Massachusetts Institute of Technology

SELF-PARKING CAR

Fei “Frank” Ni and Kevin Hsiue

12/12/12

6.111 Final Project

Page 1 of 42

Abstract

We believe in the simplicity of day-to-day actions. We want to make what was once
difficult to perform an easy task for the average individual. So for our final project, we aim
to create a car that parallel parks itself. The car will use 4 infrared sensors to provide “eyes”,
which will feed data to an on-board FPGA that will control its motors, using a finite state
machine, to safely guide the car from the moment a driver decides to park to the point when

the car is in the correct position.

(Figure 0): A typical parallel parking challenge

Page 2 of 42

Table Of Contents

1. DESIGN OVERVIEW 4
2. SENSORS (AUTHOR: FRANK NI) 6
2.1 IR SENSORS 6
2.2 ADC0804 CHIP INTERFACING 6
2.3 SENSOR READING MODULE 8
2.4 CALCULATE DISTANCE MODULE 9
3. MOTOR AND CHASSIS (AUTHOR: KEVIN HSIUE) 10
3.1 VEHICLE CHASSIS 10
3.2 PULSE WIDTH MODULATION 11
3.31.293 MOTOR CHIPS 12
4. FINITE STATE MACHINE (AUTHORS: FRANK NI AND KEVIN HSIUE) 14
4.1 STATES 14
5. CONCLUSION (AUTHORS: FRANK NI AND KEVIN HSIUE) 16
APPENDIX A: VERILOG CODE 17
LABKIT.V 17
ADCREAD.V 19
DEBOUNCER.V 21
DISPLAYSEG.V 22
DISPLAY_TB.V 24
DIVIDER.V 25
PWMGEN.V 26
ROLLINGAVE.V 27
AVERAGE_TB.V 28
CLOCKMAKER.V 30
TESTFSM.V 31
THRESHOLDER.V 38
LABKIT.UCF 39

Page 3 of 42

1. Design Overview

As the number of cars increase on the road, it becomes increasingly difficult to find a
parking space. However, the final option of parallel parking is usually a driver’s worst
nightmare because not only of the driver’s own skills but also the possibility of other drivers
bumping into their parked vehicle. As such, people will drive around for half an hour to
avoid facing this challenge. In an attempt to provide more simplicity into people’s lives, our

project will develop a system that enables a car to parallel-park itself.

(Figure 1): The vehicle with the 7-segment display showing the distance reading

Of course, it would be very expensive to attempt this project on a real car, so we will
be using a four-wheel drive miniature vehicle to simulate the mechanics behind a real car as
shown in Figure 1. The parking space itself will be predefined with the car pulled up to the

“car” before the space itself. From there, the automated control system, using inputs from

Page 4 of 42

four IR distance sensors and feedback loops, will direct the vehicle into the desired position

within the parking space.

Overall, this project will demonstrate the ability of an FPGA to host a very precise

control system to navigate a vehicle into a desired position. The entire system will be self-

confined because we’ll be using the Basys FPGA board, which, along with other necessary

circuitry, can be mounted onto the car itself. The motors will be powered by a lab bench

supply and the board will be powered by an on-board battery pack. In addition, the state

machine will be programmed to simulate the driver initially pulling up to the parking space,

and initiating the self-parking procedure.

chip_sel[3:0]

reading_ready i
1

4x voltage[7 .0} :
|

#—{ womea | | | Motor
1
|
1
1
| 5V Supply
heccccccccc e e . T . . - . e = - PP i —— | /
™ ” ! 5V Motor Supply 7
s] | (oo |
1
|
: 5V Supply
calcwheervel [8% aun,_‘cyflo[l 0] motoe_arive(30]
-—%'p molor_pwmi{3.0 ;
| genPwM / LM18283 Wheel Motors
7 7
Control —+
1
axfduty_cycle[7 0]
| T E———_—
XBee

(Figure 2): Block diagram of major and minor modules

Page 5 of 42

2. Sensors (Author: Frank Ni)

The overall sensing block will provide distance data to the control block. It will
involve interfacing with the IR sensors and converting it into a format that is easy to deal

with in the control step.

a

D)
S Ds))
N

(Figure 3): Infrared sensors that measure distances are mounted on the vehicle

2.1 IR Sensots

The IR sensors, purchased from Sparkfun, will be mounted as shown in Figure 3.
Each of these requires a 5 volt supply and outputs a voltage between 0 and 3V. This output
voltage is inversely proportional to the distance seen by the sensors, so we will keep this in
mind when using the reading to control the FSM. The range on these sensors is from 3 cm
to 30 cm, which is great for the distances we will be measuring during a parking procedure.
The sensors are connected uses JST connectors, which are soldered to wires that can be
connected to breadboards. The voltages are connected to the V_IN of the ADC0804s.
These sensors were tested by wiring them up to a voltmeter while changing the distance

measured.

2.2 ADCO0804 chip interfacing

The voltages from the IR sensors will be fed individually into an ADC0804 chip,
which will convert the analog voltage into a digital format that the FPGA can understand.

The problem with these chips is that each of them requires 8 lines of data, which means we

Page 6 of 42

need 32 I/O ports on the FPGA. However, the Basys2 FPGA only has sixteen. In order to
resolve this, we decided to use the chip enable pins on the chips and read each of them
sequentially rather than in parallel. As a result, each of the chips will be wired up in Read-

Only mode as shown below.

Read-Only Interface

[_

RD A/D

RD
DATAIS STARTS NEW

OUTPUT CONVERSION
DS005671-34

(Figure 4): the ADC0804 chip wired in read-only mode and the timing diagram

- Image Courtesy of National Instruments

Instead of the chip select line coming from the FPGA, it is tied to ground so that the
chip is continuously selected. However, when RD* is high, the DATA out is tri-state, which
allows only one A/D to be driving the input pins on the Basys board. As such, all the
DATA portts of the AD0804 are tied together and fed into the Basys board. The control pins
of these chips come from a multiplexor that determines which convertor to read. Using this
MUX allows us to free up one more pin for future purposes (ie. serial communication)
because originally each A/D would require a RD line which in total is 4 pins and now by
using the MUX, we can use 2 pins to select which A/D to read and another pin to send the

correct RD pulses.

