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Project Overview 

Our final project uses the lab FPGA to implement a digital oscilloscope. An analog signal 

is sampled through an analog-to-digital converter (ADC), and the FPGA lab kit reads, analyzes, 

and visualizes the data on a VGA display output by showing the collected waveform as well as 

some information about it in alpha numeric characters, such as min, max, and mean voltage. The 

project has 7 input buttons used to set the levels of the voltage scaling, time scaling, and trigger 

level (as well as trigger reset). These parameters work exactly as they do on a typical retail 

oscilloscope.  

 

Figure 1 – System Architecture – A simplified block diagram showing the data flow from the input stage to 

the display stage. The two sections are separated by a dashed red line, with Tyler’s component being the 

upper left and Ali’s being the lower right. The data is sampled by an external ADC chip, fed to data 

acquisition for storage, processed, and finally displayed on a video output 

 

The project is divided into two main components, the input stage (completed by Tyler) 

and the display stage (completed by Ali). The separation of these two halves of the project can be 

seen in figure 1. A block diagram showing the layout of the logic can be seen in figure 1 above. 

The ADC, triggering, sampling, computation, plotting, and scaling modules are components of 



the input stage and culminate in a BRAM containing data to be plotted on the screen. The 

character map, rendering, and VGA modules are in the display stage and are responsible for 

taking the plot data and waveform text and displaying them on the screen. 

 

 

 

 

 Input Stage (Written by Tyler): 

This half of the project is responsible for taking the analog input signal and processing it 

until it is ready to be displayed. This begins by putting the analog input voltage signal into a 12-

bit 10MSPS ADC to convert it into a digital signal. This digital signal is then analyzed by a 

triggering module which finds an appropriate location in the wave to trigger the sampling 

module to start collecting data. After 768 samples (the width of the waveform in pixels), the 

computation module scales the voltages so that they correspond to the user-selected 

voltage/division setting. The computation module also extracts the minimum, maximum, and 

average voltages, and the signal frequency. The waveform and these extracted parameters are 

passed to the display portion of the project to be shown on the VGA output screen. 

 

I. ADC 

The ADC hardware consists of a 20 MSPS 12-bit parallel ADC chip (Texas Instruments 

ADC12020) which will be clocked at 10.125MHz from the FPGA labkit. A complete schematic 

of the input stage can be seen below in figure 2. 

 

Figure 2 - Schematic of the ADC input showing the offset and gain amplifier followed by the ADC chip. The 

ADC chip's clock and output signals interface directly to the labkit FPGA. 



 The input voltage into the ADC chip must be centered about VREF which is set by R1, R2, 

and R3. In the configuration selected here, the ADC has VREF at 1v and therefore VIN+ should be 

1v for zero input signal into the scope. To accomplish this, the emitter of Q1 is biased at -1v. The 

feedback path around IC1 causes the output of the op-amp to be centered at 1v, the mirror of the 

bias voltage at the emitter of Q1. The feedback path also gives the output from the op-amp a gain 

of two. This offset and gain-of-two signal is fed into the ADC chip. 

 The ADC requires a clock signal to operate, and runs in free-running mode as long as the 

clock is present; that is, no sample-request signal is necessary which makes this chip perfect for 

this application since the FPGA should always leave the ADC chip sampling at the maximum 

rate. The clock to the ADC is 10.125MHz, and is derived from the 27MHz system clock through 

a 15/40 multiplier.  

 The combination of R8 and C14 provide a 3db frequency cutoff of 1.6MHz to avoid 

aliasing of high frequency input signals above half the sampling rate of the ADC chip. 

