
Motion Capture System on an FPGA

6.111 Final Project Proposal

Lauren Gresko
Elliott Williams

November 14, 2013



Overview

Motion capture, or recording and animating an object or person, is a commonly researched 
technology with a variety of applications.  Motion capture is often employed in the fields of 
computer animation, video games, films, music, medicine, sports, robotics, and defense.  For our 
final project, we would like to design and implement our own ‘mocap’ system that will capture a 
user's movements and animate them on the monitor.  Our mocap system will capture position 
data accurately and display a simple animation in real-time.  This simplified mocap system offers 
a robust solution to a commonly studied problem of replicating human motion.  Our mocap 
system covers the basics of motion capture, while also offering the challenge of implementing a 
complex system on the 6.111 lab kit. 

To create a 3D motion capture system, we will use two cameras that will face the user at 90 
degree angles from each other. Using either colored patches or illuminated bracelets, we will 
track the user’s joints and generate a list of 3D coordinates that can then be used to reconstruct 
a skeletal model of the user. We will then use this model to generate a 3D model of the user’s 
movements on a computer screen. In the final product, the user will be able to move around 
their arms, and observe as the 3D image on the monitor mimics their motions. 

For the minimal design we hope to track a user's arms and torso. This will require the tracking of 
four separate points. The generated 3D model will be a simple collection of rectangular prisms to 
represent the user's arms and torso. If we are able to quickly achieve the minimal design, we will 
improve upon it by tracking all of the user's body parts, for a total of eleven points (if we are 
clever, it might not be necessary to track 11 colors (an impossible task)). In addition we could 
improve the complexity of the displayed animation.

2



Design Overview

This document describes the proposed design of our motion capture system. The project is 
partitioned into two sections: the video system module and the graphics system module.  The 
video system will process the video received from our two cameras into a useable format for our 
3D graphics system.  The 3D graphics system will then create a 3D model based on the 
information it received from the video system. Figure 1 depicts the overall block diagram of our 
motion capture system.

Figure 1: The Overall Block Diagram for the Motion Capture System.  Above is a block diagram of the 
various modules that comprise the motion capture system. The Motion Capture System is composed of 
two blocks, the Video System (containing the Motion Detection and 3D Mapping subsystems) and the 
#D Graphics System (containing the 3D Model Generator and the Frame Rendering subsystems). The 
arrows represent the inputs and outputs of the modules.  Additionally, the clock will connect to all of 
the blocks in the system; however for simplicity, the clock arrow connections have not been displayed. 

1. Video System

The video system captures the location of the user's joints, generating a 3D skeleton to be 
displayed by the 3D graphics system. As shown in Figure 1, the functionality of the video system 
depends on two main modules, the motion detection module and the 3D mapping module.  The 
motion detection system will track the colors sources on the user, therefore tracking the points 
and movement of the user’s arms. The 3D mapping module will process the resulting position 
data to determine the (x,y,z) skeletal coordinates of the user. 

3



a. Motion Detection Module

The motion detection module will decode the video signals from both cameras to generate (x,z) 
and (y,z) coordinates for each of the four different color sources.  As depicted in Figure 2, the 
user will be wearing four different color sources (terry cloth bands or LED bangle bracelets) at 
four different points on their body: the right wrist, right elbow, left wrist, and left elbow. The 
module will first detect the pixels that correspond with each color source. It will then perform a 
center of mass calculation on these pixels to determine the coordinates of the color source's 
center. This process will be completed twice, once for each camera, to get both the (x,z) and (y,z) 
coordinate pairs.

Figure 2: User input: four color sources.  This diagram shows the four color sources (blue, yellow, red, 
and green) that the user of the motion capture system will be wearing, as viewed from the two camera 
inputs to the system.  By placing color sources on the user’s wrists and elbows, the motion detection 
module will track the endpoints of the user's forearm and upper arm in two coordinate planes (x,z) and 
(y,z).

The motion detection module is made up of four sub modules, the Video Decoder, RGB to HSV, 
Point Detection, and the Center of Mass Detection sub modules. The following section contains 
the details and processes for each of the sub modules. All of these modules will be designed by 
Lauren. These sub modules, along with the rest of the system's sub modules, are depicted in 
Figure 3 in the appendix.