Page 7 of 42

The clocks on the ADCs are created using the on-chip clock generator by wiring up
a 10k resistor and a 150 pF capacitor. This generates a 600 kHz clock for the chips

themselves.

2.3 Sensor Reading Module

The readSensor module will cycle through each of the ADCs and generate the
necessary protocol to allow the ADCs enough conversion time to convert the analog
voltages. After collecting all four voltages, it will create a reading_ready signal to let the next
module know that it has finished collecting. In addition this module filters the sensor
readings of any possible noise.

A clock divider is used to generate a 300 kHz clock. Then this module start counting
to 100, and when the count hits 0, 1, 2, and 3, the module sets ¢hip_read to low and selects
each ADC respectively. Waiting for 100 counts is to allow the ADC enough time to convert
the analog signal to a digital signal. The conversion time according to the data sheets is 114
microseconds at 600 kHz. In the case of this module, 100 cycles at 300 kHz is roughly 300
microseconds which is plenty for each of the ADCs to convert. Upon obtaining all the
readings, the module then creates a dirty_RR, which lets other modules know that the un-
cleaned sensor readings are ready.

A helper module is used to filter the sensor reading. The sharp sensors introduce a
lot of noise into the system, which causes the reading to occasionally spike as well as change
rapidly. In order to remove the noise, this helper module implements a rolling average with a
window of 8 to filter out the noise. This filter creates a window on the dirty sensor readings,
and takes the average of the readings within that window and outputs the averaged reading.
When a new reading is ready, the window is shifted by 1 and a new average is outputted. In
addition, this module makes sure that the sensor reading is stable for 0.04 seconds before
considering it a real reading which removes any sudden jumps in reading due to voltage
spikes or noise. We chose 0.04 seconds because we know the motors are relatively slow,
which means the vehicle won’t be able to move far in 0.04 seconds so the sensor readings
are still fast enough to detect any sudden change in contour of the surfaces.

When the readings have been filtered, the reading ready signal is asserted and the

readings from each of the 4 sensors are held on the output buses of the sensor-reading

Page 8 of 42

module. These readings are fed into the next module as well as a 7-segment display module
that converts the high nibble and display it onto one of four displays on the Basys board.
This allows us to visually see what the sensors are reading when they are in a certain state.
This block is tested along with the ADC chips first on the lab kit by outputting the
readings onto the hex display. Then it was tested on the Basys board using the 7-segment

display.

2.4 Calculate Distance Module

This module will take each of the four readings and do the necessary calculations to
invert the voltages to obtain the actual distance between the sensor and the obstacle. The
distances are then passed onto the FSM module of the control block. However, taking the
inverse of the distances decreases the accuracy of the sensor readings. This is fine for further
distances, but for closer distances, more accuracy is needed for precision control. As a result
this module was not implemented and the sensor inputs are used directly to control the

vehicle.

Page 9 of 42

3. Motor and Chassis (Author: Kevin Hsiue)

3.1 Vehicle chassis

The chassis used in this project was the DFRobot 4WD Arduino Mobile Platform,
which was easily accessible and straightforward to construct. The chassis itself allowed had
abundant room for various expansions, which we used for adding two prototype
breadboards, the Basys2 FPGA, four IR Sharp sensors, as well as the battery supply.

One interesting issue that we had to confront was how to accurately simulate a car’s
behavior given a chassis with four independently operated DC motors and wheels. This
project required a chassis that was capable of faithfully emulating the rack-and-pinion
steering of an actual car. However, most robotics platforms do not replicate this behavior,
instead often independently driving each DC motor on the chassis.

Therefore, in order to accurately portray the steering of the car, software was used to
program the behavior of the model car to drive in the correct behavior, as opposed to being
capable of rotating in place like a tank. We did purchase a rack-and-pinion style turning
chassis, the i-Racer from SparkFun Electronics, but ultimately decided that the DFRobot
chassis was more reliable. Given the demanding schedule, we justified the decision to use a

4WD chassis due to its increased reliability and more robust platform capabilities.

)

(Figure 5): 4WD Platform before assembly

Page 10 of 42

Assembling the chassis was very straightforward. The kit came with no instructions
but was very intuitive with how to assemble the DC motors and solder the appropriate
connections. Once the base of the chassis was assembled, the platform was installed by
adding the larger spacers to suspend the upper level platform over the base of the chassis.
We attached the sensors using electrical tape to the front, right side, and back. The two
breadboards with the circuitry were propped on their sides on top of the platform, and the

Basys2 FPGA was placed in the middle of the two breadboards.

(Figure 6): 4WD Platform after assembly

3.2 Pulse Width Modulation

Before discussing the hardware used to drive the chassis motors, it is necessary to
discuss how this project used pulse width modulation. Pulse width modulation is a technique
used to control electrical devices and is controlled by a square wave cycle that has a variable
‘on’ period, or duty cycle. By varying the duty cycle at the appropriate frequency unique to
the particular electrical device, an average value based on the frequency can be obtained,
correlating to that percentage of the supply voltage. For example, if a pulse width has a fifty
percent duty cycle with a supply voltage of 5 volts, then the output voltage would be 2.5

volts.

Page 11 of 42

..... | | I

50% Duty Cycle

(Figure 7): Varying pulse width modulation duty cycles

— Image courtesy of www.best-microcontroller-projects.com

In our project, a specific Verilog module, pwmgen.v, was written to generate varying
duty cycles. The Basys2 has an onboard clock of 50 MHz, therefore we had to use the
divider.v module to obtain the necessary frequency of 5 kHz required by the 1.293 motor
driver chip.

The pulse width modulation was achieved by a state machine that took an input
ranging from 0 to 10. The state machine would then count to that amount based on the
clock frequency with a high output, then change to an output of low for whatever ten minus
that input value. This would successfully achieve a varying duty cycle. The high and low
outputs were implemented as states, and the span of time in each state was determined by a
count variable. This simple state machine would check if the count had expired in that state,
then automatically switch to the other state and begin the appropriate count. Given this
interface, the project could simply provide an input ranging from 0 to 10 and produce a

pulse width modulated signal of that appropriate percentage duty cycle.

