessity of a second copy of this module was not
ascertained because the graphics system was not completed.

Note that this module (in addition to the other transform modules) utilizes
homogeneous coordinates. These coordinates are simply normal (x, y, z)

14

coordinates with an additional one term (w) appended at the end. The w term
enables a four by four matrix to transform the coordinates in many different ways that
are not easily performed in non-homogenous coordinates. This transformation is
accomplished by using the following matrix. Note that dt is the x coordinate scale
factor, dy is the y coordinate scale factor, dv is the z coordinate scale factor, and

that dx, dy, dz are the x, y, and z coordinate shift factors.

[dt, 0, O, dx]
[0,du, O, dy]
[0, 0,dv, dz]
[0, 0, 0, 1]

Input: clock, the eight vertexes (x,y,z) of a rectangular prism in projection coordinates
Output: the eight transformed vertexes (x,y,z) of a rectangular prism in pixel
coordinates

Shader:

This module calculates the appropriate ambient and directed light incident on each
face of the rectangular prism. This light scale factor is proportional to the magnitude
and amount of light reflected by the face and inversely proportional to the square of
the distance from the light source to the face.

The value is calculated by first taking the dot product of the face’s normal vector and
the unit light vector. This dot product is equal to the magnitude of the two vectors
multiplied by the cosine of the angle between them. Because both vectors are unit
vectors, the magnitudes are 1, making the dot product equal to the cosine of the
angle between them. This function provides the perfect scale factor based on the
angle; the scale factor is 0 when the light and face are parallel (and this no light is
reflected) and 1 when the light and face are perpendicular (and all of the light is
reflected).

The dot product is then multiplied by a fixed scale factor before being dividing by the
square of the distance from the light source. To keep the module simple, the light
source was chosen to be a uniform light source originating from the z = 0 plane and
pointing in the positive z direction. This means that the distance between the light
sources and the object is just the z coordinate of the object. Again to make the
module simpler, the z coordinate of each face was fixed at average value of its
vertices z coordinates. A more complicated shading algorithm would have colored
each pixel separately based on its distance from the light source.

An ambient light factor is then added to ensure that faces parallel to the light source
were not completely black (an unrealistic result). Finally the scale factor is clamped
to lie between 0 and 1. This shading creates a much greater sense of depth in the
final image.

15

Input: clock, the six unit normal vectors of the rectangular prism's six faces
Output: the shading factor of the rectangular prism's six faces

b. Renderer Module

The Rendering module takes the 2D coordinate values and shaded color values

and displays a properly scaled 2D image on the VGA screen. This is accomplished
by using ZBT memory to store image data that could be read by a VGA module and
written to by a pixel drawing algorithm. The original plan was to have the module use
a double frame buffer in ZBT memory so that it could update one frame while
displaying another. This buffer would have enabled real time graphics if the rest of
the system was fact enough. This plan was made infeasible by the needs of the
system and the limitations of both hardware and time. This infeasibility is discussed
in the Design Process and Experiences section below.

Therefore, instead of using a double frame buffer to create a dynamic image, the
Renderer was scaled down to be a single frame buffer that creates a static image.
Data is first cleared from the buffer, then drawn to the buffer, and then finally read
from the

buffer. This simplified control system is not ideal and was used purely to
demonstrate that the Renderer system worked.

The Renderer module is divided into five sub modules, the Polygon Drawer, the
Memory Converter, the Pixel Buffer, the Memory Control, and the ZBT to VGA
modules. The data into and out of the ZBT memory is controlled by the Memory
Control module. The Pixel Buffer controls the input to the memory by mediating
between the Polygon Drawer and the Memory Controller. Finally the VGA module
controls the output signals. Ina complete final design, the state of the renderer would
have been tightly controlled by a top-level state machine that better managed when
the buffer would be cleared, written to, and drawn from. The following section
contains the details and processes for each of the sub modules. These sub
modules, are depicted in Figure 9 below in the appendix.

colors

screen
coords

Figure 9: An overview block diagram of the Renderer module. This module takes in

16

coordinates and colors and generates an image on the screen.

Polygon Drawer:

This module draws and calculates the z value for each pixel contained within the
polygon described by the four input points. The module works by first calculating the
plane equation parameters (A, B, C ,D in A*x + B*y + C*z = D) by using the Calc
Plane Equations sub module. Then the algorithm calculates the bounds of the draw
space by finding the minimum and maximum x and y coordinates set by the vertices.
Next the algorithm calculates the slope and x intercept for each of the sides of the
polygon using the slope line equation: x = M*y + B. M is calculated from the equation
M = (x2-x1)/(y2-y1). B is then calculated from B = x2 — M*y2. Finally it uses a
divider to invert C, allowing the depth of each pixel to be calculated using only
dividers and multipliers and the equation z = (A*x + B*y - D)*C”-1. This concludes
the pre-calculation section of the algorithm.

For each y value between the minimum and maximum y values, the algorithm follows
the following procedure. First the x value of the intersection between each of the
sides that intersect the y coordinate and the y coordinate is calculated from x = M*y
+ B. Because the polygons are guaranteed to be simple, there will only be two
intersections. These values are then sorted to find the beginning and end x values
for that specific y pixel. The algorithm then iterates over every x value between these
endpoints, calculates the depth from the above equation, and draws the pixel. This
repeats until y reaches y max.

This hardware implementation of this algorithm is a state machine that goes
through the several initialization calculation states before iterating between the
intersect calculation and pixel drawing states until the polygon is shaded.

Input: clock, the four vertexes (x,y,z) of a rectangular prism in pixel coordinates
Output: location, z_write, color

Memory Converter:

This module converts the x, y, and z data from the Polygon Drawer and the shaded
color value into the corresponding memory address and data to be written to ZBT.
Filters the Pixel ready signal from the Polygon Drawer to ensure that only pixels
within the screens bounds are drawn to the screen. The data packing method is one
leading zero followed by a two bit color index to select between green, red, blue,
and yellow, followed by a 4 bit shade value supplied by the Shader module, followed
by the eleven bit depth value calculated by the Polygon Drawer. The address is
simply the y location followed by the top 8 bits of the x index. A selector bit is used to
determine if the pixel is in the first or second half of the word in the specified
memory location.

Input: clock, read location, color, z read,

Output: write location, z_write, color_write, z_read, read location, color_read

17

Pixel Buffer:

This module mediates between the Memory Controller and the polygon drawer. The
buffer simply supplies the memory control with a constant stream of pixels to write
because the Polygon Drawer has a higher throughput but provides the pixels in
spurts. This constant stream maximizes the system’s throughput because the
Memory Control module is the system’s bottleneck. This module also lets the
Memory Controller know when a pixel is available and disables the Polygon Drawer
when the buffer is full. This way, neither the Pixel Drawer or the Memory Control
modules have to worry about how the timing of the other works. This simplifies the
top-level Renderer module control because the Pixel buffer takes complete control
of the data flow.

Input: clock, read location, color, z read,

Output: write location, z_write, color_write, z_read, read location, color_read

Memory Controller:

This module manages the state of the memory buffer. It is a simple state machine
that clears the memory, then writes the data, and then switches into read mode
permanently. It also manages what signals are written and read from the ZBT. In the
clear state, the ZBT’s write enable is set high and the input is fixed so that the color
values are all set to black and the depth is reset to a high value. Then after at least
one vsync and a debug switch is enabled, the state switches into the write state. In
the write state, the ZBT is alternatively read from and written to. The ZBT is read
from in order to compare the depth values, though this depth functionality was not
implemented in time. This module then writes back the read value, replacing the
proper pixel value with the pixel read from the pixel buffer. Once the drawer is
finished, this module permanently enters read mode (unless a debug switch is
flipped).

It is important to note that this module is rudimentary and was design to debug other
modules and was being constantly modified at the last minute for other debugging
purposes. The next step in my design would be to redesign this module to be better
thought-out and written.

Input: clock, read location, color, z read,
Output: write location, z_write, color_write, z_read, read location, color_read

ZBT to VGA:

This module manages the generation of the proper signals to control the VGA monitor. It
communicates with the frame buffer module to read and display the proper pixel values.
The implementation is a modified version of the the example code provided by the 6.111
staff. The modification changed the module to read from memory every other pixel
instead of every four pixels. It also changed what data was read from memory for each
pixel and implemented a look up table to read color values from.

Output: read location, display_addr, VGA control signals

18

c. Matrix Math Wrapper Modules

To perform all of the operations necessary for the top level modules and sub-modules
described above, several matrix math wrapper functions were necessary. They are as
follows:

Pack Matrix:
This module packs 16 input wires into a four by four matrix

Unpack Matrix:
This module unpacks 16 output wires from a four by four input matrix

Pack Vector:
This module packs 4 input wires into a homogeneous vector

Unpack Vector:
This module unpacks 4 output wires from a homogeneous vector

Matrix Multiplier:
This module Multiplies a 4 by 1 input vector by a 4 by 4 input matrix, returning a 4 by
1 output vector.

Vector Sum:
This module returns the sum of two input vectors, ignoring the w components

Vector Dif:
This module returns the difference of two input vectors, ignoring the w components

Vector Scale:
This module multiplies an input vectors by a scalar, ignoring the w components

Dot Product:
This module takes the dot product of two input vectors, ignoring the w components

Cross Product:
This module returns the cross product of two input vectors, ignoring the w components
and setting the resultant output vectors w value to one

Coord Normalizer:
The module divides each element in a vector by w. Has a Tpd of 32 cycles and a
throughput of 0.25

Vector Divider:

The module divides each element in a vector by an input scalar. Has a Tpd of 32
cycles

and a throughput of 0.25

19

Magniture:
The module calculates the magnitude of an input vector. Has a Tpd of 9 cycles and

a
throughput of 1/9.

Matrix Inverse:
The module finds the inverse of an input vector. Non-invertible case is ignored
because it is rare in the context this module is used in.

Calc Plane Equation:

This module calculates the plane equation parameters for the plane containing three
input points. Based on the following derivation.

Plane equation: Ax+By+Cz =D

note that D is arbitrary because it simply scales A,B,C

Q =[A,B,CI"T
M = [v1,v2,v3] -> M*Q = D
>Q=MA1*D

Note: Z = (Ax+By-D)/C

d. Fixed Point Math Wrapper Modules

To ensure accuracy of transformations, fixed point fractional numbers had to be
used. However, Verilog does not contain fixed point objects, therefore, wrappers
had to be created to perform the necessary calculations. The wrapper modules are
as follows:

Pack:
Packs an integer and a fractional component into a fixed point number

Unpack:
Unpacks the integer and fractional components of a fixed point number

Mult:

Multiplies two fixed point numbers. Note that the decimal place is doubled by the
multiplication so the result must be right shifted. Also ensure that result stays within
the bounds of the min and max product

Divides:

Dividess two fixed point numbers. Note that the decimal place is halved by the
division so the result must be left shifted. Also ensure that result stays within the

20

bounds of the min and max quotient

Sart:
Calculates the square root of a fixed point number. Note that the decimal place is

halved by the root function so the result must be left shifted. Unlike the divider
module, the sqrt model does not provide a fractional remained, making the square
root only accurate up to PS/2. Module is based on module supplied in the lecture
slides.

Sine:

Implements a simple look up table to find the sine of a fixed point number. Note that
this function would only be needed to change the viewing angle and thus does not
need to be very precise.

Cos:

Implements a simple look up table to find the cos of a fixed point number. Note that
this function would only be needed to change the viewing angle and thus does not
need to be very precise.

21

22

Design Process and Experiences

Video System Design Process and Experience (Lauren)

This section outlines the design choices for the Video system, as well as highlights
sections of the project that were most difficult.

For the design process, the Video system was built off of the zbt sample module
provided by the 6.111 staff. | edited the module to output color, i.e. RGB, then | used
a staff module to convert RGB into HSV. Once | had that working, | was able to
begin color detection based off of HSV values.

First, | started with one color (red) and tried to distinguish it from the background by
hue alone. | overlay-ed the video feed with red pixels where red was being detected.
| soon found that hue min and max values were not enough to differentiate between
colors; the ranges of hue for yellow and red were far too similar. | then incorporated
saturation and value limits (SV of HSV) so that | was using all 18 bits of HSV to
decode where colors were located. | found ranges of hsv by making the hue_max,
hue_min, sat_min, and val_min limits adjustable by buttons 0 through 3 on the lab
kit, and displaying the current values on the hex display. As | adjusted the range, |
could see how much red the camera detected within the current limit. | used the
adjustable limits to find values for red, then red but not yellow, then yellow but not
red, then green, and then finally blue.

Differentiating between red and yellow was very difficult, because their hue is so
similar, but yellow has a much higher saturation minimum. By making the saturation
value higher for yellow, and the saturation value of yellow much lower than that of
red’s, | was able to differentiate between the colors. Moreover, looking at the HSV
spectrum for red, the red hue wraps around the possible ranges, i.e. the red range
includes both the maximum hue values as well as the minimum values, but not the
values in between. To compensate for this, red detection included high values or
low hue values, while yellow detection focused on low values alone. Once yellow
and red were detected, | incorporated green, which was actually the easiest color to
detect. Then finally, | worked on incorporating blue. Blue was the most difficult color
to track, and it did not help that then entire 6.111 lab is blue. At first, our blue arm
band was too dark to track. The camera was unable to detect any color pixel in the
dark blue arm band, because not enough color was reflecting. In order to find a
replacement blue, | ordered another variety of colors of armbands off Amazon.
Looking at the hsv space, | suspected that purple would be a good replacement

23

blue, because purple falls in a large range of HSV values. It turned out that
blue-ish-purple worked well, and | was finally able to detect all four colors.

Another difficulty with color detection was that colors look different at different

angles and in different lighting. Using my adjustable HSV limits, | was able to fine
tune my values so that the color of the arm band was able to be detected from all the
angles the arm band would be used from. Additionally, | found that the camera
detects better if it is above the user, i.e. angled downward. This is due to the
location of the light source on the color arm band; the lights in lab are all located on
the ceiling. At times | used an additional desk lamp to shine on my arm bands,
however pointing a desk lamp directly at the user caused the luminosity of yellow to
become too bright.

Next, | developed a center of mass module that each frame, goes through and
increments a count for every color pixel determined between the hue, sat, and val
limits of a specific color, and adds the x and y (actually the z coordinate based off of
our model axes) coordinates to an x accumulator and a y accumulator. Using
Coregen, | created dividers to average the accumulator by the count of pixels. This
implementation caused the center of mass detection to still be a tad glitchy, so |
added in the four pixel average module | had used to display HSV values on the hex
display. This module creates a running average, by storing the most recent
coordinates in an array, adding up the four coordinates, then dividing the sum by
four, i.e. shifting by two. This module helped to smooth the glitchiness of the center
of mass detection.

Next, | made a serial interface module to merge the data being collect from the first
camera, with that of the data being collected by the second camera. To transmit the
coordinates of each of the color sources, | wired up six user I/O pins from the sender
FPGA to the receiver FPGA. One wire was used for each color (4 wires total), one
wire sent across the slowed down interface_clock, and one wire sent across a
‘frame pulse.” This frame pulse was created every time a new frame began, and
signaled to the receiver that the sender was about to start sending bits. Because |
was sending data serially across long wires, | slowed down the system clock to
avoid noise from the parasitic resistance of the wires. | divider the system clock of
40mhz by an 8 bit clock, and used this interface_clock to serially send 24 bits per
frame (2 bits of color index, 11 bits of x coordinate, and 10 bits of y coordinate). |
used a color index, 2 bits of data corresponding to a specific color (red=0, yellow=1,
green=2, blue=3), rather than sending the entire HSV value to reduce data flow. On
the receiving end, | created a receiver module that reconstructs the serially sent data

24

into three different registers: the color index, the x coordinate, and the y coordinate.
On the receiving end, | noticed my data signal was shifted by one clock cycle, i.e. it
always sent one zero before sending my actual data, which in turn shifted all of my

data by one. | fixed this issue by collecting data for an extra time cycle and throwing
away the first value | collected.

Finally, | created the 3D mapping section. | output the x,z and the y,z on the hex
display trying to figure out how to determine the final z. Conveniently, there was not
much of an offset between the two z's, so | chose to use the z from the second
camera because it seemed slightly more stable than that of the z from the front view.
Because | had sent the colored yz values across separately (x_new_randy_new_r)
and | had detected the colored xz seperately (x_red and y_red), | was able to match
3D coordinates solely based on their color. One difficult aspect of the 3D mapping
was hidden points. My detection module outputs a center of mass or a zero, based
on whether or not enough pixels were detected. | decided to handle hidden points
by defining them to be when not enough pixels were detected, i.e. an output of zero.
Whenever a coordinate was detected to be zero, | set the coordinate to be the value
of the last known coordinate, then output the xyz with that data. One issue with this
implementation is the similarity between red an yellow. Depending on the angle the
colored arm band was viewed from, yellow could appear to have some red pixels
and vice versa. As a result, the detection may calculate the center of mass of the
incorrect arm band, as opposed to realizing it is a hidden coordinate. The
successful detection of a hidden coordinate is also dependent on objects in the
background, for example, if the blue lab bench is in view of the screen, the detection
may not realize there is a hidden point if the minimum count of points is satisfied.
Further work on this project would include improving the hidden point detection to
take these factors into consideration.

Once | had these x,y,z, color_index pairings, | was able to combine these pairings
into the bone pairings. For creating bones, | combine two Xx,y,z,color_index pairings
(a wrist and an elbow) into a 66 bit bone. When | made my instances of the
match_bones module, | decided to create it such that it always pairs red and green
while always pairing yellow and blue. Because this matching is hard coded, the
user must always wear red and green on one arm, while wearing yellow and blue on
the other. The 66 bit bones were then ready to be sent to Elliott via another serial
interface, using the same scheme described above.

As discussed about, the most difficult part of the project was finding good HSV
values that would work for all four color sources. In addition, debugging the video

25

system was at times very tedious. Because the calculations depended on input from
the cameras, behavioral simulations were not helpful. A large amount of time was
spent re-compiling changes to see how it affected the functionality. Moreover,
various timing and placement issues arose due to the size of the project. Each
detect module had four dividers, and there were four detect modules on each
FPGA. When ISE placed the design, it at times would not optimize paths that were
crucial to correct functionality of the system. As a result, more time was spent
re-compiling to try to open a working bit file, then this bit file was saved for later use.
For example, because we were not interfacing the two halves of the project
together, | wanted to display my 3D bone coordinates on the display, and use a
switch to flip between the two arms. This was working great, until the last couple
days of the project, when after one compile time, the hex display stopped working
entirely. | had saved the bit file, so | was able to show the 3D point functionality,
however, it was very frustrating that | could not use the 3D point hex display in the
final days of the project. If the hex display did begin to work, it was often at the cost
of the video display not working, which was not work having the hex display operate
correctly. Moreover, as discussed above hidden points were a big challenge and
are not always perfect when yellow in a certain light is also red.

