STRUGGLEBOT

6.111 Final Project Report

Rebecca Greene & Kelly Snyder
12/12/13

Abstract

The strugglebot project controls a robot using two distinct FPGAs that interact wirelessly, using
the labkit, a vga screen, and an ceiling-mounted camera as an interface. The user can select if
they wish to control the hexapod manually, or guide it to specific points to which it will move
autonomously. When given a point, the labkit will generate a set of directions to move the robot
towards a desired location. This location might be a point clicked on the screen with a mouse, or
the location of a second object being tracked.

The robot itself is a hexapod, consisting of six legs attached to a circular base, controlled
by a nexys3 fpga that is mounted to it. Each leg has two small servo motors attached to it, and
these twelve motors are used to propel the robot in any direction within a two dimensional plane.
Instructions are transmitted to the hexapod wirelessly, using the XBee 802.15.4 RF module.
Proximity sensors on the robot prevent it from crashing into any objects immediately in it's path.

TABLE OF CONTENTS

Abstract 2
Table of Contents 3
Section 1: Overview 4
Section 2: Modules 5
Section 2.1 Motor Control 5
Section 2.2 Motion Algorithm 6
Section 2.3 Distance Sensors 6
Section 2.4 Xbee Communication 8
Section 2.5 Display and Camera Module 9
Section 2.6 Color Detection and Tracking 171
Section 2.7 Mouse and Point Detection 13
Section 2.8 Types of Controlling Motion 74
Section 2.8.1 Buttons 74
Section 2.8.2 Move to Point 15
Section 2.8.3 Tracking to Second Object 16
Section 3: Hardware Concerns 17
Section 3.1: Chassis Construction 17
Section 3.2: Zeroing Motors 18
Section 3.3 Wiring 18
Section 3.4 Power 18
Section 4: Challenges and Considerations 18
Section 4.1 Walking and Timing 18
Section 4.2 Weight Consideration 78
Section 4.3 Move to Point Inaccuracies 18
Section 4.4 RGB vs HSV 18
Section 5: Conclusion 719
Appendix A: Verilog Code 20

1. Overview - Both

The implementation of our project consists of two main sections each using a separate
FPGA. One section is the movement and control of the hexapod itself, using a Nexys 3
development board mounted on the top of the robot. The other section uses the labkit FPGA to
take input from the user, from a NTSC camera, and from a PS/2 mouse, and turns that input into

instructions for the hexapod.

Figure 1, below, shows the basic flow of data in the two sections (in blue) and between
them. Each of the smaller parts (in green) will be explained in greater detail in section 2.

2

=

£

3 g » Labkit

= —

@ Displ

§ temmmmn | ZPIY |t | Main Modlule

o

. | | |

2 — £ Detection

@ £ a— Move to X Modul

O 3 Point bee Module

MDLI!E RF Signal M

HaEs I Xbee Module

E-_. Proximity = Main Module Motor Motor

E Algorithm | =™* Controller e

(x12)

Figure 1. This diagram shows the basic high level flow of our system. It can be seen that the
system is divided into two main parts, which then are divided into smaller parts.

Inputs to the system will consisted of data from the camera as well as user input on the
labkit hardware. The user can control the hexapod’s movement directly using buttons, or
hexapod can move autonomously to a point specified by the user with a mouse or a second
object.. In button mode, debounced signals from the buttons would be passed through the Main

Labkit module to the Xbee module, and transmitted to the hexapod. In the alternative case, data
from the camera would feed into the Image Recognition Module and the Screen Module. The
latter would display the robot’s location, and interactions between the Screen module and the
Labit Main Module would produce coordinates for the robot to travel towards. Using coordinates
from the Main FSM and the Image Recognition Module, the Mapping Module would produce
directions to pass through the Main Labkit FSM to the Xbee.

On the other side of the system, the Xbee module on the hexapod receives data from the
labkit, and passes it to the hexapod’s Main FSM. This will use data from the proximity sensor
module to decide if it's appropriate to move, and selectively send the directions to the Motor FSM
to eventually be translated into motion.

Image 1: The hexapod chassis with Xbee and Nexys 3 mounted on top

2. Modules
2.1 Motor Control - Becca

Each of the twelve servo motors on the joints of the robot is directly controlled via it's own
motor control module. Servo motors are controlled using a pwm signal of 50hz, and the position
is determined by varying the duty cycle of the signal. The input to the module is the number of
milliseconds that the signal should be high (pulse width). The motor controller uses a 1mhz
enable line to count every microsecond of the cycle, and maintains a high output while a register
counts up to the desired length, and then hold the signal low until it counts up to the end of the
cycle. It is important to note that the motor position can’t be updated more than once per pwm
cycle. Thus it is important to have very precise timing between the algorithm that generates the
duty cycles and the modules that actually generate the pwm signal. This is discussed further in
Section 4.2. Some experimentation was necessary to optimize this relationship. If the clock
ration between the algorithm and the pwm generator was 1:1 or lower, movement was
incredibly awkward and erratic. If the ration was too high, precision was lost. Although a separate

5

control for speed existed within the algorithm generator, a combination of speed and optimal
timing was necessary to create smooth motion. It is also necessary to note that the servos can
only accept signals with pulse widths ranging from 800-2200us, otherwise the motor can be
damaged. . Fortunately, we used motors with 3.3v logic, so no level conversion circuitry was
necessary.

2.2 Motion Algorithm - Becca

A rather complex algorithm governs the motors of the hexapod. It is based off
suggestions from the company that produces the hexapod chassis kit we purchased, and has
been altered to be feasible in verilog and to take advantage of the FPGA’s ability to perform
vector calculations . Each motor is treated as an index in a matrix, and different algorithms are
used to independently calculate the motion for the knee and hip joints. These are then combined
by multiplying by unit vectors. All motion is based on circles and sine waves- the motors move
back and forth following sin and cos waves, and are oriented around the circle of the robot
chassis. Even the algorithm itself is circular, using self-referential sine waves. Even and odd
legs are 180 degrees out of phase.

There are four main parameters to the algorithm - speed, stride, step and angle. Angle
determines the direction the robot will travel in, ranging from 0 to 360 degrees. Step is used to
track the algorithm over time. It also ranges from 0 to 360 degrees, and is incremented every
cycle by the speed.. Stride determines the range of motion of the leg, multiplying angles by a
constant to create the desired range of motion of the robot- too small and it’s inefficient, too large
and limbs collide with both each other and the ground.

The calculation for the knees of the robot is always the same, independent of input angle.
It is simply sin(Step) * Stride. Thus the knees of the robot are always moving up and down in a
sine wave. Calculation for the hips is a bit more complication- in addition to the cos(Step)*Stride,
it is dependent on the sine of the desired angle of travel added to the position of the leg on the
body (0, 60, 120, 180, 240, and 300 degrees). The output from each cycle is added to the
current motor pulse width to keep changes from being too abrupt.

This module contained a submodule sine/cos lookup table to perform trig calculations.
2.3 Distance Sensors - Becca

Our intention was to use four distance sensors, located at the cardinal directions of the
robot, to prevent the robot from running into objects that the user or mapping algorithm didn’t
notice. Unfortunately, due to weight considerations (see Section 4.2), we were unable to actually
mount the sensors on the robot, but we were able to demonstrate proof of concept by having the
sensors seated on the table, and causing the robot to stop when the appropriate directional
sensor was obstructed.

One of our stretch goals was to use the distance sensors to navigate around objects
instead of just stopping in front of them and refusing to move. Unfortunately, this would have
required gathering a lot of data about how the sensors reacted to objects approaching at different
angles, and there was not enough time to attempt an undertaking of this scale.

We used Sony GP2Y0A51SKOF IR sensors to measure distance. These sensors
measure distances from 2-15cm, and produce an analog signal from 0-2.5 volts, varying with
according to fig. 2. Each sensor was associated with a cardinal direction (up, down, left right),
and would cause the robot to stop if it was attempting to move in a direction whose sensor had
been triggered to a certain threshold.

Analog voltage output [V]
3 S
————1 «

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Distance to reflective object [em]

Figure 2: From the datasheet for the GP2Y0A51SKOF, a
voltage-distance chart, using a piece of white paper to mark distance

The output of the sensors were hookup up to a ADC0804, an 8 bit
microcontroller-compatible analog to digital converter, used in continuous conversion mode
(Figure 3). After some experimentation, we decided to shame 6.115 teachings by only using bits
[6:4] of each output, as these were the only ones that changed in a significant way. It would have
been better practice to use chip select to alternate between full 8-bit data from each ADC, which
would have been more than responsive enough with the quick clock cycle of the Nexys 3.
However, the solution we used was much simpler, and we didn’t have time to go back and
modify the design.

e L L n 08130 g
I i S
N " g\ TANTALLM
a
of
Ie&
4
-
STRAT
5
_u
am
Wi Qrs
LAY $¥ng
1
[l
aawn L
2588 Vo L]
W
wiaf "
s
= e e

L]
TLIHISET1-18
FIGURE 7. Basic A/D Tester

Figure 3: From the 804 datasheet, a sample application for testing with LEDs.

Figure 4 shows the wiring diagram of the chips, sensors and the Nexys 3.

chrl x12
Ja[7:0], J{3:0] Motors
N 3 jcl2-0] wd] hfint Out
exys jol5:3] ADC Sensor
jel7 -8}, A7) - . R
=iy ADC Sensor
- ADC |- out | Sensor
ADC [” ou | Sensor
e Xbee

Figure 4: Block Diagram demonstration wiring between 1/O pins on the Nexys 3

2.4 Xbee Communication- Becca

Wireless communication between the lab kit and the Nexys 3 was facilitated with the
Xbee 802.15.4 RF transceiver, produced by Digi International. It's possible to program the Xbee
for a variety of different functions, but for our purposes we programmed it to transmit UART data
between the two FPGAs. I/O pins from the FPGAs were connected to the Rx and Tx lines of the
Xbee; the only other necessary connections were power and ground (Figure 5). In order to use

the data from the Xbee, | created two separate modules- a receiver and a transmitter.

Figure 5: Pinout of the Xbee 802.15.4 RF Transceiver. The only pins used were +3.3, Tx, Rx and
gnd.

The receiver module waits for a start bit and then calculates a sampling time for the 8
data bits that are being transmitted. Each bit is sampled 8 times. The sampled bits are added to
a data register, and when the register is filled, a data_ready line goes high for one cycle. The
transmitter takes in 8 bits of data and a enable signal. When enable goes high, the transmitter
drives the output pin high or low for the appropriate amount of time, as determined by the data to
be sent.

Both transmitter and receiver have an internal baud rate generator that uses the input
clock frequency to create the desired baud rate. For this project, we used 9600 because that
was the recommended baud for the Xbee, but other rates are possible. The generator module
also outputs sample intervals for the receiver.

Packets between the two boards were 8 bits long. The high order bit determined whether
or not the robot should be moving. The lower order bits were used to transmit the angle.
Theoretically this could range from 0-360 degrees (incremented by steps of four, because bit
shifting would be necessary to create full range). However, it was much more practical to stick to
0, 80, 180, and 270 degrees for motion, to correspond to the four pushbuttons and the locations
of the four distance sensors. Thus in reality the bottom two bits were used to select angle, and
the remaining five bits remained unused.

2.5 Display and Camera Module - Kelly

The purpose of this section of modules is to take video data from a 6.111 NTSC camera and
display that data on a monitor. As the project became more advanced, other graphics were
sometimes displayed, but these are very basic and the majority of the data displayed on the
monitor still comes from the camera.

We use a modified version of the NTSC to VGA code provided by the 6.111 staff. The

code takes NTSC video data from the camera and stores it in ZBT memory. That data is then
displayed via VGA on a 1024x768 pixel screen. The original code stores 4 pixels worth of black
and white data in each ZBT memory location, so the code has been modified to save and display
RGB data instead. To do this, first the data itself is converted from YCrCb to RGB in a relatively
simple linear conversion, again using code from the 6.111 staff. This produces 24 bits of RGB
data, one byte for each color. In order to take full advantage of the ZBT memory, each slot of
which is 36 bits wide, this data is truncated to 18 bits, and so we can store 2 pixels worth of
RGB data in the memory. This data is then displayed to the monitor, along with any other
graphics added. An overview of the data flow from the camera to the monitor is shown in Figure
6.

([5:0)R, 2'ba)
YCrCh [2*VTOREEl MTSC to | 1170 RGE i 15 S)
L — I 500G, 2B}
Camera to RGB ZBT Display Monitor
{I5:0]8. 2'b}

Figure 6. This figure shows the flow of data from the camera to the monitor.

2.6 Color Detection and Tracking - Kelly

This module detects a given color being displayed on the monitor and tracks it by
determining the average pixel position of all colored pixels in the screen area. It displays a
simple white square graphic to show the user where on the screen that average is. It is used
primarily to track the location of the robot.

This detection module can be used to detect and track objects of any solid color. It is
used mostly in this project to track the hexapod itself, which has a large red square on top of it, in
order to make it easily identifiable. The detection and tracking process goes through several
stages, and the full process of displaying the center coordinate is completed once per frame.

First, a color must be detected. When an instance of this module is instantiated, a range
for each of the three colors, red, green, and blue is determined. So to detect the color red
(OxFF0000 in RGB), we look for pixels with a high value for red and low values for green and
blue. To detect the color yellow (0OxFFFF0O0), we look for pixels with high values for red and
green and low values for blue. Each pixel on the screen is then determined to have an RGB
value inside or outside of this range. If the pixel is inside of this range, it is given a value of
18'h3FFFF (all ones), and if it is outside of the range it is given a value of 0. This creates a
binary image, in which all the pixels of a certain color are white, while all other pixels are black.
This makes it significantly easier to isolate and track an object of a specific color. This binary

10

image is illustrated below in Image 2.

Image 2. The above image is a photograph of the code for the project running and displaying a binary image.
The color being detected is red and a red object can be easily tracked (as shown by the red USB cable above).

This binary image can then be used to determine the average horizontal and vertical
coordinates of all the white pixels. In theory, this image could also be used to eliminate some
amount of noise, so that only the points contained within the largest cluster of white pixels were
included in the average. However, | determined that, so long as the background did not contain
other significant objects of the color being detected, this noise elimination was not particularly
necessary.

The average or center coordinates are stored in a small buffer that also contains the
three previous center coordinates. These are also averaged together to produce the final center
coordinates. This is an effort to “smooth out” the tracked location.

A small (10 pixel by 10 pixel) white square is drawn on the screen, centered around the
averaged coordinates. This is not actually necessary for any functionality, but simply allows the
user to see that objects are being correctly tracked. It is also very simple to track two different
objects of two different colors - it simply requires two instances of the module. Image 3, below,
of the code running and tracking a red object (the hexapod), as well as a yellow object.

11

Image 3. The above images shows the code running and displaying the tracked location of both a red object
and a yellow object.

2.7 Mouse and Point Detection - Kelly

This module communicates with a PS/2 mouse that is connected to the lab kit. It outputs
x & y pixel coordinates of the locations of the mouse on the screen, and also detects if one of the
three mouse buttons is being pressed.

The basic code for this module was obtained from the 6.111 website. It was modified
slightly to fit into this project. Code was added to display another small (10 x 10 pixel) white
square centered around the coordinates of the mouse, so that the user can see where the
mouse is “located.” Additionally, every time the left mouse button is clicked, the current
coordinates are stored and saved until the button is clicked again, at which point they are
replaced. We use only the left button simply because our project only requires the use of one
button, as | will explain in the next section. Image 3 shows the code running - it is tracking a red
object, a yellow object, and displaying the location of the mouse.

2.8 Types of Controlling Motion - Kelly

Much of the functionality | have described so far has been independent of the hexapod
itself. This is because the above sections are simply individual pieces of information collected
for the greater purpose of moving the hexapod. The main purpose of the labkit fpga is to
communicate wirelessly with the hexapod itself (explained in Section 2.4) and send it
commands, directing its movement.

12

Image 3. This image shows the code running and displaying the tracked location of a red object and a yellow
object, and the location of the mouse (upper left corner).

This is mostly brought together in the main labkit module, which is the top level that
brings together the various modules on the labkit. With all of the information assembled from the
previously described modules and from various inputs, the main module sends a packet to the
hexapod every one second, containing information about movement and direction of movement.

There are three different ways in which the user can control the hexapod’s movement.
They will be described in greater detail in the following sections, but for a brief overview - the
user can press buttons which tell the hexapod to move in a certain direction, the user can click a
point on the screen with the mouse and the hexapod will move autonomously to that point, and
finally, the user can present an object of a second color and the hexapod will move
autonomously to that object.

2.8.1 Buttons

This is the simplest way of moving the robot. With this scheme the user can press one
of four buttons (up, down, right, left) and the robot will move appropriately. Rather than strict
directions, the four buttons actually represent four angles. As was discussed in section n, the
command to control the hexapod consists of a speed and an angle. For this implementation,
there is just one speed - moving or not moving - and four different angles represented by the four
buttons - 0, 90, 180 and 270 degrees.

When any of the four buttons is pressed, this is detected by the main labkit module, and the
press is stored until the next packet is sent out on the second. The packet consists of a

13

command to move and the appropriate angle. If no button is being pressed, a command of all
zeros - no movement and zero angle - is sent.

2.8.2 Move to Mouse Point

This module implements the second type of movement - autonomous movement by the
hexapod to a point determined by the user. This type of movement is much more complex than
the previous, and actually makes use of the information collected by the other modules - the
location of the robot and the position of the mouse.

With this implementation, the robot is at rest until the user clicks somewhere on the
screen with the mouse. Once the mouse has been clicked, the point that was clicked becomes
the destination for the robot. This point remains the destination unless the mouse is clicked
again at a different point. In that case, the new point becomes the destination, even if the robot
had not reached the previous destination.

The command packets take the same form they did with the buttons. The most
significant bit is a 1 or a 0 to determine if the hexapod is moving or not moving. The two least
significant bits determine angle. Again, we only use the four cardinal direction angles, as this
was the most practical and least complicated form to implement. The difference between the
two implementations is that commands to the robot are automatically determined and adjusted
based on the location of the robot in relation to its destination.

Until the mouse is clicked, the robot simply does not move. When the mouse is clicked,
the first command simply tells the robot to move in the 0 degree direction, whatever it thinks is
“straight ahead.” The tracking algorithm simply determines where the robot is, it does not
determine orientation, so this first step is really a calibration step. At the start, the algorithm has
no idea where the robot will actually go when told to move in a certain direction, so it simply tells
it to go in a random direction, which might be completely away from the destination. This is
illustrated in Figure 7. After that, it can begin adjustment.

14

Destination

Hexapod
Pasition

\ First Step (0

degrees)

Figure 7. This figure shows how the hexapod might move at initialization (when a point is first
clicked).

A key part of the algorithm is the fact that it saves and uses the last position of the
hexapod in addition to using the current position. So, once a second, the module calculates the
distance of the hexapod to the destination in both the x and y directions, as well the distance of
the last position of the hexapod to the destination in the x and y directions. This allows for
effective adjustment, by analyzing the progress of the hexapod.

Some adjustments are very simple - if the hexapod has gotten closer to the destination in
both the x and y direction, it should continues moving at the same angle it currently is. If it has
gotten farther away in both directions, it should adjust by 180 degrees and go back the way it
came. [f it has only gotten closer in one direction however, it is a bit more complicated, and
using distance information is not enough. Additionally, the algorithm uses the position of the
hexapod and the point destination. Whether the hexapod should adjust by 90 or -90 degrees is
determined by where the hexapod is in relation to the destination, rather than how far away it is.

Figure 8 shows a possible trajectory of the hexapod. After some testing, we determined
that adjusting by only multiples of 90 degrees was simple and sufficient. When the hexapod
moves within a certain distance of the destination, it is determined that it has reached the
destination and stops moving until given a new destination.

2.8.3 Tracking to 2nd Object

This turned out to be much simpler to implement than expected, with the ease of tracking
a second object with the color detection module. As a result, the exact same algorithm can be
applied to this type of movement. Instead of mouse coordinates, the move to point module is

15

simply instantiated with the tracked location of a second object as the destination.

Destination \? D
istance_y
Current
Distance_x Position
Last_distance_y
Last_distance_x
Last
Pasition

Start

First
Step

Figure 8. The above diagram shows a possible trajectory for the hexapod. Each movement is based on the
distance of the hexapod from the destination (in both directions) the distance of the last location of the
hexapod from the destination, and the position of the hexapod in relation to the destination.

3. Hardware Concerns

Beyond the programming of the fgpa and the construction of related circuits, the project
contained several hardware concerns that were necessary for completion. Many of these were
affected by load weight concerns, which is discussed in more detail in Section 4.2.

3.1 Chassis construction
Fortunately, the challenge of constructing the chassis was mostly avoided. After
talking to Professor Steve Leeb for advice, he volunteered to buy us a hexapod chassis kit from

Sparkfun. Thus we were saved many hours of mechanical design and machining, and the
construction of the chassis was reduced to a ~1 hour problem of plastic parts and tiny screws.