3.3 L293 Motor Chips

The motor driver chip used in this project was the 1.293. The 1.293 is a quadruple
high-current half-H driver; it is designed for bidirectional drive currents up to 1 amp for

voltages ranging from 4.5 volts to 36 volts. The chip is TTL compatible and therefore is deal

Page 12 of 42

for this project; we can supply a signal voltage, or specific pulse width, to create a certain

duty cycle and control the amount of the supply voltage.

+5V
8 16|

V(+) +5V
2
PINT O DIRA 1 \ MA 1 3
M1
7
PIN2 O DIRB 1 MB 1 6
] +
PINO O ENABLE 1 I
Motor
battery
10 11
PIN4 O DIRA 2 MA 2 536V
M2
15 14
PIN5 O DIRB 2 MB 2
9
PIN3 O—[ENABLE2 L293
GND GND

4 5| 12| 13
GND O

(Figure 8): The L.293 schematic

— Image conrtesy of www.me.umn.edn

While the chip is often used for driving a motor in both directions by reversing the
polarity (signal and ground) on either input, as shown in the schematic above, we opted to
ground one input of each motor. This was due to the constraint of the FPGA input/output
limit; we had to frugal with the outputs and decided to only drive on set of wheels (front or
back) in one direction. While this did save four input/output ports, it also limited the
capability of the vehicle since now only two wheels are spinning for each direction.

From there, the 1.293 took four unique inputs and supplied the DC motors with a driving
signal. Therefore, we could independently control each motor and drive it at a different

speed based on the duty cycle of the pulse width modulation.

Page 13 of 42

4. Finite State Machine (Authors: Frank Ni and Kevin Hsiue)

The finite state machine (FSM) is divided into 10 states; each of which correlates to a
step that is taken in parallel parking performed by human drivers. This module takes the four
clean sensor readings as input and then outputs a duty cycle for each of the wheels to
control their speeds. In order to keep track of which state the vehicle is in, the states are
displayed on the LEDs.

This module waits for a second after the start/reset button is pushed. This allows

time for the sensors to initialize so that the state machine doesn’t begin in an undesired state.

4.1 States

Prestart_stepl:

This is the first step taken before starting the parking procedure. We are simulating
the point in which the driver decided that he/she wants to park and starts toward the curb
tull of cars diagonally. If the vehicle is close enough to the parked cars, which is determined

by the side_front sensor reading, the FSM transitions to the “prestart_step2” state.

Prestart_step2:

In this state, the car straightens itself out so that it is parallel to the row of parked
cars. The vehicle continuously turns left until both side sensors have the same reading,
which would indicate that the car is parallel to the parked cars. At this point, the state

machine begins the parking procedures by transitions to the “start” state.

Start:

Once the procedure enters the start state, the vehicle drives forward and looks for a
parking spot that is large enough for the vehicle to fit. This is indicated by the side sensors
both reading a far distance reading. If one sensor reads a far reading, but the other one does
that, then the space that was detected is too small for the car to fit. When a suitable spot is

detected, the FSM is transitioned to the “middle” state.

Middle:

Page 14 of 42

This state determines when the open spot has ended and when the vehicle has pulled
up to the parked car in front of the open space. In this state, the car continues to drive
forward. When the side sensors both register a “close” reading, then the car knows that it is

next to the car in front of the space. At this point, the car enters the “back_up” state.

Back_up:

In this state, the car backs up straight until the back sensor is been reading far for at
least 0.1 seconds. Then it calculates how far the side_front sensor is from the car in front of
the space. This information is used to determine how much the car should turn inward in
the next state before it is angled correctly into the open spot. Once 0.1 seconds has passed,

the FSM transitions to the “turn_in” state.

Turn_in:

The vehicle at this point should begin turning into the open spot by driving the left
side of the vehicle faster than the right side while moving the wheels in reverse. Similar to
the back_up state, if the side_front sensor is a certain threshold away from the car in front

of the open spot, the vehicle transitions to the “back_in" state.

Back_in:

In this state, the car starts correcting its angle into the spot by driving the right side
wheel faster than the left side wheel in proportion to how close it is to the car behind it
using the back sensor. Once the back sensor registers a “close” reading to the car behind it,

the state machine enters the “straight” state.

Straight:
The car corrects its position by wiggling itself until the side sensors both read the
same reading, which indicates that the car is parallel to the curb. At this point the car enters

the “end” state.

Eund:
In the “end” state the car drives forward until it is close to the car in front of it. Then

the car stops and it is considered parked.

Page 15 of 42

5. Conclusion (Authors: Frank Ni and Kevin Hsiue)

The project was ultimately successful; we were able to build the model car, interface
between sensors and motor drivers, and in the end, program parallel-parking behavior.
However, there were several challenges that arose during the process.

The largest problem that came up during the project was the reliability of the chassis
itself. It is a common problem in robotics for the physical plant to not be cooperative; we
experienced this issue to its fullest extent. The tires of the chassis slipped on the tile surface
of the lab floor, and even would slip on a piece of paper that we used as a more tactile
surface. This made it extremely difficult to consistently obtain experimental results and
appropriately change our algorithm to deal with the issue. We ended up using an aluminum
weight to push the model car down, which helped to a certain extent.

The Verilog code even took this unreliable behavior into account and in many
instances depended on this drag of the tires to turn appropriately. Again, this variability
resulted in the difficulty of pinpointing the solution in both hardware and software.
Regardless, we found the balance between the unreliable physical world and definite
software world and produced a working result.

Another issue that arose was power supply. The Basys2 FPGA took three AA
batteries which were powered on board. However, the motor supply consumed a huge
amount of power. Using a power supply train of six AA batteries also allowed for unreliable
behavior; the model car would behave differently as the voltage supply decreased. Therefore,
we chose to tether the model car to the lab voltage supply in order to guarantee repeatable
results.