Overall, the Video system was a challenging system to integrate, and | learned a lot
about using an FPGA in a large scale project. Although we were unable to combine
our projects in the end, the work we both did could be used to complete a simple
and cost effective motion capture system in the future.

Graphics System Design Process and Experience (Elliott)

| began my design doing research into 3D graphics and then laying out my top level
design. Once | recognized the building blocks that were necessary, | began to work
on a python prototype. | tried to build the prototype from the most basic tools
available, only using pygame to draw individual pixels to a window. The reason for
this low level coding style was that | knew | would have to implement everything in
hardware and thus wanted to ensure that | knew how to create the full system,
polygon rendering and all, when | finished the prototype.

The prototype went well, but took longer than | expected. This was partly due to the
complexity of the system | was trying to build and partly due to work in other classes.
| built the prototype in “reverse order”, starting with the pixel rendering algorithms
and finishing with the prism generation. This allowed me to debug each sub-system
and integrate it will the whole system as | went along. Then once the prototype was

26

complete, | began work on the hardware implementation. At this point | felt about a
week behind, a feeling that would propagate through until | realized | would be
unable to finish the project.

When | began the hardware implementation | did it in a completely different order. |
began by writing all of my fixed point arithmetic tools | would need to abstract away
the math specifics. | was extremely careful and parameterized everything so | could
easily adjust the total size or precision size if | needed to at a later point. | also spent
a large amount of time simulating everything to ensure that it all worked properly. |
then built all of the Matrix functions | would need to implement the top level functions,
again continuing to do a large amount of simulation to ensure correctness. | finished
those in good enough time, but | still had a lot to do. | then began implementing the
top level modules. This unfortunately took me longer than | had hoped because at
this point | was trying to optimize the throughput. This made the designs more
difficult to write and understand as many things happened at once. By the time the
top level modules were done, it was Thanksgiving break and | knew | was in trouble.

When | came back from break | began the rendering half of the project. However,
issues upon issues prevented me from making much progress. The first major issue
was the memory situation. The accuracy of the depth values stored in the depth is
very important. If the depths are inaccurate, pixels from hidden sides could
potentially appear in the final image, especially near the edges where the depths of
the hidden and visible sides are close together. While it was possible to store the
limited color option in a look up table and encode the color information into a simple
6 bit value (two color selector bits and four shade bits), the need for an accurate
depth value forced the necessary memory per pixel to be 17 bits.

This meant that there were only two pixel per word and that in an ideal situation, the
VGA would need to read a pixel value every other clock cycle. However, every pixel
depth buffer also needed to be reset after every frame to allow the displaying of
movement. This would require a write every other clock cycle for each pixel in the
frame. This meant that the RAM would have to be, on average, occupied every clock
cycle for an entire image frame. Therefore, all of pixel drawing would have had to
occur during the blanking period of the display (an impossible proposition).

| thought of several solutions to address this issue. One solution would have been to
use a third FPGA. However, neither Lauren nor | had the time to create another
communication module. The simplest solution was to use another RAM block for the
second buffer to allow simultaneous read and write. However, the motion capture
system also required its own ram block. The size of the two required blocks were
too much to fit on a single RAM.

27

Another solution was to reduce the resolution, copying each pixel twice in a row in
both the x and y directions. This would have reduced the number of pixels needed to
draw / reset and allow the reader to read only once for every 4 clock cycles and not
at all every other line. However this scheme required a complicated state machine
controller that was unable to be constructed due to implementation difficulties and
time restrictions. So after spending a lot of work trying to make the complicated
scheme work, | decided to simplify my project and attempt to render a static image
to the screen.

This came with its host of issues as well. Even without the complicated
communication scheme, reading and writing to the FPGA properly turned out to be
difficult. It was not until the day before the project was due that | was able to read
from and write into RAM correctly. However, at this point an initialization error in my
dividers caused them to output junk data, ruining my Polygon Rendering algorithm. |
was not able to fix this problem until hours before my check off, killing my Project.

There were many factors that contributed to my inability to complete this project.
First was my late start due to other classes; | should have started working full steam
immediately. Second the difficulty of my full project, 3D rendering in real time on a
single RAM, was beyond my abilities from the start. However, the more important
reason that my design failed was the order in which | did it.

If I had worked on the hardware implementation in “reverse order” like | had on the
prototype, | would have known very quickly about my projects feasibility issues. |
would have been able to spend my earlier weeks getting something to work, and
then been able to improve upon it from there. This would have reduced stress and
raised productivity in my last week as | felt as though | had at least something to
show. It also would have helped focus my work. Instead of speculating how wide my
fixed numbers should be or how accurate they should be, | would have been able to
know immediately given the hardware. The same goes for throughput concerns; if |
had known of the major limitations of the RAM upfront, | could have written many of
my modules faster and consumed less space. Finally working in reverse would have
let me debug on the FPGA, which is in the end what matters. A lot of simulation
does not make a working product, but a bit of FPGA work does.

So despite my failure to create a working project, | would call my experiences a
success. | have learnt very clearly how not to design a system, a very important
lesson to learn. If one is building a hardware system, they should start from the

28

hardware and its limitations instead of the theoretical work. | didn’t do this because |
felt that the complicated math functions would have been the hardest part. | have
learn that debugging and integration will almost definitely be the hardest part and
should thus be addressed as soon as possible.

29

Testing
Video Module Testing

To test the Motion Detection module, a debugging module was created that displays both
the video feed and the center of masses of the detected points. Using this module, | was
able to check whether we are successfully converting from HSV to (x,z) and (y,z)
coordinates as well as correctly locating the correct center of mass of the color sources.
Additionally, if one were to flip switch 3 on the la kit, the pixels being detected as a
specific color would display the color it is being detected as, as opposed to the video
feed.

Graphics Module Testing (Elliott)

As explained above, the majority of the 3D graphics generation system was first
developed as a python prototype. This enabled the complicated math issues involved
with coordinate transforms to be tested in a fast development environment. This
prototype also enabled predetermined matrix values (like those needed in the projection
transformation module) to be tweaked without having to recompile everything. This
system was tested first by creating a series of mathematical tests that ensured the fixed
math wrapper modules were correct. More tests were then written to ensure that the
matrix math operations were also being calculated properly. Once this was completed, a
third series of test modules were written to ensure that the top level mathematical
operations (like shading and prism generation) were correct. The exact same tests were
used for the software prototype and hardware implementation. Finally, each hardware
block was double checked by feeding the results of each module into the following stages
of the prototype and ensuring that the mathematical and graphical results were the
same. Modelsim was used for hardware math testing while the complete graphics test
would have been performed on the FPGA itself.

The only graphics modules that was not tested in python was the Renderer, Frame
Buffer, and VGA controller modules. These were not tested in Python because they are
highly dependent on the ZBT and VGA interfaces. Instead these modules were tested on
the FPGA (and in model sim for the renderer) using predetermined shapes. The order of
these tests were done in reverse so that the functionality of the later modules could be
used to verify the results of the earlier blocks. For example, once the VGA and ZBT
modules were verified, they were used to verify that the renderer was drawing shapes
correctly.

Once both systems had been completed, they would have been tested together, first with
still subjects where all markers are seen, then with subjects with hidden markers, then

30

with subjects performing slow simple motions, and finally with fast moving subjects
performing complex motions.

Results
Video Module Results (Lauren)

A working Video System was completed, so our project did have the
motion-capture portion of our project complete. The video system was able to track
four different colored points from two angles and generate 3D coordinates and
bones that would have been able to be passed into the 3D Graphics System.
Because the graphics system was not complete, the video system’s functionality is
being shown via colored cross hairs that show the location of the center of mass of
each pixel. Additionally, the pixels that are being detected as one of the four colors
can be outputted as the pure color by flipping switch 3 on the lab kit. This
functionality is to show what objects are being detected as what colors. For
example, if switch 3 is one, the arm bands will be displayed as colored blobs.
Additionally, this mode will show what things in the background are being picked up
as. For example, blonde hair may be displayed as some yellow pixels, phones and
computers are green and blue, and all the blue lab benches in lab are detected as
blue. This is useful to see what color pixels may be throwing the overall calculation
off. To compensate for the blue lab benches and computers/people in the
background, we placed a black screen behind the user. Because back is the
absence of color, i.e. all zero, the color detection modules do not detect any colored
pixeled from the black screen. However, this is not necessarily true of all blacks; we
found that some black shirts may contain some blue most likely due to the dye used
on the clothing. As discussed in the design and experiences section, blue was the
most difficult color to track, so these random appearances of blue could be an
inconvenience at times. Moreover, the matched 3D coordinate is being displayed
on the receiver FPGAs hex display. Using the hex display, one can see that has the
color source moves in one direction, only one dimension will change. As depicted in
Figure 5, the camera set up consists of two cameras 90 degrees apart from each
other. The display in Figure 5 is displaying the side view of the user, i.e. the (y,z)
coordinates.

31

Figure 10: Camera set up. This picture shows the set up of the two cameras as well as the
display of the camera #1 color video feed plus cross hair pixels.

Figure 6 is a picture of the both of the camera’s display screens. Camera#1
displays the user from the right side, i.e. the y and z coordinates, while Camera #2
displays the view of the user from the front, i.e. the x,z coordinates.

Figure 11: Video display from both Cameras. This picture shows the display of both the
camera #1 and camera #2 color video feed plus cross hair pixels.

Figure 7 shows the user wearing the four colored arm bands, and the four colored

arm bands displayed on camera display #1 with cross hairs denoting the location of
their center of mass.

32

Figure 12: Video display from both Cameras. This picture shows the display of both the
camera #1 and camera #2 color video feed plus cross hair pixels.

Overall, the result of the Video System was a success; the arm bands were able to
be detected, the center of mass was calculated, the 3D points were matched, and
the final bone coordinates were created and ready to be sent to Elliott.

Graphics System Results (Elliott)

As explained above, the graphics hardware system as a whole was not completed.
However, the prototype and each hardware subsystem was completed (except for some
hidden bugs that would have been revealed in the final integration). The Prism Generator,
Transform, and Shader modules were all verified in simulation and would only have to
undergo minor changes to resolve any hidden issues. The renderer, Memory interface,
and VGA display were also completed and implemented on the FPGA. In fact, all of the
components were able to be placed on the FPGA at the same time in an initial attempt at
a complete system integration. The only part of the project that was not completed was
the final integration of all of the blocks and the associated debugging needed to ensure
they all worked together.

Figure 13 below shows a 3D image of a cube generated by the graphics prototype. Note

33

the shading of the square, the front is facing the light source and is thus brighter than the
side which is turned away which is itself brighter then the top which is parallel to the
source. Also note how the prospective and orientation correct show what the cube at a
slight angle would look like from in front and slightly above to the left.

Figure 13: Complete graphics prototype. This picture shows the results of the complete
prototype. Note how the perspective looks realistic and that the side and top are shaded a
different color than the front.

Figure 14 below shows the results of the Prism Generator with an input of (-1,-1,-1) and
(1,1,1) fed into the prototype’s shading and rendering algorithms to finish rendering the
image. Note how the prism appears to indeed stretch from the point (-1,-1,-1) in the
foreground to the point (1,1,1) in the background.

34

5 pygame window

Figure 14: Results of the Prism Generator given the points (-1,-1,-1) and (1,1,1). The results
of the module’s simulation were used as inputs to the rest of the graphics pipeline to
produce this image.

Figure 15 below shows the results of the transformer module applying a transform of
minus 2 X, plus 2 y, and minus 4 z to the output of the Prism Generator’s vertices from
the previous test. Again, the output of the transform was fed into the prototype’s shading
and rendering algorithms to finish rendering the image. Note how the prism appears to
have moved two to the right and two down in addition to being much farther away. This
makes sense because the camera is shifting by two in the opposite direction and
zooming out.

35

pygame window

Figure 15: Results of the transform modules given a view transformation of -2, 2, -4 and the
prism from the previous figure. Note how the figure has been shifted correctly.

Figure 16 shows the effects of the shading module on a side a distance of 1, 2, and 4
from the light source (the simulation results were fed into the prototype’s transform and
rendering modules to display the effect). Note how the color shading decreased with the
square of the distance.

Figure 16: Results of the shading module giving planes perpendicular to the light source
at distances 1, 2 and 4 away. Note that the sizing and rendering of the sides was

36

calculated by the python prototype.

Figure 17 displays the results of an arbitrary polygon being drawn to the screen using the
FPGA. The coordinates of the Polygon’s four faces are (50, 50), (200, 50), (250, 100),
and (100, 100). Note how the renderer fills in the rhombus correctly and the VGA and ZBT
modules were able to render the image correctly.

Figure 17: A correctly rendered rhombus. This images shows the results of the renderer,
ZBT, and VGA modules when supplied with a polygon with coordinates (50, 50), (200, 50),
(250, 100), (100,100).

37

Conclusion

In conclusion, our project was a difficult engineering challenge, and there were many
different parts that we were able to tackle and complete. Although the final
integration did not occur, our implementation offers numerous working parts
essential to a motion capture system. All of our work done here could be used to
implement a working, cost effective motion capture system in the near future.

Acknowledgements

We would really like to thank Gim, Michael, Devon, and the rest of the 6.111 staff for
all of your help. This project really tested our design, coding, and debugging
prowess in addition to our mental fortitude, and you all were instrumental in our
success. Thank you for the countless hours of advice and debugging aid in addition
to your constant availability. Finally, thank you for helping us through the pains of
disappointment and stress. Thank you for an excellent course and fun semester!

References

[1] http://www.terathon.com/gdc07_lengyel.pdf

[2] http://www.glprogramming.com/red/chapter03.html
[3] www.dr-lex.be/random/matrix_inv.html

[4] http://alienryderflex.com/polygon_fill/

[1]

38

http://www.google.com/url?q=http%3A%2F%2Fwww.terathon.com%2Fgdc07_lengyel.pdf&sa=D&sntz=1&usg=AFQjCNHQdzmAPryoJpkK4ZtfXxLOBQYwMA
http://www.google.com/url?q=http%3A%2F%2Fwww.terathon.com%2Fgdc07_lengyel.pdf&sa=D&sntz=1&usg=AFQjCNHQdzmAPryoJpkK4ZtfXxLOBQYwMA
http://www.google.com/url?q=http%3A%2F%2Fwww.glprogramming.com%2Fred%2Fchapter03.html&sa=D&sntz=1&usg=AFQjCNFXISq5HBrZx_un3xzhoEYbW-_kqg
http://www.google.com/url?q=http%3A%2F%2Fwww.terathon.com%2Fgdc07_lengyel.pdf&sa=D&sntz=1&usg=AFQjCNHQdzmAPryoJpkK4ZtfXxLOBQYwMA
http://www.google.com/url?q=http%3A%2F%2Fwww.terathon.com%2Fgdc07_lengyel.pdf&sa=D&sntz=1&usg=AFQjCNHQdzmAPryoJpkK4ZtfXxLOBQYwMA
http://www.google.com/url?q=http%3A%2F%2Fwww.terathon.com%2Fgdc07_lengyel.pdf&sa=D&sntz=1&usg=AFQjCNHQdzmAPryoJpkK4ZtfXxLOBQYwMA

Appendix A: Full System Block Diagram

Camera

Video System

coordinates for bones y.z,color

x,y,z,color

X,z,color

+

==t e e e e e e s e e e e e e e e I
3D Graphics

System

normal
vectors
—

norm
coords

Figure 4: The Modules and Sub modules of the Motion Capture System. Above is a block
diagram of the various modules that comprise the motion capture system. The two main
systems are the Video system and the 3D Graphics system, and each of these systems has
several sub modules represented by the blocks in the diagram. The arrows represent the
inputs and outputs of the modules. Additionally, the clock connects to all of the blocks in
the system; however for simplicity, the arrow connections have not been displayed.
Modules in the Video System were implemented by Lauren, while modules in the 3D
Graphics System were implemented by Elliott.

39

40

Appendix B: Motion Capture System Code

B1: Sender FPGA

//TOP MODULE FOR VIDEO SYSTEM SENDER FPGA

/I File: zbt_6111_sample.v

/| Date: 26-Nov-05

/I Author: I. Chuang <ichuang@mit.edu>

1

/I Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

/l memories for video display. Video input from the NTSC digitizer is

/I displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
/I as the video frame buffer, with 8 bits used per pixel (black & white).

1

/I Since the ZBT is read once for every four pixels, this frees up time for

// data to be stored to the ZBT during other pixel times. The NTSC decoder
/[runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize

/I signals between the two (see ntsc2zbt.v) and let the NTSC data be

// stored to ZBT memory whenever it is available, during cycles when

/I pixel reads are not being performed.

1

/l We use a very simple ZBT interface, which does not involve any clock

/I generation or hiding of the pipelining. See zbt_6111.v for more info.

1

/I switch[7] selects between display of NTSC video and test bars

/I switch[6] is used for testing the NTSC decoder

/I switch[1] selects between test bar periods; these are stored to ZBT

/1l during blanking periods

/I switch[0] selects vertical test bars (hardwired; not stored in ZBT)

1

1

// Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>

// Date :11-May-09

1

/I Use ramclock module to deskew clocks; GPH

/I To change display from 1024*787 to 800*600, use clock_40mhz and change
/I accordingly. Verilog ntsc2zbt.v will also need changes to change resolution.
1

// Date :10-Nov-11

i i

1

// 6.111 FPGA Labkit -- Template Toplevel Module
1/

/! For Labkit Revision 004

1

I

/I Created: October 31, 2004, from revision 003 file

41

/[Author: Nathan Ickes

1

T T nn§n|

/1l

/I CHANGES FOR BOARD REVISION 004

1

/I 1) Added signals for logic analyzer pods 2-4.

/I 2) Expanded "tv_in_ycrcb" to 20 bits.

/I 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

/I "tv_out_i2c_clock".

/I 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
/I output of the FPGA, and "in" is an input.