16

3.2 Zeroing Motors

It was necessary to zero all the motors with a pulse width of 1500us before connecting
any of the joints of the hexapod to the chassis. Because the robot was carrying such a heavy
load (see Section 4.2), motors would frequently slip and need to be re-zeroed after several test
runs.

3.3 Wiring

There were a bunch of wires connecting the various motors and sensors to the Nexys 3
devboard. Several different wiring schemes were attempted before we found one that was
practical, and even then we sometimes had issues with servo motors pulling out their own wires,
or the legs becoming entangled in power cords.

3.4 Power

Both the Nexys 3 and the ADC chips required 5v power supply, while the motors and the
distance sensors needed 3.3V supply. All of the motors and the sensors drew a lot of current- it
could push to over 1.5A, at certain stages of motion. Our original plan was either to use both a
5v and a 3.3v battery, or use a 5v and a step down. However, it quickly became apparent that the
robot could never support the weight of a battery, so instead we trailed wires from the labkit
power supply.

4. Challenges - Both
4.1 Walking and Timing

We didn’t initially realize how difficult it would be to optimize timing between the various
module controlling motion. It is incredibly important to have very precise timing between the
algorithm that generates the duty cycles and the modules that actually generate the pwm signal.
Delay within the motors themselves was also a factor. A surprising amount effort was required
to find timing that would actually create a walking motion, instead of random twitches or flails. .If
the clock ratio between the algorithm and the pwm generator was 1:1 or lower, movement was
incredibly awkward and erratic. If the ration was too high, precision was lost. Although a separate
control for speed existed within the algorithm generator, a combination of speed and optimal
timing was necessary to create smooth motion. The optimal ratio was only determined after
many hours of experimentation.

4.2 Weight Considerations

Although it was obviously a better choice to use the hexapod chassis kit, the kit did come
with certain limitation. The 9G servos it was designed with are not very powerful, meant to
support the weight of the chassis, and perhaps a very small driving board. The Nexys 3, while

17

not a terribly large board, is clearly much bigger and heavier than the chassis was designed to
accommodate. As we performed more test runs, the motors became weaker and weaker, until
finally they would slip and collapse underneath the weight of the devboard. In order for the robot
to perform, it must be partially supported. Any weight that could be moved off the hexapod found
a new home on the lab bench.

4.3 Move to Point Inaccuracies

There were multiple challenges with the move to point algorithm, both with the algorithm
itself and with the real world non-idealities once it was implemented.

The first challenge was the lack of information about the orientation of the robot. We
came up with a variety of possible solutions, including having two colors on the robot to
determine a front and a back. Ultimately, however we decided the simplest strategy would just
be to have the robot move “straight” and adjust based on visual feedback of where it went.

The second challenge was with the algorithm itself. Initially, we had hoped to implement
a more sophisticated strategy where we actually calculated a more precise angle for the robot to
move in, based on its distance from the destination in the x and y directions. This would have
involved a relatively simple trigonometric calculation (0 = arctan(distx/disty)). However, this trig
is not particularly simple to implement in verilog. | began looking at ways to use the CORDIC
math core to implement this function, but given time constraints, determined it would be simpler
to implement a less complicated basic algorithm using easy angles and visual feedback.

Finally, once that algorithm was actually implemented, there were several non idealities in
the execution. While the algorithm worked well on paper, and reasonably well in reality, there
were many things that made it less than perfect. First was the motion of the robot itself, which
did not always move in particularly straight lines and was often quite erratic. Second was the
tracking, which did not actually maintain a fixed center for the object it was tracking, but rather
bounced around a good amount. This was made a bit better by averaging the centered
coordinates over time, but was still sometimes erratic enough to prevent the algorithm from
really fully working.

4.4 RGB vs. HSV

Most of the reading that | did on color detection and object tracking recommended using
the HSV (Hue Saturation Value) color space rather than RGB. However, | struggled to actually
implement the RGB to HSV conversion. Though | used relatively straightforward code provided
by 6.111, when | tried to set ranges for HSV values to detect a particular color, the code barely
worked and picked up mostly noise. 'm sure this was an error in my implementation (though |
compared my implementation to others, and couldn'’t find a difference), but after a while, |
determined that using the RGB color space was perfectly sufficient for our purposes, and
converting to HSV was not really worth the effort.

18

Other than that, there were still minor problems with the color detection. This code
cannot track two items of the same color, for instance, only two items of different colors. In fact,
if there are two distinct items of the same color on the screen, this code fails to track even one of
them, and instead settles on a point somewhere in the middle. This is a disadvantage and often
caused some problems - if one of us was wearing a red shirt for instance. This was often a
common problem with tracking yellow - given that the hexapod was moving on the floor, the
camera often picked up the yellow in the floor and became confused, making it difficult to track a
single yellow object. However, this implementation works out fairly well for our purposes, and
the drawbacks and complications are easy enough to avoid.

5. Conclusion

Over the course of five weeks, we were able to implement all of our goals as described in
our project proposal, with the exception of object avoidance with the proximity sensors. Although
we encountered a number of difficulties with both hardware and software, we were able to find
solutions to these problems that were functional, if not always sophisticated. We learned that it is
important not to abstract away hardware problems such as motor strength or power supplies,
and these considerations are just as critical to a project’s success as the code that controls it.

Without a doubt, use of ModelSim as a debugging tool was essential to the operations of
the motion algorithm. However, a large amount of user testing was also necessary to see how
the systems interacted in real life, which was not always exactly as expected. Small issues in
one system would cause another to function poorly- if the robot wasn'’t walking quite straight,our
original mapping algorithm was rendered practically useless. Finding appropriate timing for
clocks between modules and signals between labkits was also an important aspect to the
project that we hadn'’t originally considered. Overall, we think the project was a lot of fun and a
great learning experience.

19

Appendix A: Verilog Code

‘timescale 1ns / 1ps
T T T
/l Company:
/I Engineer: Becca Greene
I
/I Create Date: 22:51:37 04/11/2013 C
/I Design Name:
// Module Name: labkit
/l Project Name:
/l Target Devices:
/I Tool versions:
/I Description:
I
// Dependencies:
I
// Revision:
/I Revision 0.01 - File Created
/I Additional Comments:
I
T T T
module labkit(
input clk_100mhz,
input [7:0] switch,

input btn_up, // buttons, depress = high
input btn_enter,

input btn_left,

input btn_down,

input btn_right,

output [7:0] seg, //output 0->6 = seg A->G ACTIVE LOW,
/loutput 7 = decimal point, all active low

output [3:0] dig, //selects digits 0-3, ACTIVE LOW
output [7:0] led, // 1 turns on leds

output [2:0] vgared,
output [2:0] vgagreen,
output [2:1] vgablue,
output hsync,

output vsync,

20

output[7:0] ja,
output [7:0] jb,
input [7:0] jc,
input [7:0] jd,
inout [19:0] exp_io_n,
inout [19:0] exp_io_p
);

/[all unused outputs must be assigned
assign vgared = 3'b111;

assign vgagreen = 3'b111;

assign vgablue = 2'b11;

assign hsync = 1'b1;

assign vsync = 1'b1;

/I next three lines turns the 7 seg display completely off

assign seg = 7'b111_1111; /loutput 0->6 = seg A->G ACTIVE LOW
assign dp = 1'b1; /l[decimal point ACTIVE LOW
assign dig = 4'hF; /Iselectives digits 0-3, ACTIVE LOW

e
/ dem_all is a general purpose digital clock manager. It is used
/I to create clocks at desired frequncies and phases.
I
wire clk_25mhz;
wire clk_100mhz_buf; // 100mhz buffered clock, not used

dcm_all_v2 #(.DCM _DIVIDE(8), . DCM_MULTIPLY(2))
my_clocks(
.CLK(clk_100mhz),
.CLKSYS(clk_100mhz_buf),
I .CLK25(CLK25),
.CLK_out(clk_25mhz)
);
I
o
Il clocks and button debouncers
o
debounce db_up(.reset(1'b0), .clock(clk_25mhz), .noisy(btn_up), .clean(up));

.clean(down));

.clean(right));

.clean(enter));

debounce db_down(.reset(1'b0), .clock(clk_25mhz), .noisy(btn_down),

debounce db_left(.reset(1'b0), .clock(clk_25mhz), .noisy(btn_left), .clean(left));
debounce db_right(.reset(1'b0), .clock(clk_25mhz), .noisy(btn_right),

debounce db_enter(.reset(1'b0), .clock(clk_25mhz), .noisy(btn_enter),

assign reset = enter;

wire en_1mhz;

reg [14:0] pulse_width = 12'h5DC;
wire pwm;

wire en_50hz;

divider #(26'h19) oneMhz (.clock_in(clk_25mhz), .enable(en_1mhz));

divider #(26'h3D090) fiftyhz (.clock_in(clk_25mhz), .enable(en_50hz));
genPWM pwmgen (.enable(en_1mhz), .pulse_width(pulse_width), .pwm(pwm));
/lentoclk twomhz (.enable(en_1mhz), .clk(ja[0]));

I T

I

Serial Handling

I T

reg TxD_start;

wire [7:0] TxD_data;
wire TxD:;

wire TxD_busy;

wire RxD;

wire RxD_data_ready;
wire [7:0] RxD_data;
wire RxD_idle;

wire RxD_endofpacket;
reg [7:0] data_buffer;

transmitter xbeeout (.clk(clk_25mhz), .TxD_start(TxD_start),

.TxD_data(TxD_data), .TxD(TxD),

.TxD_busy(TxD_busy));

receiver xbeein (.clk(clk_25mhz), .RxD(RxD),

.RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data),

RxD_idle(RxD_idle),

.RxD_endofpacket(RxD_enofpacket));

22

always @(posedge clk_25mhz) begin
if (RxD_data_ready) begin
data_buffer <= RxD_data;
TxD_start <= 1;
end else begin
TxD_start <= 0;
end

T T T
/Il ADC and Xbee data Handling

// speed
if (data_buffer[7]) begin

if ((jc[O]|lic[1]llic[2]) && angle <= 9'd0) speed <=0; // check forward

ADC

else if ((jc[1]lic[0]]lid[7]) && angle <= 9'd90) speed <= 0; // check

right ADC

else if ((jc[4]|lic[3]|lic[2]) && angle <= 9'd180) speed <= 0; // check

backward ADC

else if ((jc[7]|lic[6]|lic[5]) && angle <= 9'd270) speed <= 0; // check

left ADC

else speed <=4;

end

else speed <= 0;
/langle
case (data_buffer[6:0])
7'b00: angle<= 9'd0;
7'b01: angle <= 9'd90;
7'b10: angle <= 9'd180;
7'b11: angle <= 9'd270;
default: angle <= 9'd0;

endcase
end
assign RxD = jd[0];

assign jd[1] = TxD;
assign TxD_data = data_buffer;

T

23

/I Motor Management
T T T

reg [8:0] angle = 0;
reg [4:0] speed= 0;
wire [15:0] kneeOus;
wire [15:0] hipOus;
wire [15:0] knee1us;
wire [15:0] hip1us;
wire [15:0] knee2us;
wire [15:0] hip2us;
wire [15:0] knee3us;
wire [15:0] hip3us;
wire [15:0] knee4us;
wire [15:0] hip4us;
wire [15:0] kneebus;
wire [15:0] hip5us;

/' f not moving, return to a neutral position- better for balance
wire [15:0] knee0 = (speed == 0)? 1500: kneeOus;
wire [15:0] hip0 = (speed == 0)? 1500: hipOus;
wire [15:0] knee1 = (speed == 0)? 1500: knee1us;
wire [15:0] hip1 = (speed == 0)? 1500: hip1us;
wire [15:0] knee2 = (speed == 0)? 1500: knee2us;
wire [15:0] hip2 = (speed == 0)? 1500: hip2us;
wire [15:0] knee3 = (speed == 0)? 1500: knee3us;
wire [15:0] hip3 = (speed == 0)? 1500: hip3us;
wire [15:0] knee4 = (speed == 0)? 1500: knee4us;
wire [15:0] hip4 = (speed == 0)? 1500: hip4us;
wire [15:0] knee5 = (speed == 0)? 1500: kneebus;
wire [15:0] hip5 = (speed == 0)? 1500: hip5us;

/I Motor Algorithm
alg motionAlgorithm (.clk(en_50hz), .angle(angle), .speed(speed),
.knee0O(kneeOus), .hipO(hipOus),
.knee1(knee1us), .hip1(hip1us), .knee2(knee2us),
.hip2(hip2us), .knee3(knee3us),
.hip3(hip3us), .kneed(knee4us), .hip4(hipdus),
.knee5(kneebus), .hip5(hip5us));

reg [15:0] rset = 1500;

24

reg [15:0] lowend = 800;
reg [15:0] highend = 2200;

/l pwm signal generation -> output
genPWM kneeOpwm (.enable(en_1mhz), .pulse_width(knee0), .pwm(ja[0]));
genPWM hipOpwm (.enable(en_1mhz), .pulse_width(hip0), .pwm(ja[1]));
genPWM knee1pwm (.enable(en_1mhz), .pulse_width(knee1), .pwm(ja[2]));
genPWM hip1pwm (.enable(en_1mhz), .pulse_width(hip1), .pwm(ja[3]));
genPWM knee2pwm (.enable(en_1mhz), .pulse_width(knee2), .pwm(ja[4]));
genPWM hip2pwm (.enable(en_1mhz), .pulse_width(hip2), .pwm(ja[5]));
genPWM knee3pwm (.enable(en_1mhz), .pulse_width(knee3), .pwm(ja[6]));
genPWM hip3pwm (.enable(en_1mhz), .pulse_width(hip3), .pwm(ja[7]));
genPWM knee4pwm (.enable(en_1mhz), .pulse_width(knee4), .pwm(jb[0]));
genPWM hipdpwm (.enable(en_1mhz), .pulse_width(hip4), .powm(jb[1]));
genPWM kneeSpwm (.enable(en_1mhz), .pulse_width(knee5), .pwm(jb[2]));
genPWM hip5pwm (.enable(en_1mhz), .pulse_width(hip5), .pwm(jb[3]));

/l assign unused ports
assign jb[7:4] = 4'h0;

endmodule
T T T
/l alg module
/I Determines pulse width of servos for walking motion using matrix multiplication
I/l See report for full explanation
T T T
module alg (input clk,
input [8:0] angle,
input [4:0] speed,
output wire [15:0] kneeO,
output wire [15:0] hipO,
output wire [15:0] knee1,
output wire [15:0] hip1,
output wire [15:0] knee2,
output wire [15:0] hip2,
output wire [15:0] knee3,
output wire [15:0] hip3,
output wire [15:0] knee4,
output wire [15:0] hip4,
output wire [15:0] knee5,
output wire [15:0] hip5

25

reg [8:0] stride; // range of motion

reg delay = 0; /l used to sync timing

wire [8:0] stepmatrix[11:0]; // used to include step in genvar statments
reg [8:0] step;

wire [8:0] start[11:0]; /I starting positions for hips

wire [9:0] xang[11:0]; /l final hip angle

wire signed [9:0] xcos[11:0]; // cos of xang

wire signed[9:0] xsin[11:0]; // sing of xang

wire signed[15:0] odds[11:0]; Il knees

wire signed[15:0] eves[11:0]; // hips

wire signed [18:0] x[11:0]; // value produced to account for hip angle changes,

unshifted. Used mostly for debugging

wire signed [15:0] xf[11:0]; // x shifted to actual output values.
reg signed [15:0] out[11:0]; // output as registers
wire signed [15:0] outwire[11:0]; // output as wires. necessary for combining

blocking and unblocking statements

phase

out of phase

wire [7:0] shift[11:0]; // used to put odd and even legs out of
wire [9:0] shifted[11:0]; /I stepmatrix with odd and even legs
wire signed [9:0] outsin[11:0]; /l sign of step angle

wire signed [9:0] outcos[11:0]; /I cos of step angle

wire sel1[11:0]; /Il used to select for hips
wire sel2[11:0]; /[used to select for knees
wire xsinneg[11:0]; /Il used to sign lookup tables
wire outcosneg[11:0]; Il

wire outsinneg[11:0]; 1l

// starting values
assign start[0] = O;
assign start[1] = 0;
assign start[2] = 60;
assign start[3] = 60;
assign start[4] = 120;
assign start[5] = 120;
assign start[6] = 180;
assign start[7] = 180;
assign start[8] = 240;
assign start[9] = 240;
assign start[10] = 300;

26

assign start[11] = 300;

assign shift[0] = 0;
assign shift[1] = 0;
assign shift[2] = 180;
assign shift[3] = 180;
assign shift[4] = 0;
assign shift[5] = 0;
assign shift[6] = 180;
assign shift[7] = 180;
assign shift[8] = 0;
assign shift[9] = 0;
assign shift[10] = 180;
assign shift[11] = 180;

genvar c;
generate
for (c =0; c <12; c = c+1) begin

assign xang|[c] = (start[c] + angle) < 3607? start[c] + angle: start[c]

+ angle - 360; // calculate hip angle

assign stepmatrix[c] = step;

assign shifted[c] = (stepmatrix|c] + shift[c]) < 3607 stepmatrix|c]
shift[c]: stepmatrix[c] + shift[c] - 360; //puts legs out of phase

assign x[c] = (xsin[c]*stride); // hip angle * stride

assign xf[c] = {x[c] >> 10}; // shifted

assign sell[c] = (c%2 == 0)? 0:1; // create sel1 and sel 2

assign sel2[c] = (c%2 == 0)? 1:0;

assign eves|c] = (outsinneglc])? -1*((sel2[c]*stride*outsin[c]) >>
13): (sel2[c]*stride*outsin[c]) >> 13; //hip final output

assign odds|c] = (outcosneg[c]*xsinneg|c])?
-1*((sel1[c]*xf[c]*outcos]c]) >> 13): (sel1[c]*xf[c]*outcos[c]) >> 13; // knee final output

assign outwire[c] = out[c] +odds|c] + eves]c]; //overall output

trig c_xang (.clk(clk), .angle(xanglc]), .cos(xcos|c]), .sin(xsin[c]),
.sinneg(xsinneglc)));

trig c_outang (.clk(clk), .angle(shifted[c][9:0]), .cos(outcos[c]),
.sin(outsin[c]), .cosneg(outcosneglc]), .sinneg(outsinneg|c]));

end
endgenerate

assign knee0 = out[0] ;
assign hip0 = out[1];
assign knee1 = out[2];

+

27

assign hip1 = out[3];
assign knee2 = out[4];
assign hip2 = out[5];
assign knee3d = out[6];
assign hip3 = out[7];
assign knee4 = out[8];
assign hip4 = out[9];
assign knee5 = out[10];
assign hip5 = out[11];

initial begin
step = 8'b0;
stride = 0;

end

out[0] = 12'd1500;
out[1] = 12'd1550;
out[2] = 12'd1550;
out[3] = 12'd1450;
out[4] = 12'd1500;
out[5] = 12'd1400;
out[6] = 12'd1500;
out[7] = 12'd1550;
out[8] = 12'd1500;
out[9] = 12'd1500;
out[10] = 12'd1500;
out[11] = 12'd1400;

always @(posedge clk) begin

if(speed==0) begin
stride <= stride - 25;
if(stride<0) stride=0;
end else begin

end

if (step + speed < 361) step <= step + speed,

if(stride>400) stride <= 400;
else stride<=stride + 25;

else step <= step + speed - 360;
if (~delay) delay = 1;

else begin

/I an additional safety margin in case changing stride is insufficient.

if (outwire[0] < 1000) out[0] <= 1000;
else if (outwire[0] > 2200) out[0] <= 2200;

28

else out[0] <= outwire[0];

if (outwire[1] < 1000) out[1] <= 1000;
else if (outwire[1] > 2200) out[1] <= 2200;
else out[1] <= outwire[1];

if (outwire[2] < 1000) out[2] <= 1000;
else if (outwire[2] > 2200) out[2] <= 2200;
else out[2] <= outwire[2];

if (outwire[3] < 1000) out[3] <= 1000;
else if (outwire[3] > 2200) out[3] <= 2200;
else out[3] <= outwire[3];

if (outwire[4] < 1000) out[4] <= 1000;
else if (outwire[4] > 2200) out[4] <= 2200;
else out[4] <= outwire[4];

if (outwire[5] < 1000) out[5] <= 1000;
else if (outwire[5] > 2200) out[5] <= 2200;
else out[5] <= outwire[5];

if (outwire[6] < 1000) out[6] <= 1000;
else if (outwire[6] > 2200) out[6] <= 2200;
else out[6] <= outwire[6];

if (outwire[7] < 1000) out[7] <= 1000;
else if (outwire[7] > 2200) out[7] <= 2200;
else out[7] <= outwire[7];

if (outwire[8] < 1000) out[8] <= 1000;
else if (outwire[8] > 2200) out[8] <= 2200;
else out[8] <= outwire[8];

if (outwire[9] < 1000) out[9] <= 1000;
else if (outwire[9] > 2200) out[9] <= 2200;
else out[9] <= outwire[9];

if (outwire[10] < 1000) out[10] <= 1000;
else if (outwire[10] > 2200) out[10] <= 2200;

else out[10] <= outwire[10];

if (outwire[11] < 1000) out[11] <= 1000;