 

 

 

II. Triggering 

The triggering module must analyze the input waveform to determine appropriate times 

to trigger the sampler to begin sampling. The importance of the trigger is to make sure the times 

selected to begin sampling are always at the same position in the periodic waveform. If this were 

not accomplished, the waveform would jitter around the screen with every re-draw, and would be 

impossible to visually analyze. The solution implemented in this project is to use a comparator 

between the input signal and a user programmable trigger level, as seen in figure 3. When a 

specific edge (could be selected as rising or falling) occurs in the trigger signal, a trigger 

command is sent to the sampling module. If the sampling module is not already sampling, it 

begins a new sampling cycle. A sampling cycle describes the process of sampling 768 samples to 

fill the plot screen. If it is already in the middle of a sampling cycle, it ignores the trigger signal 

and continues sampling until 768 samples are taken. 



 

Figure 3 - Triggering system: The input signal is compared wtih a user programmable trigger level. When the 

signal is greater than the trigger level, the trigger signal is high. Otherwise, the trigger signal is low. A trigger 

event occurs on one of the edges of the trigger signal. 

 

 Unfortunately implementing a simple software comparator is only sufficient in theory. In 

practical application, a noise spike could create a trigger event. The first test was done with a simple 

comparator, and the sampler was very frequently triggered on noise which created a jittery signal. The 

solution to this is to make the comparator a state machine which requires the waveform to cross the 

trigger level for a fixed number of ADC cycles before the trigger signal is switched. When this is 

required, a noise spike does not meet the requirement for switching the trigger signal. This can be 

accomplished using the following code: 

module comparator #(parameter WIDTH=12) (input [WIDTH-1:0] a,  

input [WIDTH-1:0] b, output reg out, input clock, input sysclock); 

 

    //The comparator requires a compare change event to occur for 

    //more than latchMax sequential cycles or the event is discarded 

    //as noise 

    parameter [3:0] latchMax = 4'd8; 

    reg [3:0] latch; 

    initial begin 

        latch=0; 

    end 



     

    always @(posedge clock) begin 

        //Watch for a change when latch=0, the reset state 

        if (latch==4'd0 && out!=(b>a)) begin 

            //Set latch to latchMax since a possible compare event occurred 

            latch<=latchMax; 

        end 

        if (latch!=4'd0) begin 

            if (out!=(b>a)) begin 

                latch<=latch-1; 

                if (latch==4'd1) out<=(b>a); 

            end else latch<=4'd0; //Reset latch system since compare-match is 

no longer true 

        end 

    end 

endmodule 
 

When a potential trigger event is detected, latch is set to latchMax which begins the state 

machine to count latch back down to zero. If at any point the trigger event condition is no longer 

met, then it is assumed to be noise in the input signal and latch is again set to zero and a new 

potential trigger event is waited for. Should it be a legitimate trigger event in the input signal, 

latch will count down to zero and the trigger output will shift, signaling a trigger event. 

 

 

III. Debounce and Scaling 

The debounce module simply takes button inputs and debounces them using the 6.111-

provided debounce module. These signals are passed to the scaling module, which takes the user 

input buttons and determines the user selected volts per division and time per division settings 

for the scope. These settings are of fixed value, and the scaling module acts as a state machine 

with each setting acting as a state and being user adjustable. The settings are discussed further in 

their respective section below. This module also handles the input buttons which allow the user 

to adjust the trigger level between -4 and +4 volts. 

 

IV. Capture 

When the trigger event is detected as described previously, the capture module is signaled 

to begin a capturing cycle. This module also takes an input from a user-controllable time per 

division setting, which operates exactly as the time per division knob on a typical oscilloscope. 

There are a variety of settings ranging from 6us/div to 3ms/div with pre-programmed values 

which are frequencies obtainable by dividing 10.125MHz. When the time scale setting is 

anything slower than the maximum 6us/div (64 pixels/10,125,000), only every n
th

 sample is 



stored and the rest are discarded. For instance, if 12us/div display were desired, every other 

sample would be stored. 

The sampled data is stored in a BRAM memory block with a width of 768 samples (the 

number of pixels that make up the width of the plot display) and a depth of 12 bits per sample, 

which is the sample size from the ADC.  

The capture module outputs a capture-complete signal which the processor watches for to 

begin processing the last set of captured samples. 