1

/l CHANGES FOR BOARD REVISION 003

1

/I 1) Combined flash chip enables into a single signal, flash_ce_b.

1

/l CHANGES FOR BOARD REVISION 002

1

/I 1) Added SRAM clock feedback path input and output

/I 2) Renamed "mousedata" to "mouse_data"

/I 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
/I the data bus, and the byte write enables have been combined into the
/[4-bit ram#_bwe_b bus.

/I 4) Removed the "systemace_clock" net, since the SystemACE clock is now
/I hardwired on the PCB to the oscillator.

1

M |

1

/l Complete change history (including bug fixes)

1

// 2011-Nov-10: Changed resolution to 1024 * 768.

I Added back ramclok to deskew RAM clock
1

/l 2009-May-11: Fixed memory management bug by 8 clock cycle forecast.
/1l Changed resolution to 800 * 600.

I Reduced clock speed to 40MHz.

1 Disconnected zbt_6111's ram_clk signal.

1 Added ramclock to control RAM.

/1l Added notes about ram1 default values.

I Commented out clock_feedback_out assignment.

I Removed delayN modules because ZBT's latency has no more effect.
1

/I 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",
I "disp_data_out", "analyzer[2-3]_clock" and

1 "analyzer[2-3]_data".

1

/1 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices

42

I actually populated on the boards. (The boards support up to

1 256Mb devices, with 25 address lines.)

1

// 2004-Oct-31: Adapted to new revision 004 board.

/1

/l 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
1 value. (Previous versions of this file declared this port to

/1l be an input.)

/1

/1 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
I actually populated on the boards. (The boards support up to

/! 72Mb devices, with 21 address lines.)

/1

// 2004-Apr-29: Change history started

1

U T nnnn

module zbt_6111_sample(beep, audio_reset b,
ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out i2c_data, tv_out_pal_ntsc, tv_out_hsync b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ramQ_data, ram0_address, ram0_adv_Id, ram0_clk, ram0_cen_b,
ramQ0_ce b, ram0_oe_b, ram0_we b, ram0_bwe b,

ram1_data, ram1_address, ram1_adv_Id, ram1_clk, ram1_cen_b,
ram1_ce_b, ram1_oe_b, ram1_we b, ram1_bwe b,

clock feedback out, clock feedback in,

flash_data, flash_address, flash_ce b, flash_oe b, flash_we b,
flash_reset_b, flash_sts, flash_byte b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

mouse_clock, mouse_data, keyboard_clock, keyboard_data,
43

clock_27mhz, clock1, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset b, disp_data in,

buttonO, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

user1, user2, user3, user4,
daughtercard,

systemace_data, systemace_address, systemace_ce b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

analyzer1_data, analyzer1_clock,
analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out vsync b, tv_out_blank b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ram0_data;

output [18:0] ramO_address;

output ram0_adv_Id, ram0_clk, ram0_cen_b, ramO_ce_b, ram0_oe_b, ram0_we_b;
output [3:0] ram0_bwe _b;

44

inout [35:0] ram1_data;
output [18:0] ram1_address;

output ram1_adv_Id, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;

output [3:0] ram1_bwe_b;

input clock_feedback _in;
output clock_feedback_out;

inout [15:0] flash_data;
output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte b;

input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;
input clock _27mhz, clock1, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input buttonO, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] user1, user2, user3, user4;

inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;

input systemace_irq, systemace_mpbrdy;

output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
analyzer4_data;

output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

T T
I

//'1/O Assignments

I
T T

45

/I Audio Input and Output
assign beep= 1'b0;
assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;
/*
*/
/' ac97_sdata_in is an input

/I Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b = 1'b1;
assign tv_out_vsync b = 1'b1;
assign tv_out_blank_b = 1'b1;
assign tv_out_subcar_reset = 1'b0;

/I Video Input

/lassign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b1;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b1;

/lassign tv_in_reset_b = 1'b0;

assign tv_in_clock = clock_27mhz;//1'b0;

/lassign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
/I tv_in_aef, tv_in_hff, and tv_in_aff are inputs

Il SRAMs
/* change lines below to enable ZBT RAM bank0 */

/*

assign ram0_data = 36'hZ;

assign ram0_address = 19'h0;

assign ram0_clk = 1'b0;

assign ram0_we_b = 1'b1;

assign ramO_cen_b = 1'b0;// clock enable
*/

/* enable RAM pins */

assign ram0_ce_b = 1'b0;

46

assign ram0_oe_b = 1'b0;
assign ram0_adv_Id = 1'b0;
assign ram0_bwe_b = 4'h0;

/**********/

assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign ram1_adv_Id = 1'b0;
assign ram1_clk = 1'b0;

/IThese values has to be set to 0 like ramO if ram1 is used.
assign ram1_cen_b = 1'b1;

assign ram1_ce_b = 1'b1;

assign ram1_oe_b = 1'b1;

assign ram1_we_b = 1'b1;

assign ram1_bwe_b = 4'hF;

/I clock_feedback out will be assigned by ramclock
/I assign clock_feedback_out = 1'b0; //2011-Nov-10
/Il clock_feedback_in is an input

/I Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 24'h0;
assign flash_ce_b = 1'b1;
assign flash_oe b = 1'b1;
assign flash_we_b = 1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte b = 1'b1;

/I flash_sts is an input

/I RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

Il rs232_rxd and rs232_cts are inputs

I PS/2 Ports
/l mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

/I LED Displays

/*
assign disp_blank = 1'b1;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;

47

*/

I
I
I
I
I
I
I

/[disp_data_in is an input

// Buttons, Switches, and Individual LEDs

/Nlab3 assign led = 8'hFF;

// buttonO, button1, button2, button3, button_enter, button_right,
/[button_left, button_down, button_up, and switches are inputs

/I User 1/Os

/lassign user1 = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

/I Daughtercard Connectors
assign daughtercard = 44'hZ;

/I SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'h0;

assign systemace_ce_b = 1'b1;

assign systemace_we_b = 1'b1;

assign systemace_oe b = 1'b1;

/I systemace_irq and systemace_mpbrdy are inputs

// Logic Analyzer

assign analyzer1_data = 16'h0;
assign analyzer1_clock = 1'b1;
assign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;
assign analyzer4_data = 16'h0;
assign analyzer4_clock = 1'b1;

T |
/l Demonstration of ZBT RAM as video memory

/I use FPGA's digital clock manager to produce a
/ 65MHz clock (actually 64.8MHz)
wire clock_65mhz_unbuf,clock_65mhz;
DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
/I synthesis attribute CLKFX_DIVIDE of vclk1 is 10
/I synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
/I synthesis attribute CLK_FEEDBACK of vclk1 is NONE
/I synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

48

/I wire clk = clock_65mhz; // gph 2011-Nov-10

T T |
/l Demonstration of ZBT RAM as video memory

/I use FPGA's digital clock manager to produce a

/l 40MHz clock (actually 40.5MHz)

wire clock_40mhz_unbuf,clock_40mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_40mhz_unbuf));
/I synthesis attribute CLKFX_DIVIDE of vclk1 is 2

/I synthesis attribute CLKFX_MULTIPLY of vclk1 is 3

/I synthesis attribute CLK_FEEDBACK of vclk1 is NONE

/I synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_40mhz),.I(clock_40mhz_unbuf));

/I wire clk = clock_40mhz;

wire locked;
/lassign clock _feedback out = 0; // gph 2011-Nov-10

ramclock rc(.ref_clock(clock_40mhz), .fpga_clock(clk),
.ram0_clock(ramO_clk),
/l.ram1_clock(ram1_clk), //luncomment if ram1 is
used
.clock_feedback_in(clock_feedback_in),
.clock_feedback_out(clock feedback_out),
Jlocked(locked));

/I power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

/[ENTER button is user reset

wire reset,user_reset;

debounce db1(power_on_reset, clk, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

/I display module for debugging

reg [63:0] dispdata;

display_16hex hexdisp1(reset, clk, dispdata,
disp_blank, disp_clock, disp_rs, disp_ce b,
disp_reset_b, disp_data_out);

/I generate basic XVGA video signals
49

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvga1(clk,hcount,vcount,hsync,vsync,blank);

/[wire up to ZBT ram

wire [35:0] viam_write _data;
wire [35:0] vram_read_data;
wire [18:0] vram_addr;

wire vram_we,

wire ram0_clk_not_used;
zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr,
vram_write_data, vram_read_data,
ramO_clk_not_used, //to get good timing, don't connect ram_clk to
zbt 6111
ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

/I generate pixel value from reading ZBT memory
wire [17:0] vr_pixel;
wire [18:0] vram_addr1;

vram_display vd1(reset,clk,hcount,vcount,vr_pixel,
vram_addr1,vram_read_data);

/l ADV7185 NTSC decoder interface code

/l adv7185 initialization module

adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
.source(1'b0), .tv_in_reset_b(tv_in_reset_b),
tv_in_i2c_clock(tv_in_i2c_clock),
tv_in_i2c_data(tv_in_i2c_data));

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; /I sync for field, vertical, horizontal
wire dv; // data valid

ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),
tv_in_ycrcb(tv_in_ycrcb[19:10]),
.ycrcb(ycreb), .f(fvh[2]),
v(fvh[1]), .h(fvh[0]), .data_valid(dv));

/lycrcb to RGB
wire [9:0] y, cr, cb;
wire [7:0] r, g, bee;

assign y = ycrcb[29:20];
assign cr= ycrcb[19:10];

50

2'd0}),

assign cb= ycrcb[9:0];

YCrCb2RGB ycrcb2rgb(.R(r), .G(g), .B(bee), .clk(tv_in_line_clock1),

rst(reset), .Y(y), .Cr(cr), .Cb(cb));

wire [17:0] rgb;
assign rgb = {r[7:2], g[7:2], bee[7:2]};

//RGB to HSV
wire [7:0] h, s, v;
/lwas r, g, bee

wire [10:0] hcount_del;

wire [9:0] vcount_del;

/ldelay hcount and vcount

delayN#(22) delay3(.clk(clk),.in(hcount), .out(hcount_del));
delayN#(22) delay4(.clk(clk),.in(vcount), .out(vcount_del));

rgb2hsv RGB2HSV(.clock(tv_in_line_clock1), .reset(reset), .r({vr_pixel[17:12],

.g({vr_pixel[11:6], 2'd0}), .b({vr_pixel[5:0], 2'd0}), .h(h), .s(s), .v(V));

wire UP, DOWN, LEFT, RIGHT, b_zero, b_one, b_two, b_three;

//debounce buttons
debounce db2(.reset(reset), .clk(clk), .noisy
debounce db3(.reset(reset), .clk(clk), .noisy

debounce db5(.reset(reset), .clk(clk), .noisy

//buttonO, button1, button2, button3
debounce db6(.reset(reset), .clk(clk), .noisy

debounce db8(.reset(reset), .clk(clk), .noisy

debounce db9(.reset(reset), .clk(clk), .noisy
//buttonO, button1, button2, button3

/[create cursor for cross hair debugging
wire [10:0] hcursor;
wire [9:0] vcursor;

end

/I code to write NTSC data to video memory

wire [18:0] ntsc_addr;
wire [35:0] ntsc_data;

wire

ntsc_we;

((~button_up), .clean(UP));

((~button_down), .clean(DOWN));
debounce db4(.reset(reset), .clk(clk), .noisy(~button_left), .clean(LEFT));

((~button_right), .clean(RIGHT));

(~button0), .clean(b_zero));
debounce db7(.reset(reset), .clk(clk), .noisy(~button1), .clean

(~button2), .clean(b_two));

(~button3d), .clean(b_three));

51

ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, rgb, //ycrcb[29:22],
ntsc_addr, ntsc_data, ntsc_we, switch[6]);

/I code to write pattern to ZBT memory
reg [31:0] count;
always @(posedge clk) count <=reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];
wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}
: {4{count[3+4:4],4'b0}});

/I mux selecting read/write to memory based on which write-enable is chosen

wire sw_ntsc = ~switch[7];

wire my_we = sw_ntsc ? (hcount[0]==1'd1) : blank;

wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;
wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

Il wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
/[assign vram_addr = write_enable ? write_addr : vram_addr1;
/I assign vram_we = write_enable;

assign vram_addr = my_we ? write_addr : vr.am_addr1;
assign vram_we = my_we;
assign vram_write_data = write_data;

//BEGINNING OF THE SENER FPGA PROJECT

/I select output pixel data
reg b,hs,vs;

/Ired params

parameter MAX_HUE_R = 8'd01;
parameter MIN_ HUE_R = 8'hFA,;
parameter MIN_SAT R = 8'hF5; //160
parameter MIN_VAL_R = 8'hB6; /100

/lyellow params

parameter MAX_HUE_Y = 8'd5;
parameter MIN_ HUE_Y = 8'd0;
parameter MIN_SAT_Y = 8'd0;
parameter MIN_VAL_Y = 8'hFA,;

/lgreen params

parameter MAX_HUE_G = 8'd89;
parameter MIN_HUE_G = 8'd73;
parameter MIN_SAT G = 8'd0;

parameter MIN_VAL G = 8'd160;

/[blue params

parameter MAX_HUE_ B = 8'hBA; //d91;
parameter MIN_HUE_B = 8'hA3; //d188;
parameter MIN_SAT_B = 8'd00; //d01;
parameter MIN_VAL B = 8'd02; //d00;

//[RED BAND WIRES

wire red_keep, yellow_keep, green_keep, blue_keep;
wire [10:0] x_red, x_yellow, x_green, x_blue;

wire [9:0] y_red, y_yellow, y_green, y_blue;

/Iwire [17:0] color_pixel_red

/lwire direction;

wire [17:0] color_pixel_yellow, color_pixel_red, color_pixel_green,
color_pixel_blue;

/Ipoint detection and CM detection of the 4 colors
detect#(MAX_HUE_R, MIN_HUE_R, MIN_SAT_R, MIN_VAL_R)
red(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd0),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.x_coord(x_red), .y_coord(y_red), .color_pixel(color_pixel_red),);

detect#(MAX_HUE_Y, MIN_HUE_Y, MIN_SAT_Y, MIN_VAL_Y)
yellow(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd1),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.x_coord(x_yellow), .y_coord(y_yellow), .color_pixel(color_pixel_yellow));

detect#(MAX_HUE_G, MIN_HUE_G, MIN_SAT_G, MIN_VAL_G)
green(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd2),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.x_coord(x_green), .y_coord(y_green), .color_pixel(color_pixel_green));

detect#(MAX_HUE_B, MIN_HUE_B, MIN_SAT_B, MIN_VAL_B)
blue(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd3),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.X_coord(x_blue), .y_coord(y_blue), .color_pixel(color_pixel_blue));

//sending data about coordinates detected to the receiver for each color
wire data_r, data_y, data_g, data_b;

wire inter_clock;

wire frame;

wire [1:0] color_index_r, color_index_y, color_index_g, color_index_b;

/lframe pulse that is triggered every frame
assign frame = ((hcount==0)&(vcount==0));

53

/[color_index--each color is mapped to a number 0:3
assign color_index_r = 2'd0;
assign color_index_y = 2'd1;
assign color_index_g = 2'd2;
assign color_index_b = 2'd3;

/leach color is wired to a different user1 1/0O pin

assign user1[0] = data_r; //wire transmitting red y,z, color_index
assign user1[3] = data_y;

assign user1[4] = data_g;

assign user1[5] = data_b;

/lthe slowed_down interface clock as well as the frame pulse is sent to the other fpga
assign user1[1] = inter_clock;
assign user1[2] = frame;

/lto obtain the slowed down clock--the system clock (40mhz)
/lis divided by 8-bits to produce a slower clock to travel
/lacross the long wires (reduce noise)

clock_divider new_clk(.clock(clk), .new_clock(inter_clock));

//send the data for each color's coordinate in parallel

send_data_good new_red(.clock(inter_clock), .reset(reset), .frame(frame),
.color_index(color_index_r), .x_coord(x_red),
.y_coord(y_red), .data(data_r));

send_data_good new_yell(.clock(inter_clock), .reset(reset), .frame(frame),
.color_index(color_index_y), .x_coord(x_yellow),
.y_coord(y_yellow), .data(data_y));

send_data_good new_gree(.clock(inter_clock), .reset(reset), .frame(frame),
.color_index(color_index_g), .x_coord(x_green),
.y_coord(y_green), .data(data_q));

send_data_good new_blue(.clock(inter_clock), .reset(reset), .frame(frame),
.color_index(color_index_b), .x_coord(x_blue),
.y_coord(y_blue), .data(data_b));

wire [17:0] pixel_red, pixel_yellow, pixel_green, pixel_blue, cross_red, cross_yellow,
cross_green, cross_blue;
reg [17:0] final_pixel;

//color for the cross hair if the color is detected
assign cross_red = 18'b111111_000000_000000;
assign cross_yellow = 18'b111111_111111_000000;
assign cross_green = 18'b000000_111111_000000;

54

assign cross_blue = 18'b000000_000000_111111;

/Imodule used to display where the center of mass of each of the four colors is
located
cross_hairs red_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_red), .hcount(hcount),
.vcount(vcount),
.x_coord(x_red), .y_coord(y_red), .color_pixel(color_pixel_red),
.h(h), .s(s), .v(v), .final_pixel(pixel_red));

cross_hairs yellow_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_yellow), .hcount(hcount),
.vcount(vcount),
.x_coord(x_yellow), .y_coord(y_yellow), .color_pixel(color_pixel_yellow),
.h(h), .s(s), .v(v), .final_pixel(pixel_yellow));

cross_hairs green_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_green), .hcount(hcount),
.vcount(vcount),
.X_coord(x_green), .y_coord(y_green), .color_pixel(color_pixel_green),
.h(h), .s(s), .v(v), .final_pixel(pixel_green));

cross_hairs blue_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_blue), .hcount(hcount),
.vcount(vcount),
.x_coord(x_blue), .y_coord(y_blue), .color_pixel(color_pixel_blue),
.h(h), .s(s), .v(v), .final_pixel(pixel_blue));

reg [7:0] hue_max = 8'd5; //48; //240
reg [7:0] hue_min = 8'd0; //32; //FO
reg [7:0] sat_min = 8'd0; //100, 160
reg [7:0] val_min = 8'hFA,; //100

always @(posedge clk)
begin
/lused buttons on labkit to adjust the hue, sat, and val values to fine the optimal
limits
/lassign pixel = ((hcount==hcursor)||(vcount==vcursor)) ? 18'h3ffff : color_pixel;
if (b_zero&&(hcount==1023 && vcount==767)&&(switch[0])) hue_max
<=hue_max-1;
if (b_one&&(hcount==1023 && vcount==767)&&(switch[0])) hue_max <=

hue_max +1;

if (b_two&&(hcount==1023 && vcount==767)&&(switch[0])) hue_min <=
hue min-1;

if (b_three&&(hcount==1023 && vcount==767)&&(switch[0])) hue_min <=
hue_min+1;

if (b_zero&&(hcount==1023 && vcount==767)&&(~switch[0])) sat_min
55

<=sat_min-1;
if (b_one&&(hcount==1023 && vcount==767)&&(~switch[0])) sat_min <=

sat_min +1;
if (b_two&&(hcount==1023 && vcount==767)&&(~switch[0])) val_min <=
val_min-1;
if (b_three&&(hcount==1023 && vcount==767)&&(~switch[0])) val_min <=
val_min+1;
/Il pixel <= (vcount==vcursor) ? 18'h3ffff : vr_pixel;
end

reg [17:0] pixel_y, pixel_r, pixel_b, pixel_g, color_y, color_r, color_b, color_g;
reg [17:0] pixel_crosshair;

reg crosshair_active;

reg [17:0] pixel_image;