While the previous two challenges did inhibit our experimental results to a certain
extent, we were ultimately successful and being able to see somewhat repeatable parallel
parking behavior in the model car. With so many factors that could contribute to incorrect

behavior, we were satisfied with the end result of this project.

Page 16 of 42

Appendix A: Verilog Code

Labkit.v

module labkit (clk_50mhz, seg, dp, Led, digit, sw, btn, user1, user2);
input clk_50mhz;

output [6:0] seg;

output dp;

output [7:0] Led;

output [3:0] digit;

input [7:0] sw;
input [3:0] btn;

inout [7:0] user1, user2;

%//
// 1/0 Assignments

/!

171001707077 17077771717717771771717717171771717717171771117117171777

//Use these if you want to use outputs to display stuff
//Comment them out if you need to use them

//assign seg=7'b1111111;

assign dp = 1'b1;

assign Led[7:4] = 4'd0;

//these are used to select which LED segment display is used
//1 think it's 0 to select the display

//assign digit = 4'b0000;

//io ports

//assign userl = 8'hz;

assign user2[3] = 1'hz;

//use btn[3:0] and sw[7:0] for inputs

wire reset;

wire clk600;

wire clk_seg;

wire clkmotor;

wire [7:0] display1, display2, display3, display4;

debouncer btn_r(.reset(0), .clock(clk_50mhz), .noisy(btn[0]), .clean(reset));
clockMaker #(.DIV(180)) clk_600(.clock(clk_50mhz), .reset(reset), .div_clk(clk600));
clockMaker #(.DIV(10000)) clkseg(.clock(clk_50mhz), .reset(reset), .div_clk(clk_seg));

Page 17 of 42

clockMaker #(.DIV(100000)) clk_motor(.clock(clk_50mhz), .reset(reset),
.div_clk(clkmotor));

displaySeg disp1(.display1(display1), .display2(display2), .display3(display3),
.display4(display4),

.clk(clk_seg), .reset(reset), .seg(seg),
digit(digit));

wire [7:0] distF, distS1, distS2, distB;
wire reading_ready;

adcRead adc1(.reset(reset), .clock(clk600), .value(user1[7:0]), .v_out0(distF),
v_outl1(distS1), .v_out2(distS2), .v_out3(distB),
.chip_read(user2[0]), .chip_sel(user2[2:1]),
reading_ready(reading_ready));

wire [3:0] dc_BL, dc_BR, dc_FL, dc_FR;
wire [7:0] clean_dF, clean_dS1, clean_dS2, clean_dB;

assign display1 = clean_dF;
assign display?2 = clean_dS1;
assign display3 = clean_dS2;
assign display4 = clean_dB;

testFSM FSM1(.distF(distF), .distS1(distS1), .distS2(distS2), .distB(distB),
.clk(clk_50mhz), .reset(reset),
reading_ready(reading_ready),
.dc_BL(dc_BL), .dc_BR(dc_BR), .dc_FL(dc_FL), .dc_FR(dc_FR),
.st(Led[3:0]),
.clean_dF(clean_dF), .clean_dS1(clean_dS1),
.clean_dS2(clean_dS2), .clean_dB(clean_dB));
pwm_gen right_front(.clk(clkmotor), .duty_cycle(dc_FR), .reset(reset), .pwm/(user2[4]));
pwm_gen left_front(.clk(clkmotor), .duty_cycle(dc_FL), .reset(reset), .pwm(user2[5]));
pwm_gen right_back(.clk(clkmotor), .duty_cycle(dc_BR), .reset(reset), .pwm(user2[6]));
pwm_gen left_back(.clk(clkmotor), .duty_cycle(dc_BL), .reset(reset), .pwm(user2[7]));

//pwm_gen right_back(.clk(clkmotor), .duty_cycle(10), .reset(reset), .pwm(user2[6]));
//pwm_gen left_back(.clk(clkmotor), .duty_cycle(0), .reset(reset), .pwm(user2[7]));

//assign user2[5:4] = 0;

endmodule

Page 18 of 42

adcRead.v

module adcRead(input reset, clock,

input [7:0] value,
output [7:0] v_out0, v_outl, v_out2, v_out3,
output reg chip_read,
output reg [1:0] chip_sel,
output reading_ready);

//clock will be 300Khz

wire ready;

reg [7:0] count = 0;

wire [7:0] vout0, voutl, vout2, vout3;

assign vout0[7:0] = ((chip_sel == 2'b00)&(~chip_read)) ? value[7:0]: vout0[7:0];
assign vout1[7:0] = ((chip_sel == 2'b01)&(~chip_read)) ? value[7:0]: vout1[7:0];
assign vout2[7:0] = ((chip_sel == 2'b10)&(~chip_read)) ? value[7:0]: vout2[7:0];
assign vout3[7:0] = ((chip_sel == 2'b11)&(~chip_read)) ? value[7:0]: vout3[7:0];

assign ready = ((chip_sel == 2'b11)&(~chip_read)) ? 1: 0;
wire rr0, rrl, rr2, rr3;

rollingAve v0(.v_in(vout0), .clk(clock), .ready(ready),
v_out(v_out0), .reading_ready(rr0));

rollingAve v1(.v_in(voutl), .clk(clock), .ready(ready),
v_out(v_outl), .reading_ready(rr1));

rollingAve v2(.v_in(vout2), .clk(clock), .ready(ready),
v_out(v_out2), .reading_ready(rr2));

rollingAve v3(.v_in(vout3), .clk(clock), .ready(ready),
v_out(v_out3), .reading_ready(rr3));

assign reading_ready = rr0 & rrl & rr2 & rr3;

always @(posedge clock) begin
if (reset) begin
count <= 8'd0;
chip_read <=1;
chip_sel <= 2'b00;
end
else begin
if (count == 8'd100)
begin
count <= count + 8'd1;
chip_read <= 0;
chip_sel <= 2'b00;
end
else if (count ==8'd101)
begin
count <= count + 8'd1;

