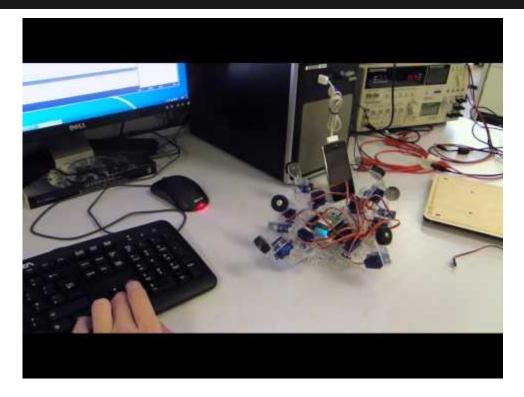
Cambot

Kelly Snyder and Becca Greene

Robots & SLAM



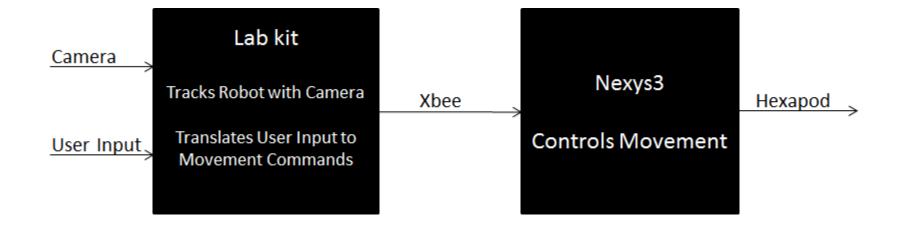
Autonomous machines need localization and mapping algorithms (SLAM)

Improving SLAM algorithms is an area of active research

The high-speed data and signal processing of FPGAs makes them well suited for this task.

A Hexapod!

Base Goals


• Hexapod moves and doesn't crash into things

• Robot can be seen and tracked with camera

• Robot is directly user controlled

Movement commands are wirelessly transmitted to robot

Implementation-Overview

Peripherals

- VGA screen
- NTSC Camera
- Distance Sensors
- Twelve Servo Motors

Labkit FSM

- Modules for NTSC to VGA, image recognition, mapping, user control
- Turns user input and mapping into directions for the hexapod

Hexapod FSM

 Modules for distance sensors, motor control, and xbee communication

Turns directions from labkit into motion

 Override directions if about to run into object

• Easy to use RF Module

• Configure on Computer

 Treat RF communication as UART

Secondary Goals

- Allow users to select a point on the screen
- Map best path to that point
- Additional Requirements:
 - obstacle recognition
 - heuristic algorithms
 - better motor control

Stretch Goals

- Have robot follow a second object
- Additional Requirements
 - More object recognition
 - improved mapping algorithm

Timeline

Nov 15 - Implement Xbee interface between fpgas

- Start work with distance sensors
- Camera streams in color, start image recognition
- Nov 22 Build Hexapod Kit
 - Implement motor controls
 - Finish distance sensors
 - Image recognition working, start move to point
- Nov 29 Implement mapping algorithms
 - Implement object tracking
- Dec 6 Debug