/Ipipeling the cross hair display
always@(posedge clk)
begin
pixel_y <= pixel_yellow; //delay the colored cross hairs and color_pixel
feed
pixel_r <= pixel_red;
pixel_b <= pixel_blue;
pixel_g <= pixel_green;
color_y <= color_pixel_yellow;
color_r <= color_pixel_red;
color_b <= color_pixel_blue;
color_g <= color_pixel_green;

/*

final_pixel<=((|pixel_y)|(|pixel_r)|(|pixel_b)) ?
(pixel_y|pixel_r|pixel_b) :
(color_r|color_y|color_b);

*/

pixel_crosshair <= 0; //there is no cross hair as long as the cross hair is
not zero
crosshair_active <= 1; //assume there is a cross hair
if (pixel_y != 0) //if the cross hair is non-zero
pixel_crosshair <= pixel_y; //display a yellow cross hair
else if (pixel_r != 0)
pixel_crosshair <= pixel_r;
else if (pixel_b != 0)
pixel_crosshair <= pixel_b;
else if (pixel_g = 0)
pixel_crosshair <= pixel_g;
else
crosshair_active <= 0; //else nix the assumption about active
cross hair

56

/[switch=1 turns on a debugging mode that displays on the video feed

which
/Ipixels are being read as what colors
pixel_image <= vr_pixel; //assume we're displaying video feed pixel
if (yellow_keep&switch[3])
pixel_image <= 18'b111111_111111_000000;
else if (red_keep&switch[3])
pixel_image <= 18'b111111_000000_000000;
else if (blue_keep&switch[3])
pixel_image <= 18'b000000_000000_111111;
else if (green_keep&switch[3])
pixel_image <= 18'b000000_111111_000000;
if (crosshair_active)
final_pixel <= pixel_crosshair;
else
final_pixel <= pixel_image;
1 final_pixel<=((|pixel_yellow)|(|pixel_red)|(|pixel_blue)) ?
/1 (pixel_yellow|pixel_red|pixel_blue) :
I (color_pixel_red|color_pixel_yellow|color_pixel_blue);
b <= blank;
hs <= hsync;
VS <= VSYNC;
end

/[VGA Output. In order to meet the setup and hold times of the
/I AD7125, we send it ~clk.

assign vga_out_red = {final_pixel[17:12], 2'b00};

assign vga_out_green = {final_pixel[11:6], 2'b00};

assign vga_out_blue = {final_pixel[5:0], 2'b00};

assign vga_out_sync_b =1'b1; // not used

assign vga_out_pixel_clock = ~clk;

assign vga_out_blank_b = ~b;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

// debugging
assign led = ~{vram_addr[18:13],reset,switch[0]};

/lused to display hsv values on the hex display
always @(posedge clk)
dispdata <= {8'd0, 8'd0, 8'd0 ,8'd0, hue_min, hue_max, sat_min, val_min};
endmodule
//END OF THE SENDER FPGA PROJECT

57

T T T T]
/I xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

//module xvga(vclock,hcount,vcount,hsync,vsync,blank);
/I input vclock;

/I output [10:0] hcount;

/[output [9:0] vcount;

/[output vsync;

/I output hsync;

/I output blank;

1

/' reg hsync,vsync,hblank,vblank,blank;

/I reg [10:0] hcount; // pixel number on current line

/I reg [9:0] vcount; //line number

1

/I I horizontal: 1344 pixels total

/[I display 1024 pixels per line

/I wire hsyncon,hsyncoff,hreset,hblankon;

/I assign hblankon = (hcount == 1023);

/I assign hsyncon = (hcount == 1047);

/I assign hsyncoff = (hcount == 1183);

/I assign hreset = (hcount == 1343);

1

/I] vertical: 806 lines total

/I 1] display 768 lines

/I wire vsyncon,vsyncoff,vreset,vblankon;

/I assign vblankon = hreset & (vcount == 767);

/I assign vsyncon = hreset & (vcount == 776);

/I assign vsyncoff = hreset & (vcount == 782);

/I assign vreset = hreset & (vcount == 805);

1

/I 1l sync and blanking

/[wire next_hblank,next_vblank;

/I assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
/[assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
/I always @(posedge vclock) begin

/I hcount <= hreset ? 0 : hcount + 1;

/[hblank <= next_hblank;

/I hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low
1

/[vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
/I vblank <= next_vblank;

/I vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
1

/I blank <= next_vblank | (next_hblank & ~hreset);

/I end

58

/lendmodule

T T
/I xvga: Generate XVGA display signals (800 x 600 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output VSync;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; /['line number

/I horizontal: 1056 pixels total

/I display 800 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 799);
assign hsyncon = (hcount == 839);
assign hsyncoff = (hcount == 967);
assign hreset = (hcount == 1055);

/I vertical: 628 lines total

/I display 600 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 599);
assign vsyncon = hreset & (vcount == 600);
assign vsyncoff = hreset & (vcount == 604);
assign vreset = hreset & (vcount == 627);

// sync and blanking
wire next_hblank,next_vblank;
assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
59

end
endmodule

T T T

/I generate display pixels from reading the ZBT ram

/I note that the ZBT ram has 2 cycles of read (and write) latency

1

/I We take care of that by latching the data at an appropriate time.

1

/I Note that the ZBT stores 36 bits per word; we use only 32 bits here,

/I decoded into four bytes of pixel data.

1

// Bug due to memory management will be fixed. The bug happens because
/ memory is called based on current hcount & vcount, which will actually
/I shows up 2 cycle in the future. Not to mention that these incoming data
/I are latched for 2 cycles before they are used. Also remember that the
/I ntsc2zbt's addressing protocol has been fixed.

/I The original bug:

/I -. At (hcount, vcount) = (100, 201) data at memory address(0,100,49)

/I arrives at vr,am_read_data, latch it to vr_data_latched.

/I -. At (hcount, vcount) = (100, 203) data at memory address(0,100,49)

/I is latched to last_vr_data to be used for display.

/I -. Remember that memory address(0,100,49) contains camera data

Il pixel(100,192) - pixel(100,195).

/[-. At (hcount, vcount) = (100, 204) camera pixel data(100,192) is shown.
/[-. At (hcount, vcount) = (100, 205) camera pixel data(100,193) is shown.
/I -. At (hcount, vcount) = (100, 206) camera pixel data(100,194) is shown.
/I -. At (hcount, vcount) = (100, 207) camera pixel data(100,195) is shown.
1

/I Unfortunately this means that at (hcount == 0) to (hcount == 11) data from
/I the right side of the camera is shown instead (including possible sync signals).

/I To fix this, two corrections has been made:

/I -. Fix addressing protocol in ntsc_to_zbt module.

/I -. Forecast hcount & vcount 8 clock cycles ahead and use that
/I instead to call data from ZBT.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram_read_data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;

output [17:0] vr_pixel;

output [18:0] vram_addr;
input [35:0] vram_read_data;

60

/[forecast hcount & vcount 8 clock cycles ahead to get data from ZBT
wire [10:0] hcount_f = (hcount >= 1048) ? (hcount - 1048) : (hcount + 8);
wire [9:0] veount_f = (hcount >= 1048) ? ((vcount == 805) ? 0 : vcount + 1) : vcount;

wire [18:0] vram_addr = {vcount_f, hcount_f[9:1]};

wire hc4 = hcount[0];
reg [17:0] vr_pixel;

reg [35:0] vr_data_latched;

reg [35:0] last vr_data;

always @(posedge clk)
last_vr_data <= (hc4==1'd1) ? vr_data_latched : last_vr_data;

always @(posedge clk)
vr_data_latched <= (hc4==1'd0) ? vram_read_data : vr_data_latched;

always @(*) /I each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
//2'd3: vr_pixel = last_vr_data[7:0];
/12'd2: vr_pixel = last_vr_data[7+8:0+8];
1'd1: vr_pixel = last_vr_data[17:0];
1'd0: vr_pixel = last_vr_data[17+18:0+18];
endcase

endmodule // vram_display

U T T
/I parameterized delay line

module delayN(clk,in,out);
input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

i
/l ramclock module

61

T i n§ o

1

// 6.111 FPGA Labkit -- ZBT RAM clock generation

1

1

/I Created: April 27, 2004

/I Author: Nathan Ickes

1

T T n§ |

1

/I This module generates deskewed clocks for driving the ZBT SRAMs and FPGA
/I reqgisters. A special feedback trace on the labkit PCB (which is length

// matched to the RAM traces) is used to adjust the RAM clock phase so that
/I rising clock edges reach the RAMs at exactly the same time as rising clock
/I edges reach the registers in the FPGA.

1

/l The RAM clock signals are driven by DDR output buffers, which further

/I ensures that the clock-to-pad delay is the same for the RAM clocks as it is
/I for any other registered RAM signal.

1

/ When the FPGA is configured, the DCMs are enabled before the chip-level /0
/Il drivers are released from tristate. It is therefore necessary to

/I artificially hold the DCMs in reset for a few cycles after configuration.

/I This is done using a 16-bit shift register. When the DCMs have locked, the
/I <lock> output of this mnodule will go high. Until the DCMs are locked, the
/I ouput clock timings are not guaranteed, so any logic driven by the

/I <fpga_clock> should probably be held inreset until <locked> is high.

1

T n§ o

module ramclock(ref_clock, fpga_clock, ram0_clock, ram1_clock,
clock_feedback_in, clock_feedback_out, locked);

input ref_clock; /I Reference clock input

output fpga_clock; /I Output clock to drive FPGA logic
output ramO_clock, ram1_clock; // Output clocks for each RAM chip
input clock_feedback_in; // Output to feedback trace

output clock_feedback_out; /l Input from feedback trace

output locked; // Indicates that clock outputs are stable

wire ref_clk, fpga_clk, ram_clk, fb_clk, lock1, lock2, dcm_reset;
M

/[To force ISE to compile the ramclock, this line has to be removed.
/IBUFG ref_buf (.O(ref_clk), .I(ref_clock));

62

assign ref_clk = ref_clock;
BUFG int_buf (.O(fpga_clock), .I(fpga_clk));

DCM int_dcm (.CLKFB(fpga_clock),

.CLKIN(ref_clk),

.RST(dcm_reset),

.CLKO(fpga_clk),

.LOCKED(lock1));
/I synthesis attribute DLL_ FREQUENCY_MODE of int_dcm is "LOW"
/I synthesis attribute DUTY_CYCLE_CORRECTION of int_dcm is "TRUE"
/I synthesis attribute STARTUP_WAIT of int_dcm is "FALSE"
/I synthesis attribute DFS_FREQUENCY_MODE of int_dcm is "LOW"
/I synthesis attribute CLK_FEEDBACK of int_dcm is "1X"
/I synthesis attribute CLKOUT_PHASE_SHIFT of int_dcm is "NONE"
/I synthesis attribute PHASE_SHIFT of int_dcm is O

BUFG ext_buf (.O(ram_clock), .I(ram_clk));
IBUFG fb_buf (.O(fb_clk), .I(clock_feedback_in));

DCM ext_dcm (.CLKFB(fb_clk),

.CLKIN(ref_clk),

.RST(dcm_reset),

.CLKO(ram_clk),

.LOCKED(lock?2));
/I synthesis attribute DLL_FREQUENCY_MODE of ext_dcm is "LOW"
/I synthesis attribute DUTY_CYCLE_CORRECTION of ext_dcm is "TRUE"
/I synthesis attribute STARTUP_WAIT of ext_dcm is "FALSE"
/I synthesis attribute DFS_FREQUENCY_MODE of ext_dcm is "LOW"
/I synthesis attribute CLK_FEEDBACK of ext_dcm is "1X"
/I synthesis attribute CLKOUT_PHASE_SHIFT of ext_dcm is "NONE"
/I synthesis attribute PHASE_SHIFT of ext_ dcmis O

SRL16 dem_rst_sr (.D(1'b0), .CLK(ref_clk), .Q(dcm_reset),
AO0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
/I synthesis attribute init of dcm_rst_sris "0O00F";

OFDDRRSE ddr_reg0 (.Q(ram0_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));

OFDDRRSE ddr_reg1 (.Q(ram1_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'00), .S(1'b0));

OFDDRRSE ddr_reg2 (.Q(clock_feedback_out), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));

assign locked = lock1 && lock2;

63

endmodule

B1.a Detection module
‘timescale 1ns / 1ps
T nTnnn§§n
/l Company:
/I Engineer:
/1l
/I Create Date: 14:11:48 11/24/2013
// Design Name:
/ Module Name: detect
// Project Name:
/I Target Devices:
/I Tool versions:
/I Description:
/1l
/I Dependencies:
1
/I Revision:
/I Revision 0.01 - File Created
/[Additional Comments:
1
T T nn|
module detect(
input clock,
input [7:0] h,
input [7:0] s,
input [7:0] v,
input [1:0] arm_band,
input [10:0] hcount,
input [9:0] vcount,
input [17:0] vr_pixel,
output [10:0] x_coord, //final_coord,
output [9:0] y_coord, //ffinal_coord,
output reg [17:0] color_pixel,
output reg keep,

);

reg [17:0] pixel, pix;
/ldefault values

parameter HUE_MAX = 255;
parameter HUE_MIN = 0;
parameter SAT_MIN = 0;
parameter VAL_MIN = 0;

reg [9:0] top = 10'd108;
reg [9:0] bottom = 10'd542;

reg [10:0] left_s = 11'd80; //, 75 better 65 better, was 55

64

reg [10:0] right_s = 11'd717;

reg [24:0] count_x =
reg [24:0] count_y =
reg [24:0] dive_x = 0;
reg [24:0] dive_y = 0;
reg [24:0] divi_x = 0;
reg [24:0] divi_y = 0;

0;
0

wire [24:0] quot_x;
wire [24:0] quot_y;
wire [24:0] rem_X;
wire [24:0] rem_y;

wire x_rfd;
wire y_rfd;

/[dividers

div_points x_div(
.clk(clock),
.dividend(dive_x),
.divisor(divi_x),
.quotient(quot_x),
fractional(rem_x),

.rfd(x_rfd)

);

div_points y_div(
.clk(clock),
.dividend(dive_y),
.divisor(divi_y),
.quotient(quot_y),
fractional(rem_y),

.rfd(y_rfd)

);

always @(posedge clock)
begin

/Ireset ev new frame
if ((hcount==11'd0)&&(vcount==10'd0))
begin
color_pixel<=vr_pixel;
X_acc<=0;
y_acc<=0;
count_x<=0;
count_y<=0;
end

if
(((hcount>left_s)&&(hcount<right_s))&&((vcount>top)&&(vcount<bottom)))
begin
/Ired

if((arm_band==0)&((h>HUE_MAX)||(h<HUE_MIN))&&(s>SAT_MIN)&&(v>VAL_MIN))
begin
/lcolor_pixel<=18'p111111_000000_000000;
color_pixel <= vr_pixel;
keep<=1'd1;
X_acc<=x_acc+hcount;
y_acc<=y_acc+vcount;
count_x <=count_x + 1;
count_y <=count_y + 1;
end
/lyellow
else
if((arm_band==1)&((h<HUE_MAX)&&(h>HUE_MIN))&&(s>SAT_MIN)&&(v>VAL_MIN))
begin
/lcolor_pixel<=18'b111111_111111_000000;
color_pixel <= vr_pixel;
keep<=1'd1;
X_acc<=x_acc+hcount;
y_acc<=y_acc+vcount;
count_x <=count_x + 1;
count_y <=count_y + 1;
end
/Igreen
else
if((arm_band==2)&((h<HUE_MAX)&&(h>HUE_MIN))&&(s>SAT_MIN)&&(v>VAL_MIN))
begin
/lcolor_pixel<=18'n000000_111111_000000;
color_pixel <= vr_pixel;
keep<=1'd1;
X_acc<=x_acc+hcount;
y_acc<=y_acc+vcount;
count_x <=count_x + 1;
count_y <=count_y + 1;
end
1 //blue
else
if((arm_band==3)&((h<HUE_MAX)&&(h>HUE_MIN))&&(s>SAT_MIN)&&(v>VAL_MIN))
begin
/lcolor_pixel<=18'n000000_000000_111111;
color_pixel <= vr_pixel;
keep<=1'd1;
X_acc<=x_acc+hcount;

66

y_acc<=y_acc+vcount;
count_x <=count_x + 1;
count_y <=count_y + 1;
end
else
begin
keep<=1'd0;
color_pixel<= vr_pixel;
X_acc<=x_acc;
y_acc<=y_acc;
count_x<=count_x;
count_y<=count_y;
dive x <=dive x;
divi_x <=divi_x;
dive_y <= dive_y;
divi_y <=divi_y;
end
end
/ldivide
else if (hcount==11'd0&&vcount==10'd543)
begin
color_pixel <= vr_pixel;
dive_x <= (count_x>100) ? x_acc : 0;
dive_y <= (count_y>100) ? y_acc: 0;
divi_x <= (count_x==0) ? 1: count_x;
divi_y <= (count_y==0) ? 1: count_y;
end
else
begin
color_pixel <= vr_pixel;
keep<=1'd0;
end
end