 

 

V. Processor 

 

The processor is responsible for taking the samples from the capture module and 

translating them into the data to be displayed on the screen. When all 768 samples are sampled 

by the capture module, this processing module is triggered by the capture module to begin 

processing the data. This procedure is run by executing a processing cycle, the process of 

sequentially performing computations on each of the 768 samples. During this processing cycle, 

the capturing module is signaled to not begin a new sampling cycle until processing is complete 

to avoid data changing during processing. 

 

The processor has two important functions: scale the data to match the user-selected 

volts/division, and calculate parameters of the waveform which include minimum, maximum, 

and average voltages as well as frequency.  

 

 

 

 

a. Scaling 

Since the hardware input amplifier is fixed gain, the vertical scaling of the scope is 

performed in software. The ADC is 12 bit, but the plot display only uses 9 bits of information 

(512 pixels high). This leaves a factor of 8 of extra information that can be used to scale the 

voltage. There are four scaling options available, 1v/div, 0.5v/div, 0.25v/div, and 0.125v/div. 

These were selected since they are easy bit-shifts of the 12 bit data. 1v/div is simply the input 

bitshifted right three. The other options require first clipping the data (for instance, for 0.5v/div, 

if the 12 bit input is less than 1024, it should be clipped to the bottom of the screen, and if it is 

greater than 3096, it should be clipped to the top of the screen). If the sample value is within the 

range that is not clipped, it is scaled to a 9-bit output to be displayed. This operation can be seen 



in the following code, which performs the voltage scaling for each of the four possible scaling 

options: 

    case (VScale) 

        2'd0: computedOutput<=cI>>3;//1v/div 

                     

        2'd1: 

computedOutput<=((cI>12'b110000000000)?9'd511:((cI<12'b010000000000)?9'd0: 

        (((cI-12'd2048)>>>2)+9'd255)));//0.5v/div 

                     

        2'd2: 

computedOutput<=((cI>12'b101000000000)?9'd511:((cI<12'b011000000000)?9'd0: 

        (((cI-12'd2048)>>>1)+9'd255)));//0.25v/div 

                     

        2'd3: 

computedOutput<=((cI>12'b100100000000)?9'd511:((cI<12'b011100000000)?9'd0: 

        (((cI-12'd2048))+9'd255)));//0.125v/div 

                     

        default: computedOutput<=cI; 

    endcase 

 

 

b. Parameter Extraction 

 

The other job of the computation module is the extraction of the voltage and frequency 

parameters from the waveform. The voltage parameters are extracted from the samples displayed 

on the screen. Although the parameters are calculated rapidly, the screen is only updated 5 times 

a second to make sure the characters are readable. 

 

When a new processing cycle begins, buffers for minimum and maximum voltages are 

set to 12’d4095 and 12’d0 respectively.  For each sample processed, if it is less than the 

minimum buffer or greater than the maximum voltage, the buffer is updated. By the end of 

processing all the samples, the buffers contain the minimum and maximum voltages displayed on 

the screen and these values are sent out of the module before beginning the next processing 

cycle.  

 

To extract the average voltage, all of the samples are added together while processing the 

samples. This sum is fed into a divider made using the CORE Generator. The divider is 768, the 

width of the plot in pixels. After summing all 768 samples, the divider is outputting the average 

voltage for those samples and this value is shifted out of the module before starting the next 

processing cycle. 

 

Finally, to extract the frequency, the number of times the waveform crosses the average 

voltage is used to determine the frequency. To accomplish this, the same type of comparator as 

described in the trigger section is built using the average voltage as the compare level. This 



creates a square wave whose frequency matches the frequency of the input waveform. To 

determine the frequency of this square wave, the number of cycles, n, between rising edges is 

calculated. Another CORE Generator divider is used to perform F_CPU/n which results in the 

frequency of the tested signal. 

 

VI. Plotting BRAM 

The plotting BRAM contains the storage element where processed data is put before it is 

displayed on the screen. This is nothing more than a BRAM buffer of width 768 samples and a 

size of 9 bits per element, where each element is a reflection of the amplitude of that sample 

which should be plotted. Every clock cycle, this module takes an input address and data word 

and stores the data at the provided address, and also takes a read address and returns the data 

word at that address. This operation can be seen in the Verilog module below, with the reading 

and writing of the BRAM occurring in the always block. 