29

else if (outwire[11] > 2200) out[11] <= 2200;
else out[11] <= outwire[11];
end

end

endmodule
T T T

/I trig function

/I lookup table given angle in degrees, outputs sin and cos
I T T

[* sine and cos values are multiplied by 1024 and rounded, to be bitshifted later */

module trig (input clk,
input [9:0] angle,
output reg [9:0] sin,
output reg [9:0] cos,
output wire cosneg,
output wire sinneg);

/Ireg signed[14:0] sin;
wire [6:0] angle2;

/Ireg signed [14:0] cos;

assign sinneg = (angle > 180)? 1 : 0;

assign angle2 = (angle < 91)? angle : (angle < 181) ? (180 - angle)
271)? (angle - 180): (360- angle);

assign cosneg = (90 < angle & angle < 270)? 1: 0;

always @(posedge clk) begin

case (angle2)

0: sin <= 0000;
1 sin <= 0017;
: sin <= 0036;
1 sin <= 0052;
:sin <= 0072;
1 sin <= 0088;
: sin <= 0108;
1 sin <= 0126;

NOoO OB WODN =

: (angle <

30

8: sin <= 0142;
9: sin <= 0160;

10

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:;
46:
47:
48:
49:
50:

:sin <= 0178;
sin <= 0196;
sin <= 0213;
sin <= 0234;
sin <= 0248;
sin <= 0265;
sin <= 0283;
sin <= 0299;
sin <= 0316;
sin <= 0333;
sin <= 0350;
sin <= 0367,
sin <= 0384;
sin <= 0400;
sin <= 0407;
sin <= 0416;
sin <= 0448;
sin <= 0464;
sin <= 0481;
sin <= 0497;
sin <= 0512;
sin <= 0527;
sin <= 0543;
sin <= 0558;
sin <= 0573;
sin <= 0588;
sin <= 0602;
sin <= 0616;
sin <= 0631;
sin <= 0644;
sin <= 0658;
sin <= 0672;
sin <= 0685;
sin <= 0698;
sin <= 0712;
sin <= 0724;
sin <= 0736;
sin <= 0749;
sin <= 0761;
sin <= 0773;
sin <= 0784;

31

51: sin <= 0795;
52: sin <= 0806;
53: sin <= 0818;
54: sin <= 0828;
55: sin <= 0839;
56: sin <= 0849;
57: sin <= 0859;
58: sin <= 0868;
59: sin <= 0878;
60: sin <= 0886;
61: sin <= 0896;
62: sin <= 0904;
63: sin <= 0912;
64: sin <= 0921;
65: sin <= 0928;
66: sin <= 0936;
67: sin <= 0943;
68: sin <= 0949;
69: sin <= 0956;
70: sin <= 0963;
71: sin <= 0969;
72: sin <= 0974;
73: sin <= 0979;
74: sin <= 0984;
75: sin <= 0989;
76: sin <= 0993;
77: sin <= 0997;
78: sin <=1001;
79: sin <= 1005;
80: sin <= 1009;
81:sin <=1012;
82: sin <=1014;
83: sin <= 1018;
84: sin <=1019;
85: sin <= 1020;
86: sin <= 1022;
87: sin <= 1023;
88: sin <= 1029;
89: sin <= 1024;
90: sin <= 1000;
default sin <= 0000;
endcase

32

case (angle2)

90:
89:
88:
87:
86:
85:
84.
83:
82:
81:
80:
79:
78:
77
76:
75:
74.
73:
72:
71:
70:
69:
68:
67:
66:
65:
64
63:
62:
61:
60:
59:
58:
57:
56:
55:
54.
53:
52:
51:
50:
49:

cos <= 0000;
cos <= 0017;
cos <= 0035;
cos <= 0053;
cos <= 0070;
cos <= 0087;
cos <= 0105;
cos <= 0122;
cos <= 0139;
cos <= 0156;
cos <= 0174;
cos <= 0191;
cos <= 0208;
cos <= 0230;
cos <= 0242;
cos <= 0259;
cos <= 0276;
cos <= 0293;
cos <= 0309;
cos <= 0326;
cos <= 0342;
cos <= 0358;
cos <= 0375;
cos <= 0391;
cos <= 0407;
cos <= 0423;
cos <= 0438;
cos <= 0454;
cos <= 0469;
cos <= 0485;
cos <= 0500;
cos <= 0515;
cos <= 05230;
cos <= 0545;
cos <= 0559;
cos <= 0574;
cos <= 0588;
cos <= 0602;
cos <= 0616;
cos <= 0629;
cos <= 0643;
cos <= 0656;

33

48:
47:
46:
45:;
44:
43:
42:
41:
40:
39:
38:
37:
36:
35:
34
33:
32:
31:
30:
29:
28:
27:
26:
25:
24
23:
22:
21:
20:
19:
18:
17:
16:
15:
14:
13:
12:
11:
10:
09:
08:
07:
06:

cos <= 0669;
cos <= 0682;
cos <= 0695;
cos <= 0707;
cos <= 0719;
cos <= 0731;
cos <= 0743;
cos <= 0755;
cos <= 0766;
cos <= 0777,
cos <= (0788;
cos <= 0799;
cos <= 0809;
cos <= 0819;
cos <= 0829;
cos <= 0839;
cos <= 0848;
cos <= 0857;
cos <= 0866;
cos <= 0875;
cos <= 0883;
cos <= 0891;
cos <= 0899;
cos <= 0906;
cos <= 0914;
cos <= 0921;
cos <= 0927;
cos <= 0934;
cos <= 0940;
cos <= 0946;
cos <= 0951;
cos <= 0956;
cos <= 0961;
cos <= 0966;
cos <= 0970;
cos <= 0974;
cos <= 0978;
cos <= 0982;
cos <= 0985;
cos <= (0988;
cos <= 0990;
cos <= 0994;
cos <= 0995;

34

05: cos <= 0996;
04: cos <= 0998;
03: cos <= (0999;
02: cos <= 0999;
01: cos <= 0999;
00: cos <= 1000;
default cos <= 00000;
endcase
end
endmodule

T T T T
/ genPWM
/I Generate pwm signal @50hz (20ms)
T T
module genPWM (input enable,
input [15:0] pulse_width,
Must be between 450 and 2449
output reg pwm);

parameter cycle = 15'h4E20;

reg [14:0] count;

initial begin
count = 0;
pwm = 1'b1;
end

always @(posedge enable) begin

if (count == cycle) begin
pwm <= 1'b1;
count <= 0;

end else if (count == pulse_width) begin
pwm <= 0;
count <= count + 1;

end else begin
count <= count + 1;

end
end
endmodule
M TN
/I Divider Module

/I Create enable signals at different frequencies

// pulse width is in us.

35

T T T

module divider #(parameter [26:0] maxCount = 27'hCDFEG0)
(input clock_in,
output reg enable);

reg [26:0] count = 0O;

always @(posedge clock_in) begin
if (count == maxCount) begin

count <= 0;
enable <= 1;
end else begin
enable <= 0;
count <= count + 1;
end
end
endmodule
M L |
/I EnToClck

/I Creates a clock from an enable signal
T T
module entoclk (input enable,
output reg clk);
initial begin
clk =0;
end

always @(posedge enable) clk = ~clk;
endmodule

o

/I Switch Debounce Module

/I use your system clock for the clock input

/ to produce a synchronous, debounced output

module debounce #(parameter DELAY=400000) // .01 sec with a 49Mhz clock
(input reset, clock, noisy,
output reg clean);

reg [19:0] count;
reg new;

always @(posedge clock)
if (reset)

36

begin
count <= 0;
new <= noisy;
clean <= noisy;
end
else if (noisy != new)
begin
new <= noisy;
count <= 0;
end
else if (count == DELAY)
clean <= new;
else
count <= count+1;

endmodule

T T T
/l Company:
/l Engineer: Gim P. Hom 3/22/2007
I
Il Create Date: 17:51:37 03/11/2007
/I Design Name:
// Module Name: vga_general
/l Project Name:
/I Revision 0.01 - File Created
/I Additional Comments:
I
T T T T
module vga_general(
input pixel_clk,
output reg [10:0] hcount,
output reg [9:0] vcount,
output blank,
output hblank,
output hsync,
output vsync

wire vblank;

37

111024 x 768 @ 60hz; alternate resolution = 640x480 75hz
parameter hfp = 24; //24; I/ 16;

parameter hsy = 136; //136; // 96;

parameter hbp = 160; //160; // 48;

parameter vfp = 3; //3; /| 11;
parameter vsy = 6; //6; /| 2;
parameter vbp = 29; //29; I/ 32;

parameter hsize = 1023; //1023; //639; // there are 640 pixels counting 0
parameter vsize = 767; //767; //479; [/ similarly there are 480 lines counting line 0

wire h_end = (hcount == (hsize + hfp + hsy + hbp));
wire v_end = (vcount == (vsize + vfp + vsy + vbp));

assign hsync = ((hcount < hsize + hfp) || (hcount > hsize + hfp + hsy));
assign vsync = ((vcount < vsize + vfp) || (vcount > vsize + vfp + vsy));

assign hblank = (hcount <= hsize);
assign vblank = (vcount <= vsize);

assign blank = hblank && vblank;

always @(posedge pixel_clk)
begin
hcount <= h_end ? 0 : hcount + 1;
vcount <= h_end ? (v_end ? 0 : vcount + 1) : vcount;
end

endmodule

o

/Il Company: Digilent Inc 2011

// Engineer: Michelle Yu

/I Create Date: 08/26/2011

// Module Name: dcm_all

/I Project Name: PmodPS2_Demo

/I Target Devices: Nexys3

/I Tool version: ISE 14.2

/I Description: This file contains the design for a dcm that generates a 25MHz and a

// 40MHz clock from a 100MHz clock.
/!

38

// Revision:

/I Revision 0.01 - File Created

/I Revision 1.00 - Converted from VHDL to Verilog (Josh Sackos)

/I Revision 2.00 - removed CLK25, add parameters for divide/multiply

T T

module dcm_all_v2 #(parameter DCM_DIVIDE = 4,
DCM_MULTIPLY = 2)
(
CLK,
Il RST,
CLKSYS,
/I CLK25,

CLK out

39

input CLK;
/l input RST;
output CLKSYS;
/l output CLK25;
output CLK out;

// Output registers
wire CLKSYS;
wire CLK25;

wire CLK_out;

I architecture of dcm_all entity
wire GND = 1'b0;
wire CLKSYSint;
wire CLKSYSbuf;

assign CLKSYS = CLKSYSbuf;

40

I buffer system clock and wire to dcm feedback
BUFG BUFG_clksys(

.O(CLKSYSbuf),

I(CLKSYSint)
);

I Instantiation of the DCM device primitive.

/I Feedback is not used.

// Clock multiplier is 2

/Il Clock divider is 5

/1 100MHz * 2/5 = 40MHz

/Il The following generics are only necessary if you wish to change the default

behavior.
DCM#(

.CLK_FEEDBACK("1X"),

.CLKDV_DIVIDE(4.0), /I Divide by:
1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

I 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0

or 16.0

.CLKFX_DIVIDE(DCM DIVIDE), /I Can be any interger from 2 to 32

.CLKFX_MULTIPLY(DCM_MULTIPLY), /I Can be any integer from 2 to 32

.CLKIN_DIVIDE_BY_2("FALSE"), /I' TRUE/FALSE to enable CLKIN
divide by two feature

.CLKIN_PERIOD(10000.0), Il Specify period of input clock (ps)

.CLKOUT_PHASE_SHIFT("NONE"), Il Specify phase shift of NONE,

FIXED or VARIABLE
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), //
SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
1l an integer from 0 to 15

.DFS_FREQUENCY_MODE("LOW"), /I HIGH or LOW frequency mode
for frequency synthesis

.DLL_FREQUENCY_MODE("LOW"), /I HIGH or LOW frequency mode
for DLL

.DUTY_CYCLE_CORRECTION("TRUE"), /I Duty cycle correction, TRUE
or FALSE

.FACTORY_JF(16'hC080), /I FACTORY JF Values

.PHASE_SHIFT(0), /I Amount of fixed phase shift from -255 to
255

41

STARTUP_WAIT("FALSE") /I Delay configuration DONE until DCM

LOCK, TRUE/FALSE

)

DCM inst(
.CLKO(CLKSYSint),
.CLK180(),
.CLK270(),

.CLK2X(),
.CLK2X180(),
.CLK90(),

.CLKDV(), //(CLK25),
.CLKFX(CLK_out),
.CLKFX180(),
LOCKED(),
.PSDONE(),
STATUS(),
.CLKFB(CLKSYSbuf),
.CLKIN(CLK),
PSCLK(GND),
PSEN(GND),

.PSINCDEC(GND),
increment/decrement

.DSSEN(1'b0),

// 0 degree DCM CLK ouptput
// 180 degree DCM CLK output
/1 270 degree DCM CLK output
I/ 2X DCM CLK output
/1 2X, 180 degree DCM CLK out
// 90 degree DCM CLK output
// Divided DCM CLK out (CLKDV_DIVIDE)
// DCM CLK synthesis out (M/D)
// 180 degree CLK synthesis out
// DCM LOCK status output
// Dynamic phase adjust done output
// 8-bit DCM status bits output
// DCM clock feedback
/I Clock input (from IBUFG, BUFG or DCM)
// Dynamic phase adjust clock input
// Dynamic phase adjust enable input

/l Dynamic phase adjust

42

.RST (1'b0) //(RST) // DCM asynchronous reset input
);

endmodule

T
/I Asynchronous UART receiver
I
T T
module receiver(
input clk,
input RxD,
output reg RxD_data_ready = 0,
output reg [7:0] RxD_data = 0, // data received, valid only (for one clock cycle)
when RxD_data_ready is high
output RxD _idle, // asserted when no data has been received for a while

);

parameter ClkFrequency = 25000000; // 25MHz
parameter Baud = 9600;

parameter Oversampling = 8;
/l sample each bit 8 times

reg [3:0] RxD_state = 0;

wire tick;

baudGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .enable(1'b1),
tick(tick));

reg [1:0] sync = 2'b11;

reg [1:0] count = 2'b11;
reg RxD_bit = 1'b1;

function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end
endfunction

43

localparam 120 = log2(Oversampling);
reg [120-2:0] OversamplingCnt = 0;
always @(posedge clk) begin

/I synchronize RxD to clk

if(tick) sync <= {sync[0], RxD}

I/l decide when to sample the RxD line

if(tick)
begin

if(sync[1]==1'b1 && count!=2'b11) count <= count + 1'd1;

else

if(sync[1]==1'b0 && count!=2'b00) count <= count - 1'd1;

if(count==2'b11) RxD_bit <= 1'b1;

else

if(count=

end

=2'b00) RxD_bit <= 1'b0;

if(tick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1;
wire sample = tick && (OversamplingCnt==Oversampling/2-1);

/laccumulate the RxD bits in a register

case(RxD_state)

4'b0000:
4'b0001:
4'b1000:
4'b1001:
4'b1010:
4'b1011:
4'b1100:
4'b1101:
4'b1110:
4'b1111:
4'b0010:

if(~RxD_bit) RxD_state <= 4'b0001 ; // start bit found?
if(sample) RxD_state <= 4'b1000; // sync start bit to sample
if(sample) RxD_state <= 4'b1001; // bit 0

if(sample) RxD_state <= 4'b1010; // bit 1

if(sample) RxD_state <= 4'b1011; // bit 2

if(sample) RxD_state <= 4'b1100; // bit 3

if(sample) RxD_state <= 4'b1101; // bit 4

if(sample) RxD_state <= 4'b1110; // bit5

if(sample) RxD_state <= 4'b1111; // bit 6

if(sample) RxD_state <= 4'b0010; // bit 7

if(sample) RxD_state <= 4'b0000; // stop bit

default: RxD_state <= 4'b0000;

endcase

if(sample && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};

RxD_data_ready <= (sample && RxD_state==4'b0010 && RxD_bit); // done when a

stop bit is received
end

44

endmodule

module baudGen(
input clk, enable,
output tick // generate a tick at the specified baud rate * oversampling
);
parameter ClkFrequency = 25000000;
parameter Baud = 9600;
parameter Oversampling = 1;

function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end
endfunction

localparam AccWidth = log2(ClkFrequency/Baud)+8; // +/- 2% max timing error over a
byte

reg [AccWidth:0] Acc = 0;

localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth)); // this makes
sure Inc calculation doesn't overflow

localparam Inc = ((Baud*Oversampling <<
(AccWidth-ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter);

always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc
<= Inc[AccWidth:0];

assign tick = Acc[AccWidth];

endmodule

I

/[File: zbt 6111 _sample.v

I/l Date: 26-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

I

/I Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

/I memories for video display. Video input from the NTSC digitizer is

/I displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
/I as the video frame buffer, with 8 bits used per pixel (black & white).

I

45

/I Since the ZBT is read once for every four pixels, this frees up time for

// data to be stored to the ZBT during other pixel times. The NTSC decoder
/I runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize

/ signals between the two (see ntsc2zbt.v) and let the NTSC data be

/ stored to ZBT memory whenever it is available, during cycles when

/I pixel reads are not being performed.

I

/l We use a very simple ZBT interface, which does not involve any clock

/I generation or hiding of the pipelining. See zbt 6111.v for more info.

I

/I switch[7] selects between display of NTSC video and test bars

/I switch[6] is used for testing the NTSC decoder

I/l switch[1] selects between test bar periods; these are stored to ZBT

1l during blanking periods

/I switch[0] selects vertical test bars (hardwired; not stored in ZBT)

I

I

// Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>

/[Date :11-May-09

I

// Use ramclock module to deskew clocks; GPH

/l To change display from 1024*787 to 800*600, use clock_40mhz and change
/I accordingly. Verilog ntsc2zbt.v will also need changes to change resolution.
I

// Date : 10-Nov-11

T T

I

// 6.111 FPGA Labkit -- Template Toplevel Module
I

/I For Labkit Revision 004

I

I

/I Created: October 31, 2004, from revision 003 file
/I Author: Nathan Ickes

I
T T T T
I

// CHANGES FOR BOARD REVISION 004

I

/I 1) Added signals for logic analyzer pods 2-4.

I/l 2) Expanded "tv_in_ycrcb" to 20 bits.

/I 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

46

/["tv_out _i2c_clock™.

/I 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an

/I output of the FPGA, and "in" is an input.

I

// CHANGES FOR BOARD REVISION 003

I

/I 1) Combined flash chip enables into a single signal, flash_ce_b.

I

// CHANGES FOR BOARD REVISION 002

I

/I 1) Added SRAM clock feedback path input and output

/I 2) Renamed "mousedata" to "mouse_data"

/I 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
/I the data bus, and the byte write enables have been combined into the

/I 4-bit ram# bwe b bus.

/I 4) Removed the "systemace_clock" net, since the SystemACE clock is now
/I hardwired on the PCB to the oscillator.

I

T T T T

I

/I Complete change history (including bug fixes)

I

// 2011-Nov-10: Changed resolution to 1024 * 768.

I Added back ramclok to deskew RAM clock
I

// 2009-May-11: Fixed memory management bug by 8 clock cycle forecast.

Il Changed resolution to 800 * 600.

I Reduced clock speed to 40MHz.

Il Disconnected zbt_6111's ram_clk signal.

I Added ramclock to control RAM.

Il Added notes about ram1 default values.

1l Commented out clock feedback_out assignment.

Il Removed delayN modules because ZBT's latency has no more effect.

I

/1 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",

1l "disp_data_out", "analyzer[2-3]_clock" and

Il "analyzer[2-3]_data".

I

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
1l actually populated on the boards. (The boards support up to

/l 256Mb devices, with 25 address lines.)

I

// 2004-Oct-31: Adapted to new revision 004 board.

47

I

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
Il value. (Previous versions of this file declared this port to

I be an input.)

I

/1 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
Il actually populated on the boards. (The boards support up to

I 72Mb devices, with 21 address lines.)

