Rubik's Cube Solver

6.111 Final Project Fall 2013

Katharine Daly Jack Hutchinson

Rubik's Cubes are difficult to solve

POSITION THE YELLOW STAGE 6: CORNERS CORRECTLY Holding Your Cube: 1) While holding cube as shown, NOW twist the top (U) face until at least 2 corners are in the right location. 2 corners MUST be in the right location as A, B or A, D or B, C as shown below. If all 4 corners are in the right place then proceed to 2nd step on next page. 1st Step: Position yellow corners correctly While holding your cube as shown above, look at the top (U) face. Place the 2 correct corners in the back A, B or diagonally A, D or B, C across from each other. If Corners A and B are in the right place then to switch C and D, do the sequence below: ŦŦ

If you need to switch diagonal corners like B and C or D and A, then do the sequence once. Then, orient the cube so the 2 correct corners are in the back and do the sequence again.

Congratulations

If your cube looks like this picture you can move to the 2nd Step!

An animated solution would be helpful

The solution is divided into three parts

The cube configuration must be represented consistently

				1	2	3	0			
				4	U 5	6	8			
				7	8	9				
	10	11	12	19	20	21	28	29	30	
	13	L 14	15	22	F 23	24	31	R 32	33	
	16	17	18	25	26	27	34	35	36	
B				37	38	39				
				40	D 41	42	U = Up			
<	U	$\mathbf{\dot{\gamma}}$		43	44	45		F = L =	Front Left	
F	F	2		46	47	48	e.	R =	Right	
				49	B 50	51		B = Back		
	D			52	53	54				

• 6 colors \rightarrow 3 bits • 54 cubelet faces

• 3(54) = 162 bit representation

The rotations must be specified consistently

• 18 rotations -> 5 bits

Step 1: Gather the starting configuration

- Cross image (opposite) displayed on-screen.
- Scroll through cubelet faces using arrow buttons.
- Input colour with correct button.
- When complete system checks to ensure configuration is valid

Step 2: Choose an algorithm

Algorithm Tradeoffs:

- Number of rotations vs. Memory required
- More than 4.3 x 10¹⁹ starting configurations

Decision:

- 7 step solution
- Solve top, then middle, then bottom layer

Step 2: Use a state machine

Step 3: Animate solution

- Display cube in 3D on screen
- Use matrix multiplication to rotate image

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix}$$

- Rotator sub-module to carry out animation
 o sends rotation matrix values to 3D renderer
- 2 buffers one to store calculation results
 - one to display cube
 - switch every frame

Step 3: Rotation Sequence

Step 3: Animation Block Diagram

Timeline

Week of 11/11:

Katharine: Solve top layer of cube

Jack: Complete basic animation module

Week of 11/18:

Katharine: Solve entire cube

Jack: Complete Get_initial_state module

Week of 11/25:

Katharine: Debug cube solving

Jack: Improve animation module & debug Week of 12/2: Debug