
Frank Ni
Kevin Hsiue

Project Propsal

Self-Parking Car

For the final project, we aim to implement a Self-Parking Car that can parallel park

itself in a predefined space. The goal of this project is to provide a control system for a RC
car that has rack-and-pinion steering system so as to simulate a real life parking situation.
The task will begin with being able to drive the car around using an on-board FPGA and an
base-station FPGA that can communicate wirelessly. Similar to a real driver, the next step
would be to attempt to park in a very comfortable space. The final step is to determine a
difficult but reasonable parking space that will push the limits of our parking system. The on
board FPGA will control the vehicle while reading input from IR distance sensors that will
allow the vehicle to gauge its position relative to the parking space. In addition, we will be
displaying on the screen the space that the car sees. This project will demonstrate the ability
of the FPGA to host a very precise control system to navigate a vehicle into a desired
position.

In order to break the project into manageable pieces, we devised a pipeline of the

input from the sensors to a representation that is understandable by the vehicle as well as
humans. However to begin, we will provide a simple description of parallel parking by
breaking it down into steps.

The first step requires the driver to know that there is a parking spot available. The

second step will be to pull the car next to the car in front of the desired parking space. The
third step is to turn the wheel towards the curb and back up at a 45-degree angle. The fourth
step is once the car is into the spot a certain amount, straighten the wheel and continue. The
fifth step requires the driver to turn the wheel away from the curb and check to make sure
not to hit the car behind.

These steps detail a perfect scenario in which every step is done precisely. Of course

this isn’t always possible, so the key is to have a FSM control system that will cause the car
to do certain maneuvers when its within a certain distance of a obstacle. As such, a proper
representation of the obstacles will be required. First the we will position 4 IR distance
sensors on the chassis of the car, which during the first step of the parking procedure, will
detect and record the obstacles it sees to its right. Upon detecting a reasonable space in step
two, the car will pull a car’s length forward beyond the space. During these past two
procedures, the Obstacle Detect block will send the data to the Obstacle Map block, which
will convert the raw data into a matrix representation that will show where the walls are. This
is the ultimate representation that we will use to allow us to see and navigate the car into the
parking space.	

ADC	

RC	
 Car	

IR	
 Sensors	

Obstacle	

Detect	

Obstacle	

Map	

Driving	

System	
 FSM	

Convert	

distance	
 	
 to	

motor	

velocity	

Convert	

angle	
 to	

motor	

velocity	

Distance	
 to	
 walls:	

4	
 lines	

List	
 of	
 obstacles	

Matrix	
 of	

obstacles	

Distance(x)	
 Angle(theta)	

Main	
 motor	
 PWM	

duty	
 cycle	

Turning	
 motor	

PWM	
 duty	
 cycle	

4	
 lines	
 of	
 voltages	

Figure	
 1	

 The first block, Obstacle Detect, will require a memory that is sized at
(sampling_rate) *(adc_resolution)*(speed of vehicle)*(distance until finding space). This will
store a sample for every wall to the right it sees. The second block, Obstacle Map will require
a memory that will be experimentally determined. It is needed to store the memory map,
which will be represented by a matrix of 0s and 1’s, where 1’s represent the obstacle. In
addition to determining the initial map, these two blocks will create a real-time map of where
the car itself is located with respect to the obstacles. Frank Ni will implement these two
blocks, including the input sensors.

 The Driving FSM block will require arithmetic modules that can calculate based on
the input map, an angle to turn and a velocity to move at. It will require creating a state
diagram that covers all the possible situations the car can be in. By navigating between the
different states based on the input map and the current location, we can control the car very
precisely. Ultimately the motors will be controlled by PWM waveforms so that we can
control their speed. The two conversion blocks will convert a velocity output and an angle
output to a duty cycle and create PWM waveforms with such duty cycles. Kevin Hsiue will
implement these blocks.

 One of the issues that need to be dealt with is tracking the relative location of the car
with respect to the obstacles. We will modify our parking situation in order to simplify this
by placing a wall 2 car length in front of the parking space so that our car can use IR
distance sensors to detect its location. This may not work, and we may need to modify our
control system in order to accommodate not knowing where the car is but rather how far it
is away from a certain obstacle and in which directions there are obstacles.