Page 19 of 42

end

else if (count =

begin

end

else if (count =

begin

end
else
begin
end
end
end
endmodule

chip_read <= 0;
chip_sel <=2'b01;

=8'd102)

count <= count + 8'd1;
chip_read <= 0;
chip_sel <= 2'b10;

=8'd103)

count <= 0;
chip_read <= 0;
chip_sel <=2'b11;

count <= count + 8'd1;
chip_read <=1;

Page 20 of 42

Debouncer.v

module debouncer (

input wire reset, clock, noisy,
output reg clean

);
reg [19:0] count;
reg new;

always @(posedge clock)
if (reset) begin
count <= 0;
new <= noisy;
clean <= noisy;
end
else if (noisy != new) begin

// noisy input changed, restart the .01 sec clock

new <= noisy;
count <= 0;
end
else if (count == 500000)

// noisy input stable for .01 secs, pass it along!

clean <= new;
else

// waiting for .01 sec to pass

count <= count+1;
endmodule

Page 21 of 42

DisplaySeg.v

module displaySeg(input [7:0] display1, display2, display3, display4,
input clk, input reset,
output [6:0] seg, output reg [3:0] digit);

reg [1:0] count = 2'd0;
reg [3:0] switch = 2'd0;
reg [6:0] temp = 7'd0;
assign seg = temp;

always @(posedge clk) begin
count <= count + 2'd1;

case (count[1:0])

2'b00: begin
switch[3:0] = display1[7:4];
digit[3:0] =4'b1110;
end
2'b01: begin
switch[3:0] = display2[7:4];
digit[3:0] =4'b1101;
end
2'b10: begin
switch[3:0] = display3[7:4];
digit[3:0] =4'b1011;
end
2'b11: begin
switch[3:0] = display4[7:4];
digit[3:0] =4'b0111;
end
endcase

case (switch[3:0])
4'b0000: temp
4'b0001: temp
4'b0010: temp
4'b0011: temp

= 7'b1000000; //0
=7'b1111001; //1
= 7'b0100100; //2
= 7'b0110000; //3

4'b0100: temp
4'b0101: temp
4'b0110: temp
4'b0111: temp

=7'b0011001; //4
= 7'b0010010; //5
= 7'b0000010; //6
=7'b1111000; //7

4'b1000: temp
4'b1001: temp
4'b1010: temp
4'b1011: temp

= 7'b0000000; //8
= 7'b0010000; //9
=7'b000_1000; //a
=7'b000_0011; //b

Page 22 of 42

4'b1100: temp[6:0] = 7'b100_0111; //c

4'b1101: temp[6:0] = 7'b100_0001; //d

4'b1110: temp[6:0] = 7'b000_0110; //e

4'b1111: temp[6:0] = 7'b000_1110; //f

default: temp[6:0] =7'b111_1111; //blank
endcase

end

endmodule

Page 23 of 42

Display_tb.v

module display_tb;

// Inputs

reg [7:0] display1;

reg [7:0] display2;

reg [7:0] display3;

reg [7:0] display4;

reg clk;

reg reset;

// Outputs

wire [6:0] seg;

wire [3:0] digit;

// Instantiate the Unit Under Test (UUT)

displaySeg uut (
.display1(display1),
.display2(display2),
.display3(display3),
.display4(display4),
.clk(clk),
reset(reset),
.seg(seg),
digit(digit)

);

always #1 clk = ~clk;

initial begin
// Initialize Inputs
display1 = 0;
display2 = 0;
display3 = 0;
display4 = 0;
clk = 0;
reset = 0;

// Wait 100 ns for global reset to finish
#100;

reset=1;

#2;

reset = 0;

display1 = 8'd10;

display2 = 8'd20;

display3 = 8'd30;

display4 = 8'd40;

// Add stimulus here

end
endmodule

Page 24 of 42

Divider.v
module divider #(parameter DELAY=27000000) // 1 sec with a 27Mhz clock
(input clock, reset, output reg one_hz_enable);
reg [24:0] count;

always @(posedge clock) begin
if (reset) begin

count <= 0;
one_hz_enable <= 0;
end

else if (count == DELAY) begin
one_hz_enable <=1;
count <= 0;
end
else begin
count <= count+1;
one_hz_enable <= 0;
end
end

endmodule

Page 25 of 42

PWMgen.v

module pwm_gen(
input clk,
input duty_cycle,
input reset,
output reg pwm

)
// State parameters
parameter HIGH = 1;
parameter LOW =0;
// Registers
reg state = 1;
reg high_count = duty_cycle;
reg low_count = (10 - duty_cycle);
always @ (posedge clk) begin
case(state)
HIGH: begin
pwm <= HIGH;
if (count == high_count) begin
count <= 0;
state <= LOW;
end
else begin
count = count + 1;
end
end
LOW: begin
pwm <= LOW;
if (count == low_count) begin
count <= 0;
state <= HIGH;
end
else begin
count = count + 1;
end
end
default: state <= HIGH;
endcase
end
endmodule

Page 26 of 42

RollingAve.v

module rollingAve(input [7:0] v_in,
input clk, input ready,
output [7:0] v_out,
output reg reading_ready);

reg [7:0] window [7:0];
wire [10:0] sum;

wire [10:0] average;
reg [2:0] offset = 3'd0;
reg [2:0] k;

//reg [2:0] index;

initial
begin
for(k=0;k<7;k=k+1)
begin
window[k] = 8'd0;
end
window[7] = 8'd0;
end

//wire [2:0] addr;
//assign addr = offset+index;

assign sum = window[0] + window|[1] + window[2] + window[3] + window[4] +
window([5] + window[6] + window[7];

assign average = sum/8;

assign v_out = average[7:0];

always @(posedge clk) begin
if (ready) begin
offset <= offset + 1;
window/[offset] <= v_in;
reading_ready <= 1;
end
else
reading_ready <= 0;
end
endmodule

Page 27 of 42

Average_tb.v
module average_tb;