 

module OutputBuffer(input sysclk, input [9:0] addressStore,  

input [8:0] dataStore, input [9:0] addressRead,  

output reg [8:0] dataRead); 

    //Store the output buffer in a BRAM 

    (* ram_style = "block" *) 

    reg [8:0] samples[768:0]; 

     

    //Every cycle, simply store dataStore to addressStore and read 

addressRead to dataRead register 

    always @(posedge sysclk) begin 

        samples[addressStore]<=dataStore; 

        dataRead<=samples[addressRead]; 

    end 

 

 

endmodule 

 

 

 

 

 

  



Video Display (Written by Ali) 

 

The display section is responsible for translating and displaying to the screen the raw binary 

data received from the computation, plotting and scaling modules.  As illustrated in figure 1, this 

is performed with the help of two main modules: SCOPE_display and PARAM_display. The 

ways by which those two modules perform this task are detailed below. The displayed data, as 

seen in figure 4, represents the voltage waveform and the parameters: Vmax (Maximum 

voltage), Vmin (Minimum voltage), Vmean (Mean Voltage), Freq (Frequency), Tlvl (Trigger 

Level), Vdiv (Volts per Division), and Tdiv (Time per division).  The display section has two 

main functions: 

 

 To display the waveform, the binary data is read from the BRAM (in the plotting module) 

then processed to account for shifting and scaling, and finally translated to a format that 

can be displayed through a VGA output.  

 To display the numbered parameters, the binary data is first converted to binary-coded 

decimals (BCDs) via a BCD-Converter module. The BCDs are then translated to a format 

that can be displayed through a VGA output. 

 

Note: To display strings of text on the screen, the display section uses the Chuang and 

Terman’s character string display module which was provided in the 6.111 project tools. 

 

 The character string display module takes in the horizontal and vertical VGA counts, the 

desired screen display position in Cartesian (x, y) form, and the character string to display. The 

module then looks up the characters to display and raster’s the image from a pre-populated font 

rom. Finally, it generates the character pixels at the right position. 



 

 

Figure 4 - A screen capture of the final display showing a sinusoidal input wave. The two main components 

can be seen: 1. The waveform and the fixed gridlines, which were made in a different colors (white and blue) 

to make it easier to see the waveform. 2. The extracted parameters can be seen on the right-hand column and 

the user-selected scaling parameters at the bottom. 

I. SCOPE_display Module 

 

 

The inputs to this module are the raw binary data of the sampled waveform stored in the 

BRAM. The output is a pixel representation of the inputs which is passed on to the VGA module 

for display on the screen. The SCOPE_display module creates images for the fixed gridlines and 

the waveform. Moreover, the SCOPE_display module particularly deals with high frequency or 

discontinuous signals by connecting the waveform, as seen in figure 5.  

 

The SCOPE_display supplies the BRAM in the plotting module with addresses and reads 

the waveform values for the given address. The module then generates the corresponding scaled 

and shifted time samples (x-coordinates) on the horizontal time scale and the corresponding 

voltage magnitudes. The module then uses the VGA count values to generate the corresponding 

pixel values. The module also checks for any disconnects in the waveform by comparing two 

consecutive sample values. In case of any disconnect, the pixels in between are filled. Figure 5 

shows an example on how a square wave has the vertical lines drawn. This insures a continuous 

waveform. This module is also responsible for plotting the gridlines.  

 



 
Figure 5 – A screen capture of the final display showing a square wave. A demonstration of how the 

oscilloscope deals with high frequency inputs and discontinuous wave forms. If any discontinuities occur, the 

algorithm connects the wave form samples. As seen above, the square wave jumps between +1.806 and -1.646 

and the oscilloscope connects the waveform introducing the vertical edges which makes it look smoother. 