4



Video Decoder: 
The video decoder converts the NTSC and Ycrcb input video data to RGB video data. This step is 
necessary to allow further conversion into HSV video data. This module is provided by the 6.111 
staff, and will be modified to output color video in RGB rather than the black and white This 
module will be used twice; it will be used on the (x, z) video data and the (y, z) video data.
Input: clock, video camera stream
Output: RGB bit stream

RGB to HSV:  
The RGB to HSV converts video data using the RGB color space protocol into video data using the 
HSV color space protocol.  This conversion is important because the HSV color space provides 
more space between color values, making subsequent point detection easier.  This module will 
be used twice; it will be used on the (x, z) video data and the (y, z) video data. This module is also 
provided by the 6.111 staff.
Inputs: clock, RGB bit stream
Outputs: HSV bit stream

Point detection: 
This module will take the HSV stream of bits and detect which pixels correspond to the color 
source, accumulating the correct color locations to enable the center of mass detection module 
to determine the location of each color source.  This detection will be done by comparing the 
hue of the HSV bit stream to the color sources that the user would be wearing. In this project, 
this module will instantiated 4 times; a parameter will determine which of the 4 colors the 
instance is looking to match and therefore which of the 4 points (R wrist, R elbow, L wrist, L 
elbow). This module will be used twice; it will be used on the (x, z) video data and the (y, z) video 
data.
Parameter: Source Color
Inputs: clock, HSV bit stream
Outputs: matched pixels 

Center of Mass Detection: 
This module will determine the center of mass of the user’s arm joints. This center of mass 
determines the coordinate location of each color source in the (x,y) and (y,z) planes. One way 
would be averaging the position of all the matching pixels; or for a= x or y or z coordinate, the 
module could compute a*intensity(a) divided by sum(intensity(a)).  Additionally, this module will 
keep track of the velocity, which will be used in future modules.  In order to do this, the module 
will also keep track of the previous location of the center of mass and compare the change in 
position for each frame. This module will be used twice to calculate both (x, z, color) and (y, z, 
color) coordinates.
Inputs: clock, matched pixels
Outputs: (x, z, color) or (y, z, color) which represent the coordinates of the designated body part 
(the L wrist, L elbow, R wrist, or R elbow).

b. 3D Mapping Module

The 3D mapping module will synthesize the coordinate data generated by the motion detection 
module into a group of 3D coordinate pairs that comprise the user's joints.  The 3D mapping 
module will first map the (x,z) and (y,z) coordinates of the four color sources together based on 

5



the color and z dimension of the points. The module will then match the (x,y,z) points of the 
right wrist to the (x,y,z) of the right elbow, and the (x,y,z) points of the left wrist to those of the 
left elbow.  This matching will result in a forearm “bone” that will then be passed to the graphics 
module to generate a real-time 3D model of the user’s arms.

The 3D mapping module is made up of two sub modules, the 3D Coordinate Generator and the 
Skeleton Generator. The following section contains the details and processes for each of the sub 
modules. All of these modules will be designed by Lauren. These sub modules, along with the 
rest of the system's sub modules, are depicted in Figure 3 in the appendix.

3D coordinate Generator: 
This module will create the 3-dimensional (x,y,z) coordinates of each point from the (x,z, color) 
and (y,z, color) coordinates, thus detecting the locations of all of the user's joints. This module 
also must handle hidden points, i.e. when a color source is hidden from one or both of the 
cameras. As described below in the Testing section, this module will be first implemented as a 
software prototype.
Input: clock, (x , z , color) and (y, z, color) coordinates
Output: (x,y,z, color) coordinates 

Skeleton Generator:  
This module will match the (x,y,z) coordinates of the left wrist with the left elbow and right wrist 
with the right elbow.  These matched coordinates will be outputted as “bones” to be drawn, 
providing the 3D graphics system with a 3D skeleton of the user's location. This will also be 
developed originally as a software prototype.
Input: clock, (x,y,z) coordinates
Output: matched elbow and wrist (x, y, z), (x,y,z) coordinates  

2. 3D Graphics System

The 3D graphics system generates and displays a 3D model of the user based on the 3D skeleton 
generated by the video system. As shown in Figure 1, the graphics system is also divided into two 
parts, the 3D Model Generator and the Frame Rendering module. The 3D Model Generator uses 
the skeleton generated by the video system to create a 3D model of the user when viewed from 
a predetermined viewpoint. This viewpoint will be controllable by the user. The frame renderer 
draws this model to the display. 

a. 3D Model Generation Module

The 3D model generation module creates and manages a 3D model of the viewer. It first 
generates a collection of rectangular prisms, each representing a segment of the user, from the 
"bones" supplied by the video system. This module then passes the prisms through a series of 
linear transformations that determine how the prism would appear from a certain viewpoint.  
The user will be able to use the button inputs on the FPGA (labeled Camera Control Input in 
Figures 3) to move the camera and view the model, and thus their own movements, from a 
different angle.  To provide a greater sense of depth, the model will be lit by a simple uniform 

6



light source and shaded appropriately. This module will be pipelined to reduce the number of 
necessary signal wires and to enable real-time video playback.