// Inputs
reg [7:0] v_in;
reg clk;
reg ready;
// Outputs
wire [7:0] v_out;
wire reading_ready;
// Instantiate the Unit Under Test (UUT)
rollingAve uut (
v_in(v_in),
.clk(clk),
ready(ready),
.v_out(v_out),
reading_ready(reading_ready)
);
always #1 clk = Iclk;
initial begin
// Initialize Inputs

v_in = 0;
clk = 0;
ready = 0;
// Wait 100 ns for global reset to finish
#100;
v_in = 100;
ready = 1;
#2;
ready = 0;
#10;
v_in = 200;
ready = 1;
#2;

ready = 0;
#10;
v_in = 50;
ready = 1;
#2;

ready = 0;
#10;
v_in = 150;
ready = 1;
#2;

ready = 0;

Page 28 of 42

ready = 0;

ready = 0;

ready = 0;

ready = 0;

ready = 0;

ready = 0;

ready = 0;

end
endmodule

#10;

v_in = 100;
ready = 1;
#2;

#10;

v_in = 130;
ready = 1;
#2;

#10;

v_in = 120;
ready = 1;
#2;

#10;

v_in = 150;
ready = 1;
#2;

#10;

v_in = 200;
ready = 1;
#2;

#10;

v_in = 30;
ready = 1;
#2;

#10;

v_in = 80;
ready = 1;
#2;

#10;

// Add stimulus here

Page 29 of 42

ClockMaker.v

module clockMaker #(parameter DIV = 2) //choose what to div 27mhz clock by

//default if 27mhz/2
(input clock, reset, output div_clk);

//wire real_div[7:0];

//assign real_div = DIV/2;

reg d_clk = 0;

assign div_clk = d_clk;

wire new_clk_en;

divider #(.DELAY(DIV/2)) new_clk(.clock(clock), .reset(reset),
.one_hz_enable(new_clk_en));

always @(posedge new_clk_en) begin

d_clk <= ~d_clk;
end

endmodule

Page 30 of 42

TestFSM.v

module testFSM(input [7:0] distF, distS1, distS2, distB,
input clk, start, reading_ready,
output reg [3:0] dc_BL, dc_BR, dc_FL, dc_FR,
output [6:0] st,
output [7:0] clean_dF, clean_dS1, clean_dS2,
clean_dB);

wire [1:0] front_state, side1_state, side2_state, back_state;
wire [7:0] clean_distF, clean_distS1, clean_distS2, clean_distB;
reg [6:0] state =9; //9 = prestart

reg startl = 0;

reg start2 = 0;

thresholder fr_st(.distance(distF), .clk(clk), .state(front_state),
.clean_d(clean_distF));

thresholder s1_st(.distance(distS1), .clk(clk), .state(side1_state),
.clean_d(clean_distS1));

thresholder s2_st(.distance(distS2), .clk(clk), .state(side2_state),
.clean_d(clean_distS2));

thresholder bk_st(.distance(distB), .clk(clk), .state(back_state),
.clean_d(clean_distB));

parameter START = 0;
parameter MIDDLE = 1;
//parameter END = 2;
parameter BACKUP = 2;
parameter TURNIN = 3;
parameter BACKIN = 4;
parameter CORRECT = 5;
parameter STRAIGHT = 6;
parameter WIGGLE = 7;
parameter END = 8;
parameter PRESTART1 = 9;
parameter PRESTART2 = 10;

assign st = state;

assign clean_dF = clean_distF;
assign clean_dS1 = clean_distS1;
assign clean_dS2 = clean_distS2;
assign clean_dB = clean_distB;

reg [26:0] count = 0;
reg startF = 0;
reg [7:0] temp = 0;

always @(posedge clk) begin
//wait 0.1 seconds before starting FSM
if (start) begin

Page 31 of 42

startF <= ~startF;
startl <= 0;
start2 <= 0;
state <= PRESTART1;
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;

end

if (reading_ready & startF) startl <= 1;
if (start1) count <= count + 1;
if (count ==50000000) start2 <= 1;

if (start2) begin
case(state)

PRESTART1: begin
dc_BL <=4'd7;
dc_BR <=4'd7;
dc_FL <=4'd0;
dc_FR <=4'd0;
if (clean_distS1 >= 8'h50) begin

state <= PRESTARTZ;

end

end

PRESTART?Z: begin
dc_BL <=4'd1;
dc_BR <=4'd10;
dc_FL <=4'd0;
dc_FR <=4'd0;
if (clean_distS1 == clean_distS2) begin
state <= START;
end
end

START: begin

if (sidel_state < 2 || side2_state < 2) begin
dc_BL <=4'd7;
dc_BR <=4'd7;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= START;

end
else if (sidel_state == 2 || side2_state == 2)
begin

dc_BL <=4'd7;
dc_BR <=4'd7;

Page 32 of 42

dc_FL <=4'd0;
dc_FR <=4'd0;
state <= MIDDLE;
end
end

MIDDLE: begin
if (side1_state == 2 || side2_state == 2) begin
dc_BL <=4'd7;
dc_BR <=4'd7;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= MIDDLE;
end

else if (sidel_state < 2 && side2_state <2)
begin
dc_BL <=4'd7;
dc_BR <=4'd7;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= BACKUP;
end
end

BACKUP: begin
if (side1_state < 2 && side2_state <2) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd10;
dc_FR <=4'd10;
count <= 0;
end
else if (side2_state == 2) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd10;
dc_FR <=4'd10;
temp <= clean_distS1 - 8'd28;
if (count ==1000000) state <=
TURNIN;
end
end

/*TURNIN: begin
if (back_state > 0) begin
dc_BL <=4'd0;
dc_BR <=4'd4;
dc_FL <=4'd10;
dc_FR <=4'd1;