/Ipixel <= ((hcount==hcursor)||(vcount==vcursor)) ? 18'h3ffff : color_pixel;
/b <= blank;
/Ihs <= hsync;
/Ivs <= vsync;
/lend

wire [10:0] x_point; //, x_coord;
wire [9:0] y_point; //, y_coord;

assign x_point = x_rfd ? quot_x[10:0] : x_point;
assigny_point =y rfd ? quot_y[9:0] : y_point;

wire push;

67

assign push = (hcount==11'd1&&vcount==10'd542);

center_mass center(.clock(clock), .enter(push), .x_val(x_point),
.y_val(y_point), .x_coor(x_coord), .y_coor(y_coord));

endmodule

B1.b center mass
module center_mass(
input clock,
input enter,
input [10:0] x_val,
input [9:0] y_val,
output [10:0] x_coor,
output [9:0] y_coor
);

wire [12:0] x_sum;

wire [11:0] y_sum;

/lreg [1:0] hue_array[7:0];
reg [10:0] x_array [3:0];
reg [9:0] y_array [3:0];
/Ireg [3:0] x_array [10:0];
/lreg [3:0] y_array [9:0];
reg [1:0] index;

always @(posedge clock)

begin
if (enter)
begin
index <= index+1;
x_array[index] <= x_val,
y_array[index] <=y _val,
end
end

assign x_sum = x_array[3]+x_array[2]+x_array[1]+x_array[0];
assigny_sum =y _array[3]+y_array[2]+y_array[1]+y_array[0];

assign x_coor = x_sum >> 2;
assign y_coor =y _sum >> 2;

endmodule

68

B1.c crosshairs
‘timescale 1ns / 1ps
s
/[Company:
/I Engineer:
I
/I Create Date: 14:30:07 11/26/2013
// Design Name:
/[Module Name: cross_hairs
/I Project Name:
/I Target Devices:
/I Tool versions:
/I Description:
I
/I Dependencies:
I
/I Revision:
/I Revision 0.01 - File Created
/l Additional Comments:
I
T |
module cross_hairs(
input clock,
input up,
input down,
input left,
input right,
input [17:0] cross_color,
input [10:0] hcount,
input [9:0] vcount,
input [10:0] x_coord,
input [9:0] y_coord,
input [17:0] color_pixel,
input [7:0] h,
input [7:0] s,
input [7:0] v,
output reg [17:0] final_pixel
);

reg [10:0] hcursor= 11'd510;
reg [9:0] vcursor= 10'd383;

always @(posedge clock)

69

begin

if (up & (hcount==1023 && vcount==767)) vcursor<=vcursor+10'd2;

else if (down & (hcount==1023 && vcount==767))
veursor<=vcursor-10'd2;

else if (left & (hcount==1023 &&
vcount==767))hcursor<=hcursor-11'd2;

else if (right & (hcount==1023 &&
vcount==767))hcursor<=hcursor+11'd2;

final_pixel <= ((hcount==x_coord)||(vcount==y_coord)) ? cross_color :
18'd0;
/ffinal_pixel <= color_pixel,

end
endmodule

B1.d clock_divider
‘timescale 1ns / 1ps
T Tl
/[Company:
/I Engineer:
I
/I Create Date: 22:38:03 12/02/2013
// Design Name:
/I Module Name: clock_divider
/I Project Name:
/I Target Devices:
/I Tool versions:
/I Description:
I
/I Dependencies:
I
/I Revision:
/I Revision 0.01 - File Created
// Additional Comments:
I
T |
module clock_divider(
input clock,
output reg new_clock

);

reg [7:0] counter;

70

always @(posedge clock)
begin
counter <= counter + 1;
new_clock <= (counter==0) ? !(new_clock) : new_clock;
end

endmodule

B1.d send data
‘timescale 1ns / 1ps
M
/ Company:
/I Engineer:
I
/I Create Date: 22:37:37 12/04/2013
/I Design Name:
/l Module Name: send_data_good
/I Project Name:
/I Target Devices:
/I Tool versions:
/I Description:
I
/I Dependencies:
I
/I Revision:
/I Revision 0.01 - File Created
/I Additional Comments:
I
M
module send_data_good(

input clock,

input reset,
input frame,
input [1:0] color_index,

input [10:0] x_coord,

input [9:0] y_coord,

output reg data

);

reg [3:0] index = 0;
reg start_x, start_y, start_color;

always @(posedge clock)
begin
if (reset)

71

begin
/ldata<=0;
start_color <= 0;
start_ x <=0;
start_y <=0;
index <= 4'd0;
end
else if (frame) //pulses each video frame
begin
[Istart_x <=1;
/ldata<=0;
start_color <= 1;
start x <= 0;
start_y <=0;
index <= 4'd0;
end
else if (start_color)
begin
if (index==4'd1) //4'd1
begin
data <= color_index[index];
index<=0;
start_color<=0;
start_x<=1;
end
else
begin
index<= index + 1;
data <= color_index[index];

end

end

else if (start_x) //first send x-coord

begin

if (index==4'd10) //4'd10
begin
data <= x_coord[index];
index <= 4'd0;
start_ x <= 0;
start_y <=1;
end

else
begin

data <= x_coord[index];
index <= index + 1;
end

72

end
else if (start_y) //then send y-coord

begin

if (index==4'd9) //4'd9
begin
data <=y_coord[index];
index <= 4'd0;
start_y <= 4'd0;
end

else
begin
data<=y_coord[index];
index <= index + 1;
end

end

end

endmodule

B2:Receiver FPGA

//TOP MODULE OF RECEIVER MODULE

/[File: zbt 6111_sample.v

// Date: 26-Nov-05

/[Author: |. Chuang <ichuang@mit.edu>

I

/l Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

/l memories for video display. Video input from the NTSC digitizer is

/I displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
/I as the video frame buffer, with 8 bits used per pixel (black & white).

I

/I Since the ZBT is read once for every four pixels, this frees up time for
/l data to be stored to the ZBT during other pixel times. The NTSC decoder
/Il runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize
/I signals between the two (see ntsc2zbt.v) and let the NTSC data be

I/ stored to ZBT memory whenever it is available, during cycles when

/I pixel reads are not being performed.

I

I We use a very simple ZBT interface, which does not involve any clock
/I generation or hiding of the pipelining. See zbt 6111.v for more info.

I

/I switch[7] selects between display of NTSC video and test bars

/I switch[6] is used for testing the NTSC decoder

/I switch[1] selects between test bar periods; these are stored to ZBT

I during blanking periods

73

/I switch[0] selects vertical test bars (hardwired; not stored in ZBT)

I

/l

// Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>

/ Date :11-May-09

I

/I Use ramclock module to deskew clocks; GPH

/I To change display from 1024*787 to 800*600, use clock_40mhz and change
/[accordingly. Verilog ntsc2zbt.v will also need changes to change resolution.
I

// Date :10-Nov-11

M|

I

/1 6.111 FPGA Labkit -- Template Toplevel Module

I

/I For Labkit Revision 004

I

/l

/I Created: October 31, 2004, from revision 003 file

/I Author: Nathan Ickes

I

s

I

/l CHANGES FOR BOARD REVISION 004

I

/I 1) Added signals for logic analyzer pods 2-4.

/I 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

/Il "tv_out_i2c_clock".

/I 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
/I output of the FPGA, and "in" is an input.

I

// CHANGES FOR BOARD REVISION 003

/l

/I 1) Combined flash chip enables into a single signal, flash_ce_b.

I

/l CHANGES FOR BOARD REVISION 002

I

/I 1) Added SRAM clock feedback path input and output

/I 2) Renamed "mousedata” to "mouse_data"

/I 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
/I the data bus, and the byte write enables have been combined into the
I/l 4-bit ram# _bwe b bus.

/I 4) Removed the "systemace_clock" net, since the SystemACE clock is now

74

/I hardwired on the PCB to the oscillator.

I

T T

I

/l Complete change history (including bug fixes)

I

// 2011-Nov-10: Changed resolution to 1024 * 768.

I Added back ramclok to deskew RAM clock
I

// 2009-May-11: Fixed memory management bug by 8 clock cycle forecast.

/l Changed resolution to 800 * 600.

I Reduced clock speed to 40MHz.

I Disconnected zbt 6111's ram_clk signal.

I Added ramclock to control RAM.

I Added notes about ram1 default values.

I Commented out clock feedback out assignment.

I Removed delayN modules because ZBT's latency has no more effect.
I

/I 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",

I "disp_data_out", "analyzer[2-3]_clock" and

I "analyzer[2-3] data".

I

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
I actually populated on the boards. (The boards support up to

I 256Mb devices, with 25 address lines.)

I

// 2004-Oct-31: Adapted to new revision 004 board.

I

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
I value. (Previous versions of this file declared this port to

I be an input.)

1

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
I actually populated on the boards. (The boards support up to

/l 72Mb devices, with 21 address lines.)

I

// 2004-Apr-29: Change history started

I

T | i

module zbt_6111_sample(beep, audio_reset_b,
ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,

75

vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ramQ_data, ram0_address, ram0_adv_|d, ramO_clk, ram0_cen_b,
ramQO_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

ram1_data, ram1_address, ram1_adv_Id, ram1_clk, ram1_cen_b,
ram1_ce b,ram1_oe b, ram1_we_ b, ram1_bwe b,

clock_feedback out, clock feedback in,

flash_data, flash_address, flash_ce b, flash_oe b, flash_we b,
flash_reset b, flash_sts, flash_byte b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock _27mhz, clock1, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset b, disp_data_in,

buttonO, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

user1, user2, user3, user4,
daughtercard,

systemace_data, systemace_address, systemace_ce b,
systemace_we_b, systemace_oe_b, systemace _irq,

76

systemace_mpbrdy,

analyzer1_data, analyzer1_clock,
analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4 _data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,

tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data valid, tv_in_line clock1, tv_in_line clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ramO_data;

output [18:0] ram0_address;

output ram0_adv_Id, ramO_clk, ram0_cen_b, ram0_ce b, ram0_oe_b,
ram0_we_b;

output [3:0] ram0_bwe_b;

inout [35:0] ram1_data;

output [18:0] ram1_address;

output ram1_adv_Id, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe b,
ram1_we_b;

output [3:0] ram1_bwe_b;

input clock feedback in;
output clock feedback_out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte b;
input flash_sts;

77

/*
*/

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;
input clock 27mhz, clock1, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input button0, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] user1, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce b, systemace_we_b, systemace_oe _b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzer1_data, analyzer2_data, analyzer3 data,
analyzer4_data;
output analyzer1_clock, analyzer2_clock, analyzer3_ clock, analyzer4_clock;

o
I

I1'1/O Assignments

I
U L L T

// Audio Input and Output
assign beep= 1'b0;

assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;

/[ac97 _sdata_in is an input

78

// Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b = 1'b1;
assign tv_out_vsync_b = 1'b1;
assign tv_out_blank_b = 1'b1;
assign tv_out_subcar_reset = 1'b0;

// Video Input

/lassign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b1;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b1;

/lassign tv_in_reset_b = 1'b0;

assign tv_in_clock = clock_27mhz;//1'b0;

/lassign tv_in_i2c_data = 1'bZ;

//tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

Il SRAMs
[* change lines below to enable ZBT RAM bankO0 */

/*

assign ram0_data = 36'hZ;

assign ram0_address = 19'h0;

assign ram0_clk = 1'b0;

assign ram0_we_b = 1'b1;

assign ram0_cen_b = 1'b0; /I clock enable
*/

/* enable RAM pins */
assign ram0_ce_b = 1'b0;
assign ram0_oe_b = 1'b0;

assign ram0_adv_Id = 1'b0;
assign ram0_bwe_b = 4'h0;

/**********/

assign ram1_data = 36'hZ;

/*

*/

assign ram1_address = 19'h0;
assign ram1_adv_Id = 1'b0;
assign ram1_clk = 1'b0;

/[These values has to be set to 0 like ramO if ram1 is used.
assign ram1_cen_b = 1'b1;

assignram1_ce b = 1'b1;

assign ram1_oe b = 1'b1;

assign ram1_we_b = 1'b1;

assign ram1_bwe_b = 4'hF;

/I clock_feedback_out will be assigned by ramclock
// assign clock_feedback _out = 1'b0; //2011-Nov-10
I clock_feedback_in is an input

// Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 24'h0;
assign flash_ce b = 1'b1;
assign flash_oe_b = 1'b1;
assign flash_we b = 1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte b = 1'b1;

/Il flash_sts is an input

Il RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

// rs232_rxd and rs232_cts are inputs

Il PS/2 Ports
/ mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

/I LED Displays

assign disp_blank = 1'b1;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;

// disp_data_in is an input

/! Buttons, Switches, and Individual LEDs

80

I
I
I
I
I
I
I

I

/Nlab3 assign led = 8'hFF;
// buttonO, button1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

/I User 1/Os

/lassign user1 = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

/I Daughtercard Connectors
assign daughtercard = 44'hZ;

/I SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'h0;

assign systemace_ce_b = 1'b1;

assign systemace_we_b = 1'b1;

assign systemace_oe b = 1'b1;

/I systemace_irq and systemace_mpbrdy are inputs

I/ Logic Analyzer

/lassign analyzer1_data = xyz_g
assign analyzer1_clock = 1'b1;
/lassign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;
assign analyzer4 data = 16'h0;
assign analyzer4_clock = 1'b1;

e,
/ Demonstration of ZBT RAM as video memory

I/l use FPGA's digital clock manager to produce a
/ 65MHz clock (actually 64.8MHz)
wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));

/Il synthesis attribute CLKFX_DIVIDE of vclk1 is 10

I/ synthesis attribute CLKFX_MULTIPLY of vclk1 is 24

/Il synthesis attribute CLK_FEEDBACK of vclk1 is NONE
/Il synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock _65mhz),.I(clock_65mhz_unbuf));

wire clk = clock_65mhz; // gph 2011-Nov-10

81

T L T
// Demonstration of ZBT RAM as video memory

/Il use FPGA's digital clock manager to produce a

// 40MHz clock (actually 40.5MHz)

wire clock_40mhz_unbuf,clock_40mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_40mhz_unbuf));
Il synthesis attribute CLKFX_DIVIDE of vclk1 is 2

/I synthesis attribute CLKFX_MULTIPLY of vclk1 is 3

/I synthesis attribute CLK_FEEDBACK of vclk1 is NONE

/I synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_40mhz),.l(clock_40mhz_unbuf));

/I wire clk = clock_40mhz;

wire locked;
/lassign clock_feedback out = 0; // gph 2011-Nov-10

ramclock rc(.ref_clock(clock_40mhz), .fpga_clock(clk),
.ram0_clock(ram0_clk),
/l.ram1_clock(ram1_clk), //uncomment if ram1
is used
.clock_feedback_in(clock_feedback in),
.clock_feedback_out(clock_feedback_out),
Jocked(locked));

I/l power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

/l ENTER button is user reset

wire reset,user_reset;

debounce db1(power_on_reset, clk, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

/I display module for debugging

reg [63:0] dispdata;

display_16hex hexdisp1(reset, clk, dispdata,
disp_blank, disp_clock, disp_rs, disp_ce b,
disp_reset b, disp_data_out);

82

/I generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvga1l(clk,hcount,vcount,hsync,vsync,blank);

// wire up to ZBT ram

wire [35:0] vram_write_data;
wire [35:0] vram_read_data;
wire [18:0] vram_addr;

wire vram_we;

wire ramO_clk_not_used;
zbt 6111 zbt1(clk, 1'b1, vram_we, vram_addr,
vram_write_data, vram_read_data,
ram0_clk_not_used, //to get good timing, don't connect ram_clk to
zbt 6111
ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

/I generate pixel value from reading ZBT memory
wire [17:0] vr_pixel;
wire [18:0] vram_addr1;

vram_display vd1(reset,clk,hcount,vcount,vr_pixel,
vram_addr1,vram_read_data);

// ADV7185 NTSC decoder interface code

I/ adv7185 initialization module

adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
.source(1'b0), .tv_in_reset_b(tv_in_reset_b),
tv_in_i2c_clock(tv_in_i2c_clock),
tv_in_i2c_data(tv_in_i2c_data));

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; /I sync for field, vertical, horizontal
wire dv;// data valid

ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),
tv_in_ycreb(tv_in_ycrcb[19:10]),
.ycrcb(ycreb), .f(fvh[2]),
V(fvh[1]), .h(fvh[0]), .data_valid(dv));

/lycrcb to RGB

83

wire [9:0] y, cr, cb;
wire [7:0]r, g, bee;

assign y = ycrcb[29:20];
assign cr= ycrcb[19:10];
assign cb= ycrcb[9:0];

YCrCb2RGB ycrcb2rgb(.R(r), .G(g), .B(bee), .clk(tv_in_line_clock1),
rst(reset), .Y(y), .Cr(cr), .Cb(cb));

wire [17:0] rgb;
assign rgb = {r[7:2], g[7:2], bee[7:2]};

/IRGB to HSV
wire [7:0] h, s, v;
llwas r, g, bee

wire [10:0] hcount_del;

wire [9:0] vcount_del;

/l[delay hcount and vcount

delayN#(22) delay3(.clk(clk),.in(hcount), .out(hcount_del));
delayN#(22) delay4(.clk(clk),.in(vcount), .out(vcount_del));

rgb2hsv RGB2HSV/(.clock(tv_in_line_clock1), .reset(reset),
r({vr_pixel[17:12], 2'd0}),
.g({vr_pixel[11:6], 2'd0}), .b({vr_pixel[5:0], 2'd0}), .h(h), .s(s), .v(V));

wire UP, DOWN, LEFT, RIGHT, b_zero, b_one, b_two, b_three;
//debounce buttons

debounce db2(.reset
debounce db3(.reset
debounce db4(.reset
debounce db5(.reset

reset
reset
reset
reset

, .clk(clk), .noisy
, .clk(clk), .noisy
, .Cclk(clk), .noisy
, .Clk(clk), .noisy

~button_up), .clean(UP));
~button_down), .clean(DOWN));
~button_left), .clean(LEFT));
~button_right), .clean(RIGHT));

o~ A~ A~ A~
~— N N N
P

/IbuttonO, button1, button2, button3
debounce db6(.reset(reset), .clk(clk), .noisy
debounce db7(.reset(reset), .clk(clk), .noisy
debounce db8(.reset(reset), .clk(clk), .noisy
debounce db9(.reset(reset), .clk(clk), .noisy
//buttonO, button1, button2, button3