I

// 2004-Apr-29: Change history started

I

o

module zbt 6111_sample(beep, audio_reset b,
ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,

tv_out_ycrcb, tv_out_reset b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank b, tv_out subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,

tv_in_fifo_clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ramQ_data, ram0_address, ram0_adv_Id, ramQ_clk, ramQ_cen_b,
ram0_ce b, ram0_oe_b, ram0_we b, ram0_bwe_b,

ram1_data, ram1_address, ram1_adv_Id, ram1_clk, ram1_cen_b,
ram1_ce b, ram1_oe b, ram1_we b, ram1_bwe b,

clock feedback out, clock feedback in,

flash_data, flash_address, flash_ce b, flash_oe_b, flash_we b,
flash_reset b, flash_sts, flash_byte b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

48

mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock 27mhz, clock1, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce b,
disp_reset_b, disp_data_in,

button0, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

user1, user2, user3, user4,
daughtercard,

systemace_data, systemace_address, systemace_ce_b,

systemace_we b, systemace_oe b, systemace_irq, systemace_mpbrdy,

analyzer1_data, analyzer1_clock,
analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset b, tv_out_clock, tv_out i2c_clock, tv_out i2c data,
tv_out_pal ntsc, tv_out_hsync b, tv_out_vsync_b, tv_out_blank b,
tv_out _subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset b, tv_in_clock;

49

inout tv_in_i2c_data;

inout [35:0] ram0_data;

output [18:0] ram0_address;

output ramQ_adv_Id, ram0O_clk, ram0_cen_b, ramQ_ce b, ram0_oe b, ram0_we b;
output [3:0] ram0_bwe_b;

inout [35:0] ram1_data;

output [18:0] ram1_address;

output ram1_adv_Id, ram1_clk, ram1_cen_b, ram1_ce b, ram1_oe b, ram1_we_b;
output [3:0] ram1_bwe_b;

input clock feedback in;
output clock _feedback out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset b, flash_byte b;
input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

inout mouse_clock, mouse_data;
input keyboard_clock, keyboard_data;

input clock 27mhz, clock1, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce b, disp_reset_b;

input disp_data_in;

output disp_data_out;

input buttonO, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] user1, user2, user3, user4;

inout [43:0] daughtercard,;

inout [15:0] systemace_data;
output [6:0] systemace_address;

50

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
analyzer4_data;
output analyzer1_clock, analyzer2_clock, analyzer3 clock, analyzer4_clock;

I T T T T
I

/I VO Assignments

I

I T T T T

// Audio Input and Output
assign beep= 1'b0;
assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;
[
*/
/ ac97_sdata_inis an input

// Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b = 1'b1;
assign tv_out_vsync_b = 1'b1;
assign tv_out_blank_b = 1'b1;
assign tv_out_subcar_reset = 1'b0;

// Video Input

/lassign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b1;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b1;

/llassign tv_in_reset_b = 1'b0;

assign tv_in_clock = clock_27mhz;//1'b0;

/lassign tv_in_i2c_data = 1'bZ;

I/ tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,

/[tv_in_aef, tv_in_hff, and tv_in_aff are inputs
I SRAMs
[* change lines below to enable ZBT RAM bank0 */

[
assign ram0_data = 36'hZ;
assign ram0_address = 19'h0;
assign ram0_clk = 1'b0;
assign ram0_we_b = 1'b1;
assign ram0_cen_b = 1'b0; // clock enable
*/

/* enable RAM pins */

assign ram0_ce_b = 1'b0;
assign ram0_oe_b = 1'b0;
assign ram0_adv_Id = 1'bO0;
assign ram0_bwe_b = 4'h0;

/**********/

assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign ram1_adv_Id = 1'b0;
assign ram1_clk = 1'b0;

/[These values has to be set to 0 like ramO if ram1 is used.

assign ram1_cen_b = 1'b1;
assign ram1_ce_b = 1'b1;
assign ram1_oe_b = 1'b1;
assign ram1_we_b = 1'b1;
assign ram1_bwe_b = 4'hF;

I clock_feedback_out will be assigned by ramclock
Il assign clock_feedback_out = 1'b0; //2011-Nov-10
I clock_feedback in is an input

// Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 24'h0;
assign flash_ce_b = 1'b1;

52

/*

*/

assign flash_oe_b = 1'b1;
assign flash_we_b = 1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte b = 1'b1;
// flash_sts is an input

/[RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

/1 rs232_rxd and rs232_cts are inputs

Il PS/2 Ports
/I mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

// LED Displays

assign disp_blank = 1'b1;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;

// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

/Nlab3 assign led = 8'hFF;

// buttonO, button1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

/[User I/Os

/lassign user1 = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ,

/I SystemACE Microprocessor Port
assign systemace_data = 16'hZ;
assign systemace_address = 7'h0;
assign systemace_ce_b = 1'b1;

53

assign systemace_we_b = 1'b1;
assign systemace_oe b = 1'b1;
Il systemace_irq and systemace_mpbrdy are inputs

/I Logic Analyzer

assign analyzer1_data = 16'h0;
assign analyzer1_clock = 1'b1;
assign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;
assign analyzer4_data = 16'h0;
assign analyzer4_clock = 1'b1;

T T
// Demonstration of ZBT RAM as video memory

/Il use FPGA's digital clock manager to produce a

I/ 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
I synthesis attribute CLKFX_DIVIDE of vclk1 is 10

Il synthesis attribute CLKFX_MULTIPLY of vclk1 is 24

/Il synthesis attribute CLK_FEEDBACK of vclk1 is NONE

Il synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

/I wire clk = clock_65mhz; // gph 2011-Nov-10

o
// Demonstration of ZBT RAM as video memory

/Il use FPGA's digital clock manager to produce a

I/ 40MHz clock (actually 40.5MHz)

wire clock_40mhz_unbuf,clock_40mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_40mhz_unbuf));
I synthesis attribute CLKFX_DIVIDE of vclk1 is 2

Il synthesis attribute CLKFX_MULTIPLY of vclk1 is 3

/Il synthesis attribute CLK_FEEDBACK of vclk1 is NONE

Il synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_40mhz),.l(clock_40mhz_unbuf));

54

wire clk = clock_40mhz;
*/
wire locked;
/lassign clock_feedback out = 0; // gph 2011-Nov-10

ramclock rc(.ref_clock(clock_65mhz), .fpga_clock(clk),
.ramO0_clock(ramQ_clk),
/l.ram1_clock(ram1_clk), //luncommentif ram1 is
used
.clock_feedback in(clock feedback in),
.clock_feedback_out(clock_feedback_out),
Jocked(locked));

/I power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

/ ENTER button is user reset

wire reset,user_reset;

debounce db1(power_on_reset, clk, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

/lup, down, left and right buttons are used as controls
wire up,down, left, right;

debounce db2(.reset(reset),.clk(clk),.noisy(~button_up),.clean(up));

debounce db3(.reset(reset),.clk(clk),.noisy(~button_down),.clean(down));
debounce db4(.reset(reset),.clk(clk),.noisy(~button_left),.clean(left));
debounce db5(.reset(reset),.clk(clk),.noisy(~button_right),.clean(right));

/ldivider is used to create a pulse every one second
wire one_sec;

one_divider one_div1 (.clk(clock_27mhz), .reset(reset),
.oneHz_enable(one_sec));

wire txd, txd_busy; //transmit line for XBee

Il This code implements the button control mode - if a button is pressed at
1l any point, that data is latched and every second a packet is transmitted
Il with the appropriate movement command

55

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

reg move_data, up_latch, right_latch, down_latch, left_latch;
reg tx_start;
reg [6:0] ang_data;

always @(posedge one_sec) begin
up_latch <= up;
right_latch <= right;
down_latch <= down;
left_latch <= left;
end

always @(posedge clk) begin
if (one_sec) begin
tx_start <= 1; //raise line to signal packet
/ltransmission
if (up_latch|down_latch|left_latch|right_latch) begin //if any button

has been pressed

I

move_data <= 1'h1; //[send appropriate

movement command

I
I
I
I
I
I
I
I
I
I
I

if (up_latch)
ang_data <= 7'hQ0;
else if (right_latch)
ang_data <= 7'h01;
else if (down_latch)
ang_data <= 7'h02;
else if (left_latch)
ang_data <= 7'h0g3;
end
else begin
move_data <= 1'h0; /lelse, no movement,

default angle of O degrees

I
I
I
I
I
I
I
I
I
I

ang_data <= 7'h00;

end
end
else begin
if (tx_start)
tx_start <= 0; //only keep line raised for one clock cycle
end
end

56

Il transmitter trans(.clk(clk), .TxD_start(tx_start), .TxD_data({move_data,
ang_data}), .TxD_busy(txd_busy), .TxD(txd)); //transmit movement command packet
I

wire [11:0] mx, my; //mouse x and y coordinates

wire [2:0] btn_click; //left - btn_click[2], middle - btn_click[1], right button -
btn_click[0]

wire [17:0] mouse_pixel; //used to draw square representing mouse

ps2_mouse_xy mouse_click(.clk(clk), .reset(reset), . mx(mx), .my(my),
.ps2_clk(mouse_clock), .ps2_data(mouse_data),
.btn_click(btn_click)); //get mouse data

reg [63:0] dispdata;

display_16hex hexdisp1(reset, clk, dispdata,
disp_blank, disp_clock, disp_rs, disp_ce b,
disp_reset_b, disp_data_out);

/I generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga
xvgal(.vclock(clk),.hcount(hcount),.vcount(vcount),.hsync(hsync),.vsync(vsync),.blank(blank));

// wire up to ZBT ram

wire [35:0] vram_write_data;
wire [35:0] vram_read_data;
wire [18:0] vram_addr;

wire vram_we;

wire ramOQ_clk_not_used;
zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr,
vram_write_data, vram_read_data,
ramO_clk_not_used, //to get good timing, don't connect ram_clk to
zbt 6111
ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

/I generate pixel value from reading ZBT memory

57

wire [17:0] vr_pixel;
wire [18:0] vram_addr1;

blob mouse_track(.x(mx[10:0]), .hcount(hcount), .y(my[9:0]), .vcount(vcount),
.alt_pixel(18'h0),
.pixel(mouse_pixel)); //square that represents mouse

vram_display vd1(reset,clk,hcount,vcount,vr_pixel,
vram_addr1,vram_read_data);

/I ADV7185 NTSC decoder interface code

// adv7185 initialization module

adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
.source(1'b0), .tv_in_reset_b(tv_in_reset_b),
tv_in_i2c_clock(tv_in_i2c_clock),
tv_in_i2c_data(tv_in_i2c_data));

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; /I sync for field, vertical, horizontal
wire dv; // data valid

ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),
tv_in_ycreb(tv_in_ycrcb[19:10]),
.ycrcb(ycreb), f(fvh[2]),
.v(fvh[1]), .h(fvh[0]), .data_valid(dv));

wire [7:0] R, G, B;

YCrCb2RGB convert (.clk(tv_in_line_clock1), .rst(reset), .Y(ycrcb[29:20]),
.Cr(ycrcb[19:10]),

.Cb(ycrcb[9:0]), .R(R), .G(G),

.B(B)); //Convert 30 bits of ycrcb to 24 bits of RGB

wire [7:0] vr_pixel_H, vr_pixel_S, vr_pixel V;

rgb2hsv con (.clock(tv_in_line_clock1), .reset(reset), .r({vr_pixel[17:12], 2'b0}),
.g({vr_pixel[11:6], 2'b0}), .b({vr_pixel[5:0], 2'b0}), .h(vr_pixel_H),

.Ss(vr_pixel_S), .v(vr_pixel_V));

/Il code to write NTSC data to video memory

wire [18:0] ntsc_addr;
58

wire [35:0] ntsc_data;
wire ntsc_we;
ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, {R[7:2], G[7:2], B[7:2]},
ntsc_addr, ntsc_data, ntsc_we, switch[6]); //write 18 bits of RGB to ZBT

/I code to write pattern to ZBT memory
reg [31:0] count;
always @(posedge clk) count <= reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];
wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}
: {4{count[3+4:4],4'b0}});

/I mux selecting read/write to memory based on which write-enable is chosen

wire sw_ntsc = ~switch[7];

wire my_we = sw_ntsc ? (hcount[0]==1'd1) : blank;

wire [18:0] write_addr = sw_ntsc ? ntsc_addr : viam_addr2;
wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

Il wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
/I assign vram_addr = write_enable ? write_addr : vram_addr1;
/I assign vram_we = write_enable;

assign vram_addr = my_we ? write_addr : vr.am_addr1;

assign vram_we = my_we;

assign vram_write_data = write_data;

/I select output pixel data

reg [17:0] pixel;

reg b,hs,vs;
Il wire vr_pix_h_range, vr_pix_s_range, vr_pix_Vv_range;
I
Il assign vr_pix_h_range = ((vr_pixel_H >= 8'h00) & (vr_pixel H <= 8'h1E)) ? 1:0;
1l assign vr_pix_s_range = ((vr_pixel_S >= 8'h3C) & (vr_pixel_S <= 8'hFF))? 1:0;
Il assign vr_pix_v_range = ((vr_pixel_V >= 8'h3C) & (vr_pixel V <= 8'hFF))? 1:0;

wire [17:0] track_pixel, track_pixel2;
wire [10:0] x_center, x_posit2;
wire [9:0] y_center, y_posit2;

/I detection detect(.clock(clk), .reset(reset), .hsync(hsync), .vsync(vsync), .blank(blank),

59

Il .vr_pixel(vr_pixel), .x_posit(x_posit),
.y_posit(y_posit), .hcount(hcount),
Il .vcount(vcount),
track_pixel(track_pixel));
I
detection detect(.clock(clk), .reset(reset), .hsync(hsync), .vsync(vsync), .blank(blank),
vr_pixel(vr_pixel),
.X_center(x_center), .y_center(y_center), .hcount(hcount),
.h(vr_pixel_H), .s(vr_pixel_S),
.v(vr_pixel_V), .vcount(vcount), .track_pixel(track pixel)); //detects a red object

detection #(.GREEN_MIN(6'h1F), .GREEN_MAX(6'h3F))
detect? (.clock(clk), .reset(reset), .hsync(hsync),
.vsync(vsync), .blank(blank),
vr_pixel(vr_pixel),
.X_center(x_posit2), .y_center(y_posit2), .hcount(hcount),
.h(vr_pixel_H), .s(vr_pixel_S),
.v(vr_pixel_V), .vcount(vcount), .track_pixel(track_pixel2)); //detects a yellow object

wire [10:0] distx;
wire [9:0] disty;
wire move_data;
wire [1:0] ang_data;

moveZ2point m2p(.clk(clk), .reset(reset), .btn_click(btn_click[2]),
.one_sec(one_sec),

.X_posit(x_center), .y_posit(y_center), .point_x(x_posit2),
.point_y(y_posit2), .distx(distx), .disty(disty), .txd(txd), //implements move to point algorithm

.move_data(move_data), .ang_data(ang_data)); /lcurrently goes to second tracked
object

assign user1[0] = txd; //transmit line is pin O of user1 i/o

reg [10:0] destx;
reg [9:0] desty;

Il always @(posedge clk) begin
I if (x_center > mx[10:0])
/l distx <= x_center - destx;

60

I
I
I
I
I
I
I
I

I
I
I

else
distx <= destx - x_center;

if (y_center > my[9:0])
disty <=y_center - desty;
else
disty <= desty - y_center;
end

always @(posedge btn_click[2]) begin //stores mouse button click
destx <= mx[10:0];
desty <= my[9:0];
end

always @(posedge clk)
begin

pixel <= track_pixelltrack_pixel2|mouse_pixel; /combines video data and squares
that mark tracked objects and mouse

b <= blank;

hs <= hsync;

VS <= vsync;
end

// VGA Output. In order to meet the setup and hold times of the
/I AD7125, we send it ~clk.
assign vga_out_red = {pixel[17:12], 2'b0};
assign vga_out_green = {pixel[11:6], 2'b0};
assign vga_out_blue = {pixel[5:0], 2'b0};
assign vga_out_red = pixel;
assign vga_out_green = pixel;
assign vga_out_blue = pixel;
assign vga_out_sync_b = 1'b1; // not used
assign vga_out_pixel_clock = ~clk;
assign vga_out_blank_b = ~b;
assign vga_out_hsync = hs;
assign vga_out_vsync = vs;

// debugging
assign led = ~{vram_addr[18:13],reset, switch[0]};

always @(posedge clk)

61

dispdata <= {distx, 7'b0, disty, 28'b0, move_data, 6'b0, ang_data};
endmodule

o
Il xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output VSYyNC;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; / line number

I horizontal: 1344 pixels total

/I display 1024 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

/I vertical: 806 lines total

/I display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

/I sync and blanking
wire next_hblank,next_vblank;
assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

62

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule

/*
o
Il xvga: Generate XVGA display signals (800 x 600 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output VSYyNC;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; / line number

I/ horizontal: 1056 pixels total

/I display 800 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 799);
assign hsyncon = (hcount == 839);
assign hsyncoff = (hcount == 967);
assign hreset = (hcount == 1055);

/I vertical: 628 lines total

/I display 600 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 599);
assign vsyncon = hreset & (vcount == 600);
assign vsyncoff = hreset & (vcount == 604);
assign vreset = hreset & (vcount == 627);

/I sync and blanking
wire next_hblank,next_vblank;

63

assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule */

o

/I generate display pixels from reading the ZBT ram

/I note that the ZBT ram has 2 cycles of read (and write) latency

I

Il We take care of that by latching the data at an appropriate time.

I

/I Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

I

/I Bug due to memory management will be fixed. The bug happens because
/I memory is called based on current hcount & vcount, which will actually
/I shows up 2 cycle in the future. Not to mention that these incoming data
/I are latched for 2 cycles before they are used. Also remember that the
/I ntsc2zbt's addressing protocol has been fixed.

/I The original bug:

Il -. At (hcount, vcount) = (100, 201) data at memory address(0,100,49)

/I arrives at vram_read_data, latch it to vr_data_latched.

Il -. At (hcount, vcount) = (100, 203) data at memory address(0,100,49)

/I is latched to last_vr_data to be used for display.

/I -. Remember that memory address(0,100,49) contains camera data

/I pixel(100,192) - pixel(100,195).

Il -. At (hcount, vcount) = (100, 204) camera pixel data(100,192) is shown.
Il -. At (hcount, vcount) = (100, 205) camera pixel data(100,193) is shown.
Il -. At (hcount, vcount) = (100, 206) camera pixel data(100,194) is shown.
Il -. At (hcount, vcount) = (100, 207) camera pixel data(100,195) is shown.
I

/I Unfortunately this means that at (hcount == 0) to (hcount == 11) data from

64

/I the right side of the camera is shown instead (including possible sync signals).

[/l To fix this, two corrections has been made:

/I -. Fix addressing protocol in ntsc_to_zbt module.

/I -. Forecast hcount & vcount 8 clock cycles ahead and use that
/I instead to call data from ZBT.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram_read_data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;

output [17:0] vr_pixel;

output [18:0] vram_addr;
input [35:0] vram_read_data;

/fforecast hcount & vcount 8 clock cycles ahead to get data from ZBT
wire [10:0] hcount_f = (hcount >= 1048) ? (hcount - 1048) : (hcount + 8);
wire [9:0] vcount_f = (hcount >= 1048) ? ((vcount == 805) ? 0 : vcount + 1) : vcount;

wire [18:0] vram_addr = {vcount_f, hcount_f[9:1]};

wire hc2 = hcount[0];

reg [17:0] vr_pixel;

reg [35:0] vr_data_latched;
reg [35:0] last_vr_data;

always @(posedge clk)
last_vr_data <= (hc2==1) ? vr_data_latched : last_vr_data;

always @(posedge clk)
vr_data_latched <= (hc2==0) ? vram_read_data : vr_data_latched;

always @(*) /I each 36-bit word from RAM s decoded to 2 bytes
case (hc2)
0: vr_pixel = last_vr_data[17:0];
1: vr_pixel = last_vr_data[35:18];
endcase

endmodule // vram_display

65

o
/I parameterized delay line

module delayN(clk,in,out);
input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

module one_divider(
input clk,
input reset,
output reg oneHz_enable = 0

);
reg[27:0] counter = 0;

/[This module simply counts to 27000000 and asserts a signal high on that count (so
roughly every 1

/Isecond). It resets to O if reset is asserted or if a new timer needs to start (so that every

count
/lis a full second).

always @(posedge clk) begin

if(reset) begin //reset conditions
counter <= 0;
oneHz_enable <= 0;
end

else
begin
if (counter == (27000000-1))

66

begin
oneHz_enable <= 1; //assert a signal every 27000000

counter <= 0;
end

else
begin
counter <= counter + 1;
oneHz_enable <= 0;
end

end

end

endmodule

T
/l ramclock module

T T T T

I

/1 6.111 FPGA Labkit -- ZBT RAM clock generation

I

I

/I Created: April 27, 2004

/I Author: Nathan Ickes

I

T T T

I

/I This module generates deskewed clocks for driving the ZBT SRAMs and FPGA
/I registers. A special feedback trace on the labkit PCB (which is length

/ matched to the RAM traces) is used to adjust the RAM clock phase so that
/I rising clock edges reach the RAMs at exactly the same time as rising clock
/l edges reach the registers in the FPGA.