Page 33 of 42

end

else if (back_state == 0) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= END;

end

end*/

TURNIN: begin
//if ((clean_distS1-clean_distS2 > 8'h28) &
(clean_distS2 - clean_distS1 > 8'h28)) begin

if ((clean_distS1 > temp)) begin
dc_BL <=4'd0;
dc_BR <=4'd1;
dc_FL <=4'd10;
dc_FR <=4'd2;

end

else begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= BACKIN;

end

end

BACKIN: begin
if ((clean_distB < 8'h60) & (side2_state > 0))
begin

dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd2;
dc_FR <=4'd10;

end

else begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= CORRECT;

end

end

CORRECT: begin

Page 34 of 42

//if ((clean_distS1-clean_distS2 > 8'h04) &
(clean_distS2 - clean_distS1 > 8'h04)) begin
if (back_state > 0) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd1;
dc_FR <=4'd10;
end

else begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= STRAIGHT;

end

end

STRAIGHT: begin
//if ((clean_distS1-clean_distS2 > 8'h01) &
(clean_distS2 - clean_distS1 > 8'h01)) begin
//if ((clean_distS1 < 8'h40) | (clean_distS2 <
8'h40)) begin
if ((clean_distS1-clean_distS2 > 8'h04) &
(clean_distS2 - clean_distS1 > 8'h01)) begin
dc_BL <=4'd10;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd8;
end

else begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
state <= END;

end

end

WIGGLE: begin
if (back_state == 0) begin
if (clean_distS1 > clean_distS2) begin

dc_BL <=4'd1;
dc_BR <=
4'd10;//(clean_distS1 - clean_distS2)*3;
dc_FL <=4'd1;
dc_FR <=4'd0;
end
else begin

Page 35 of 42

dc_BL <=4'd10;
dc_BR <=4'd1;
dc_FL <=4'd0;
dc_FR <=4'd1;
end
end

else if (front_state == 0) begin
if (clean_distS1 > clean_distS2) begin
dc_FL <=4'd9;
dc_FR <=4'd1;
dc_BL <=4'd0;
dc_BR <=4'd0;
end
else begin
dc_FL <=4'd1;
dc_FR <=4'd9; //(clean_distS2
- clean_distS1)*3;
dc_BL <=4'd0;
dc_BR <=4'd0;
end
end

else if ((clean_distS1 > 8'ha0) | (clean_distS2
> 8'ha0)) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
//state <= END;
end

else begin
dc_BL <=dc_BL;
dc_BR <=dc_BR;
dc_FL <= dc_FL;
dc_FR <= dc_FR;
end
end

END: begin

if (front_state == 0) begin
dc_BL <=4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;

end

else begin
dc_BL <=4'd10;
dc_BR <=4'd2;

Page 36 of 42

dc_FL <=4'd0;
dc_FR <=4'd0;
end
end

default: begin
dc_BL <= 4'd0;
dc_BR <=4'd0;
dc_FL <=4'd0;
dc_FR <=4'd0;
end
endcase
end

end
endmodule

Page 37 of 42

Thresholder.v

module thresholder(input [7:0] distance,
input clk,
output [1:0] state,
output [7:0] clean_d);

//0 =close, 1 = medium, 2 = far, 3 = error
parameter T1 = 8'hAO;
parameter T2 = 8'h54;

reg [1:0] st = 2'd3;
reg [22:0] count;
reg [7:0] clean_dist;
reg [7:0] new;

assign state = st;
assign clean_d = clean_dist;

always @(posedge clk) begin

if (new[7:4] != distance[7:4]) begin
new <= distance;
count <= 0;

end

else if (count == 2000000)
clean_dist <= new;

else
count <= count +1;

if (clean_dist >=T1) st <= 2'd0;
else if ((clean_dist < T1) && (clean_dist >= T2)) st <= 2'd1;
else st <= 2'd2;
end
endmodule

Page 38 of 42

Labkit.ucf

This file is a general .ucf for Basys2 rev C board

To use it in a project:

- remove or comment the lines corresponding to unused pins
- rename the used signals according to the project

clock pin for Basys2 Board
NET "clk_50mhz" LOC = "B8"; # Bank = 0, Signal name = MCLK
NET "clk_50mhz" CLOCK_DEDICATED_ROUTE = FALSE;

Pin assignment for DispCtl

Connected to Basys2 onBoard 7seg display

NET "seg<0>" LOC = "L14"; # Bank = 1, Signal name = CA
NET "seg<1>"LOC = "H12"; # Bank = 1, Signal name = CB
NET "seg<2>"LOC = "N14"; # Bank = 1, Signal name = CC
NET "seg<3>"LOC = "N11"; # Bank = 2, Signal name = CD
NET "seg<4>"LOC = "P12"; # Bank = 2, Signal name = CE
NET "seg<5>" LOC = "L13"; # Bank = 1, Signal name = CF
NET "seg<6>"LOC = "M12"; # Bank = 1, Signal name = CG
NET "dp" LOC = "N13"; # Bank = 1, Signal name = DP

#turns on each digit

NET 'digit<3>' LOC = 'F12';
NET 'digit<2>' LOC = 'J12";
NET 'digit<1>'LOC = 'M13;
NET 'digit<0>' LOC = 'K14';

Pin assignment for LEDs

NET "Led<7>"LOC = "G1" ; # Bank = 3, Signal name = LD7
NET "Led<6>" LOC = "P4" ; # Bank = 2, Signal name = LD6
NET "Led<5>" LOC = "N4"; # Bank = 2, Signal name = LD5
NET "Led<4>"LOC = "N5"; # Bank = 2, Signal name = LD4
NET "Led<3>"LOC = "P6" ; # Bank = 2, Signal name = LD3
NET "Led<2>"LOC = "P7" ; # Bank = 3, Signal name = LD2
NET "Led<1>"LOC ="M11"; # Bank = 2, Signal name = LD1
NET "Led<0>"LOC = "M5"; # Bank = 2, Signal name = LD0O

Pin assignment for SWs

NET "sw<7>"LOC = "N3"; # Bank = 2, Signal name = SW7
NET "sw<6>" LOC = "E2"; # Bank = 3, Signal name = SW6
NET "sw<5>" LOC = "F3"; # Bank = 3, Signal name = SW5
NET "sw<4>"LOC = "G3"; # Bank = 3, Signal name = SW4
NET "sw<3>"LOC = "B4"; # Bank = 3, Signal name = SW3