The 3D model generation module is made up of t into six different sub modules, the Rectangular 
Prism Generator, the Normal Vector Calculator, the Shader, the Camera Controller, the Transform 
Matrix Generator, and the View and Projection Transformer. The following section contains the 
details and processes for each of the sub modules. All of these modules will be designed by 
Elliott. These sub modules, along with the rest of the system's sub modules, are depicted in 
Figure 3 in the appendix.

Rectangular Prism Generator:
This module will generate a set of eight vertexes (x,y,z) that compose a rectangular prism 
centered around each provided “bone”.  These prisms represent the user's arm segments and 
are the objects on which the rest of the 3D graphics system will operate on. This will be 
developed originally as a software prototype.
Input: clock, matched elbow and wrist (x, y, z), (x,y,z) coordinates  
Output: the eight vertexes (x,y,z) of a rectangular prism in standard coordinates

Camera Controller:
This module controls the location and orientation of the viewing camera by saving a set of 
coordinates in a state in memory. These coordinates consist of a camera location (x,y,z), the 
point that the camera is facing (a,b,c), and a unit vector describing which direction is up from the 
camera's perspective. These values will be able to be updated by using button inputs, thus the 
camera will be able to be moved, rotated, and rolled. This will be developed originally as a 
software prototype.
Input: clock, camera control input  
Output: camera location (x,y,z), focus point (a,b,c), and orientation vector (i,j,k)

Transform Matrix Generator:
This module uses the state of the camera to create the transformation matrix needed to orient 
objects with respect to the camera and perform the necessary perspective transformations. This 
will be developed originally as a software prototype.
Input: clock, camera coordinates
Output: view and projection transform matrix

View and Projection Transformer:
This module performs the matrix multiplication necessary to transform standard coordinates 
based around the origin into coordinates based around the camera's field of view. This 
transformation includes perspective effects such as foreshortening. This will be developed 
originally as a software prototype.
Input: clock, view and projection transform matrix, the eight vertexes (x,y,z) of a rectangular 
prism in standard coordinates
Output: the eight vertexes (x,y,z) of a rectangular prism in view coordinates 

Normal Vector Calculator:

7



This module calculates the normal vector of each surface on the rectangular prism created by 
the Rectangular Prism Generation module. These normal vectors are critical in the proper 
shading of the arm segments. This will be developed originally as a software prototype.
Input: clock, the eight vertexes (x,y,z) of a rectangular prism in standard coordinates
Output: the unit normal vectors of the rectangular prism's six faces

Shader:
This module calculates the appropriate ambient and directed light incident on each face of the 
rectangular prism. It then uses this light intensity to create the proper shade of color for each 
face. This shading will create a much greater sense of depth in the final image.
Input: clock, the six unit normal vectors of the rectangular prism's six faces
Output:  the shaded colors of the rectangular prism's six faces

b. Frame Renderer Module

The Frame Rendering module takes the 3D model and shaded color values and displays a 
properly scaled 2D image of the 3D model on the VGA screen.  The module uses a double frame 
buffer in ZBT memory so it can update one frame while displaying another. If the rest of the 
system is fast enough, this buffer will enable real time graphics. Like the 3D model generator 
module, this module will be pipelined to reduce the number of necessary signal wires and to 
enable real-time video playback.

The Frame Renderer module is divided into four sub modules, the View-port Transformer, the 
Renderer, the Frame Buffer, and the VGA controller. The following section contains the details 
and processes for each of the sub modules. All of these modules will be designed by Elliott. 
These sub modules, along with the rest of the system's sub modules, are depicted in Figure 3 in 
the appendix.