~button0), .clean(b_zero));
~button1), .clean(b_one));
~button2), .clean(b_two));

~button3), .clean(b_three));

Py

/[create cursor
/Ireg [10:0] hcursor;
/lreg [9:0] vcursor;

84

wire [10:0] hcursor;
wire [9:0] vcursor;

/I code to write NTSC data to video memory

wire [18:0] ntsc_addr;

wire [35:0] ntsc_data;

wire ntsc_we,;

ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, rgb, //ycrcb[29:22],
ntsc_addr, ntsc_data, ntsc_we, switch[6]);

/I code to write pattern to ZBT memory
reg [31:0] count;
always @(posedge clk) count <=reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];
wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}
: {4{count[3+4:4],4'b0}});

/I mux selecting read/write to memory based on which write-enable is chosen

wire sw_ntsc = ~switch[7];

wire my_we = sw_ntsc ? (hcount[0]==1'd1) : blank;

wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vr,am_addr2;
wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

Il wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
/I assign vram_addr = write_enable ? write_addr : vram_addr1;
/[assign vram_we = write_enable;

assign vram_addr = my_we ? write_addr : vram_addr1;
assign vram_we = my_we;
assign vram_write_data = write_data;

/l select output pixel data
reg b,hs,vs;

/lred params

parameter MAX_HUE_R = 8'd01;
parameter MIN._ HUE R = 8'hFA,;
parameter MIN_SAT R = 8'hF5; //160
parameter MIN_VAL R = 8'hB6; //100

/lyellow params

parameter MAX_HUE_Y = 8'd5;
parameter MIN_HUE_Y = 8'd0;
parameter MIN_SAT _Y = 8'd0;
parameter MIN_VAL_Y = 8'hFA;

/lgreen params

parameter MAX_HUE_G = 8'd89;
parameter MIN. HUE_G = 8'd73;
parameter MIN_SAT_ G = 8'd0;
parameter MIN_VAL G = 8'd160;

/Iblue params

parameter MAX_HUE_B = 8'hBA; //d91;
parameter MIN_ HUE B = 8'hAS3; //d188;
parameter MIN_SAT_B = 8'd00; //d01;
parameter MIN_VAL_ B = 8'd02; //d00;

//IRED BAND WIRES

wire red_keep, yellow_keep, green_keep, blue_keep;
wire [10:0] x_red, x_yellow, x_green, x_blue;

wire [9:0] y_red, y_yellow, y_green, y_blue;

wire [17:0] color_pixel_yellow, color_pixel_red, color_pixel_green,
color_pixel_blue;

//detetcting pixels and center of mass of pixels

detect#(MAX_HUE_R, MIN_HUE_R, MIN_SAT_R, MIN_VAL_R)
red(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd0),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.X_coord(x_red), .y_coord(y_red), .color_pixel(color_pixel_red)); //,

X_count_min(x_count_min), .y_count_min(y_count_min));

detect#(MAX_HUE_Y, MIN_HUE_Y, MIN_SAT_Y, MIN_VAL_Y)
yellow(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd1),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
x_coord(x_yellow), .y_coord(y_yellow), .color_pixel(color_pixel_yellow)); //,
X_count_min(x_count_min), .y_count_min(y_count_min));

detect#(MAX_HUE_G, MIN_HUE_G, MIN_SAT_G, MIN_VAL_G)
green(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd2),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.X_coord(x_green), .y_coord(y_green), .color_pixel(color_pixel_green)); //,
X_count_min(x_count_min), .y _count_min(y_count_min));

86

detect#(MAX_HUE_B, MIN_HUE_B, MIN_SAT B, MIN_VAL_B)
blue(.clock(clk), .h(h), .s(s), .v(v), .arm_band(2'd3),
.hcount(hcount), .vcount(vcount), .vr_pixel(vr_pixel),
.Xx_coord(x_blue), .y _coord(y_blue), .color_pixel(color_pixel_blue)); //,
X_count_min(x_count_min), .y_count_min(y_count_min));

wire [17:0] pixel_red, pixel_yellow, pixel_green, pixel_blue, cross_red,
cross_yellow, cross_green, cross_blue; //was pixel //, pix; was reg tuesday
reg [17:0] final_pixel;

assign cross_red = 18'b111111_000000_000000;
assign cross_yellow = 18'b111111_111111_000000;
assign cross_green = 18'b000000_111111_000000;
assign cross_blue = 18'b000000_000000_111111;

wire [1:0] color_index_r, color_index_y, color_index_g, color_index_b;
wire [10:0] x_new_r, x_new_y, X_new_g, X_new_b;
wire [9:0]y_new_r,y new_y,y new_g,y new_b;

wire inter_clock;
wire frame;
wire data;

/lthe inputs to the reciever from the sender

assign inter_clock = user1[1]; //slowed down clock

assign data_r = user1[0]; //red y,z, color_index

assign data_y = user1[3]; //yellow y,z, color_index

assign data_g = user1[4]; //green y,z, color_index

assign data_b = user1[5]; //blue y,z, color_index

assign frame = user1[2]; //frame pulse indicating when the frame began on
the other fpga

/Ireceiving the serial data for each color in the form of y,z,color index

receive_good new_red(.clock(inter_clock), .frame(frame),
reset(reset), .data(data_r), .color_index(color_index_r),
X_coord(x_new_r), .y_coord(y_new_r));

receive_good new_yell(.clock(inter_clock), .frame(frame),
reset(reset), .data(data_y), .color_index(color_index_y),
.X_coord(x_new_y), .y_coord(y_new_y));

receive_good new_gree(.clock(inter_clock), .frame(frame),

87

reset(reset), .data(data_g), .color_index(color_index_g),
X_coord(x_new_g), .y_coord(y_new_q));

receive_good new_blu(.clock(inter_clock), .frame(frame),
reset(reset), .data(data_b), .color_index(color_index_b),
X_coord(x_new_b), .y_coord(y_new_b));

/[cross hair module to display the Center of mass of the colored arm bands
cross_hairs red_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_red), .hcount(hcount),
.vcount(vcount),
x_coord(x_red), .y_coord(y_red), .color_pixel(color_pixel_red),
.h(h), .s(s), .v(v), .final_pixel(pixel_red));

cross_hairs yellow_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_yellow), .hcount(hcount),
.veount(vcount),
X_coord(x_yellow), .y_coord(y_yellow),
.color_pixel(color_pixel_yellow),
h(h), .s(s), .v(v), .final_pixel(pixel_yellow));

cross_hairs green_display(.clock(clk), .up(UP), .down(DOWN),
Jeft(LEFT), .right(RIGHT), .cross_color(cross_green), .hcount(hcount),
.vcount(vcount),
.X_coord(x_green), .y_coord(y_green),
.color_pixel(color_pixel_green),
.h(h), .s(s), .v(v), .final_pixel(pixel_green));

cross_hairs blue_display(.clock(clk), .up(UP), .down(DOWN),
Jleft(LEFT), .right(RIGHT), .cross_color(cross_blue), .hcount(hcount),
.vcount(vcount),
.X_coord(x_blue), .y _coord(y_blue), .color_pixel(color_pixel_blue),
h(h), .s(s), .v(v), .final_pixel(pixel_blue));

wire [33:0] xyz_r, xyz_y, Xyz_g, xyz_b;
/Imatches the x,z and y,z based on color for each color
match match_red(.clock(clk), .reset(reset), .x_coord_1(x_red),
X_coord_2(x_new_r),
.y_coord_1(y_red), .y_coord_2(y_new_r),
.color_index(color_index_r),

Xyz(xyz_r));

match match_yellow(.clock(clk), .reset(reset), .x_coord_1(x_yellow),
X_coord_2(x_new_y),
.y_coord_1(y_yellow), .y _coord_2(y_new_y),

88

.color_index(color_index_y),
Xyz(Xyz_Y));

match match_green(.clock(clk), .reset(reset), .x_coord_1(x_green),
X_coord_2(x_new_Q),
.y_coord_1(y_green), .y_coord_2(y_new_Qg),
.color_index(color_index_g),

Xyz(Xyz_g));

match match_blue(.clock(clk), .reset(reset), .x_coord_1(x_blue),
X_coord_2(x_new_b),
.y_coord_1(y_blue), .y _coord_2(y_new_b),
.color_index(color_index_b),

Xyz(xyz_b));
wire [66:0] bone_rg, bone_yb;

/Imatches bones based on hard coded colors; red with green (wrist with
elbow)
match_bones rg_bone(.clock(clk), .reset(reset), .xyz_1(xyz_r),
Xyz_2(xyz_g), .bones(bone_rg));
/lyellow with blue (wrist with elbow
match_bones yb_bone(.clock(clk), .reset(reset), .xyz_1(xyz_y),
Xyz_2(xyz_b), .bones(bone_yb));

reg [17:0] pixel_y, pixel_r, pixel_b, pixel_g, color_y, color_r, color_b,
color_g;

reg [17:0] pixel_crosshair;

reg crosshair_active;

reg [17:0] pixel_image;

/ldecides whether to display cross hairs and or colored pixels instead of
video feed

always@(posedge clk)
begin
pixel_y <= pixel_yellow;
pixel_r <= pixel_red;
pixel_b <= pixel_blue;
pixel_g <= pixel_green;
color_y <= color_pixel_yellow;
color_r <= color_pixel_red;
color_b <= color_pixel_blue;
color_g <= color_pixel_green;

89

I
I
I

/*

final_pixel<=((|pixel_y)|(|pixel_r)|(|pixel_b)) ?
(pixel_y|pixel_r|pixel_b) :
(color_r|color_y|color_b);

*/

pixel_crosshair <= 0;
crosshair_active <= 1;
if (pixel_y !=0)
pixel_crosshair <= pixel_y;
else if (pixel_r!=0)
pixel_crosshair <= pixel_r;
else if (pixel_b !=0)
pixel_crosshair <= pixel_b;
else if (pixel_g != 0)
pixel_crosshair <= pixel_g;
else
crosshair_active <= 0;

pixel_image <= vr_pixel;
if (yellow_keep&switch[3])

pixel_image <= 18'b111111_111111_000000;
else if (red_keep&switch[3])

pixel_image <= 18'b111111_000000_000000;
else if (blue_keep&switch[3])

pixel_image <= 18'b000000_000000_111111;
else if (green_keep&switch[3])

pixel_image <= 18'b000000_111111_000000;
if (crosshair_active)

final_pixel <= pixel_crosshair;
else

final_pixel <= pixel_image;

final_pixel<=((|pixel_yellow)|(|pixel_red)|(|pixel_blue)) ?
(pixel_yellow|pixel_red|pixel_blue) :
(color_pixel_red|color_pixel_yellow|color_pixel_blue);

/[(Jpixel_green)|

/l|pixel_green

/[color_pixel_green|
/ffinal_pixel<=(pixel_yellow|color_pixel_red|pixel_red|

l[color_pixel_yellow); //|pixel_green|color_pixel_green);
/ffinal_pixel<=(pixel_yellow|color_pixel_yellow|pixel_red|
/lcolor_pixel_yellow);

90

Ilpixel <= ((hcount==x_red)||(vcount==y_red)) ? 18'h3ffff : color_pixel,

/Ipixel <= ((hcount==hcursor)||(vcount==vcursor)) ? 18'h3ffff :
color_pixel;

b <= blank;

hs <= hsync;

VS <= VSync;

end

/Il VGA Output. In order to meet the setup and hold times of the
/I AD7125, we send it ~clk.

assign vga_out_red = {final_pixel[17:12], 2'b00};

assign vga_out_green = {final_pixel[11:6], 2'b00};

assign vga_out_blue = {final_pixel[5:0], 2'b00};

assign vga_out_sync_b =1'b1; // not used

assign vga_out_pixel_clock = ~clk;

assign vga_out_blank_b = ~b;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

// debugging
assign led = ~{vram_addr[18:13],reset,switch[0]};
reg [63:0] match_dis = 0;

assign analyzer1_data = xyz_g[33:18];
assign analyzer2_data = xyz_g[17:2];

always @(posedge clk)
begin
dispdata <= match_dis;
if (switch[4]) match_dis <= {xyz_r[33:2], xyz_g[33:2]};
else match_dis <= {xyz_y[33:2], xyz_b[33:2]};

/lassign dispdata = {1'd1, 7'd0, 8'd0, 8'd0, 8'd0, 8'd0, 8'd0, x_count_min,

y_count_min};
/llalways @(posedge clk)

//begin

// dispdata <= {vram_read_data,9'b0,vram_addr};

/ldispdata <= {ntsc_data,9'b0,ntsc_addr}; COMMENTED THIS OUT-L
/ldispdata <= {hue_av, sat_av, val_av,8'd0, 5'd0, hcursor, 6'd0, vcursor};
//dispdata <= {8'd0, 8'd0, 8'd0 ,8'd0, hue_min, hue_max, sat_min, val_min};
IIxyz_dis <= xyz_g;

/ldispdata <= (switch[4]) ? {xyz_r[33:2], xyz_g[33:2]} : {xyz_y[33:2],

91

xyz_b[33:2]};

/ldispdata <= {hue_av, sat_av, val_av,8'd0, hue_min, hue_max, sat_min,
val_min};

end

endmodule
//END OF RECIEVER PROJECT
M
/I xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

//module xvga(vclock,hcount,vcount,hsync,vsync,blank);
/I input vclock;

/I output [10:0] hcount;

/I output [9:0] vcount;

/I output vsync;

/I output hsync;

/I output blank;

I

/I reg hsync,vsync,hblank,vblank,blank;

/I reg [10:0] hcount; // pixel number on current line
/I reg [9:0] vcount; //line number

I

/I 1/ horizontal: 1344 pixels total

/I 1 display 1024 pixels per line

/I wire hsyncon,hsyncoff,hreset,hblankon;

/I assign hblankon = (hcount == 1023);

/I assign hsyncon = (hcount == 1047);

/I assign hsyncoff = (hcount == 1183);

/I assign hreset = (hcount == 1343);

I

Il 1/ vertical: 806 lines total

/I 1/ display 768 lines

/[wire vsyncon,vsyncoff,vreset,vblankon;

/I assign vblankon = hreset & (vcount == 767);

/I assign vsyncon = hreset & (vcount == 776);

/I assign vsyncoff = hreset & (vcount == 782);

/I assign vreset = hreset & (vcount == 805);

I

/I 1/ sync and blanking

/I wire next_hblank,next_vblank;

/I assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
/I assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
/I always @(posedge vclock) begin

/I hcount <= hreset ? 0 : hcount + 1;

/[hblank <= next_hblank;

/I hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

92

I

/[vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;

/[vblank <= next_vblank;

Il vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
I

/I blank <= next_vblank | (next_hblank & ~hreset);

/I end

/lendmodule

I LT T
/Il xvga: Generate XVGA display signals (800 x 600 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;
output vsync;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

/I horizontal: 1056 pixels total

// display 800 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 799);
assign hsyncon = (hcount == 839);
assign hsyncoff = (hcount == 967);
assign hreset = (hcount == 1055);

/I vertical: 628 lines total

/ display 600 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 599);
assign vsyncon = hreset & (vcount == 600);
assign vsyncoff = hreset & (vcount == 604);
assign vreset = hreset & (vcount == 627);

// sync and blanking

wire next_hblank,next_vblank;

assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

93

always @(posedge vclock) begin
hcount <= hreset ? 0 : hcount + 1;
hblank <= next_hblank;
hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule

T L T

/I generate display pixels from reading the ZBT ram

/I note that the ZBT ram has 2 cycles of read (and write) latency

I

/I We take care of that by latching the data at an appropriate time.

I

/I Note that the ZBT stores 36 bits per word; we use only 32 bits here,

/I decoded into four bytes of pixel data.

I

// Bug due to memory management will be fixed. The bug happens because
/l memory is called based on current hcount & vcount, which will actually
/I shows up 2 cycle in the future. Not to mention that these incoming data
/I are latched for 2 cycles before they are used. Also remember that the
/I ntsc2zbt's addressing protocol has been fixed.

/I The original bug:

/I -. At (hcount, vcount) = (100, 201) data at memory address(0,100,49)
/I arrives at vr,am_read_data, latch it to vr_data_latched.

/I -. At (hcount, vcount) = (100, 203) data at memory address(0,100,49)
/I is latched to last_vr_data to be used for display.

/I -. Remember that memory address(0,100,49) contains camera data
/I pixel(100,192) - pixel(100,195).

Il -. At (hcount, vcount) = (100, 204) camera pixel data(100,192) is shown.
Il -. At (hcount, vcount) = (100, 205) camera pixel data(100,193) is shown.
/Il -. At (hcount, vcount) = (100, 206) camera pixel data(100,194) is shown.
Il -. At (hcount, vcount) = (100, 207) camera pixel data(100,195) is shown.

I
/I Unfortunately this means that at (hcount == 0) to (hcount == 11) data from
/I the right side of the camera is shown instead (including possible sync signals).

/I To fix this, two corrections has been made:
/I -. Fix addressing protocol in ntsc_to_zbt module.

94

Il -. Forecast hcount & vcount 8 clock cycles ahead and use that
/I instead to call data from ZBT.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram_read_data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;

output [17:0] vr_pixel;

output [18:0] vram_addr;
input [35:0] vram_read_data;

/[forecast hcount & vcount 8 clock cycles ahead to get data from ZBT
wire [10:0] hcount_f = (hcount >= 1048) ? (hcount - 1048) : (hcount + 8);
wire [9:0] vcount_f = (hcount >= 1048) ? ((vcount == 805) ? 0 : vcount + 1) : vcount;

wire [18:0] vram_addr = {vcount_f, hcount f[9:1]};

wire hc4 = hcount[0];
reg [17:0] vr_pixel;

reg [35:0] vr_data_latched;

reg [35:0] last vr_data;

always @(posedge clk)
last_vr_data <= (hc4==1'd1) ? vr_data_latched : last_vr_data;

always @(posedge clk)
vr_data_latched <= (hc4==1'd0) ? vram_read_data : vr_data_latched;

always @(*) /I each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
//2'd3: vr_pixel = last_vr_data[7:0];
//2'd2: vr_pixel = last_vr_data[7+8:0+8];
1'd1: vr_pixel = last_vr_data[17:0];
1'd0: vr_pixel = last_vr_data[17+18:0+18];
endcase

endmodule // vram_display

T
/I parameterized delay line

module delayN(clk,in,out);

95

input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

M i
// ramclock module

TN

/l

/1 6.111 FPGA Labkit -- ZBT RAM clock generation

I

I

/I Created: April 27, 2004

/I Author: Nathan Ickes

I

M|

/l

/I This module generates deskewed clocks for driving the ZBT SRAMs and FPGA
I registers. A special feedback trace on the labkit PCB (which is length

/I matched to the RAM traces) is used to adjust the RAM clock phase so that
/I rising clock edges reach the RAMs at exactly the same time as rising clock
/I edges reach the registers in the FPGA.