I

/I The RAM clock signals are driven by DDR output buffers, which further

/I ensures that the clock-to-pad delay is the same for the RAM clocks as it is
/I for any other registered RAM signal.

I

/I When the FPGA is configured, the DCMs are enabled before the chip-level /O
/I drivers are released from tristate. It is therefore necessary to

/I artificially hold the DCMs in reset for a few cycles after configuration.

/l This is done using a 16-bit shift register. When the DCMs have locked, the
/I <lock> output of this mnodule will go high. Until the DCMs are locked, the

67

// ouput clock timings are not guaranteed, so any logic driven by the

/I <fpga_clock> should probably be held inreset until <locked> is high.
I

T T T

module ramclock(ref_clock, fpga_clock, ram0_clock, ram1_clock,
clock_feedback_in, clock_feedback_out, locked);

input ref_clock; /I Reference clock input

output fpga_clock; // Output clock to drive FPGA logic

output ramQ_clock, ram1_clock; // Output clocks for each RAM chip
input clock_feedback_in; // Output to feedback trace

output clock feedback out; /I Input from feedback trace

output locked; /l Indicates that clock outputs are stable

wire ref_clk, fpga_clk, ram_clk, fb_clk, lock1, lock2, dcm_reset;
T T T o

/[To force ISE to compile the ramclock, this line has to be removed.
IIBUFG ref_buf (.O(ref_clk), .I(ref_clock));

assign ref_clk = ref_clock;
BUFG int_buf (.O(fpga_clock), .I(fpga_clk));

DCMint_dcm (.CLKFB(fpga_clock),

.CLKIN(ref_clk),

.RST(dcm_reset),

.CLKO(fpga_clk),

.LOCKED(lock1));
I synthesis attribute DLL_ FREQUENCY_MODE of int_dcm is "LOW"
Il synthesis attribute DUTY_CYCLE_CORRECTION of int_dcm is "TRUE"
I synthesis attribute STARTUP_WAIT of int_dcm is "FALSE"
Il synthesis attribute DFS_FREQUENCY_MODE of int_dcm is "LOW"
/I synthesis attribute CLK_FEEDBACK of int_dcm is "1X"
Il synthesis attribute CLKOUT_PHASE_SHIFT of int_dcm is "NONE"
Il synthesis attribute PHASE_SHIFT of int_dcm is 0

BUFG ext_buf (.O(ram_clock), .I(ram_clk));

IBUFG fb_buf (.O(fb_clk), .I(clock_feedback_in));

68

DCMext_dcm (.CLKFB(fb_clk),

.CLKIN(ref_clk),

.RST(dcm_reset),

.CLKO(ram_clk),

.LOCKED(lock?2));
I synthesis attribute DLL_FREQUENCY_MODE of ext_dcm is "LOW"
Il synthesis attribute DUTY_CYCLE_CORRECTION of ext_dcm is "TRUE"
Il synthesis attribute STARTUP_WAIT of ext_dcm is "FALSE"
Il synthesis attribute DFS_FREQUENCY_MODE of ext_dcm is "LOW"
/Il synthesis attribute CLK_FEEDBACK of ext_dcm is "1X"
Il synthesis attribute CLKOUT_PHASE_SHIFT of ext_dcm is "NONE"
/Il synthesis attribute PHASE_SHIFT of ext_dcm is O

SRL16 dem_rst_sr (.D(1'b0), .CLK(ref_clk), .Q(dcm_reset),
A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
/Il synthesis attribute init of dcm_rst_sris "000F";

OFDDRRSE ddr_reg0 (.Q(ram0_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));

OFDDRRSE ddr_reg1 (.Q(ram1_clock), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'00), .S(1'b0));

OFDDRRSE ddr_reg2 (.Q(clock_feedback_out), .CO(ram_clock), .C1(~ram_clock),
.CE (1'b1), .DO(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));

assign locked = lock1 && lock2;
endmodule

module detection (clock, reset, hsync, vsync, blank, vr_pixel, hcount, h, s, v, vcount,
track_pixel, x_center, y_center);

//This module detects a certain color, finds the center of the color on the screen and
tracks that point

parameter RED_MIN = 6'h1F; //these set RGB ranges - default is to detect red
parameter RED_MAX = 6'h3F;

parameter GREEN_MIN = 6'h00;

parameter GREEN_MAX = 6'hOF;

parameter BLUE_MIN = 6'h00;

parameter BLUE_MAX = 6'hOF;

input clock, reset, hsync, vsync, blank;

input [17:0] vr_pixel;
input [10:0] hcount;
input [9:0] vcount;

input [7:0] h, s, v;

output [17:0] track_pixel;
output [10:0] x_center;
output [9:0] y_center;

wire new;

wire [12:0] sum_up_x;

wire [11:0] sum_up_y;

reg [18:0] thresh_pixel;

reg [24:0] x_accumulator = 0;
reg [24:0] y_accumulator = 0O;
reg [24:0] x_count = 0;

reg [24:0] y_count = 0;

reg [24:0] dividend_x = 0;

reg [24:0] dividend_y = 0;

reg [24:0] divisor_x = 0;

reg [24:0] divisor_y = 0;

reg [43:0] x_pix_buffer = 0;
reg [39:0] y_pix_buffer = 0;
wire [24:0] x_quotient;

wire [24:0] y_quotient;

wire [24:0] x_remainder;

wire [24:0] y_remainder;

wire x_rfd;

wire y_rfd;

/ldividers for center coordinates

center_divider x_div(.clk(clock),
.dividend(dividend_x),
divisor(divisor_x),
.quotient(x_quotient),
fractional(x_remainder),
rfd(x_rfd));

center_divider y_div(
.clk(clock),
.dividend(dividend_y),
divisor(divisor_y),
.quotient(y_quotient),
fractional(y_remainder),

70

rfd(y_rfd));

wire vr_pix_r_range, vr_pix_g_range, vr_pix_b_range;
/lwire vr_pix_h_range, vr_pix_s_range, vr_pix_v_range;

assign vr_pix_r_range = ((vr_pixel[17:12] >= RED_MIN) & (vr_pixel[17:12] <=
RED_MAX)) ? 1 : 0; //determine if pixel is within range for RGB

assign vr_pix_g_range = ((vr_pixel[11:6] >= GREEN_MIN) & (vr_pixel[11:6] <=
GREEN_MAX)) ?1:0;

assign vr_pix_b_range = ((vr_pixel[5:0] >= BLUE_MIN) & (vr_pixel[5:0] <=
BLUE_MAX)) ?1:0;

/lassign vr_pix_h_range = (h >=230)? 1:0;
/lassign vr_pix_s_range = (s >=160) ? 1: 0;
/lassign vr_pix_v_range = (v>=100) ?1:0;

always @(posedge clock) begin
if ((hcount>11'd30 && hcount < 11'd740) && (vcount>10'd80 &&
vcount<10'd550)) //limit calculations to actual video feed
thresh_pixel <=(vr_pix_r_range & vr_pix_g_range &
vr_pix_b_range)? 18'h3FFFF : 0; //if within range, assign white pixel, else black
else
thresh_pixel <= 0;
end

always @(posedge clock) begin
if (hcount == 11'd0 & vcount == 10'd0) begin IIreset
accumulators with every frame
X_accumulator <= 0;
y_accumulator <= 0;
X_count <= 0;
y_count <= 0;
end
else if ((hcount>11'd30 && hcount < 11'd740) & (vcount>10'd80 &&
vcount<10'd550)) begin
if (thresh_pixel == 18'h3FFFF) begin
X_accumulator <= x_accumulator + hcount; //if pixel is
within range, add it's position to accumulators, and add one to each count
y_accumulator <=y_accumulator + vcount;

71

X_count <= x_count + 1;
y_count<=y count + 1;
end
else begin
Xx_accumulator <= x_accumulator; //else nothing changes
y_accumulator <=y accumulator;
X_count <= x_count;
y_count <=y count;
end
end
else if (hcount == 11'd0 & vcount == 10'd551) begin
dividend_x <= (x_count > 30)?x_accumulator:0; //if there are more
than 30 points (noise) start dividers
dividend_y <= (y_count > 30)?y_accumulator:0;
divisor_x <= (x_count == 0)?1:x_count;
divisor_y <= (y_count == 0)?1:y_count;
end
end

assign new = (hcount==11'd1 && vcount == 10'd552); //for buffer

always @(posedge clock) begin
if (new) begin
x_pix_buffer <= {x_pix_buffer[32:0], x_quotient[10:0]}; //buffer
stores 4 points
y_pix_buffer <= {y_pix_buffer[29:0], y_quotient[9:0]};
end
end

assign sum_up_x = x_pix_buffer[43:33] + x_pix_buffer[32:22] +
x_pix_buffer[21:11] + x_pix_buffer[10:0];

assign sum_up_y =y pix_buffer[39:30] + y_pix_buffer[29:20] +
y_pix_buffer[19:10] + y_pix_buffer[9:0];

assign x_center = sum_up_x >> 2; //laverage coordinates over time creates a
smoother tracking
assign y_center = sum_up_y >> 2;

blob tracker(.x(x_center), .hcount(hcount), .y(y_center), .vcount(vcount),
.alt_pixel(thresh_pixel), .pixel(track_pixel)); //draw
square to track object

72

endmodule

module move2point(
input clk,
input reset,
input btn_click,
input one_sec,
input [10:0] x_posit,
input [9:0] y_posit,
input [10:0] point_x,
input [9:0] point_y,
output txd,
output reg [10:0] distx,
output reg [9:0] disty,
output reg move_data,
output reg [1:0] ang_data

reg tx_start;

reg stopped = 0;

reg clicked;

reg start = 0;

/Ireg [1:0] ang_data;

/Ireg move_data;

reg [10:0] x_posit_last = 0;

reg [9:0] y_posit_last = 0;

reg [10:0] distx_last, x_posit_latched, point_x_latched;
reg [9:0] disty_last, y_posit_latched, point_y_latched;
wire txd_busy;

/[This module implements the move to point algorithm. It uses visual feedback to
determine where the hexapod is and where it should be going.

always @(posedge one_sec) begin
x_posit_latched <= x_posit; //latch points in case they change
y_posit_latched <=y_posit;
point_x_latched <= point_x;
point_y _latched <= point_y;

if (x_posit > point_x)

distx <= x_posit - point_x; /calculate distances, make sure that the

distance is positive.

73

else
distx <= point_x - X_posit;

if (y_posit > point_y)

disty <=y_posit - point_y;
else

disty <= point_y - y_posit;

if (x_posit_last > point_x)

distx_last <= x_posit_last - point_x;
else

distx_last <= point_x - x_posit_last;

if (y_posit_last > point_y)

disty_last <=y posit_last - point_y;
else

disty_last <= point_y - y_posit_last;
end

always @(posedge clk) begin
if (btn_click) //only start moving if the mouse button has actually been
clicked
clicked <= 1;
else if (start)
clicked <= 0;

if (point_x < 11'd30 | point_x > 11'd740| point_y <10'd80 | point_y>10'd550)
/lif a click occurs outside of the field, immediately stop

move_data <= 0;

else if (one_sec & !stopped) begin //every second, determine movement

to be taken
tx_start <= 1; //raise line to signal packet sending
if (clicked) begin
start <= 1;
move_data <= 1; //initially move straigt to calibrate
ang_data <= 2'd0;
x_posit_last <= x_posit_latched; //save current point as last
point

y_posit_last <=y posit_latched;
end

else if (start) begin //compare distances and points

74

if ((distx < 11'd150) & (disty < 10'd150)) begin //if hexapod
is close to destination, stop moving
stopped <= 1;
start <= 0;
end
else if ((distx < distx_last) & (disty < disty_last)) //if hexapod
got closer to destination, go in same direction
ang_data <= ang_data;

else if ((distx > distx_last) & (disty > disty_last)) //if it got
farther away, turn around (change by 180 degrees)
ang_data <= ang_data + 2'd2;

else if ((distx > distx_last) & (disty < disty_last)) begin //if
closer in one direction but not the other
if
(((x_posit_latched<point_x_latched)&(y_posit_latched<point_y_latched))|((x_posit_latched>point
_x_latched)&(y_posit_latched>point_y latched))) //compare positions and determine appropriate
90 degree turn
ang_data <= ang_data - 2'd1;
else
ang_data <= ang_data + 2'd1;
end

else begin //see above
if
(((x_posit_latched<point_x_latched)&(y_posit_latched<point_y_latched))|((x_posit_latched>point
_x_latched)&(y_posit_latched>point_y_latched)))
ang_data <= ang_data + 2'd1;

else
ang_data <= ang_data - 2'd1;
end
end
else begin
stopped <= 1; //don't move unless there's a point to move
to
ang_data <= 2'd0;
end
end
else if (stopped) begin //stop immediately
stopped <= 0;

move_data <= 0;

75

end

else begin
if (tx_start) //only keep line high for one clock cycle
tx_start <= 0;
end
end

transmitter transmit2 (.clk(clk), .TxD_start(tx_start), .TxD_data({move_data,
5'b00000, ang_data}), .TxD(txd), .TxD_busy(txd_busy)); //transmit movement packets

/Ivia Xbee

endmodule

module debounce (reset, clk, noisy, clean);
input reset, clk, noisy;
output clean;

parameter NDELAY = 650000;
parameter NBITS = 20;

reg [NBITS-1:0] count;
reg xnew, clean;

always @(posedge clk)
if (reset) begin xnew <= noisy; clean <= noisy; count <= 0; end
else if (noisy != xnew) begin xnew <= noisy; count <= 0; end
else if (count == NDELAY) clean <= xnew;
else count <= count+1;

endmodule
/I ps2_mouse_xy gives a high-level interface to the mouse, which
/I keeps track of the "absolute" x,y position (within a parameterized

/l range) and also returns button presses.

module ps2_mouse_xy(clk, reset, ps2_clk, ps2_data, mx, my, btn_click);

input clk, reset;
inout ps2_clk, ps2_data; // data to/from PS/2 mouse

76

output [11:0] mx, my; /[current mouse position, 12 bits
output [2:0] btn_click; // button click: Left-Middle-Right

// module parameters
parameter MAX X = 1023;
parameter MAX Y = 767;

/l low level mouse driver

wire [8:0] dx, dy;
wire [2:0] btn_click;
wire data_ready;
wire error_no_ack;
wire [1:0] ovf_xy;
wire streaming;

-

/ original 6.111 fall 2005 Verilog - appears to be buggy so it has been
/ commented out.

/I ps2_mouse m1(clkreset,ps2_clk,ps2_data,dx,dy,ovf_xy, btn_click,
I data_ready,streaming);

I

oy

// using ps2_mouse Verilog from Opencore

/I divide the clk by a factor of two sot that it works with 65mhz and the original timing
/[parameters in the open core source.

/I'if the Verilog doesn't work the user should update the timing parameters. This Verilog

assumes
// 50Mhz clock; seems to work with 32.5mhz without problems. GPH 11/23/2008 with
/l assist from BG

ps2_mouse_interface

#(WATCHDOG_TIMER_VALUE_PP(26000),
WATCHDOG_TIMER_BITS_PP(15),
.DEBOUNCE_TIMER_VALUE_PP(246),
DEBOUNCE_TIMER_BITS_PP(8))

m1(

.clk(clk),
reset(reset),
.ps2_clk(ps2_clk),

7

.ps2_data(ps2_data),
X_increment(dx),

.y_increment(dy),
.data_ready(data_ready),

.read(1'b1), // force a read
Jeft_button(btn_click[2]),
.right_button(btn_click[0]) // rx_read_o
);

/I error_no_ack not used

// Update "absolute" position of mouse

reg [11:0] mx, my;

wire sx = dx[8]; /I signs

wire sy = dy[8];

wire [8:0] ndx = sx ? {0,~dx[7:0[}+1 : {0,dx[7:0]}; // magnitudes
wire [8:0] ndy = sy ? {0,~dy[7:0]}+1 : {0,dy[7:0]};

always @(posedge clk) begin
mx <=reset 70 :
data_ready ? (sx ? (mx>ndx ? mx - ndx : 0)
: (mx < MAX_X - ndx ? mx+ndx : MAX_X)) : mx;
/I note Y is flipped for video cursor use of mouse
my <=reset?0:
data_ready ? (sy ? (my < MAX_Y - ndy ? my+ndy : MAX Y)
: (my>ndy ? my - ndy : 0)) : my;

Il data_ready ? (sy ? (my>ndy ? my - ndy : 0)

I : (my < MAXY - ndy ? my+ndy : MAX_Y)) : my;
end

endmodule

I

I

/I Author: John Clayton

// Date : April 30, 2001

/I Update: 6/06/01 copied this file from ps2.v (pared down).

// Update: 6/07/01 Finished initial coding efforts.

// Update: 6/09/01 Made minor changes to state machines during debugging.
I Fixed errors in state transitions. Added state to m2

Il so that "reset" causes the mouse to be initialized.

Il Removed debug port.
I

I

I

I

I

/[Description

Il
/[This is a state-machine driven serial-to-parallel and parallel-to-serial
/'interface to the ps2 style mouse. The state diagram for part of the

/I m2 state machine was obtained from the work of Rob Chapman, as published
/I at:

Il www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1998 w/mouse_notes.html

I

I

Il Some aspects of the mouse interface are not implemented (e.g, verifying

/I the FA response code from the mouse when enabling streaming mode.)

/I However, the mouse interface was designed so that "hot plugging" a mouse
/I into the connector should cause the interface to send the F4 code to the

/ mouse in order to enable streaming. By this means, the mouse begins to

I/l operate, and no reset pulse should be needed.

I

/I Similarly, there is a "watchdog" timer implemented, so that during periods

/I of inactivity, the bit_count is cleared to zero. Therefore, the effects of

/I a bad count value are corrected, and internal errors of that type are not

/I propagated into subsequent packet receive operations.

I

/I To enable the streaming mode, F4 is sent to the mouse.

/I The mouse responds with FA to acknowledge the command, and then enters
/I streaming mode at the default rate of 100 packets per second (transmission
/I of packets ceases when the activity at the mouse is not longer sensed.)

I

/I There are additional commands to change the sampling rate and resolution
/I of the mouse reported data. Those commands are not implemented here.
/I (E8,XX = set resolution 0,1,2,3)

/Il (E7 = set scaling 2:1)

/I (E6 = reset scaling)

Il (F3,XX = set sampling rate to XX packets per second.)

I

/I At this time | do not know any of the command related to using the

/I wheel of a "wheel mouse."

I

/I The packets consists of three bytes transmitted in sequence. The interval

79

/I between these bytes has been measured on two different mice, and found to
/Il be different. On the slower (older) mouse it was approximately 345

/I microseconds, while on a newer "wheel" mouse it was approximately 125
/I microseconds. The watchdog timer is designed to cause processing of a
/I complete packet when it expires. Therefore, the watchdog timer must last
/I for longer than the "inter-byte delay" between bytes of the packet.

/I I have set the default timer value to 400 usec, for my 49.152 MHz clock.

/I The timer value and size of the timer counter is settable by parameters,

/I so that other clock frequencies and settings may be used. The setting for
/l the watchdog timeout is not critical -- it only needs to be greater than

/ the inter-byte delay as data is transmitted from the mouse, and no less

// than 60usec.

I

/l Each "byte" of the packet is transmitted from the mouse as follows:

I

/l 1 start bit, 8 data bits, 1 odd parity bit, 1 stop bit. == 11 bits total.

/I (The data bits are sent LSB first)

I

/I The data bits are formatted as follows:

I

/Il byte 0: YV, XV, YS, XS,1,0,R, L

// byte 1: X7..X0

I byte 2: Y7..YO

I

/I Where YV, XV are set to indicate overflow conditions.

/I XS, YS are set to indicate negative quantities (sign bits).

/l R, L are set to indicate buttons pressed, left and right.

I

I

I

/I The interface to the ps2 mouse (like the keyboard) uses clock rates of

// 30-40 kHz, dependent upon the mouse itself. The mouse generates the
/I clock.

/I The rate at which the state machine runs should be at least twice the

/I rate of the ps2_clk, so that the states can accurately follow the clock

// signal itself. Four times oversampling is better. Say 200kHz at least.

/I In order to run the state machine extremely fast, synchronizing flip-flops

// have been added to the ps2_clk and ps2_data inputs of the state machine.
/[This avoids poor performance related to slow transitions of the inputs.

I

/I Because this is a bi-directional interface, while reading from the mouse

/l the ps2_clk and ps2_data lines are used as inputs. While writing to the

/ mouse, however (which is done when a "packet" of less than 33 bits is

80

I received), both the ps2_clk and ps2_data lines are sometime pulled low by
// this interface. As such, they are bidirectional, and pullups are used to

/I return them to the "high" state, whenever the drivers are set to the

/Il high impedance state.

