Wednesday, December 12, 2012
6.111 Final Project Report

Augmented Reality Fruit Ninja™

Nathan Monroe, Drew Dennison, Isaac Evans

Wednesday, December 12, 2012
6.111 Final Project Report

Abstract

Augmented Reality Fruit Ninja is a fully-functional system that lets people play the popular
game Fruit Ninja using just their hands to play the game. The system works by using a video
camera to track the players hands to move a sword around on screen. If the sword and a
moving fruit intersect, the fruit is ‘cut’ and the player gains a point. Our implementation includes
a special “cheat” mode and bombs that trigger sudden death if a player hits a bomb. This paper
introduces our work, outsides a block diagram, covers the details of each module, and briefly

covers a few ideas we have for future improvement. Finally, we have attached all of the code we
wrote.

Wednesday, December 12, 2012
6.111 Final Project Report

Table of Contents

Abstract 2
Table of Contents 3
Overview 4
Block Diagram 6

Modules 7
Future Work 20
Conclusion 20
Acknowledgements 20
Appendix A: Game parameters 22
Appendix B: Fruit Ninja Verilog Code 23

Wednesday, December 12, 2012
6.111 Final Project Report

Start Screen of Augmented Reality Fruit Ninja

Overview

This project is inspired by Fruit Ninja™, a video game in which fruit appears on a touchscreen
and a user must swipe across the fruit to cut it in half before it hits the bottom of the screen. We
implemented augmented-reality Fruit Ninja™ on the FPGA labkit, using a NTSC camera to track
the user’s gloved hand which act as the controller for the game. We display a slightly blurred
version of the the live input feed underneath our game overlay, which includes pieces of “fruit”
or TAs’ heads that the users must “cut” by waving their hands. The users wear a red glove to
facilitate hand tracking. We implemented both fruits and TAs’ heads, sound, and realistic gravity
physics for the game to create a more delightful user experience. This project used the standard
6.111 labkit, as well as a NTSC camera and red gloves.

The basic functionality is that the FPGA generates fruits to be added to the game, with the
frequency of new fruits increasing as the game progresses to higher levels. Fruit cutting events
are calculated based on hand vector detection from camera input and calculated position of
fruits. A “miss” event is calculated by the fruit reaching the bottom of the screen before being
cut. With both the cut and miss events, the game score, level and number of lives left are
updated accordingly, with the game ending after level 8 or if all lives are lost. Video modules
create proper video signals based on fruit positions, as well as a user interface which displays
information such as score, level, and number of lives left. Fruit sprites are generated from
bitmap pixel data read from BRAM. The game also features six sound effetcs, which are stored
as samples in the FPGA'’s block ram.

Wednesday, December 12, 2012
6.111 Final Project Report

Block Diagram

user input

Wednesday, December 12, 2012
6.111 Final Project Report

Screen grab from video of actual game play by Nathan

Modules

The modules are hierarchically divided into three main groups: User Input, Game Logic, and
Video Output. The logical flow of information is roughly the following. Video signals come
in and are converted into frames by the NTSC2ZBT module. These frames are stored in

Wednesday, December 12, 2012
6.111 Final Project Report

the ZBT memory. Eventually these frames are read back out to the video output. For image
processing, the frames are converted from pixels being represented in RGB (red, green, blue)
representation to HSV (hue, saturation, value). This is done in the RGB2HSV module. This
allows for easier image processing and mitigates issues due to noise and lighting conditions.
From there, the Center of Mass module finds hand positions using a center of mass of the
glove colors. The HandsVectorGenerator module reads hand positions over multiple frames to
generate hand vectors. The GetoRandom module takes these hand positions and generates a
pseudorandom value from the low-order hand-position bits. The CutDetector module determines
if a fruit has been cut, based on hand vectors and fruit positions. The game logic module stores
game state, game rules, and values such as score, lives left and level. Sprite logic modules
calculates sprite position based on game physics. Picture Blob and bomb blob modules
generate video signals for the sprite based on sprite position information and bitmap pixel

data from BRAM. The Ul gen module will generate video signals for a user interface based on
signals for game score, level, and lives left. Also, a splash screen is overlayed on the video
during initial game play. The top and Ul Wrapper modules combine video signals from the Ul,
the fruit sprites, and the video frame into a single video output.