I

/l The RAM clock signals are driven by DDR output buffers, which further

/I ensures that the clock-to-pad delay is the same for the RAM clocks as it is
/l for any other registered RAM signal.

I

/ When the FPGA is configured, the DCMs are enabled before the chip-level 1/0
/[drivers are released from tristate. It is therefore necessary to

/I artificially hold the DCMs in reset for a few cycles after configuration.

/[This is done using a 16-bit shift register. When the DCMs have locked, the
Il <lock> output of this mnodule will go high. Until the DCMs are locked, the
/l ouput clock timings are not guaranteed, so any logic driven by the

Il <fpga_clock> should probably be held inreset until <locked> is high.

I

96

T T i

module ramclock(ref_clock, fpga_clock, ram0_clock, ram1_clock,
clock_feedback_in, clock_feedback out, locked);

input ref_clock; /I Reference clock input

output fpga_clock; // Output clock to drive FPGA logic
output ram0_clock, ram1_clock; // Output clocks for each RAM chip
input clock_feedback_in; // Output to feedback trace

output clock feedback_ out; /I Input from feedback trace

output locked; /I Indicates that clock outputs are stable

wire ref_clk, fpga_clk, ram_clk, fb_clk, lock1, lock2, dcm_reset;
T |||

/[To force ISE to compile the ramclock, this line has to be removed.
I/IBUFG ref_buf (.O(ref_clk), .I(ref_clock));

assign ref_clk = ref_clock;
BUFG int_buf (.O(fpga_clock), .I(fpga_clk));

DCM int_dcm (.CLKFB(fpga_clock),

.CLKIN(ref_clk),

.RST(dcm_reset),

.CLKO(fpga_clk),

.LOCKED(lock1));
Il synthesis attribute DLL_FREQUENCY_MODE of int_dcm is "LOW"
I/ synthesis attribute DUTY_CYCLE_CORRECTION of int_dcm is "TRUE"
Il synthesis attribute STARTUP_WAIT of int_dcm is "FALSE"
/Il synthesis attribute DFS_FREQUENCY_MODE of int_dcm is "LOW"
/I synthesis attribute CLK_FEEDBACK of int_dcm is "1X"
/I synthesis attribute CLKOUT_PHASE_SHIFT of int_dcm is "NONE"
/I synthesis attribute PHASE_SHIFT of int_dcm is O

BUFG ext_buf (.O(ram_clock), .I(ram_clk));
IBUFG fb_buf (.O(fb_clk), .I(clock_feedback in));

DCM ext_dcm (.CLKFB(fb_clk),
.CLKIN(ref_clk),
.RST(dcm_reset),
.CLKO(ram_clk),
.LOCKED(lock2));

/I synthesis attribute DLL_FREQUENCY_MODE of ext_dcm is "LOW"

/I synthesis attribute DUTY_CYCLE_CORRECTION of ext_dcm is "TRUE"
/Il synthesis attribute STARTUP_WAIT of ext_dcm is "FALSE"

/I synthesis attribute DFS_FREQUENCY_MODE of ext_dcm is "LOW"

/I synthesis attribute CLK_FEEDBACK of ext_dcm is "1X"

/I synthesis attribute CLKOUT_PHASE_SHIFT of ext_dcm is "NONE"

Il synthesis attribute PHASE_SHIFT of ext_dcmis 0

SRL16 decm_rst_sr (.D(1'b0), .CLK(ref_clk), .Q(dcm_reset),
AO0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
/I synthesis attribute init of dcm_rst_sris "000F";

OFDDRRSE ddr_reg0 (.Q(ram0O_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));
OFDDRRSE ddr_reg1 (.Q(ram1_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));
OFDDRRSE ddr_reg2 (.Q(clock_feedback_out), .CO(ram_clock),
.C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));

assign locked = lock1 && lock2;
endmodule

B2.a recive good

‘timescale 1ns / 1ps
T Tl
/[Company:

/I Engineer:

I

/I Create Date: 22:28:30 12/04/2013
// Design Name:

/l Module Name: receive_good

/I Project Name:

/I Target Devices:

/I Tool versions:

/I Description:

I

/I Dependencies:

I

I/l Revision:

/I Revision 0.01 - File Created

// Additional Comments:

I

98

M
module receive_good(
input clock,
input frame,
input reset,
input data,
output reg [1:0] color_index,
output reg [10:0] x_coord,
output reg [9:0] y_coord

);

/12+11+10 = 23 bits
reg get_x, get_y, get_color;
reg [4:0] index = 0;

initial
begin
get x=0;
get_y =0;
get_color = 0;
color_index = 0;
x_coord = 0;
index = 0;
y_coord = 0;
end

reg [22:0] shift_reg;

always @(posedge clock)

begin
if (reset) //was frame recieve for each frame
begin
index <= 0;
end
if (frame) //was frame recieve for each frame
begin
index <= 0;
end
else if (index < 5'd23)
begin
shift_reg <= {data, shift_reg[22:1]};
index<=index+1;
end
else
begin

99

/lindex<=0;
color_index <= shift_reg[2:1];
x_coord <= shift_reg[13:3];
y_coord <= {data,shift_reg[22:14]};
/ly_coord <= 8'hab;
end

end

endmodule

B2.b match
‘timescale 1ns / 1ps
M
/l Company:
/I Engineer:
I
/I Create Date: 14:12:21 12/06/2013
/I Design Name:
/l Module Name: match
/I Project Name:
/I Target Devices:
/I Tool versions:
/I Description:
I
/I Dependencies:
I
/l Revision:
/I Revision 0.01 - File Created
/l Additional Comments:
I
M
module match(
input clock,
input reset,
input [10:0] x_coord_1,
input [10:0] x_coord_2,
input [9:0] y_coord_1,
input [9:0] y_coord_2,
input [1:0] color_index,
output reg [33:0] xyz
);

reg [33:0] xyz_last;
reg [10:0] x_last_1, x_last 2, x_1,x_2;
reg [9:0]y last 2,y 2;

100

always @(posedge clock)

begin

xyz <={x_1, x_2, y_2, color_index};
if (y_coord_2==0) //if the coord is not detected aka 0 (hidden

begin
y 2<=y last 2;
end
if (x_coord_2==0)
begin
X_2<=x_last_2;
end
if (x_coord_1==0)
begin
x_1<=x_last_1;
end
else
begin
x_last_1 <=x_coord_1;
X_last 2 <=x_coord_2;
y last 2 <=y coord_2;
x_1<=x_coord_1;
X_2 <=x_coord_2;
y 2<=y coord_2;
IIxyz <= {x_coord_1, x_coord_2,y coord_2, color_index};
end
lIxyz_last <= xyz;
llelse
lIxyz <= xyz,
end

endmodule

B2.c match_bones
‘timescale 1ns / 1ps
Ml | |

/l Company:
/I Engineer:
I

/I Create Date: 17:36:30 12/07/2013

/I Design Name:
/ Module Name:
/I Project Name:
/I Target Devices:
/] Tool versions:
/I Description:

match_bones

101

I
/I Dependencies:
/l
/I Revision:
/I Revision 0.01 - File Created
/I Additional Comments:
I
M
module match_bones(

input clock,

input reset,

input [33:0] xyz_1,

input [33:0] xyz_2,

output reg [66:0] bones

);

always @(posedge clock)
begin

bones <= {xyz_1, xyz_2};
end

endmodule

//END OF VIDEO SYSTEM
*files for modules provided by staff can be found on the 6.111 website

102

Appendix C: 3D Graphics Python Prototype Code

import math as m

import pygame

coordinate format -> [v1,v2,v3,v4,v5,v6,v7,v8]

#

v4--—--- v5
#NON

| vO------v1
V7-|--—--VvB|
#\|

V3 v2

class Application():
def __init__(self):

set screen resolution to be the same as final screen (800 by 600)

reduce by 3/4 because software shading algorithm is slow (has to do one pixel at a time)

self WIDTH = 800/4.0*3

self.HEIGHT = 600/4.0*3

self. DEPTH = 500

initial view transform parameters
self.dx=0

lower box a bit to see projection better
self.dy = -2

move box into the screen more to see it better

self.dz=6.5
selfax =0
selfay =0
self.az=0

Create buffers and other necessary objects

self.createWidgets()

103

used to rotate the box without changing the view location
dx,dy,dz=0,0,0
ax,ay,az=0,0,0
while self.running:
rotate the box a bit every iteration in the loop
ay += 0.2
code to handle keyboard events and changes in view location and orientation
for event in pygame.event.get():
if event.type == pygame.QUIT:
self.running = False
if event.type == pygame.KEYUP:
key = event.key
if key == pygame.K_w:
self.ax += 0.1
if key == pygame.K_s:
self.ax -= 0.1
if key == pygame.K_a:
self.ay += 0.1
if key == pygame.K_d:
self.ay -= 0.1
if key == pygame.K_q:
self.az += 0.1
if key == pygame.K_e:
self.az -= 0.1
if key == pygame.K_UP:
self.dy +=1
if key == pygame.K_DOWN:
self.dy -= 1
if key == pygame.K_LEFT:
self.dx -= 1
if key == pygame.K_RIGHT:
self.dx +=1

if key == pygame.K_PAGEUP:

104

self.dz += 1
if key == pygame.K_PAGEDOWN:
self.dz -=1
clear the image by painting every pixel white
clear the depth buffer by every pixel to be a large value
for x in range(int(self. WIDTH)):
for y in range(int(self. HEIGHT)):
self.RGBI[x][y] = (255,255,255)

self.zBuffer[x][y] = 100000

set color of the square

color = self.colorDict["blue"]

set initial coordinates of the square's bone (pre-rotation)

p1, p2 =(1,0,0,1),(-1,0,0,1)

rotate the bone every loop to create rotation effect

this effect was used to demonstrate the shading algorithm

because | based the shading off the distance from the z axis before transformation,
a stationary cube would have static shading on each side.

rotation allows the color of the sides of the cube to change

p1 = self.applyViewTransformArg(p1, dx, dy, dz, ax, ay, az)

p2 = self.applyViewTransformArg(p2, dx, dy, dz, ax, ay, az)

TOP LEVEL DATA CONTROL
generate prism and normals

coords, normals = self.generatePrism(p1,p2,1,1)

shade cube based on its untransformed distance from the z axis

colors = self.shade(color,coords,normals)

apply view transform to cube to view it from a specified position and angle
coords = [self.applyViewTransform(v) for v in coords]

apply projection transform to the cube to create a perspective effect
coords = [self.applyProjectionTransform(vertex) for vertex in coords]

projection transform scales the homogenious coordinates

it is thus necessary to normalize the coordinates before continuing

105

normalization is accomplished by dividing all of the coordinate

values by w

coords = [coords]i)/float(coords[3]) for i in range(4)]

apply viewport transform to map coordinates to screen pixel locations
coords = [self.convertToViewPortCoords(vertex) for vertex in coords]
use rendering algorythms to fill in each pixel in the image
self.drawToScreen(coords, colors)

python specific function to display the image

self.drawScreen()

draws list of viewport coordinates (x,y,z), organized by side, to the screen
not a complicated function, simply unpacks and draws the proper polygons

format -> [v1,v2,v3,v4,v5,v6,v7,v8]

#

v4--—--- v5
#N N

| vO---—-- v1
v7-|----v6|
#\|

V3 v2

def drawToScreen(self, vertexList, colors):
vO = vertexList[0]
v1 = vertexList[1]
v2 = vertexList[2]
v3 = vertexList[3]
v4 = vertexList[4]
v5 = vertexList[5]
v6 = vertexList[6]

v7 = vertexList[7]

frtX = [vO[O],v1[0],v2[0],v3[0]]
frtY = [vO[1],v1[1],v2[1],v3[1]]

frtZ = [vO[2],v1[2],v2[2],v3[2]]

106

self.drawPolygon(frtX,frtY, frtZ,colors[0], (0,0,0)) # blue

bakX = [v4[0],v5[0],v6[0],v7[0]]
bakY = [v4[1],v5[1],v6[1],v7[1]]
bakZ = [v4[2],v5[2],v6[2],v7[2]]

self.drawPolygon(bakX,bakY, bakZ,colors[1], (0,0,0)) # orange

topX = [v4[0],v5[0],v1[0],vO[0]]
topY = [v4[1],v5[1],v1[1],vO[1]]
topZ = [v4[2],v5[2],v1[2],v0[2]]

self.drawPolygon(topX,topY, topZ,colors[2], (0,0,0)) # red

botX = [v7[0],v6[0],v2[0],v3[0]]
botY = [v7[1],v6[1],v2[1],v3[1]]
botZ = [v7[2],v6[2],v2[2],v3[2]]

self.drawPolygon(botX,botY, botZ,colors[3], (0,0,0)) # green

IftX = [v4[0],v0[0],v3[0],v7[O]]
IftY = [v4[1],vO[1],v3[1],v7[1]]
IftZ = [v4[2],vO[2],v3[2],v7[2]]

self.drawPolygon(IftX,IftY, IftZ,colors[4], (0,0,0)) # yellow

rhtX = [v1[0],v5[0],v6[0],v2[0]]
rhtY = [v1[1],v5[1],v6[1],v2[1]]
rhtZ = [v1[2],v5[2],v6[2],v2[2]]

self.drawPolygon(rhtX,rhtY, rhtZ,colors[5], (0,0,0)) # purple

PRISM GENERATOR AND SHADER

takes in a pair of bone coordinates and creates a list of
world coordinates (x,y,z,w) and a list of normal vectors

that define a rectangular prism centered around the bone

107

format -> coords = [v1,v2,v3,v4,v5,v6,v7,v8]

norms -> [front, back, top, bottom, left, right] (with respect to image below)

point 1 is in center of 0,1,2,3 (front face)

v4--—--- v5 point 2 in in center of 4,5,6,7 (back face)
#N N

| vO------ v1

v7-|----v6|

#\

V3 v2

def generatePrism(self, point1, point2, yWidth, xWidth):
unit vector in the x direction
needed as a consistant reference to create vectors perpendicular to bone

unitX = (1,0,0)

create a bone vector by subracting point locations

bone = self.vectorDif(point1, point2)

find the unit bone vector by normalizing the bone vector (dividing by its magnitude)
mag = self.magnitude(bone)

unitBone = (bone[0]/mag, bone[1]/mag, bone[2]/mag,1)

find the first vector perpendicular (PerpA) to the bone vector by taking the cross product
of the unit bone vector and the unit x vector.
Note that the order makes PerpA point in pos y direction (assuming bone is as in diagram above)
perpA = self.crossProduct(unitBone, unitX)
in the result of the cross product is all zeros, then bone vector is parallel to unitX
therefore, the two perpendicular vectors can be set to the unit y and unit z vectors
if perpA[0] == perpA[1] == perpA[2] == O:
unitPerpA = (0,1,0)
unitPerpB = (0,0,1)
else:
find the normalize the first perpendicukar vector vector by (dividing by its magnitude)
mag = self. magnitude(perpA)

unitPerpA = (perpA[0]/mag, perpA[1]/mag, perpA[2]/mag,1)

108

find the second vector perpendicular (unitPerpB) to the bone vector by taking the cross product
of the unit bone vector and the unit first perpandiculat vector (unitNormA).
Note that the cross product of two perpendicular unit vectors is also a unit vector
Note also that the order makes unitPerpB pount in pos X direction (assuming bone is as in diagram above)
unitPerpB = self.crossProduct(unitPerpA, unitBone)
calculate vertexies by multiplying the unit normal vectors by the 1/2 the width of the prism
and then adding/subtracting the resulting vectors to the two given points
ex) v0 = p1 + W/2*unitPerpA - W/2*unitPerpB.
v5=p1+ W/2*unitPerpA + W/2*unitPerpB.
vO = self.vectorDif(self.vectorSum(point1, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v1 = self.vectorSum(self.vectorSum(point1, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v2 = self.vectorSum(self.vectorDif(point1, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v3 = self.vectorDif(self.vectorDif(point1, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v4 = self.vectorDif(self.vectorSum(point2, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v5 = self.vectorSum(self.vectorSum(point2, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v6 = self.vectorSum(self.vectorDif(point2, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
v7 = self.vectorDif(self.vectorDif(point2, self.scale(unitPerpA,yWidth)) , self.scale(unitPerpB,xWidth))
pack the vectors into the right list order
vertexList = [vO,v1,v2,v3,v4,v5,v6,v7]
pack the normal vectors
note that -1*back = front = unitBone
-1*bottom = top = unitPerpA
-1*left = right = unitPerpB
sideNormals = [unitBone, self.neg(unitBone), unitPerpA, self.neg(unitPerpA), self.neg(unitPerpB), unitPerpB]

return vertexList, sideNormals

calculates the correct color value for each of the sides
given their position and orientation relative to a
unitform light source emminating from the z = 0 axis in the positive z direction.
def shade(self, color, coords, sideNormals):
calculate the "distance" from the light source

light source eminates from the z = 0 axis, so the distance is equal to the

109

z value of the point (uniform plane source was chosen to reduce the complexity of the shader hardware)
Because the shading is uniform for each side, the side's distance was chosen to be

the average of its verticies.

dtop = max((coords[4][2]+coords[5][2]+coords[1][2]+coords[0][2])/4.0,0.0001)

dbot = max((coords[7][2]+coords[6][2]+coords[2][2]+coords[3][2])/4.0,0.0001)

dfrt = max((coords[0][2]+coords[1][2]+coords[2][2]+coords[3][2])/4.0,0.0001)

dbak = max((coords[4][2]+coords[5][2]+coords[6][2]+coords[7][2])/4.0,0.0001)

dIft = max((coords[4][2]+coords[0][2]+coords[3][2]+coords[7][2])/4.0,0.0001)

drht = max((coords[1][2]+coords[5][2]+coords[6][2]+coords[3][2])/4.0,0.0001)

set default ambient light percentage to ensure that objects in the distance are not black
ambientPercentage = 0.4

set the unit vector for the light source

lightDir = (0,0,1)

find the light value incident of the side by

1: taking the dot product of the light vector and side normal to find the percentage of the light

reflecting off the object at the viewer (assuming stationary object)