I

// Pullups MUST BE USED on the ps2_clk and ps2_data lines for this design,
/I whether they be internal to an FPGA /O pad, or externally placed.

/I If internal pullups are used, they may be fairly weak, causing bounces

/l due to crosstalk, etc. There is a "debounce timer" implemented in order

/l to eliminate erroneous state transitions which would occur based on bounce.

/I Parameters are provided to configure the debounce timer for different

/I clock frequencies. 2 or 3 microseconds of debounce should be plenty.

/l ' You may possibly use much less, if your pullups are strong.

I

/I A parameters is provided to configure a 60 microsecond period used while
/l transmitting to the mouse. The 60 microsecond period is guaranteed to be
/I more than one period of the ps2_clk signal.

I
I
I

‘resetall
“timescale 1ns/100ps

“define TOTAL_BITS 33 // Number of bits in one full packet

module ps2_mouse_interface (
clk,
reset,
ps2_clk,
ps2_data,
left_button,
right_button,
X_increment,
y_increment,
data_ready, /l rx_read_o
read, I/ rx_read _ack i
error_no_ack

);

// Parameters

81

/l The timer value can be up to (2%its) inclusive.

parameter WATCHDOG_TIMER_VALUE_PP = 19660; // Number of sys_clks for
400usec.

parameter WATCHDOG TIMER_BITS PP = 15; // Number of bits needed for timer

parameter DEBOUNCE_TIMER_VALUE_PP = 186; // Number of sys_clks for debounce

parameter DEBOUNCE_TIMER_BITS PP =8; // Number of bits needed for timer

// State encodings, provided as parameters
/I for flexibility to the one instantiating the module.
/I In general, the default values need not be changed.

/I There are three state machines: m1, m2 and m3.

/I States chosen as "default" states upon power-up and configuration:
/I "m1_clk_h"

/I "m2_wait"

/I "m3_data_ready ack"

parameter m1_clk_h = 0;
parameter m1_falling_edge = 1;
parameter m1_falling_wait = 3;
parameter m1_clk | = 2;
parameter m1_rising_edge = 6;
parameter m1_rising_wait = 4;

parameter m2_reset = 14;
parameter m2_wait = 0;
parameter m2_gather = 1;
parameter m2_verify = 3;
parameter m2_use = 2;
parameter m2_hold_clk_| = 6;
parameter m2_data low 1 = 4;
parameter m2_data_high_1 = 5;
parameter m2_data low 2 =7;
parameter m2_data_high_2 = 8;
parameter m2_data low 3=09;
parameter m2_data_high_3 = 11;
parameter m2_error_no_ack = 15;
parameter m2_await_response = 10;

parameter m3_data_ready = 1;
parameter m3_data_ready_ack = 0;

82

/I VO declarations

input clk;

input reset;

inout ps2_clk;

inout ps2_data;

output left_button;

output right_button;
output [8:0] x_increment;
output [8:0] y_increment;
output data_ready;

input read,;

output error_no_ack;

reg left_button;

reg right_button;

reg [8:0] x_increment;
reg [8:0] y_increment;
reg data_ready;

reg error_no_ack;

/I Internal signal declarations
wire watchdog_timer_done;

wire debounce_timer_done;

wire packet_good;

reg [TOTAL_BITS-1:0] q; // Shift register

reg [2:0] m1_state;

reg [2:0] m1_next_state;

reg [3:0] m2_state;

reg [3:0] m2_next_state;

reg m3_state;

reg m3_next_state;

reg [5:0] bit_count; // Bit counter

reg WATCHDOG_TIMER_BITS_PP-1:0] watchdog_timer_count;

reg [DEBOUNCE_TIMER_BITS_PP-1:0] debounce_timer_count;

reg ps2_clk_hi_z; // Without keyboard, high Z equals 1 due to pullups.
reg ps2_data_hi_z; // Without keyboard, high Z equals 1 due to pullups.
reg clean_clk; /I Debounced output from m1, follows ps2_clk.

reg rising_edge; // Output from m1 state machine.

reg falling_edge; // Output from m1 state machine.

reg output_strobe; // Latches data data into the output registers

83

Il
/l Module code

assign ps2_clk = ps2_clk_hi_z?1'bZ:1'b0;
assign ps2_data = ps2_data_hi_z?1'bZ:1'b0;

/I State register
always @(posedge clk)
begin : m1_state_register
if (reset) m1_state <= m1_clk_h;
else m1_state <= m1_next_state;
end

/I State transition logic

always @(m1_state
or ps2_clk
or debounce_timer_done
or watchdog_timer_done

)

begin : m1_state_logic

// Output signals default to this value, unless changed in a state condition.
clean_clk <= 0;

rising_edge <= 0;

falling_edge <= 0;

case (m1_state)
m1_clk_h:
begin
clean_clk <= 1;
if (~ps2_clk) m1_next_state <= m1_falling_edge;
else m1_next_state <= m1_clk_h;
end

m1_falling_edge :
begin
falling_edge <= 1;
m1_next_state <= m1_falling_wait;
end

m1_falling_wait :
begin
if (debounce_timer_done) m1_next_state <= m1_clk_|;

84

else m1_next_state <= m1_falling_wait;
end

m1_clk_|:
begin
if (ps2_clk) m1_next_state <= m1_rising_edge;
else m1_next_state <=m1_clk _|;
end

m1_rising_edge :
begin
rising_edge <= 1;
m1_next_state <= m1_rising_wait;
end

m1_rising_wait :
begin
clean_clk <= 1;
if (debounce_timer_done) m1_next_state <= m1_clk_h;
else m1_next_state <= m1_rising_wait;
end
default : m1_next_state <= m1_clk_h;
endcase
end

/I State register
always @(posedge clk)
begin : m2_state_register
if (reset) m2_state <= m2_reset;
else m2_state <= m2_next_state;
end

/I State transition logic
always @(m2_state
orq
or falling_edge
or rising_edge
or watchdog_timer_done
or bit_count
or packet_good
or ps2_data
or clean_clk

85

)

begin : m2_state_logic

// Output signals default to this value, unless changed in a state condition.

ps2 clk hi z <= 1;
ps2 _data_hi_z <=1,
error_no_ack <= 0;
output_strobe <= 0;

case (m2_state)

m2_reset: // After reset, sends command to mouse.
begin
m2_next_state <= m2_hold_clk_|;
end

m2_wait :
begin
if (falling_edge) m2_next_state <= m2_gather;
else m2_next_state <= m2_wait;
end

m2_gather :
begin
if (watchdog_timer_done && (bit_count == "TOTAL_BITS))
m2_next_state <= m2_verify;
else if (watchdog_timer_done && (bit_count < "TOTAL_BITS))
m2_next_state <= m2_hold_clk _I;
else m2_next_state <= m2_gather;
end

m2_verify :
begin
if (packet_good) m2_next_state <= m2_use;
else m2_next_state <= m2_wait;
end

m2_use :
begin
output_strobe <= 1;
m2_next_state <= m2_wait;
end

86

/I The following sequence of 9 states is designed to transmit the
/l "enable streaming mode" command to the mouse, and then await the
/I response from the mouse. Upon completion of this operation, the
I receive shift register contains 22 bits of data which are "invalid"
/I therefore, the m2_verify state will fail to validate the data, and
/I control will be passed into the m2_wait state once again (but the
/ mouse will then be enabled, and valid data packets will ensue whenever
/I there is activity on the mouse.)
m2_hold_clk I:
begin
ps2_clk_hi_z <=0; // This starts the watchdog timer!
if (watchdog_timer_done && ~clean_clk) m2_next_state <= m2_data_low_1;
else m2_next_state <=m2_hold clk I;
end

m2_data_low_1:
begin
ps2_data_hi_z <= 0; // Forms start bit, d[0] and d[1]
if (rising_edge && (bit_count == 3))
m2_next_state <= m2_data_high_1;
else m2_next_state <= m2_data low_1;
end

m2_data_high_1:
begin
ps2_data_hi_z <=1; // Forms d[2]
if (rising_edge && (bit_count == 4))
m2_next_state <= m2_data_low_2;
else m2_next_state <= m2_data_high_1;
end

m2_data_low_2 :
begin
ps2_data_hi_z <= 0; // Forms d[3]
if (rising_edge && (bit_count == 5))
m2_next_state <= m2_data_high_2;
else m2_next_state <= m2_data low_2;
end

m2_data_high_2:
begin
ps2_data_hi_z <= 1; // Forms d[4],d[5],d[6],d[7]
if (rising_edge && (bit_count == 9))

87

m2_next_state <= m2_data low_3;
else m2_next_state <= m2_data_high_2;
end

m2_data_low _3:
begin
ps2_data_hi_z <= 0; // Forms parity bit
if (rising_edge) m2_next_state <= m2_data_high_3;
else m2_next_state <= m2_data low_3;
end

m2_data_high_3:

begin
ps2_data_hi_z <= 1; // Allow mouse to pull low (ack pulse)
if (falling_edge && ps2_data) m2_next_state <= m2_error_no_ack;
else if (falling_edge && ~ps2_data)

m2_next_state <= m2_await_response;

else m2_next_state <= m2_data_high_3;

end

m2_error_no_ack :
begin
error_no_ack <= 1;
m2_next_state <= m2_error_no_ack;
end

/I In order to "cleanly" exit the setting of the mouse into "streaming"
// data mode, the state machine should wait for a long enough time to
/I ensure the FA response is done being sent by the mouse. Unfortunately,
// this is tough to figure out, since the watchdog timeout might be longer
/I or shorter depending upon the user. [f the watchdog timeout is set to
/I a small enough value (less than about 560 usec?) then the bit_count
/I will get reset to zero by the watchdog before the FA response is
Il received. In that case, bit_count will be 11.
/I if the bit_count is not reset by the watchdog, then the
// total bit_count will be 22.
/Il In either case, when this state is reached, the watchdog timer is still
// running and it is best to let it expire before returning to normal
// operation. One easy way to do this is to check for the bit_count to
/I reach 22 (which it will always do when receiving a normal packet) and
/l then jump to "verify" which will always fail for that time.
m2_await_response :

begin

88

if (bit_count == 22) m2_next_state <= m2_verify;
else m2_next_state <= m2_await_response;
end

default : m2_next_state <= m2_wait;
endcase
end

/I State register

always @(posedge clk)

begin : m3_state_register
if (reset) m3_state <= m3_data_ready_ack;
else m3_state <= m3 next_state;

end

/I State transition logic
always @(m3_state or output_strobe or read)
begin : m3_state_logic
case (m3_state)
m3_data_ready_ack:
begin
data_ready <= 1'b0;
if (output_strobe) m3_next_state <= m3_data_ready;
else m3 next_state <= m3_data_ready_ack;
end
m3_data_ready:
begin
data_ready <= 1'b1;
if (read) m3_next_state <= m3_data_ready_ack;
else m3 next_state <= m3_data_ready;
end
default : m3_next_state <= m3_data_ready_ack;
endcase
end

/l This is the bit counter
always @(posedge clk)
begin
if (reset) bit_count <= 0; // normal reset
else if (falling_edge) bit_count <= bit_count + 1;

else if (watchdog_timer_done) bit_count <= 0; // rx watchdog timer reset

89

end

/I This is the shift register
always @(posedge clk)
begin
if (reset) q <= 0;
else if (falling_edge) q <= {ps2_data,q[TOTAL_BITS-1:1]};
end

/I This is the watchdog timer counter
/I The watchdog timer is always "enabled" to operate.
always @(posedge clk)
begin
if (reset || rising_edge || falling_edge) watchdog_timer_count <= 0;
else if (~watchdog_timer_done)
watchdog_timer_count <= watchdog_timer_count + 1;
end
assign watchdog_timer_done =
(watchdog_timer_count==WATCHDOG_TIMER_VALUE_PP-1);

/I This is the debounce timer counter
always @(posedge clk)
begin
if (reset || falling_edge || rising_edge) debounce_timer_count <= 0;
/I else if (~debounce_timer_done)
else debounce_timer_count <= debounce_timer_count + 1;
end
assign debounce_timer_done =
(debounce_timer_count==DEBOUNCE_TIMER_VALUE_PP-1);

/I This is the logic to verify that a received data packet is "valid"
// or good.
assign packet_good = (
(q[0] ==0)
&& (q[10] == 1)
&& (q[11]==0)
&& (q[21] == 1)
&8& (q[22] == 0)
&& (q[32] == 1)
&& (q[9] ==~/q[8:1]) // odd parity bit
&& (q[20] == ~"q[19:12]) // odd parity bit
&& (q[31] == ~"q[30:23]) // odd parity bit
);

90

/I Output the special scan code flags, the scan code and the ascii
always @(posedge clk)
begin
if (reset)
begin
left_button <= 0;
right_button <= 0;
X_increment <= Q;
y_increment <= 0;
end
else if (output_strobe)
begin
left_button <= q[1];
right_button <= q[2];
x_increment <= {q[5],q[19:12]};
y_increment <= {q[6],q[30:23]};
end
end

endmodule
/I"'undefine TOTAL_BITS

module display _16hex (reset, clock_27mhz, data_in,
disp_blank, disp_clock, disp_rs, disp_ce b,
disp_reset_b, disp_data_out);

input reset, clock_27mhz; // clock and reset (active high reset)
input [63:0] data_in; /I 16 hex nibbles to display

output disp_blank, disp_clock, disp_data_out, disp_rs, disp_ce b,
disp_reset_b;

reg disp_data_out, disp_rs, disp_ce_b, disp_reset_b;

it

I

/I Display Clock

I

/I Generate a 500kHz clock for driving the displays.
I

I T T

reg [5:0] count;
reg [7:0] reset_count;
Il reg old_clock;
wire dreset;
wire clock = (count<27) ? 0: 1;

always @(posedge clock_27mhz)
begin
count <=reset ? 0 : (count==53 ? 0 : count+1);
reset_count <=reset ? 100 : ((reset_count==0) ? 0 : reset_count-1);
/l old_clock <= clock;
end

assign dreset = (reset_count != 0);

assign disp_clock = ~clock;

wire clock_tick = ((count==27) ? 1: 0);
/I wire clock tick = clock & ~old_clock;

e
I

// Display State Machine

I
e

reg [7:0] state; /l FSM state

reg [9:0] dot_index; // index to current dot being clocked out
reg [31:0] control; /I control register

reg [3:0] char_index; /l index of current character

reg [39:0] dots; /I dots for a single digit

reg [3:0] nibble; // hex nibble of current character

reg [63:0] data;
assign disp_blank = 1'b0; // low <= not blanked

always @(posedge clock_27mhz)
if (clock_tick)
begin
if (dreset)
begin
state <= 0;
dot_index <= 0;

92

control <= 32'h7F7F7F7F;
end
else
casex (state)
8'h00:
begin
/Il Reset displays
disp_data_out <= 1'b0;

disp_rs <= 1'b0; // dot register

disp_ce b <= 1'b1;
disp_reset b <= 1'b0;
dot_index <= 0;
state <= state+1;

end

8'h01:
begin
// End reset
disp_reset b <= 1'b1;
state <= state+1;
end

8'h02:
begin

// Initialize dot register (set all dots to zero)

disp_ce b <= 1'b0;

disp_data_out <= 1'b0; // dot_index[0];

if (dot_index == 639)
state <= state+1;
else
dot_index <= dot_index+1;
end

8'h03:
begin
// Latch dot data
disp_ce b <=1'b1;
dot_index <= 31;
state <= state+1;
end

8'h04:
begin

I re-purpose to init ctrl reg

93

/I Setup the control register
disp_rs <= 1'b1; // Select the control register
disp_ce b <= 1'b0;
disp_data_out <= control[31];
control <= {control[30:0], 1'b0}; /I shift left
if (dot_index == 0)
state <= state+1;
else
dot_index <= dot_index-1;
end

8'h05:
begin

/Il Latch the control register data / dot data
disp_ce b <=1'b1;
dot_index <= 39; // init for single char
char_index <= 15; // start with MS char
data <= data_in;
state <= state+1;

end
8'h06:
begin
I/ Load the user's dot data into the dot reg, char by char
disp_rs <= 1'b0; /I Select the dot register

disp_ce b <= 1'b0;
disp_data_out <= dots[dot_index]; // dot data from msb
if (dot_index == 0)

if (char_index == 0)

state <= 5; // all done, latch data
else
begin
char_index <= char_index - 1; /I goto next char

data <= data_in;
dot_index <= 39;
end
else
dot_index <= dot_index-1; // else loop thru all dots
end

endcase // casex(state)
end

94

always @ (data or char_index)
case (char_index)

4'hO0: nibble <= data[3:0];
4'n1: nibble <= data[7:4];
4'h2: nibble <= data[11:8];
4'h3: nibble <= data[15:12];
4'h4. nibble <= data[19:16];
4'h5: nibble <= data[23:20];
4'h6: nibble <= data[27:24];
4'n7: nibble <= data[31:28];
4'h8: nibble <= data[35:32];
4'h9: nibble <= data[39:36];
4'hA: nibble <= data[43:40];
4'hB: nibble <= data[47:44];
4'hC: nibble <= data[51:48];
4'hD: nibble <= data[55:52];
4'hE: nibble <= data[59:56];
4'hF: nibble <= data[63:60];
endcase

always @(nibble)

case (nibble)
4'h0: dots <= 40'b00111110_01010001_01001001_01000101_00111110;
4'h1: dots <= 40'b00000000_01000010_01111111_01000000_00000000;
4'h2: dots <= 40'b01100010_01010001_01001001_01001001_01000110;
4'h3: dots <= 40'b00100010_01000001_01001001_01001001_00110110;
4'h4: dots <= 40'b00011000_00010100_00010010_01111111_00010000;
4'h5: dots <= 40'b00100111_01000101_01000101_01000101_00111001;
4'h6: dots <= 40'b00111100_01001010_01001001_01001001_00110000;
4'h7: dots <= 40'b00000001_01110001_00001001_00000101_00000011;
4'h8: dots <= 40'b00110110_01001001_01001001_01001001_00110110;
4'nh9: dots <= 40'b00000110_01001001_01001001_00101001_00011110;
4'hA: dots <= 40'b01111110_00001001_00001001_00001001_01111110;
4'hB: dots <= 40'b01111111_01001001_01001001_01001001_00110110;
4'hC: dots <= 40'b00111110_01000001_01000001_01000001_00100010;
4'hD: dots <= 40'b01111111_01000001_01000001_01000001_00111110;
4'hE: dots <= 40'b01111111_01001001_01001001_01001001_01000001;
4'hF: dots <= 40'b01111111_00001001_00001001_00001001_00000001;

endcase

endmodule

I

95

/I File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

I

/I Example for MIT 6.111 labkit showing how to prepare NTSC data

/I (from Javier's decoder) to be loaded into the ZBT RAM for video

/I display.

I

/ The ZBT memory is 36 bits wide; we only use 32 bits of this, to

/I store 4 bytes of black-and-white intensity data from the NTSC

I video input.

I

/I Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>

// Date :11-May-09 // gph mod 11/3/2011

I

I

// Bug due to memory management will be fixed. It happens because

// the memory addressing protocol is off between ntsc2zbt.v and

/I vrcam_display.v. There are 2 solutions:

/I -. Fix the memory addressing in this module (neat addressing protocol)
/I and do memory forecast in vr.am_display module.

/I -. Do nothing in this module and do memory forecast in vram_display
/I module (different forecast count) while cutting off reading from

/I address(0,0,0).

I

// Bug in this module causes 4 pixel on the rightmost side of the camera
/Il to be stored in the address that belongs to the leftmost side of the

/Il screen.

I

/' In this example, the second method is used. NOTICE will be provided
/I on the crucial source of the bug.