User Input

1. NTSC2ZBT - Modified by Isaac
Takes in the NTSC camera data and stores it as a frame in the ZBT RAM. This module
was already available from the course staff in black and white, so we modified it support
color images. This was fairly straightforward, just involving expanding some of the
register arrays. For space efficiency, we stored only the 6 high order bits of each byte,
which allowed us to fit two RGB pixels into each 36 bit-wide ZBT memory location.
There were a some glitches in the module that resulted in frame data being written to the
first several pixels of the output image redundantly; this ended up not being an issue as
we just clipped out those pixels when adding our Ul screen.
Inputs: Staff-provided NTSC decoder output
Outputs: A 800x600 image frame in ZBT RAM.

1. VRAM Display - Modified by Isaac
RAM storage for camera frame data and sprite bitmap data. Sprite bitmap data will
be statically loaded at compile-time. The main modification to what was provided us
by the course staff was adding color. We changed the hc4 variable, which previously
switched between the four bytes (each byte representing a pixel) stored in a single ZBT
location, to hc2, which switched between the two RGB pixels stored in a ZBT location.
We then modified the address generation code to increment at double the previous rate
since we were only reading two pixels instead of four; see the vram_addr variable in the
vram_display module. Finally, we reversed the input hcount so that the when the user
faced the screen, the user's hand would move in the same direction on the screen as

Wednesday, December 12, 2012
6.111 Final Project Report

well as in space (rather than being inverted). Additionally, we expanded the 6-bit values
from ZBT RAM to 8 bit by appending 1’s.

Inputs: NTSC2ZBT, precompiled bitmaps

Outputs: camera frame images, bitmaps

RGB2HSV - Modified by Isaac

Converts RGB pixel map to HSV for better hand recognition. This module was provided
to us by the course staff. One serious issue with the module is that there is a 22 clock
cycle delay that must be accounted for when doing detection. We also had to convert the
YCrCb input input, which is the NTSC format, to RGB before we could pass it into this
module. Fortunately the code to do so was straightforward and provided.

Inputs: R, G, B (red, green, blue) pixel color

Outputs: H, S, V (hue, saturation, value) pixel color

Center of Mass - Isaac

Generates hands positions as XY coordinates from frame data. The input “detected”

bit which indicates whether the pixel in position (x, y) met our criteria for HSV detection
ranges. The H range was implemented as the OR of two bounded ranges, matching
between [0, /o) or (high, 255]. The S and V values were simple thresholds. Late in the
project, we wired the detected wire to do its comparison with threshold registers which
were could be modified by the up/down buttons on the labkit and had their values
displayed on the labkit hex display. This way we could easily tune a range parameter
while the system was running; this was key in honing our detection. Our final values for a
red glove on the user’s hand were as follows:

hue_thresh_low <= 8'h09;
hue_thresh_high <= 8'hec;
sat_thresh <= 8'hb7;
val thresh <= 8'h22;

Where the detected output was given by:

assign detected =

(H < hue_thresh _low || H > hue_thresh_high) &&
(S > sat_thresh) &&

(V > val_thresh);

We distinguish between a pixel being “detected” and a pixel being “used.” All pixels
meeting the HSV thresholds were detected, but only pixels which had the previous 10
pixels in the VGA scan marked as detected are marked as “used.”

Wednesday, December 12, 2012
6.111 Final Project Report

When one of the labkit switches is enabled for debugging, we set the color of a “detected
but not used” bit to green and the color of a “used” pixel to red. Displaying the output
color diagnostics resulted in some interesting bugs. Of course, the color was shifted
constantly to the right by 22 pixels off because of the 22 clock cycle delay in RGB2HSV
(mentioned previously). Additionally, we had a problem where as soon as a red pixel
was detected it would “bleed” all the way across the screen; this ended up being a loop
we were accidentally generating by setting the pixel value to red for diagnostic but then
that modified pixel value was passed into RGB2HSV, propagating it further through the
image.

The final algorithm added all the x and y of pixels which were marked as “used” to x and
y accumulators and then divided them by the used pixel count. We used the IPCore
generator to build a pipelined (v3.0) divider that could handle the divisions quickly,

and latched the new divisor output when the divider output was valid. The module was
extremely fast and easily kept up with our frame rate.

Finally, the extrapolation bit, when set, causes the (x, y) position to be extrapolated

out of the 800x600 camera image onto the 1024x768 VGA output coordinate space.

We were able to achieve this with a simple bit shift and subtractions. Even though the
mapping isn’t mathematically truly perfect, it is nearly impossible for the user to generate
values at the extreme edges of the screen with the center of mass algorithm, so by using
the multiplication by two and slowly tuning the subtracted values for x and y we were
able to arrive at a good-enough solution which proved quite robust.

Inputs: A “detected” bit along with XY coordinates, and an extrapolation bit

Outputs: (x, y) coordinate pairs corresponding to the user’s hands, as well as 5 delayed
coordinates of previous hand positions. Also outpus a “used” bit that indicates whether
or not the pixel was used in the center of mass calculation; this is displayed on the
screen as an output diagnostic.