Viewport Transformer:  
This module performs the matrix multiplication necessary to transform 3D camera coordinates 
into 2D pixel coordinates. This process provides the rest of the frame renderer module with the 
proper polygons to draw to the screen. This will be developed originally as a software prototype.
Input: clock, the eight vertexes (x,y,z) of a rectangular prism in view coordinates 
Output: the eight vertexes (x,y,z) of a rectangular prism in pixel coordinates 

Renderer:  
This module draws the provided prisms into the frame buffer and fills in the prism's sides with 
the appropriate color. This module also communicates with the frame buffer to determine 
whether parts of the prism it is drawing is obscured by other prisms already drawn. It does this 
by comparing the received depth coordinate, z, at location (x,y) with the depth coordinate at 
that location in memory. This will be developed originally as a software prototype.
Input: clock, the eight vertexes (x,y,z) of a rectangular prism in pixel coordinates, the shaded 
colors of the rectangular prism's six faces, z_read
Output: location, z_write, color

Frame Buffer:  

8



This module manages the double frame buffer and depth buffer stored in ZBT memory. It allows 
the renderer to write into one buffer while the VGA controller reads from the other buffer. When 
both processes are done, the frame buffer switches the two buffers, enabling constant frame 
drawing and displaying.
Input: clock, read location, color, z read,  
Output:  write location, z_write, color_write, z_read, read location, color_read

VGA Controller:  
This module manages the generation of the proper signals to control the VGA monitor. It 
communicates with the frame buffer module to read and display the proper pixel values.
Input: clock, color
Output:  read location, VGA control signals

9



Testing

Video Module Testing 

To test the Motion Detection module, a debugging module will be created that displays both the 
video feed and the center of masses of the detected points. Using this module, we will be able to 
check whether we are successfully converting from HSV to (x,z) and (y,z) coordinates as well as 
correctly locating the correct center of mass of the color sources.

The 3D Mapping module will first be developed as a software prototype in Python. Once a 
working algorithm has been developed for matching the (x,z) coordinates to the (y,z) coordinates 
and then matching the correct side wrist (x,y,z) to elbow (x,y,z) the module will be implemented 
in Verliog.  Also in this software prototype, we hope to figure out the best way to handle 
“missing coordinates,” i.e. when one of the color sources is hidden from one or both of the 
cameras.  Developing and debugging this tricky part of the project in software first will save 
time, because we will not have to recompile after each adjustment we make.

Graphics Module Testing

The majority of the 3D graphics generation system will first be developed as a software 
prototype in Python. This will enable the complicated math issues involved with coordinate 
transforms to be tested in a fast development environment. This prototype will also enable 
predetermined matrix values (like those needed in the viewport transformation module) to be 
tweaked without having to recompile everything. This system will be tested first by creating a 
series of mathematical tests that will ensure the matrix, normalization, and shading math is 
being calculated properly. Then a series of predetermined skeleton coordinate values can be fed 
into the graphics module and examined from multiple view angles to catch bugs. The exact same 
tests can be used for the software prototype and hardware implementation. Modelsim will be 
used for hardware math testing while the complete graphics test will be performed on the FPGA 
itself.

The only graphics modules that will not be tested in python are the Renderer, Frame Buffer, and 
VGA controller modules. These will not be tested in Python because they are highly dependent 
on the ZBT and VGA interfaces. Instead these modules will be tested in Modelsim using 
predetermined shapes. The memory stored in the buffer can be examined to ensure that the 
proper data was written in the proper location and the result could be displayed to the screen 
once the VGA module is verified. The VGA module will be tested by reading predetermined 
frames from memory and displaying them to the screen. 

Once both major systems are complete, they will be tested together, first with still subjects 
where all markers are seen, then with subjects with hidden markers, then with subjects 
performing slow simple motions, and finally with fast moving subjects performing complex 
motions.

10



Schedule 

10/27-11/1
Final Project Meeting & Proposal
Order Parts

11/3-11/8
Block Diagram Meeting
Edit module from staff (Video Decoder Module and Ycrcb to RGB)
Begin Point Detect and Center of Mass Module
Complete Graphics Software Prototype

11/10-11/15
Design Presentation
Complete Point and Center of Mass Detection Module
Begin 3D Coordinate Generator
Complete 3D Model Generator Module

11/17-11/22
Project Checklist
Complete 3D Coordinate Generator
Begin Skeleton Generator
Complete Frame Rendering Module

11/24-11/27
Project Status Update
Finish Skeleton Generator
Integrate Modules together before leaving for Thanksgiving

12/2-12/6&12/8
Final Week of Debugging

12/9 
Final Project Check off

11



Appendix

Figure 3: The Modules and Sub modules of the Motion Capture System. Above is a block diagram of the 
various modules that comprise the motion capture system. The two main systems are the Video system 
and the 3D Graphics system, and each of these systems has several sub modules represented by the 
blocks in the diagram. The arrows represent the inputs and outputs of the modules.  Additionally, the 
clock will connect to all of the blocks in the system; however for simplicity, the arrow connections have 
not been displayed. Modules in the Video System will be implemented by Lauren, while modules in the 
3D Graphics System will be implemented by Elliott.

12