I

o

I/l Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

input clk; // system clock

input vclk; // video clock from camera
input [2:0] fvh;

input dv;

input [17:0] din;

output [18:0] ntsc_addr;

96

output [35:0] ntsc_data;
output ntsc_we; // write enable for NTSC data
input sw; /I switch which determines mode (for debugging)

parameter COL_START = 10'd30;
parameter ROW_START = 10'd30;

// here put the luminance data from the ntsc decoder into the ram
/] this is for 1024 * 788 XGA display

reg [9:0] col =0;
reg [9:0] row = 0;
reg [17:0] vdata = 0;

reg vwe;

reg old_dv;

reg old_frame; //frames are even/ odd interlaced
reg even_odd; // decode interlaced frame to this wire

wire frame = fvh[2];
wire frame_edge = frame & ~old_frame;

always @ (posedge vclk) //LLC1 is reference
begin
old_dv <= dy;
vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it
old_frame <= frame;
even_odd = frame_edge ? ~even_odd : even_odd;

if (1fvh[2])
begin
col <= fvh[0] ? COL_START :
('fvh[2] && !fvh[1] && dv && (col < 1024)) ? col + 1 : col;
row <= fvh[1] ? ROW_START :
('fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
vdata <= (dv && !fvh[2]) ? din : vdata;
end
end

/I synchronize with system clock

reg [9:0] x[1:0],y[1:0];
reg [17:0] data[1:0];
reg we[1:0];

97

reg eo[1:0];

always @(posedge clk)

begin
{x[1].x[0]} <= {x[0],col};
{y[11,y[O]} <= {y[O],row};
{data[1],data[0]} <= {data[0],vdata};
{we[1],we[0]} <= {we[0],vwe};
{eo[1],e0[0]} <= {eo0[0],even_odd};

end

/I edge detection on write enable signal

reg old_we;
wire we_edge = we[1] & ~old_we;
always @(posedge clk) old_we <= we[1];

/I shift each set of two bytes into a large register for the ZBT

reg [31:0] mydata;
always @(posedge clk)
if (we_edge)
mydata <= { mydata[17:0], data[1] };

/I NOTICE : Here we have put 4 pixel delay on mydata. For example, when:
11 (x[1], y[1]) = (60, 80) and eo[1] = 0, then:

/Il mydata[31:0] = (pixel(56,160), pixel(57,160), pixel(58,160), pixel(59,160))
// This is the root of the original addressing bug.

I NOTICE : Notice that we have decided to store mydata, which
I contains pixel(56,160) to pixel(59,160) in address
I (0, 160 (10 bits), 60 >> 2 = 15 (8 bits)).

I

/ This protocol is dangerous, because it means

I pixel(0,0) to pixel(3,0) is NOT stored in address

I (0, 0 (10 bits), 0 (8 bits)) but is rather stored

I in address (0, 0 (10 bits), 4 >> 2 = 1 (8 bits)). This
1/ calculation ignores COL_START & ROW_START.
I

1/ 4 pixels from the right side of the camera input will
I be stored in address corresponding to x = 0.

I

98

I To fix, delay col & row by 4 clock cycles.
I Delay other signals as well.

reg [39:0] x_delay;
reg [39:0] y_delay;
reg [3:0] we_delay;
reg [3:0] eo_delay;

always @ (posedge clk)

begin
x_delay <= {x_delay[29:0], x[1]};
y_delay <= {y_delay[29:0], y[1]};
we_delay <= {we_delay[2:0], we[1]};
eo_delay <= {eo_delay[2:0], eo[1]};

end

// compute address to store data in
wire [8:0] y_addr = y_delay[38:30];
wire [9:0] x_addr = x_delay[39:30];

wire [18:0] myaddr = {y_addr[8:0], eo_delay[3], x_addr[9:1]};

// Now address (0,0,0) contains pixel data(0,0) etc.

/I alternate (256x192) image data and address
wire [31:0] mydata2 = {data[1],data[1],data[1],data[1]};
wire [18:0] myaddr2 = {1'b0, y_addr[8:0], eo_delay[3], x_addr[7:0]};

// update the output address and data only when four bytes ready

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
wire ntsc_we = sw ? we_edge : (we_edge & (x_delay[30]==1'b0));

always @(posedge clk)
if (ntsc_we)
begin
ntsc_addr <= sw ? myaddr2 : myaddr; /I normal and expanded modes
ntsc_data <= sw ? mydata2 : mydata;
end

endmodule // ntsc_to_zbt

99

I

/[File: video decoder.v

// Date: 31-Oct-05

/I Author: J. Castro (MIT 6.111, fall 2005)

I

/[This file contains the ntsc_decode and adv7185init modules
I

/l These modules are used to grab input NTSC video data from the RCA
/l phono jack on the right hand side of the 6.111 labkit (connect
/I the camera to the LOWER jack).

I

it

i

/I NTSC decode - 16-bit CCIR656 decoder

/I By Javier Castro

/I This module takes a stream of LLC data from the adv7185

/I NTSC/PAL video decoder and generates the corresponding pixels,
/l that are encoded within the stream, in YCrCb format.

/I Make sure that the adv7185 is set to run in 16-bit LLC2 mode.
module ntsc_decode(clk, reset, tv_in_ycrcb, ycreb, f, v, h, data_valid);

I/ clk - line-locked clock (in this case, LLC1 which runs at 27Mhz)
I reset - system reset

// tv_in_ycrcb - 10-bit input from chip. should map to pins [19:10]
I yercb - 24 bit luminance and chrominance (8 bits each)

/I f - field: 1 indicates an even field, 0 an odd field

Il v - vertical sync: 1 means vertical sync

/' h - horizontal sync: 1 means horizontal sync

input clk;

input reset;

input [9:0] tv_in_ycrcb; // modified for 10 bit input - should be P[19:10]
output [29:0] ycrcb;

output f;

output V;

output h;

output data_valid;

// output [4:0] state;

100

parameter SYNC 1=0;
parameter SYNC 2 =1;
parameter SYNC 3 = 2;
parameter SAV_f1_cb0 = 3;
parameter SAV_f1_y0 = 4;
parameter SAV _f1_cr1 =15;
parameter SAV_f1_y1 =6;
parameter EAV f1 =7,
parameter SAV VBI f1 = §;
parameter EAV _VBI f1=09;
parameter SAV f2 cb0 = 10;
parameter SAV f2 y0 = 11;
parameter SAV f2 cr1=12;
parameter SAV f2 y1=13;
parameter EAV 2 = 14;
parameter SAV_VBI 2 = 15;
parameter EAV VBI f2 = 16;

/' In the start state, the module doesn't know where
/I in the sequence of pixels, it is looking.

// Once we determine where to start, the FSM goes through a normal
/I sequence of SAV process_YCrCb EAV... repeat

/Il The data stream looks as follows

/I SAV_FF | SAV_00 | SAV_00 | SAV_XY |CbO | YO |Cr1|Y1|Cb2|Y2]|...| EAV
sequence

Il There are two things we need to do:

/I 1. Find the two SAV blocks (stands for Start Active Video perhaps?)

/l 2. Decode the subsequent data

reg [4:0] current_state = 5'h00;

reg [9:0] y = 10'h000; // luminance

reg [9:0] cr = 10'h000; // chrominance

reg [9:0] cb = 10'h000; // more chrominance

assign state = current_state;

always @ (posedge clk)
begin

101

if (reset)

begin
end
else
begin
// these states don't do much except allow us to know where we are in the
stream.
/Il whenever the synchronization code is seen, go back to the sync_state
before
I/ transitioning to the new state
case (current_state)
SYNC_1: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC_2 : SYNC_1;
SYNC_2: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC_3 : SYNC _1;
SYNC_3: current_state <= (tv_in_ycrcb == 10'h200) ? SAV_f1_cb0 :
(tv_in_ycrcb == 10'h274) ? EAV_f1 :
(tv_in_ycrcb == 10'h2ac) ? SAV_VBI f1:
(tv_in_ycrcb == 10'h2d8) ? EAV_VBI 1 :
(tv_in_ycrcb == 10'h31c) ? SAV_f2_cb0 :
(tv_in_ycrcb == 10'h368) ? EAV 2 :
(tv_in_ycrcb == 10'h3b0) ? SAV_VBI f2 :
(tv_in_ycrcb == 10'h3c4) ? EAV_VBI f2: SYNC _1;
SAV_f1_cb0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1:
SAV_f1_y0;
SAV_f1_yO0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 :
SAV f1_cr1;
SAV_f1_cr1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1:
SAV_f1_yf1;
SAV_f1_y1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 :
SAV_f1_cb0;
SAV_f2_cb0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1:
SAV_f2_y0;
SAV_f2_yO0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 :
SAV _f2_cr1;
SAV_f2_cr1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1:
SAV_f2_y1;
SAV_f2_y1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 :
SAV_f2_cb0;

Il These states are here in the event that we want to cover these signals
/'in the future. For now, they just send the state machine back to SYNC_1

102

EAV f1: current_state <= SYNC_1;
SAV_VBI_f1: current_state <= SYNC_1;
EAV _VBI f1: current_state <= SYNC _1;
EAV_f2: current_state <= SYNC_1;
SAV_VBI f2: current_state <= SYNC _1;
EAV_VBI_f2: current_state <= SYNC_1;

endcase
end
end // always @ (posedge clk)

I/ implement our decoding mechanism

wire y_enable;
wire cr_enable;
wire cb_enable;

/l'if y is coming in, enable the register

/I likewise for cr and cb

assign y_enable = (current_state == SAV_f1_y0) ||
(current_state == SAV_f1_y1) ||
(current_state == SAV_f2_y0) ||
(current_state == SAV_f2_y1);

assign cr_enable = (current_state == SAV_f1_cr1) ||
(current_state == SAV_f2_cr1);

assign cb_enable = (current_state == SAV_f1_cb0) ||
(current_state == SAV_f2_cb0);

I f, v, and h only go high when active
assign {v,h} = (current_state == SYNC_3) ? tv_in_ycrcb[7:6] : 2'b00;

// data is valid when we have all three values: vy, cr, cb
assign data_valid = y_enable;
assign ycrcb = {y,cr,cb};

reg f=0;

always @ (posedge clk)
begin
y <=y enable ? tv_in_ycrcb :y;
cr <= cr_enable ? tv_in_ycrcb : cr;
cb <= cb_enable ? tv_in_ycrcb : cb;
f <= (current_state == SYNC_3) ? tv_in_ycrcb[8] : f;

103

end

endmodule

U T T

Z 6.111 FPGA Labkit -- ADV7185 Video Decoder Configuration Init
Z Created:

/I Author: Nathan Ickes
;;///

T T T
/I Register 0
T T T

“define INPUT_SELECT 4'h0

/I 0: CVBS on AIN1 (composite video in)

/1'7:Y on AIN2, C on AIN5 (s-video in)

/I (These are the only configurations supported by the 6.111 labkit hardware)
“define INPUT_MODE 4'h0

/I 0: Autodetect: NTSC or PAL (BGHID), w/o pedestal
/I 1: Autodetect: NTSC or PAL (BGHID), w/pedestal
/I 2: Autodetect: NTSC or PAL (N), w/o pedestal

/I 3: Autodetect: NTSC or PAL (N), w/pedestal

/[4: NTSC w/o pedestal

/I'5: NTSC w/pedestal

/[6: NTSC 4.43 w/o pedestal

/I 7: NTSC 4.43 w/pedestal

// 8: PAL BGHID w/o pedestal

/1 9: PAL N w/pedestal

/I A: PAL M w/o pedestal

// B: PAL M w/pedestal

/I C: PAL combination N

/I D: PAL combination N w/pedestal

/l E-F: [Not valid]

“define ADV7185_REGISTER_O {/INPUT_MODE, "INPUT_SELECT}

T T T

104

/I Register 1
T T T

“define VIDEO_QUALITY 2'h0
/I 0: Broadcast quality
/1 1: TV quality
/I 2: VCR quality
/I 3: Surveillance quality
“define SQUARE_PIXEL_IN_MODE 1'b0
// 0: Normal mode
/[1: Square pixel mode
“define DIFFERENTIAL_INPUT 1'b0
/I 0: Single-ended inputs
/Il 1: Differential inputs
“define FOUR_TIMES_SAMPLING 1'b0
// 0: Standard sampling rate
/I 1: 4x sampling rate (NTSC only)
“define BETACAM 1'b0
/[0: Standard video input
// 1: Betacam video input
“define AUTOMATIC_STARTUP_ENABLE 1'b1
/I 0: Change of input triggers reacquire
/I 1: Change of input does not trigger reacquire

“define ADV7185_REGISTER_1 { AUTOMATIC_STARTUP_ENABLE, 1'b0, 'BETACAM,
"FOUR_TIMES_SAMPLING, 'DIFFERENTIAL_INPUT, "SQUARE_PIXEL_IN_MODE,
"VIDEO_QUALITY}

o
I/l Register 2
o

‘define Y_PEAKING FILTER 3'h4
// 0: Composite = 4.5dB, s-video = 9.25dB
/[1: Composite = 4.5dB, s-video = 9.25dB
/I 2: Composite = 4.5dB, s-video = 5.75dB
/l 3: Composite = 1.25dB, s-video = 3.3dB
/I 4: Composite = 0.0dB, s-video = 0.0dB
/I 5: Composite = -1.25dB, s-video = -3.0dB
// 6: Composite = -1.75dB, s-video = -8.0dB
/[7: Composite = -3.0dB, s-video = -8.0dB

“define CORING 2'h0
/1 0: No coring

105

/l 1: Truncate if Y < black+8
/I 2: Truncate if Y < black+16
/I 3: Truncate if Y < black+32

“define ADV7185_REGISTER_2 {3'b000, 'CORING, 'Y_PEAKING_FILTER}

o
/l Register 3
o

“define INTERFACE_SELECT 2'h0
/1 0: Philips-compatible
/[1: Broktree APl A-compatible
/I 2: Broktree API B-compatible
// 3: [Not valid]
“define OUTPUT_FORMAT 4'h0
/1 0: 10-bit @ LLC, 4:2:2 CCIR656
/1 1: 20-bit @ LLC, 4:2:2 CCIR656
/1 2: 16-bit @ LLC, 4:2:2 CCIR656
/' 3: 8-bit @ LLC, 4:2:2 CCIR656
Il'4: 12-bit @ LLC, 4:1:1
/I 5-F: [Not valid]
/I (Note that the 6.111 labkit hardware provides only a 10-bit interface to
// the ADV7185.)
“define TRISTATE_OUTPUT_DRIVERS 1'b0
/1 O: Drivers tristated when ~OE is high
/I 1: Drivers always tristated
“define VBI_ENABLE 1'b0
/I 0: Decode lines during vertical blanking interval
// 1: Decode only active video regions

“define ADV7185_REGISTER_3 {"VBI_ENABLE, 'TRISTATE_OUTPUT_DRIVERS,
"OUTPUT_FORMAT, "'INTERFACE_SELECT}

o
I/l Register 4
oo

“define OUTPUT_DATA_RANGE 1'b0
/1 0: Output values restricted to CCIR-compliant range
I/l 1: Use full output range

“define BT656_TYPE 1'b0
// 0: BT656-3-compatible

106

/[1: BT656-4-compatible

“define ADV7185_REGISTER_4 {{BT656_TYPE, 3'b000, 3'b110,
"OUTPUT_DATA_RANGE}

T T T
/I Register 5

T T T

“define GENERAL_PURPOSE_OUTPUTS 4'b0000
“define GPO_0_1_ENABLE 1'b0
I/l 0: General purpose outputs 0 and 1 tristated
/I 1: General purpose outputs 0 and 1 enabled
“define GPO_2_3 ENABLE 1'b0
// 0: General purpose outputs 2 and 3 tristated
/[1: General purpose outputs 2 and 3 enabled
“define BLANK_CHROMA IN_VBI 1'b1
/I 0: Chroma decoded and output during vertical blanking
/I 1: Chroma blanked during vertical blanking
“define HLOCK_ENABLE 1'b0
// 0: GPO 0 is a general purpose output
I/ 1: GPO 0 shows HLOCK status

“define ADV7185_REGISTER_5 { HLOCK_ENABLE, ‘BLANK_CHROMA _IN_VBI,
"GPO_2 3 ENABLE, 'GPO_0_1_ENABLE, 'GENERAL_PURPOSE_OUTPUTS}

T T T
/I Register 7

T T T

“define FIFO_FLAG_MARGIN 5'h10
/I Sets the locations where FIFO almost-full and almost-empty flags are set
“define FIFO_RESET 1'b0

// 0: Normal operation

/I 1: Reset FIFO. This bit is automatically cleared
“define AUTOMATIC_FIFO_RESET 1'b0

/I 0: No automatic reset

/I 1: FIFO is autmatically reset at the end of each video field
“define FIFO_FLAG_SELF_TIME 1'b1

/I 0: FIFO flags are synchronized to CLKIN
/I 1: FIFO flags are synchronized to internal 27MHz clock

107

“define ADV7185_REGISTER_7 { FIFO_FLAG_SELF_TIME,
"AUTOMATIC_FIFO_RESET, ‘FIFO_RESET, 'FIFO_FLAG_MARGIN}

T T T
/I Register 8
T T T
“define INPUT_CONTRAST_ADJUST 8'h80
“define ADV7185_REGISTER_8 {{INPUT_CONTRAST_ADJUST}
T T T
/I Register 9
T T T
“define INPUT_SATURATION_ADJUST 8'h8C
“define ADV7185_REGISTER_9 {{INPUT_SATURATION_ADJUST}
T T T
/I Register A
T T T
“define INPUT_BRIGHTNESS_ADJUST 8'h00
“define ADV7185_REGISTER_A {'INPUT_BRIGHTNESS_ADJUST}
T T T
/I Register B
T T T
“define INPUT_HUE_ADJUST 8'h00
“define ADV7185_REGISTER_B { INPUT_HUE_ADJUST}
T T T
/I Register C
T T T
“define DEFAULT_VALUE_ENABLE 1'b0
/I 0: Use programmed Y, Cr, and Cb values

/I 1: Use default values
“define DEFAULT _VALUE_AUTOMATIC ENABLE 1'b0

108

/I 0: Use programmed Y, Cr, and Cb values
/I 1: Use default values if lock is lost

“define DEFAULT Y VALUE 6'h0C
/[Default Y value

‘define ADV7185_REGISTER_C { DEFAULT_Y_VALUE,
"DEFAULT_VALUE_AUTOMATIC_ENABLE, ‘DEFAULT_VALUE_ENABLE}

o
I/l Register D
o

“define DEFAULT_CR_VALUE 4'h8
/I Most-significant four bits of default Cr value
“define DEFAULT_CB_VALUE 4'h8

/I Most-significant four bits of default Cb value
“define ADV7185 REGISTER_D {{ DEFAULT_CB_VALUE, 'DEFAULT_CR_VALUE}
o

/I Register E
T T T

“define TEMPORAL_DECIMATION_ENABLE 1'b0
/1 0: Disable
/[1: Enable

“define TEMPORAL _DECIMATION _CONTROL 2'h0

/I 0: Supress frames, start with even field
/[1: Supress frames, start with odd field
/I 2: Supress even fields only
/I 3: Supress odd fields only
“define TEMPORAL_DECIMATION_RATE 4'h0
// 0-F: Number of fields/frames to skip

“define ADV7185_REGISTER_E {1'b0, TEMPORAL_DECIMATION_RATE,
"TEMPORAL_DECIMATION_CONTROL, 'TEMPORAL_DECIMATION_ENABLE}

T T T
/I Register F
T T T

“define POWER_SAVE_CONTROL 2'h0
// O: Full operation

109

// 1: CVBS only
/I 2: Digital only
/I 3: Power save mode
“define POWER_DOWN_SOURCE_PRIORITY 1'b0
/I 0: Power-down pin has priority
/I 1: Power-down control bit has priority
“define POWER_DOWN_REFERENCE 1'b0
/I 0: Reference is functional
/I 1: Reference is powered down
“define POWER_DOWN_LLC_GENERATOR 1'b0
/I 0: LLC generator is functional
/I 1: LLC generator is powered down
‘define POWER_DOWN_CHIP 1'b0
// 0: Chip is functional
/[1: Input pads disabled and clocks stopped
“define TIMING_REACQUIRE 1'b0
// 0: Normal operation
/I 1: Reacquire video signal (bit will automatically reset)
‘define RESET_CHIP 1'b0
/I 0: Normal operation
/I 1: Reset digital core and 12C interface (bit will automatically reset)

“define ADV7185_REGISTER_F { RESET_CHIP, ‘TIMING_REACQUIRE,
‘POWER_DOWN_CHIP, 'POWER_DOWN_LLC_GENERATOR,
"POWER_DOWN_REFERENCE, 'POWER_DOWN_SOURCE_PRIORITY,
"POWER_SAVE_CONTROL}

T T T
/I Register 33
T T T

“define PEAK_WHITE_UPDATE 1'b1
/I 0: Update gain once per line
// 1: Update gain once per field
“define AVERAGE_BIRIGHTNESS_LINES 1'b1
/1 0: Use lines 33 to 310
/[1: Use lines 33 to 270
“define MAXIMUM _IRE 3'h0
/1 0: PAL: 133, NTSC: 122
// 1: PAL: 125, NTSC: 115
/1 2: PAL: 120, NTSC: 110
/I 3: PAL: 115, NTSC: 105
/l'4: PAL: 110, NTSC: 100

110

/I 5: PAL: 105, NTSC: 100
/1 6-7: PAL: 100, NTSC: 100
“define COLOR_KILL 1'b1
/1 0: Disable color kill
/I 1: Enable color kill