HandsVectorGenerator - Isaac

Combined into CenterOfMass for simplicity. See the xDelayLine and yDelayLine
registers in CenterOfMass.

Inputs: One (x, y) coordinate pair representing a hand position

Outputs: An (x, y) vector representing the hand’s motion vector over the past 250
milliseconds.

CutDetector - Isaac

Determines if any of the sprites have been “cut” by the hands. The cut detection is based
on vector defined from the five points output from the CenterOfMass module. A cut is
detected if and only if (a) one of the two outer points is not inside the sprite and (b) one
of the three inner points is inside the sprite. A utility module called IsInside was written to
make this easier to read.

Wednesday, December 12, 2012
6.111 Final Project Report

Inputs: two hand vectors, 6 sprite positions and states, and two bomb positions and
states
Outputs: cut boolean for each sprite

Game Logic

1.

Gamelogic - Nathan

The game logic records and manipulates the overall state of the game. It also stores the
essential game parameters of Score, Level, and Lives Left. The module brings fruits into
the game based on set delays (see appendix A). Fruits come more frequently at higher
levels, making the game more difficult as it progresses. The module removes fruits from
the game either when the cut detector tells them they have been cut, or when they reach
the bottom of the screen, based on position input from the Sprite Logic. If a fruit has
been cut, then the score and level values are updated accordingly. If a fruit reaches the
bottom of the screen without being cut, the number of lives left is updated accordingly.
There is a maximum of six fruits on the screen at any given time. For each of the six
possible active fruits, whether a fruit is active in the game is determined by a single bit
register, “Sprite State”. The sprite state is a single boolean: 1 if the sprite is actively on
the screen and in the game, or 0 if not. The Game Logic module also has functionality
for bombs. They have the same functionality and implementation as the fruits, with

the difference being that if a bomb is cut, the game is automatically lost, and if a bomb
reaches the bottom of the screen it is removed from the game with no other effect. There
are a maximum of two bombs in the game at a given time. Bombs are brought into the
game beginning at level two. There are eight levels in the game, starting with level 1.
After level 8, the game is won. Level 0 is the ‘start state’, where the game is not actively
in progress. Level zero is the state used for the start screen logic.

The game logic module includes both the timer and time_divider modules which, as in
lab 4, act as timers. They are used to activate fruits and bombs into the game
Real-world testing has shown that the game is very difficult, with the maximum score
reached in our tests being 51 (level 5). The score to win the game is set at 400 (level 8).
We feel that this increases the replayability value in the game because it really takes lots
of playtime to win. Or just an actual ninja.

Gamelogic Test Bench - Nathan
The game logic testbench module tests functionality of the game logic module, ensuring
the following:

1. Start screen “level 0” functions properly

2. Fruits are brought into the game at the proper frequency, which increases with
increasing level

3. Score is incremented properly upon fruit cut event

10

Wednesday, December 12, 2012
6.111 Final Project Report

4. Lives is decremented properly upon fruits reaching the bottom of the screen
without being cut

5. Level is updated properly according to score

6. Bombs are brought into the game at the correct frequency and desired level,
with proper ‘game over’ functionality upon their cut

7. The game is lost when lives run out and game function ceases

8. The game is won when the ‘win score’ is reached

9. All values reset properly upon reset

SpriteLogic - Nathan

This module keeps track of the sprite position based on game physics, and input from
the game logic for if that sprite should be on or not. Upon a sprite being brought into the
game, it's X position is determined randomly, based on input from the randomizer. The Y
position is also probabilistic, with it starting at the bottom of the screen 75% of the time,
and the top of the screen 25% of the time.

The initial Y (vertical) vector is probabilistic, based on input from the randomizer. If the
sprite appears on the bottom of the screen, the Y vector is in the upwards direction, and
is bounded such that it is between 15 and 21 pixels per second in the vertical direction.
The randomization is centered around 18 pixels per second. These values, combined
with the gravity discussed below, ensure that the sprites will never go above the top

of the screen, and that at the very worst the sprites will apex at around halfway up the
screen. If the sprite’s starting position is at the top of the screen, which is 25% of the
time, the initial Y vector is set at 1 pixel per frame in the downward direction.