2: multiplying this value by the magnitude of the light source

3: dividing this value by square of the distance of this object from the light source

4: adding the ambient light factor

5: capping the result to be between the ambient light factor and 1

scale = dot(lightvector, sideNormal)

scaleFrt = min(max(self.dotProduct(lightDir,sideNormals[0])/float(dfrt**2)*2000,0)+ambientPercentage,1)
scaleBak = min(max(self.dotProduct(lightDir,sideNormals[1])/float(dbak**2)*2000,0)+ambientPercentage,1)
scaleTop = min(max(self.dotProduct(lightDir,sideNormals[2])/float(dtop**2)*2000,0)+ambientPercentage,1)
scaleBot = min(max(self.dotProduct(lightDir,sideNormals[3])/float(dbot**2)*2000,0)+ambientPercentage,1)
scaleLft = min(max(self.dotProduct(lightDir,sideNormals[4])/float(dIft**2)*2000,0)+ambientPercentage,1)

scaleRht = min(max(self.dotProduct(lightDir,sideNormals[5])/float(drht**2)*2000,0)+ambientPercentage, 1)

scale each of the RBG commponents of the input color by the light value for each side
colorFrt = (color[0]*scaleFrt, color[1]*scaleFrt, color[2]*scaleFrt)
colorBak = (color[0]*scaleBak, color[1]*scaleBak, color[2]*scaleBak)

colorTop = (color[O]*scaleTop, color[1]*scaleTop, color[2]*scaleTop)

110

colorBot = (color[0]*scaleBot, color[1]*scaleBot, color[2]*scaleBot)
colorLft = (color[0]*scaleLft, color[1]*scaleLft, color[2]*scaleLft)

colorRht = (color[0]*scaleRht, color[1]*scaleRht, color[2]*scaleRht)

return [colorFrt,colorBak,colorTop,colorBot,colorLft,colorRht]

. — TRANSFORM FUNCTIONS #

This transform takes a list of world coordinates and transforms
them into coordinates with respect to a camera at a specified
location and orientation
def applyViewTransform(self,coords):

get transform parameters from current state of view

dx = self.dx

dy = self.dy

dz = self.dz

ax = self.ax

ay = self.ay

az = self.az

matrix that defines the translocation matrix

T=[[1, 0, 0, dx], \
[o, 1, 0, dy],\
[o, 0, 1, dz],\
[o, 0, 0, 111

matrix that defines the x axis rotation

RX=[[1, 0, 0, 0]\
[0, m.cos(ax), -1*m.sin(ax), 0],\
[0, m.sin(ax), m.cos(ax), 0]\
[0, 0, 0, 111

matrix that defines the y axis rotation
RY =[[m.cos(ay), O, m.sin(ay), 0]\

[0, 1, 0, 0]\

111

[-1*m.sin(ay), O, m.cos(ay), 0]\
[0, 0, 0, 11]

matrix that defines the z axis rotation

RZ = [[m.cos(az), -1*m.sin(az), O, 0]\
[msin(az), m.cos(az), O, 0.\
[o 0o 1, 0.\
[o 0o 0 111

perform transformations

NOTE that the order of the transforms matter,

rotation then a translocation looks completely different than a translocation before a rotation

apply x axis rotation

coords = self.matrixMult(coords, RX)
apply y axis rotation

coords = self.matrixMult(coords, RY)
apply z axis rotation

coords = self.matrixMult(coords, RZ)
apply translocation

translated = self.matrixMult(coords, T)

return translated

the view transform arg function is the same as the view transform function except that it
allows the user to specify specific transform properties.
Only used to create the cube rotation effect.

def applyViewTransformArg(self, coords, dx, dy, dz, ax, ay, az):

matrix that defines the translocation matrix

T=1[[1, 0, 0, dx], \
[0, 1, 0, dy],\
[0, 0, 1, dz],\
[0, 0, 0, 111

matrix that defines the x axis rotation
RX=[[1, 0, 0, 0]\

[0, m.cos(ax), -1*m.sin(ax), 0]\

112

[0, m.sin(ax), m.cos(ax), 0]\
[0, 0, 0, 111

matrix that defines the y axis rotation

RY =[[m.cos(ay), O, m.sin(ay), 0]\
[O, 1, 0, 0]\
[-1*m.sin(ay), O, m.cos(ay), 0]\
[0, 0, 0, 111

matrix that defines the z axis rotation

RZ = [[m.cos(az), -1*m.sin(az), O, 0]\
[m.sin(az), m.cos(az), 0, 0]\
[0, 0, 1, 0]\
[0, 0, 0, 111

perform transformations

NOTE that the order of the transforms matter,
rotation then a translocation looks completely different than a translocation before a rotation
apply x axis rotation

coords = self.matrixMult(coords, RX)

apply y axis rotation

coords = self.matrixMult(coords, RY)

apply z axis rotation

coords = self.matrixMult(coords, RZ)

apply translocation

translated = self.matrixMult(coords, T)

return translated

This transform takes a list of camera coordinates and transforms
them to create the perspective effect needed to create a realistic
3D image
def applyProjectionTransform(self,coords):

field of view factor:

1/tan(fov/2)

fielf of view ~= 33 degrees

chose a value that made the image look nice

113

e = 1/float(0.3)

viewport's height to width ratio

a = self. HEIGHT/float(self. WIDTH)

distance to far side of viewing volume

chose a value that made the image look nice
f=5

distnace to near side of the viewing volume
chose a value that made the image look nice
n=0.1

matrix that defines the viewport transformation

M1=[[e, 0, 0, 0]\
[0, effloat(a), 0, 0]\
[0, 0, -1*(f+n)/float(n-f), 2*f*n/float(n-f)], \
[0, 0, 1, 011

apply transformation

return self.matrixMult(coords, M1)

Converts transformed world coordinates into pixel location coordinates
center of transformed world coordinates is centered on the screen
dimensions are also scaled to match max window coordinates with max world coordinates
(a point at the edge of the world coordinates will appear at the endge of the screen)
def convertToViewPortCoords(self,coords):
get window sizing
X_MAX_WINDOW = self WIDTH
Y_MAX_WINDOW = self. HEIGHT

Z_MAX_WINDOW = self. DEPTH

get maximum world coordinates

arbitrarily chosen except that the height to width ratio is the same

in the hardware design these sizes will be determined by max camera coordinate values
X_MAX_COORDS = 32.0 # x,y ratio is the same

Y_MAX_COORDS = X_MAX_COORDS*self.HEIGHT/float(self. WIDTH)

Z_MAX_COORDS = 10.0

114

calculate dimension scaling factors

du = X_MAX_WINDOW/float(X_MAX_COORDS) # x scaling "jacobian”
dv = Y_MAX_WINDOW/float(Y_MAX_COORDS) # y scaling "jacobian"

dw = Z_MAX_WINDOW/float(Z_MAX_COORDS) # z scaling "jacobian"

calculate window shifting factors
dx = X_MAX_WINDOW/2.0 # x shift
dy = Y_MAX_WINDOW/2.0 # y shift

dz=0 #zshift

define transformation matrix
yO=[du ,0 ,0 ,dx]
y1=[0 ,-1*dv,0 ,dy]
y2=[0 ,0 ,dw,dz]
y3=[0 ,0 ,0.,1]
viewPortMatrix = [y0,y1,y2,y3]
apply transformation

return self.matrixMult(coords,viewPortMatrix)

— MATRIC AND VECTOR FUNCTIONS

negate a vector (helper function)
def neg(self, v):

return (-1*v[0],-1*v[1],-1*v[2],1)

scale a vector by a scaler (helper function)
def scale(self,v, s):

return (s*v[0],s*v[1],s*v[2],1)

multiply a 4 by 4 matrix and a 4 by 1 vector
#vis a1by4 vector -[x,y,z,w]"T

M is a 4 by 4 matrix M[X][Y]

115

def matrixMult(self,v,M):
x = V[O]*M[O][0]+v[1]*M[O][1]+V[2]*M[O][2]+V[3]"M[O0][3]
y = VIOI*"MA][O]+v[1]*M1][1]+VI2T*"M[1][2]+V[3]"M[1][3]
z = V[O*'M2][0]+V[1]*"M[2][1]+V[2]*"M[2][2]+V[3]"M[2][3]
w = V[O"M[3][0]+V[1]*M[3][1]+V[2]*"M[3][2]+V[3]*"M[3][3]

return (x,y,z,w)

multiply a 3 by 3 matrix and a 3 by 1 vector

#visa1by 3 vector - [xy,z]"T

#Mis a 3 by 3 matrix M[X][Y]

oy

#x| |

def matrixMult3(self,v,M):
x = V[OI*M[O][0]+V[1]*M[0][1]+V[2]*"M[O][2]
y = VIOI*"MA][O]+v[1*M[1][1]+v[2]*"M[1][2]
z = v[OI*"M[2][0]+V[1]*M[2][1]+V[2]*"M[2][2]

return (x,y,z)

take the dot product of two vectors
def dotProduct(self, u, v):

return u[O]*v[0] + u[1]*v[1] + u[2]*v[2]

take the cross product of two vectors
def crossProduct(self, u, v):

return (u[1]*v[2] - u[2]*v[1], u[2]*V[0O] - u[0]*V[2], u[O]*V[1]-u[1]*V[0],1)

calculate the magnitude of a vector
def magnitude(self, v):

return m.sqrt(v[0]**2+v[1]**2+Vv[2]**2)

take the sum of two vectors
def vectorSum(self, v1,v2):

return (v1[0]+v2[0],v1[1]+v2[1],v1[2]+V2[2],1)

116

take the difference of two vectors
def vectorDif(self, v1,v2):

return (v1[0]-v2[0],v1[1]-v2[1],v1[2]-v2[2],1)

Calculate the inverse of a 3 by 3 matrix
Note that function fails if determinant is zero
not a problem because this is a very rare occurance in the context
the inverter will be used in (only if a point is at the origen)
math taken from www.dr-lex.be/random/matrix_inv.html
def matrixinverse(self, M):
calculate partual sums of determinant
dett = M[OJO[*(M[2][2]*M[1][1]-M[2][1T*"M[1][2])
det2 = -1*M[1][0]*(M[2][2]"M[O][1]-M[2][1]*"M[0](2])
det3 = M2][0]*(M[1][2]*M[O][1]-M[1][1]*"M[0][2])
calculate the determinate
det = det1+det2+det3
tell me if things crash, specifically in a humorous way so | am less heart-broken
if (det == 0):
print
print "NOOOOO. NON-INVERTABLE MATRIX"
print
print M[0]
print M[1]
print M[2]
print
print det1,det2,det3
calculate the inverse matrix components

MP1 = [(M2]2I"MAI M2 MI1][2])det, -1*(M2][2]*M[O][1]-M[2][1]*M[0][2])/det,
(MOAI2I*MIOI1]-M1][1]"MIO0][2])/det]

MP2 = [-1%(M[2][2]"M[1][0]-M[2][0]*M[1][2])/det, (M[2][2]*"M[O][0]-M[2][0]"M[O][2])/det,
-1*(M[1][2]*M[0][0]-M[1][0]*M[0][2])/det]

MP3 = [(M2][1*M][0]-MI2][0"M[1][1])/det, -1*(M[2][1]*M[O][0]-M[2][0]*M[O][1])/det,
(MIA](]*MIO][0]-M[1][0]"MIO][1])/det]

117

pack the inverse matrix

return [MP1,MP2,MP3]

calculate the equation of a plane

because we know the four points are coplanar, we can simply find the plane

equation defined by 3 points.

plane equation Ax+By+Cz =D note that D is arbitrary because it simply scales A,B,C
#Q=[AB,CI"T

#M=[v1v2,v3]->M*Q=D

>Q=M**D

note Z = (Ax+By-D)/C

we could probably find value for D such that C = 1 to speed up things (divider used once, D =
1/(MA-1[3][1]+MA-1[3][2]+MA-1[3][3]), | didn't here

def calcPlaneEquation(self,xList,yList,zList):

D=1

if (xList[0] == xList[1] == xList[2] == xList[3] == 0):
three points are fixed in the x plane and are thus hidden from the screen (look like a line from z)
return 1,1,0,1 # C == 0 forces pixels to not be drawn

if (yList[0] == yList[1] == yList[2] == xList[3] == 0):
three points are fixed in the y plane and are thus hidden from the screen (look like a line from z)
return 1,1,0,1 # C == 0 forces pixels to not be drawn

if (zList[0] == zList[1] == zList[2] == xList[3] == 0):
three points are fixed in the z = 0 plane, all depths should be zero
return 0,0,1,0

pack M

M = [[xList[0],yList[0],zList[O]], [xList[1],yList[1],zList[1]],[xList[2], yList[2],zList[2]]]

calc inverse

M_inverse = self.matrixInverse(M)

calculate Q

Q = self.matrixMult3([D,D,D],M_inverse)

extract parameters

A= QO]

B = Q[1]

118

C=Q[2]

return A,B,C,D

. — DRAWING FUNCTIONS #

Draws a 4 point polygon to the screen
algorithm works by first initializing by
1: calulating the plane equation for the four points
2:it then finds the min and max x and y coordinate values to provide bounds
The bulk of the algorythm then works by
scrolling through each Y pixel from y_min to y_max and:
1: for each side that crosses the y value at some point:
find the x location at which the side crosses the y value
2: sorting the 2 intersection points to get the min and max x
3: going through each x location and
using the plane equation to calculate the pixel depth and color the point
note that the algorithm below can draw ANY polygon, and that the hardware version
will be simplified because all sides will be simple
algorithm from http://alienryderflex.com/polygon_fill/
def drawPolygon(self, xList, yList, zList, color, outline):
numSides = len(xList)
X_min = int(min(xList))
Xx_max = int(max(xList))
y_min = int(min(yList))
y_max = int(max(yList))
calc plane equation

A,B,C,D = self.calcPlaneEquation(xList,yList,zList)

option to draw border lines or not, not used in hardware algorithm

drawLines = 1

if C is zero, plane equation -> A*x + B*y = D -> plane is perpendicular to the z axis

side cannot be seen

119

if (C 1= 0):
for each y pixel
for pixelY in range(y_min,y_max):
intersections =[]
lines are defined by points pairs (0,1) (1,2) (2,3) and (3,0)
this line sets up j so that intial line is (3,0)
j = numSides-1
for each side
for i in range(numSides):
if enpoints of line lie on either side of y, then line must cross y at some point
if (' yList[i] < pixelY and yList[j] >= pixelY) or (yList[j] < pixelY and yList[i] >= pixelY):
calculate and store intersection by the two point line equation
x = (x1-x0)/(y1-y0)*(y - y0) + x0O
intersections += [int(xList[i] + (pixelY-yList[i])/float(yList[j]-yList[i])*(xList[j] - xList[i]))]
j=i
sort the intersections
intersections.sort()
for every other space between intersections
(or in simple polygon, between the min and max intersection)
for i in range(0,len(intersections),2):
start = intersectionsi]
end = intersections[i+1]
if the space starts after x max, ignore
if start >= x_max:
break
if the space ends after x min
if end > x_min:
if the space starts before x_min, set start to x_min
if start < x_min:
start = x_min
if the space ends after x_max, set end to x_max
if end > x_max:

end = x_max

120

for each x value between x min and x max
for x in range(start+1, end):
use the plane equation to calculate the depth
z = -1*(A*x + B*pixelY - D)/ float(C)
draw the pixels to the screen
self.drawPixel(x,pixelY,z,color)
below is equations to draw outlines to the screen and is not used in the hardware algorithm
note that the method is similar to that above
if drawLines:
j = numSides-1

for i in range(numSides):

x1 = xList[i]
x2 = xList[j]
y1 = yList[i]
y2 = yList[j]
if (x1 <x2):

for x in range(int(x1),int(x2+1)):
y =y1 + (x-x1)/float(x2-x1)*(y2-y1)
z=-1*(A*x + B*y - D)/ float(C)
self.drawPixel(x,y,z,outline)
elif (x1 > x2):
for x in range(int(x2),int(x1+1)):
y = y2 + (x-x2)/float(x1-x2)*(y1-y2)
z =-1*(A*x + B*y - D)/ float(C)
self.drawPixel(x,y,z,outline)
else:
for y in range(int(min(y1,y2)),int(max(y1,y2))+1):
z =-1*(A*x1 + B*y - D)/ float(C)

self.drawPixel(x1,y,z,outline)

This function draws a pixel to the buffer

121

def drawPixel(self, x, y, z, color):

check to see if pixel can be painted to the screen

if (x<0ory <0 orself.WIDTH < x or self. HEIGHT < y):
return

if the pixel depth is less than that in the depth buffer

if (z < self.zBuffer[int(x)][int(y)] and z >= 0):
paint the pixel to the frame buffer
self.RGBJ[int(x)][int(y)] = color
store its depth in the depth buffer

self.zBuffer[int(x)][int(y)] = z

HELPER FUNCTIONS

this function creates python specific objects
to interact with pygame and manage the buffers
def createWidgets(self):

self.screen = pygame.display.set_mode((int(self. WIDTH), int(self. HEIGHT)))#tk.Canvas(self, height = self. HEIGHT,
width = self WIDTH,bg = 'white")

self.running = True

self.colorDict = { 'red":(255,0,0), 'blue":(0,0,255), 'green":(0,255,0), 'white':(255,255,255), \
'yellow':(255,255,0), 'purple:(127,0,255), 'orange':(255,128,0), 'black’:(0,0,0) }

self.zBuffer = [[1000000 for y in range(int(self. HEIGHT)+1)] for x in range(int(self. WIDTH)+1)]

self.RGB = [[(255,255,255) for y in range(int(self. HEIGHT)+1)] for x in range(int(self. WIDTH)+1)]

this function interfaces with pygame to render the image
def drawScreen(self):
fill the screen with white
self.screen fill((255,255,255))
set each pixel value to the value stored in the pixel buffer
for x in range(int(self. WIDTH)):
for y in range(int(self. HEIGHT)):

self.screen.set_at((x,y),self. RGB[x][y])

122

update display

pygame.display.flip()

run the application

app = Application()

123