“define ADV7185_REGISTER_33 {1'b1, 'COLOR_KILL, 1'b1, 'MAXIMUM_IRE,
"AVERAGE_BIRIGHTNESS_LINES, "PEAK_WHITE_UPDATE}

“define ADV7185_REGISTER_10 8'h00
“define ADV7185_REGISTER_11 8'h00
“define ADV7185_REGISTER_12 8'h00
“define ADV7185_REGISTER _13 8'h45
“define ADV7185_REGISTER_14 8'h18
“define ADV7185_REGISTER_15 8'h60
“define ADV7185_REGISTER_16 8'h00
“define ADV7185_REGISTER_17 8'h01
“define ADV7185_REGISTER_18 8'h00
“define ADV7185_REGISTER_19 8'h10
“define ADV7185_REGISTER_1A 8'h10
“define ADV7185_REGISTER_1B 8'hFO0
“define ADV7185_REGISTER_1C 8'h16
“define ADV7185_REGISTER_1D 8'h01
“define ADV7185_REGISTER_1E 8'h00
“define ADV7185_REGISTER_1F 8'h3D
“define ADV7185_REGISTER_20 8'hD0
“define ADV7185_REGISTER_21 8'h09
“define ADV7185_REGISTER_22 8'h8C
“define ADV7185_REGISTER_23 8'hE2
“define ADV7185_REGISTER_24 8'h1F
“define ADV7185_REGISTER_25 8'h07
“define ADV7185_REGISTER_26 8'hC2
“define ADV7185_REGISTER_27 8'h58
“define ADV7185_REGISTER_28 8'h3C
“define ADV7185_REGISTER_29 8'h00
“define ADV7185_REGISTER_2A 8'h00
“define ADV7185_REGISTER_2B 8'hA0
“define ADV7185_REGISTER_2C 8'hCE
“define ADV7185_REGISTER_2D 8'hFO
“define ADV7185_REGISTER_2E 8'h00
“define ADV7185_REGISTER_2F 8'hFO0
“define ADV7185_REGISTER_30 8'h00
“define ADV7185_REGISTER_31 8'h70

111

“define ADV7185_REGISTER_32 8'h00
“define ADV7185_REGISTER_34 8'hOF
“define ADV7185_REGISTER_35 8'h01
“define ADV7185_REGISTER_36 8'h00
“define ADV7185_REGISTER_37 8'h00
“define ADV7185_REGISTER_38 8'h00
“define ADV7185_REGISTER_39 8'h00
“define ADV7185_REGISTER_3A 8'h00
“define ADV7185_REGISTER_3B 8'h00

“define ADV7185_REGISTER_44 8'h41
“define ADV7185_REGISTER_45 8'hBB

“define ADV7185_REGISTER_F1 8'hEF
“define ADV7185_REGISTER_F2 8'h80

module adv7185init (reset, clock_27mhz, source, tv_in_reset_b,
tv_in_i2c_clock, tv_in_i2c_data);

input reset;

input clock_27mhz;

output tv_in_reset_b; // Reset signal to ADV7185
output tv_in_i2c_clock; // 12C clock output to ADV7185
output tv_in_i2c_data; // I2C data line to ADV7185
input source; // 0: composite, 1: s-video

initial begin

$display("ADV7185 Initialization values:");

$display(" Register 0: 0x%X", "ADV7185 REGISTER _0);
$display(" Register 1: 0x%X", "ADV7185_REGISTER_1);
$display(" Register 2: 0x%X", "ADV7185 REGISTER 2);
$display(" Register 3: 0x%X", "ADV7185_REGISTER_3);
$display(" Register 4: 0x%X", "ADV7185 REGISTER 4);
$display(" Register 5: 0x%X", "ADV7185_REGISTER_5);
$display(" Register 7: 0x%X", "ADV7185 REGISTER 7);
$display(" Register 8: 0x%X", "ADV7185_REGISTER_8);
$display(" Register 9: 0x%X", "ADV7185 REGISTER 9);
$display(" Register A: 0x%X", "ADV7185_REGISTER_A);
$display(" Register B: 0x%X", "ADV7185 REGISTER_B);
$display(" Register C: 0x%X", "ADV7185_REGISTER_C);
$display(" Register D: 0x%X", "ADV7185_ REGISTER_D);
$display(" Register E: 0x%X", "ADV7185_REGISTER_E);

112

$display(" Register F: 0x%X", "ADV7185_REGISTER_F);
$display(" Register 33: 0x%X", "ADV7185_REGISTER_33);

end

I

/I Generate a 1TMHz for the 12C driver (resulting I2C clock rate is 250kHz)

I

reg [7:0] clk_div_count, reset_count;
reg clock_slow;
wire reset_slow;

initial
begin
clk_div_count <= 8'h00;
Il synthesis attribute init of clk_div_count is "00";
clock_slow <= 1'b0;
/I synthesis attribute init of clock_slow is "0";
end

always @(posedge clock_27mhz)
if (clk_div_count == 26)
begin
clock_slow <= ~clock_slow;
clk_div_count <= 0;
end
else
clk_div_count <= clk_div_count+1;

always @(posedge clock_27mhz)
if (reset)
reset_count <= 100;
else
reset_count <= (reset_count==0) ? 0 : reset_count-1;

assign reset_slow = reset_count != 0;
I

// 12C driver
1

reg load,;
reg [7:0] data;

113

wire ack, idle;

i2c i2c(.reset(reset_slow), .clockdx(clock_slow), .data(data),
.ack(ack), .idle(idle), .scl(tv_in_i2c_clock),
.sda(tv_in_i2c_data));

1
// State machine
1

reg [7:0] state;
reg tv_in_reset_b;
reg old_source;

always @(posedge clock_slow)
if (reset_slow)

begin
state <= 0;
load <= 0;

tv_in_reset b <= 0;
old_source <= 0;
end
else
case (state)
8'h00:
begin
/[Assert reset
load <= 1'b0;
tv_in_reset b <= 1'b0;
if ('ack)
state <= state+1;
end
8'h01:
state <= state+1;
8'h02:
begin
/I Release reset
tv_in_reset b <= 1'b1;
state <= state+1;
end
8'h03:
begin
/[l Send ADV7185 address

Joad(load),

114

data <= 8'h8A;
load <= 1'b1;
if (ack)
state <= state+1;
end
8'h04:
begin
// Send subaddress of first register
data <= 8'h00;
if (ack)
state <= state+1;
end
8'h05:
begin
I/l Write to register 0
data <= "ADV7185_REGISTER_0 | {5'h00, {3{source}}};
if (ack)
state <= state+1;
end
8'h06:
begin
I/ Write to register 1
data <= "ADV7185_REGISTER_1;
if (ack)
state <= state+1;
end
8'h07:
begin
I/l Write to register 2
data <= "ADV7185_REGISTER_2;
if (ack)
state <= state+1;
end
8'h08:
begin
// Write to register 3
data <= "ADV7185_REGISTER_3;
if (ack)
state <= state+1;
end
8'h09:
begin
I/l Write to register 4

115

data <= "ADV7185_REGISTER_4;
if (ack)
state <= state+1;
end
8'hOA:
begin
I/ Write to register 5
data <= "ADV7185_REGISTER_5;
if (ack)
state <= state+1;
end
8'h0B:
begin
// Write to register 6
data <= 8'h00; // Reserved register, write all zeros
if (ack)
state <= state+1;
end
8'h0C:
begin
I/l Write to register 7
data <= "ADV7185_REGISTER _7;
if (ack)
state <= state+1;
end
8'h0D:
begin
// Write to register 8
data <= "ADV7185_REGISTER_S8;
if (ack)
state <= state+1;
end
8'hOE:
begin
/Il Write to register 9
data <= "ADV7185_REGISTER_9;
if (ack)
state <= state+1;
end
8'hOF: begin
/Il Write to register A
data <= "ADV7185_REGISTER_A;
if (ack)

116

state <= state+1;
end
8'h10:
begin
I/l Write to register B
data <= "ADV7185_REGISTER_B;
if (ack)
state <= state+1;
end
8'h11:
begin
I/ Write to register C
data <= "ADV7185 REGISTER_C;
if (ack)
state <= state+1;
end
8'h12:
begin
/Il Write to register D
data <= "ADV7185_REGISTER_D;
if (ack)
state <= state+1;
end
8'h13:
begin
// Write to register E
data <= "ADV7185 REGISTER_E;
if (ack)
state <= state+1;
end
8'h14:
begin
I/l Write to register F
data <= "ADV7185_REGISTER_F;
if (ack)
state <= state+1;
end
8'h15:
begin
// Wait for 12C transmitter to finish
load <= 1'bO;
if (idle)
state <= state+1;

117

end

8'h16:
begin
// Write address
data <= 8'h8A;
load <= 1'b1;
if (ack)
state <= state+1;
end
8'h17:
begin
data <= 8'h33;
if (ack)
state <= state+1;
end
8'h18:
begin
data <= "ADV7185_REGISTER _33;
if (ack)
state <= state+1;
end
8'h19:
begin
load <= 1'b0;
if (idle)
state <= state+1;
end
8'h1A: begin
data <= 8'h8A,
load <= 1'b1;
if (ack)
state <= state+1;
end
8'h1B:
begin
data <= 8'h33;
if (ack)
state <= state+1;
end
8'h1C:
begin
load <= 1'bO;

118

if (idle)
state <= state+1;
end
8'h1D:
begin
load <= 1'b1;
data <= 8'h8B;
if (ack)
state <= state+1;
end
8'h1E:
begin
data <= 8'hFF;
if (ack)
state <= state+1;
end
8'h1F:
begin
load <= 1'bO;
if (idle)
state <= state+1;
end
8'h20:
begin
/1 ldle
if (old_source != source) state <= state+1;
old_source <= source;
end
8'h21: begin
// Send ADV7185 address
data <= 8'h8A;
load <= 1'b1;
if (ack) state <= state+1;
end
8'h22: begin
// Send subaddress of register 0
data <= 8'h00;
if (ack) state <= state+1;
end
8'h23: begin
I/l Write to register O
data <= "ADV7185_REGISTER_0 | {5'h00, {3{source}}};
if (ack) state <= state+1;

119

end
8'h24: begin
/[Wait for I2C transmitter to finish
load <= 1'b0;
if (idle) state <= 8'h20;
end
endcase

endmodule
{/l i2c module for use with the ADV7185
module i2c (reset, clock4x, data, load, idle, ack, scl, sda);

input reset;
input clock4x;
input [7:0] data;
input load;
output ack;
output idle;
output scl;
output sda;

reg [7:0] Idata;
reg ack, idle;
reg scl;

reg sdai;

reg [7:0] state;
assign sda = sdai ? 1'bZ : 1'b0;

always @(posedge clock4x)
if (reset)
begin
state <= 0;
ack <= 0;
end
else
case (state)
8'h00: // idle
begin
scl <= 1'b1;

120

sdai <= 1'b1;
ack <= 1'b0;
idle <= 1'b1;
if (load)
begin
Idata <= data;
ack <= 1'b1;
state <= state+1;
end
end
8'h01: // Start
begin
ack <= 1'b0;
idle <= 1'b0;
sdai <= 1'b0;
state <= state+1;
end
8'h02:
begin
scl <= 1'b0;
state <= state+1;
end
8'h03: // Send bit 7
begin
ack <= 1'b0;
sdai <= Idata[7];
state <= state+1;
end
8'h04:
begin
scl <= 1'b1;
state <= state+1;
end
8'h05:
begin
state <= state+1;
end
8'h06:
begin
scl <= 1'b0;
state <= state+1;
end
8'h07:

121

begin
sdai <= Idata[6];
state <= state+1;
end
8'h08:
begin
scl <= 1'b1;
state <= state+1;
end
8'h09:
begin
state <= state+1;
end
8'h0A:
begin
scl <= 1'b0;
state <= state+1;
end
8'h0OB:
begin
sdai <= Idata[5];
state <= state+1;
end
8'h0C:
begin
scl <= 1'b1;
state <= state+1;
end
8'h0D:
begin
state <= state+1;
end
8'hOE:
begin
scl <= 1'b0;
state <= state+1;
end
8'hOF:
begin
sdai <= Idata[4];
state <= state+1;
end
8'h10:

122

begin
scl <= 1'b1;
state <= state+1;
end
8'h11:
begin
state <= state+1;
end
8'h12:
begin
scl <= 1'b0;
state <= state+1;
end
8'h13:
begin
sdai <= Idata[3];
state <= state+1;
end
8'h14:
begin
scl <= 1'b1;
state <= state+1;
end
8'h15:
begin
state <= state+1;
end
8'h16:
begin
scl <= 1'b0;
state <= state+1;
end
8'h17:
begin
sdai <= Idata[2];
state <= state+1;
end
8'h18:
begin
scl <= 1'b1;
state <= state+1;
end
8'h19:

123

begin
state <= state+1;
end
8'h1A:
begin
scl <= 1'b0;
state <= state+1;
end
8'h1B:
begin
sdai <= Idata[1];
state <= state+1;
end
8'h1C:
begin
scl <= 1'b1;
state <= state+1;
end
8'h1D:
begin
state <= state+1;
end
8'h1E:
begin
scl <= 1'b0;
state <= state+1;
end
8'h1F:
begin
sdai <= Idata[0];
state <= state+1;
end
8'h20:
begin
scl <= 1'b1;
state <= state+1;
end
8'h21:
begin
state <= state+1;
end
8'h22:
begin

124

scl <= 1'b0;
state <= state+1;
end
8'h23: // Acknowledge bit
begin
state <= state+1;
end
8'h24:
begin
scl <= 1'b1;
state <= state+1;
end
8'h25:
begin
state <= state+1;
end
8'h26:
begin
scl <= 1'b0;
if (load)
begin
Idata <= data;
ack <= 1'b1;
state <= 3;
end
else
state <= state+1;
end
8'h27:
begin
sdai <= 1'b0;
state <= state+1;
end
8'h28:
begin
scl <= 1'b1;
state <= state+1;
end
8'h29:
begin
sdai <= 1'b1;
state <= 0;
end

125

endcase

endmodule

/**
*%

** Module: ycrcb2rgb

*%

** Generic Equations:

***/

module YCrCb2RGB (R, G, B, clk, rst, Y, Cr, Cb);
output [7:0] R, G, B;

input clk,rst;
input[9:0] Y, Cr, Cb;

wire [7:0] R,G,B;

reg [20:0] R_int,G_int,B_int, X int,A_int,B1_int,B2_int,C_int;
reg [9:0] const1,const2,const3,const4,const5;

reg[9:0] Y_reg, Cr_reg, Cb_reg;

/Iregistering constants

always @ (posedge clk)

begin

const1 = 10'b 0100101010; //1.164 = 01.00101010
const2 = 10'b 0110011000; //1.596 = 01.10011000
const3 = 10'b 0011010000; //0.813 = 00.11010000
const4 = 10'b 0001100100; //0.392 = 00.01100100
const5 = 10'b 1000000100; //2.017 = 10.00000100
end

always @ (posedge clk or posedge rst)

if (rst)
begin
Y reg<=0; Cr_reg <= 0; Cb_reg <= 0;
end

else
begin

Y _reg <=Y; Cr_reg <= Cr; Cb_reg <= Cb;

end

126

always @ (posedge clk or posedge rst)

if (rst)

begin
A int<=0; B1_int <= 0; B2_int <= 0; C_int <= 0; X_int <= 0;

end

else
begin
X int <= (const1 * (Y_reg - 'd64)) ;
A int <= (const2 * (Cr_reg - 'd512));
B1_int <= (const3 * (Cr_reg - 'd512));
B2_int <= (const4 * (Cb_reg - 'd512));
C_int <= (const5 * (Cb_reg - 'd512));
end

always @ (posedge clk or posedge rst)
if (rst)
begin
R_int<=0; G_int <= 0; B_int <= 0;
end
else
begin
R_int <= X int + A_int;
G int<= X int-B1_int- B2 int;
B_int <= X_int + C_int;
end

[*always @ (posedge clk or posedge rst)

if (rst)

begin
R_int<=0; G_int <= 0; B_int <= 0;

end

else
begin
X int <= (const1 * (Y_reg - 'd64)) ;
R_int <= X_int + (const2 * (Cr_reg - 'd512));
G_int <= X_int - (const3 * (Cr_reg - 'd512)) - (const4 * (Cb_reg - 'd512));
B_int <= X_int + (const5 * (Cb_reg - 'd512));
end

*/
/* limit output to 0 - 4095, <0 equals o and >4095 equals 4095 */

127

assign R = (R_int[20]) 2 0 : (R_int[19:18] == 2'b0) ? R_int[17:10] : 8'b11111111;
assign G = (G_int[20]) ? 0 : (G_int[19:18] == 2'b0) ? G_int[17:10] : 8'b11111111;
assign B = (B_int[20]) ? 0 : (B_int[19:18] == 2'b0) ? B_int[17:10] : 8b11111111;

endmodule

I

/[File: zbt 6111.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

I

/[Simple ZBT driver for the MIT 6.111 labkit, which does not hide the

/I pipeline delays of the ZBT from the user. The ZBT memories have

/I two cycle latencies on read and write, and also need extra-long data hold
/l times around the clock positive edge to work reliably.

I

o

I [ke's simple ZBT RAM driver for the MIT 6.111 labkit

I

/I Data for writes can be presented and clocked in immediately; the actual

I/ writing to RAM will happen two cycles later.

I

/I Read requests are processed immediately, but the read data is not available
/I until two cycles after the intial request.

I

/I A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read_data,
ram_clk, ram_we_b, ram_address, ram_data, ram_cen_b);

input clk; /I system clock

input cen; /I clock enable for gating ZBT cycles
input we; /I write enable (active HIGH)

input [18:0] addr; / memory address

input [35:0] write_data; /[data to write

output [35:0] read_data; // data read from memory

output ram_clk; /I physical line to ram clock

output ram_we_b; // physical line to ram we_b

output [18:0] ram_address; // physical line to ram address
inout [35:0] ram_data; Il physical line to ram data

output ram_cen_b; // physical line to ram clock enable

128

/I clock enable (should be synchronous and one cycle high at a time)
wire ram_cen b = ~cen;

Il create delayed ram_we signal: note the delay is by two cycles!
I ie we present the data to be written two cycles after we is raised
/I this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we_delay;

always @(posedge clk)
we_delay <= cen ? {we_delay[0],we} : we_delay;

I create two-stage pipeline for write data

reg [35:0] write_data_old1;
reg [35:0] write_data_old2;
always @(posedge clk)
if (cen)
{write_data_old2, write_data_old1} <= {write_data_old1, write_data};

Il wire to ZBT RAM signals

assign ram_we_b = ~we;
assign ram_clk = 1'b0; // gph 2011-Nov-10
Il set to zero as place holder

/I assign ram_clk=~clk; // RAMis not happy with our data hold
/Il times if its clk edges equal FPGA's
/Il so we clock it on the falling edges
// and thus let data stabilize longer
assign ram_address = addr;

assign ram_data = we_delay[1] ? write_data_old2 : {36{1'bZ}};
assign read_data = ram_data;

endmodule // zbt 6111

T
/I Asynchronous UART Transmitter

129

I
T
module transmitter(
input clk,
input TxD_start,
input [7:0] TxD_data,
output TxD,
output TxD_busy

);

/I Assert TxD_start for (at least) one clock cycle to start transmission of TxD_data
/ TxD_data is latched so it doesn't have to stay valid while it is being sent

parameter ClkFrequency = 25000000; /I 25MHz
parameter Baud = 9600;

reg [3:0] TxD_state = 0;
wire TxD_ready = (TxD_state==0);
assign TxD_busy = ~TxD_ready;

wire tick;
baudGen #(ClkFrequency, Baud) tickgen(.clk(clk), .enable(TxD_busy), .tick(tick));

reg [7:0] TxD_shift = 0;
always @(posedge clk)
begin
if(TxD_ready & TxD_start)
TxD_shift <= TxD_data;
else
if(TxD_state[3] & tick)
TxD_shift <= (TxD_shift >> 1);

case(TxD_state)

4'pb0000: if(TxD_start) TxD_state <= 4'b0100;
4'b0100: if(tick) TxD_state <= 4'b1000; // start bit
4'b1000: if(tick) TxD_state <= 4'b1001; // bit 0
4'b1001: if(tick) TxD_state <= 4'b1010; // bit 1
4'b1010: if(tick) TxD_state <= 4'b1011; // bit 2
4'b1011: if(tick) TxD_state <= 4'b1100; // bit 3
4'b1100: if(tick) TxD_state <= 4'b1101; // bit 4
4'b1101: if(tick) TxD_state <= 4'b1110; // bit 5
4'b1110: if(tick) TxD_state <= 4'b1111; // bit 6
4'b1111: if(tick) TxD_state <= 4'b0010; // bit 7

130

4'pb0010: if(tick) TxD_state <= 4'b0011; // stop1
4'pb0011: if(tick) TxD_state <= 4'b0000; // stop2
default: if(tick) TxD_state <= 4'b0000;
endcase
end

assign TxD = (TxD_state<4) | (TxD_state[3] & TxD_shift[0]); // put together the start,

data and stop bits
endmodule

131