The game incorporates realistic gravity with a constant downward acceleration, such
that the fruits initially flying upwards will arc and eventually fall downwards, and fruits
initially at the top of the screen flying downwards will accelerate downwards. This is
implemented in a manner similar to a floating point unit. There is a 6 bit register called
(floatgrav). Upon each new frame, the floatgrav register is increased by a set value
“gravity”, which is between 0 and 63. Whenever the floatgrav register overflows, the Y
vector is decremented by one. This will occur (gravity) / 64 of the time. Thus, the value
of gravity in the game is equal to (gravity) / 64 frames per second per second, and is
parametrized so it can be easily changed. For the values of Yvector listed above, the
chosen gravity parameter was 22. This results in fruits being active in the game for
approximately 5.5 seconds (or 2.75 seconds if the fruit falls downward from the top of
the screen). This was determined empirically as being a reasonable amount of time for
the user to cut the fruit.

The X vector of the fruit was also determined probabilistically in a bounded fashion
such that the fruits never fly off the left or right edges of the screen, which would be
problematic. Based on a 5.5 second maximum time on the screen (or 165 frames), the
X vector was bounded based on the starting X position such that the fruits were always

11

Wednesday, December 12, 2012
6.111 Final Project Report

on the active screen. If the fruit was initially in the left half of the screen, it had an X
vector in the right direction, and vice versa. The vectors were bounded according to the

following:

Starting X Position (pixels) Maximum X vector (pixels per frame)
0-127 9 right

128-255 8 right

256-383 7 right

384-511 5 right

512-639 5 left

640-767 7 left

768-895 8 left

896-1023 9 left

The random X positions and Y positions as well as bounded random X and Y vectors combined
with the gravity implementation to produce arcing fruits which always stayed within the screen,
only leaving the screen upon a cut event or at the bottom edge if the fruit was missed by the
user.

2. SpriteLogic Test Bench - Nathan
The sprite logic testbench was used to produce simulations of arcing trajectories of
the fruits in the game, based on randomly generated input. Plots were produced from
multiple test runs to validate that the fruits never crossed the top of the screen, nor either
of the side walls. This validation is impossible to prove with a finite number of test runs,
but at the very least it was proven very unlikely with a very large sample of test runs.

12

Wednesday, December 12, 2012
6.111 Final Project Report

0 , 1.\

0

@

MathLab plot of random outputs of x,y positions over time for sprites from Game Logic

Geto Randomizer - Nathan
This module produces constantly updating numbers which appeared to be random. The
numbers were the low-order bits of the hand position. Since the user moved their hands
fairly rapidly, these numbers appeared to be random. This drove the random generation
of fruit position and vectors.

Game Audio - Nathan

The game audio module produces sound effects based on game events. Initially, sound
effect samples were found online from a stock sound library. However, it was decided
that for added character in the game, all sound effects should be recorded vocally. The
game had six sound effects:

13

Wednesday, December 12, 2012
6.111 Final Project Report

Event Sound Max Address Priority
(samples)

Fruit is cut “Shink” 23386 1
Next Level “Woohoo” 31996 2
Fruit is missed “Ouch” 22254 3
(lose a life)

Game is won “You Win” 41806 4
Bomb is cut “Boom” 42128 5
Game is lost “You Fail” 50387 6

Sound effects were recorded vocally using a condenser microphone, being sampled

at 48KHz. Samples were low-pass filtered at 6KHz to enable the possible future option
of downsampling at 12KHz to save block ram space. Sound clips were filtered using
Audacity audio software, and converted into .coe files using the TA-provided matlab
script. Samples were stored with a resolution of 8 bits in the FPGA'’s block ram. Block
ram modules were produced using the built in Xilinx IP core generator.

Audio samples were passed to the ac97 module, as in lab 5. Each possible sound

has a corresponding “ready” signal, which is turned on if that sound’s corresponding
event occurs. The sounds are played based on a priority system, where only one of the
sound’s corresponding block ram has control of the audio output at a given time. The
audio output has an overall state which is “PLAYING” if a sound is playing, or “IDLE”
otherwise. If the audio is in idle and a sound is ready, that sound will take control of the
audio output, setting the overall state to “PLAYING” until that sound has reached it's max
address in block ram, indicating it is done playing.

The consequence of this implementation is that only one sound can be played at a time.
For example, if two fruits are cut in less time than it takes to play the “cut” sound, the
second “cut” sound will be delayed until the first is complete. The “cut” sound has the
highest priority because it is likely to occur the most often. The current implementation
features sound clips sampled at 48KHz, but due to the low pass filtering the clips could
be easily downsampled to 12KHz if block ram space became a constraint.

Video Output
1. Picture Blob - Drew

14

Wednesday, December 12, 2012
6.111 Final Project Report

Generates the pixels for all of the fruit sprites. This module takes as input the X and Y
coordinates of 6 fruits and 2 bombs which is the maximum number of sprites needed
for the hardest level. Each of the six fruits take a 3-bit selector wire so the Sprite Logic
module can pick which fruit to use for each of the fruit sprites.