 

The input to the display modules is provided by the plotting, scaling and computation 

modules. Because all those modules were being created in parallel, in order to test the display it 

was necessary to create a BRAM filled with samples. Therefore, a test module with samples 

representing a square wave was created. This not only provided a known and stable waveform, 

but also allowed to test for proper handling of discontinuities. 

 

 

II. PARAM_display Module 

 

The inputs to this module are the raw binary data representing the parameter values (of 

the parameters listed previously). PARAM_display module creates images for the various 

parameters including names, values, and units. The output is a pixel representation of the 

parameters which is passed to the VGA module for display on the screen. The module also scales 

the inputs to an appropriate order of magnitude (kilo-hertz, volts, micro-seconds, etc.) This is 

achieved by shifting the binary input bits accordingly. 

 



The PARAM_display module runs in parallel with the SCOPE_display module and 

provides the corresponding parameter values for the displayed waveform. The parameter names 

are simply displayed using the char-to-string display module. In order to display the values in a 

convenient decimal form, the binary input is converted into a binary-coded decimal (BCD) form. 

This is done with the help of the binary-to-bcd module. The main idea behind binary to BCD 

conversion is to store a binary number as a series of hex digits. These hex digits range from zero 

to nine and are represented with four bits per digit. They could be used as decimals even though 

they are stored in a binary form.  

 

There are several ways to implement a binary-to-BCD converter. We selected the double 

dabble algorithm because it is one of the fastest and least computationally intensive methods. 

This method is combinational and is implemented by shifting in a binary number one bit at a 

time into an output register, starting at the most significant bit. Every time a binary bit is shifted 

in, each decimal place is checked. If the hex value is greater than or equal to five, we add three. 

By the time the entire binary number is shifted in, the output register will contain the converted 

BCD number.  

 

In order to display the BCD it is converted to a well formatted string. This is done by 

mapping each four bit hex digit to an eight-bit ASCII equivalent. This string is then formatted to 

accommodate for different number lengths and decimal points, and fed into the char-to-string 

display module. This output is converted to pixel data with the help of a character map and sent 

to the VGA module for display. 

 

This module was mainly tested using the VGA display output. Different length strings 

were used to test the char-to-string display module. The binary to BCD converter was tested 

using a Model Simulator test bench. The test bench included different magnitude binary inputs 

and checked we got the correct corresponding decimal outputs. The implemented algorithm, 

inputs, and outputs were clearly defined which made it relatively simple to execute and debug. 

The converter was tested on several values including the minimum and maximum values. We 

also tested dynamic changes in binary inputs to insure the outputs changed smoothly. To achieve 

that, we created a counter which ran through all possible input and output combinations. This 

was important because our project require accurate and constantly changing measurements. The 

results were satisfying. 

  



Conclusions 

 As seen in the screen shots above, we met all the design goals and created a fully 

functional oscilloscope. The scope is able to sample a voltage waveform input, extract minimum, 

maximum, and average voltages from the waveform, accept user inputs for voltage, time, and the 

trigger level, and plot the scaled waveform and parameters on the display. 

 The input stage initially suffered from noise issues. Much of this sampling noise stemmed 

from ground loops caused by using digital outputs as enable signals, although it was assumed to 

be a software issue which delayed fixing the problem. When these signals were moved to power 

ground, most of the noise was eliminated, but this was unfortunately not done until very late in 

the project. If a more thorough testing of the analog to digital board had been conducted initially, 

significant time could have been saved which was wasted attempting to solve the problem in 

code. Had this time been available, features such as auto-set could have been implemented. 

 In the display stage, initially we were trying to implement a frame buffer memory 

element using the ZBT memory chips, which proved to be difficult due to the timing 

specifications of the memory. It ended up being as effective, and substantially simpler, to have 

no frame buffer and instead continuously read the samples from the BRAM. While the ZBT 

would have been a more thorough solution, for our application the direct-to-VGA display 

synthesis was sufficient. The ZBT effort used up a lot of time which could have been better 

invested in executing the stretch goals.  