Page 39 of 42

NET "sw<2>" LOC = "K3"; # Bank = 3, Signal name = SW2
NET "sw<1>"LOC = "L3"; # Bank = 3, Signal name = SW1
NET "sw<0>"LOC = "P11"; # Bank = 2, Signal name = SW0

NET "btn<3>" LOC ="A7"; # Bank =1, Signal name = BTN3
NET "btn<2>" LOC = "M4"; # Bank = 0, Signal name = BTN2
NET "btn<1>" LOC ="C11"; # Bank = 2, Signal name = BTN1
NET "btn<0>" LOC ="G12"; # Bank = 0, Signal name = BTNO

#10 Ports:

NET "user1<0>" LOC ="B2" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name = JA1
NET "user1<1>"LOC ="A3" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JA2
NET "user1<2>"LOC ="]3" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =JA3
NET "user1<3>" LOC ="B5" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JA4

NET "user1<4>"LOC="C6" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]JB1
NET "user1<5>"LOC ="B6" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name = JB2
NET "user1<6>" LOC ="C5" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]B3
NET "user1<7>"LOC ="B7" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JB4

NET "user2<0>"LOC ="A9" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JC1
NET "user2<1>"LOC ="B9" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name =]JC2
NET "user2<2>"LOC ="A10" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]JC3
NET "user2<3>"LOC ="C9" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JC4

NET "user2<4>"LOC ="C12" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JD1
NET "user2<5>"LOC ="A13" | DRIVE = 2 | PULLUP ; # Bank = 2, Signal name = JD2
NET "user2<6>"LOC ="C13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]D3
NET "user2<7>"LOC ="D12" | DRIVE =2 | PULLUP ; # Bank = 2, Signal name =]JD4

HA#AHHHAHHHHHHAHBH AR HBH A HHH SRR R
H#it#

#UNUSED STUFF:
HA#AHHHAHHHHHHAHBH AR HBH A HHH SRR R
H#it#

Pin assignment for EppCtl

Connected to Basys2 onBoard USB controller
#NET "EppAstb” LOC = "F2"; # Bank = 3

#NET "EppDstb" LOC ="F1"; # Bank =3

#NET "EppWR" LOC ="C2"; # Bank =3

#NET "EppWait" LOC = "D2"; # Bank = 3
NET "EppDB<0>" LOC = "N2"; # Bank = 2
NET "EppDB<1>" LOC = "M2"; # Bank = 2

NET "EppDB<2>" LOC = "M1"; # Bank = 3

Page 40 of 42

NET "EppDB<3>"LOC ="L1"; # Bank =3
NET "EppDB<4>" LOC = "L2"; # Bank = 3
NET "EppDB<5>" LOC = "H2"; # Bank =3
NET "EppDB<6>"LOC = "H1"; # Bank =3
NET "EppDB<7>"LOC = "H3"; # Bank =3

Loop Back only tested signals

NET "PI0<72>"LOC ="B2" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =JA1
NET "PI0<73>"LOC ="A3" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JA2
NET "PI0<74>"LOC ="]3" | DRIVE =2 | PULLUP; # Bank = 1, Signal name = JA3
NET "PI0<75>"LOC ="B5" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name = JA4
#

NET "PI0<76>"LOC ="C6" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]B1
NET "PI0<77>"LOC ="B6" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]B2
NET "PI0<78>"LOC ="C5" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = B3
NET "PI0<79>"LOC ="B7" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name =]B4
#

NET "P10<80>"LOC ="A9" | DRIVE = 2 | PULLUP; # Bank = 1, Signal name =]JC1
NET "PI0<81>"LOC ="B9" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name = JC2
NET "P10<82>"LOC ="A10" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name =]JC3
NET "P10<83>"LOC ="C9" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = JC4
#

NET "PI0<84>"LOC ="C12" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]D1
NET "PI0<85>"LOC ="A13" | DRIVE =2 | PULLUP ; # Bank = 2, Signal name =]D2
NET "P10<86>"LOC ="C13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =]D3
NET "PI0<87>"LOC ="D12" | DRIVE = 2 | PULLUP ; # Bank = 2, Signal name = JD4

Loop back/demo signals

Pin assignment for PS2

PS2 notused in 6.111 lab

NET "PS2C" LOC="B1" |DRIVE =2 | PULLUP; # Bank = 3, Signal name = PS2C
NET "PS2D" LOC="C3" |DRIVE =2 | PULLUP ; # Bank = 3, Signal name = PS2D

Pin assignment for VGA

VGA output not used in 6.111 lab

NET "HSYNC" LOC="]J14" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = HSYNC

NET "VSYNC" LOC="K13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = VSYNC

#

NET "OutRed<2>" LOC ="F13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = RED2
NET "OutRed<1>" LOC ="D13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = RED1
NET "OutRed<0>" LOC ="C14" | DRIVE =2 | PULLUP; # Bank = 1, Signal name = REDO
NET "OutGreen<2>" LOC ="G14" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =
GRN2

NET "OutGreen<1>" LOC ="G13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name =
GRN1

NET "OutGreen<0>" LOC ="F14" | DRIVE = 2 | PULLUP ; # Bank = 1, Signal name = GRNO
NET "OutBlue<2>" LOC ="J13" | DRIVE =2 | PULLUP; # Bank = 1, Signal name = BLU2
NET "OutBlue<1>" LOC ="H13" | DRIVE =2 | PULLUP ; # Bank = 1, Signal name = BLU1

Page 41 of 42

#NET "an<3>" LOC = "K14"; # Bank = 1, Signal name = AN3
#NET "an<2>" LOC = "M13"; # Bank = 1, Signal name = AN2
#NET "an<1>" LOC = "J12"; # Bank = 1, Signal name = AN1

#NET "an<0>" LOC = "F12"; # Bank = 1, Signal name = ANO

#NET "uclk" LOC = "M6"; # Bank = 2, Signal name = UCLK
#NET "uclk” CLOCK_DEDICATED_ROUTE = FALSE;

Page 42 of 42

