Virtual Drum Set

6.111 Final Project Proposal

Rishi Naidu
Luis Fernandez
11/05/2012

Abstract

It is said that air drumming provides the same level of satisfaction to the user as
drumming on a physical drum set does. Knowing this, why should everyone have to
own a drum set to start drumming? For our final project, we have the intention of
implementing a gesture-controlled virtual drum set on the 6.111 FPGA lab kit to
provide a simple and fun way for people who wish to learn or simply enjoy
drumming.

More specifically, the users hand motion would be tracked by a camera system. The
user wears two distinct color gloves to easy the motion tracking. The motion
tracking system will distinguish between hitting motions in different areas in front
of the user and emulate sound of distinct drums based on hitting area. At a basic
level, the implementation would consist of a limited number of drum set elements
and basic playback of sounds of the drums the user plays.

Depending on available time, other features could be added. As an example, a
game/learning mode in which the user loads pre-processed songs into the lab kit
and air drums in tandem to them. Another idea is to provide the user with an
increased number of drum set elements for increased sound options. We expect that
by successfully implementing the basic functionality, the system will be robust
enough so that a wide range of additional features could be completed easily.

Overview

The project is partitioned into roughly two distinct sections: the video module and
the audio module. These two modules interact with each other and as their name
suggest deal with the video and audio parts of the project respectively.

The video module is divided into two separate parts: the gesture detection module
and the collision engine and display module. The gesture detection module is in
charge of using the input stream of the video camera to detect the position and
velocity of the user’s hands and output a specific pair of coordinates corresponding
to the location of the center of mass of the user’s hands. The collision engine and
display module then takes this information and not only displays it on the screen
along with a graphical interface that represents the hands and the drums but also
determines at what point a specific drum is being played. In short, this module is
responsible for generating the graphical interface of the project and is also
responsible with determining what drum is being played at what time by the user.

The audio module is also divided into two separate parts: the game audio module
and the music audio module. The game audio module is responsible for using the
output of the video module to determine what drum sound to play at what time and
correctly output it to the ac97 interface for playback in the lab kit. The music audio
module is responsible for reading a predetermined song from compact flash
memory and also interfacing with the ac97 interface for playback in the lab kit.

Overall, the user would air drum freely and hear playback from the drums he is
virtually playing, along with listening to a song in tandem to his actions. A schematic
of our modules is provided below in Figure 1.

Figure 1. Schematic

Overall Block Diagram
Gesture Detection N Collision Engine + ,| Game Audio
Module Display Module Module '))
Music Audio
Module
Gesture Detection Module
Right Hand
Rizht Hand Center of Mass [co-ordinates
_— Dgt . ~» and Velocity
Camera etection (Right hand) -~ Velocity (y-axis)
Input Camera ’ RGB fo Right Hand
(Staff Verilog) { Left Hand
Left Hand Center Of Mass Co-ordinates
“ Detection ~ and Velocity
Velocity (y-axis)
(Left Hand) = et Hand
v
RGB Value to Part 2

(To Display Image)

Collision Engine + Display Module

4y Right Drum
Right Hand . Control Pulse
Co-ordinates Collision RGB (Image) =
Engine Right Drum
; (Right Hand) | * Select Right Hand
Velocity] :
Right Hand Co-ordinates
(Y'aXIS) —> Right Gain Left Hand -
Co-ordinates Display
Drum Select =
Left Hand :-:efttoﬂl’g‘ |
Co-ordinates Collision ontrol Fulse
i Drum Pulse wi
Engine ‘ §§f§ Etrum
Velocity (Left Hand)
Left Hand
(y-axis) e Left Gain
Game Audio Module
Right Hand ; Game
Signals Sounds
Game Audio » Audio > ac97
LeftHand Controller
Signals
r Y
Address Sound
Memory Control

Music Audio Module

Compact Flash Card

Address T J/Sound

Python + > Music | Audio f— 2097

MATLAB Script Controller

Song ¥

Modules
Video:
Camera to RGB: (Luis)

This module is provided by the 6.111 staff and is only modified to output color video
in RGB rather than the default black and white video.

Inputs: clock, video camera stream
Outputs: RGB bit stream

RGB to HSV: (Luis)

This module is provided by the 6.111 staff and converts the RGB bit stream to the
HSV protocol.

Inputs: clock, RGB bit stream
Outputs: HSV bit stream

Hand Detection: (Luis)

This module is responsible for taking in the HSV stream of bits captured by the
video camera and detecting which pixels correspond to the hand of the user. This is
done by comparing the hue of the incoming pixels to the specific color of the glove
that the user would be wearing. If a pixel is determined to match the color of the
glove, then it is sent to the next module.

In the actual project two of these modules would be instantiated, changing a
parameter in each to specify which color they are looking to match.

Parameters: glove color
Inputs: clock, HSV bit stream
Outputs: matching pixels

Center of mass and velocity: (Luis)

This module is responsible for determining the center of mass of the user’s hand
and the velocity at which this one is moving. We find such center of mass by using
the data from the Hand Detection module and averaging the position of all the
matching pixels. The module also keeps track of the previous location of the center
of mass and then compares the change in location for every frame in order to
calculate the velocity at which the hand is moving.

Inputs: clock, matching pixels
Outputs: co-ordinates of right hand, co-ordinates of left hand, velocity of right hand
(y-axis), velocity of left hand (y-axis)

Collision Engine: (Rishi)

There are two different collision engine modules, one for each hand. This module is
responsible for detecting the hit on the drum and also to determine which drum is
being hit. The hit is detected when a hand crosses a specific threshold level with
some velocity along the vertical plane. Drum sound is selected based on position of
hand along the horizontal plane.

Inputs: clock, co-ordinates of right hand, co-ordinates of left hand, velocity of right
hand (y-axis), velocity of left hand (y-axis)
Outputs: Drum Control Pulse (left, right), Drum Select (left, right), Gain (left, right)

Display: (Rishi)

This module is responsible for displaying the drum set, hand position and image of
user (if required). It will also show the drum being played. These displays will
basically be images on the screen, whose motion will be controlled by the user’s
gesture movements.

Inputs: clock, RGB (image), co-ordinates of right hand, co-ordinates of left hand,
gain, and drum select.
Output: combined RGB stream to VGA display

Audio:
Game Audio: (Rishi)

This module takes in right hand and left hand control signals as input and fetches
the necessary sound from memory control. Sound is then processed based on the
gain (determined by collision engine module) and fed to the audio controller. The
audio controller does necessary sampling and output it to ac97, which plays the
sound through speakers. The audio controller is also responsible for correctly
‘merging’ the game sounds and the music fed into it by the music audio module.

Input: clock, right hand control signals, left hand control signals
Output: Game sound through speakers

Music audio: (Luis)

This module is responsible for reading a song that has been stored in compact flash
in the lab kit (preprocessed by some MATLAB and Python scripts) and correctly
interfacing with the ac97 for playback while playing drums. It feeds the music bit
stream into the game audio module in order for it to be ‘merged’ with the game
sounds.

Inputs: clock, music control signal, compact flash out
Outputs: music bit stream

Schedule

Week of 11/05:

- Start implementing video modules
- Block diagram conference

Week of 11/12:

- Finish implementation of video modules
- Project design presentation

- Checklist conference

- Start implementing audio modules

Week of 11/19:

- Debug and testing of video modules
- Debug audio modules

Week of 11/26:

- Finish implementing audio modules
- Wrap up video modules testing
- Start testing and debug of audio modules

Week of 12/3:
- Debug all modules

- Test whole design
- Prepare final presentation