We implemented a “Cheat Mode” where if cheat=1, the fruits are replaced by graphics of
the TAs and Writing Instructors’ heads. We made Gim the bomb.

The technical underpinnings were 2 BRAMs of width 24 so each address was exactly

1 pixel. Each BRAM had to have space for 7, 32x32 sprites so the dimensions of the
BRAM block memory layout generated by the IP Core utility in ISE were 24x7168 and
required a 13-bit address bus.

This module also include a 3-bit level input and a 6-bit sprite_on input that uses 1 bit for
each fruit to determine whether or not to display it. There is a corresponding 2-bit input
signal that determines if either or both bombs should be displayed.

We had an input for a random number that would randomly pick which type of fruit to
display when we activated a fruit sprite. However, we found that our random number
generator module that uses the low-order bits of the hands was giving us too many 1s
and 0s. Thus, we modified the module to simply cycle through each of the 6 possible
types of fruit.

Every concept discussed above applies equally well in “cheat mode” with the staff heads
instead of fruits and bombs.

The image address of the location to read from is calculated: image _addr = (1024*id) +
((hcount-x)/2) + ((vcount-y)/2) * 32 This address is correct because we scale the images
up to 64x64 on the Ul but the data in memory is only 32x32.

Each sprite is 1024 addresses apart (32x32) so we multiply the spritelD but 1024 to get
the correct sprite from BRAM.

@ "’@U@ i J

Fruit and staff sprites used. Staff images were produced by Nathan in photoshop.
Images were taken from the course lecture slides.

15

Wednesday, December 12, 2012
6.111 Final Project Report

Inputs: sprite[n] (x, y), spritelD[n], spon, bombon, level
Outputs: 24-bit VGA video signal

Level - Drew

Generates video signal for displaying the level the user is currently on.

This module used the provided char_string_display and the accompanying font_rom.
The input is a input is a 3-bit level signal that feeds into a case statement which
concatenates the ASCII for “Level: “ with the ASCII for “0,1,...,7”

Inputs: X and Y of upper-left corner, level

Outputs: VGA output with “Level: X"

Lives - Drew

Generates video signal for displaying the number of lives the user has remaining. Starts
on 5 and counts down to 0 because that’'s what the game logic module feeds it via the
Lives input. This module used the provided char_string_display and the accompanying
font_rom. The input is a input is a 3-bit lives signal that feeds into a case statement
which concatenates the ASCII for “Lives: “ with the ASCII for “0,1,...,7”

Inputs: X and Y of upper-left corner, lives

Outputs: VGA output with “Lives: X”

Score - Drew

Generates video signal for displaying the numerical score of the user. Starts at 0 and
counts up to a possible 999. This module assumes that if the score changes, it must
have increased by 1. The game logic module feeds the current game score via a 9-bit
score input. This module uses the provided char_string_display and the accompanying
font_rom. The input is a 9-bit score signal that feeds into a case statement which
concatenates the ASCII for “Score: “ with the ASCII for 2 digits of “space,1,...,9” and 1
digit of ASCII for “0,1,...,9”

Notice that the first two digits display a ‘space’ instead of 0 so if the score is 5 it displays
as 5 and not 005.

Inputs: X and Y of upper-left corner, score

Outputs: VGA output with “Score: XXX”

Sword - Drew

Generates video signals for a 64x64 image of a sword. This sword is used to point to the
X, Y that is the center of mass of the user’s hand. This X,Y is feed into the system and
64 is subtracted from X so that similar code to the Picture Blob module can be used.

16

Wednesday, December 12, 2012
6.111 Final Project Report

Bitmap of the sword. Produced by Nathan in photoshop.

Inputs: X and Y of the upper right corner
Outputs: VGA video signal

Ul Wrapper - Nathan

The Ul wrapper module controls the sprite ID signals and the cheat signal. Most notably,
it manipulates the signals during the splash screen in order to provide the desired effect
of two options to start the game, either a watermelon, which if cut starts the game with
fruit sprites (cheat=0), or a picture of Gim, which if cut starts the game with course staff
sprites (cheat=1). The Ul wrapper also rotates through the sprite ID’s, so each possible
fruit/TA is seen, as well as hard-coding the bombs in the game to appear as bombs.

Top Module - Nathan
This module is the top level module for the game, and integrates all subsystems into a
complete system. It features pushbuttons to change audio output volume. In integration,
it also produces a reversed hcount that counts down from 1023 to zero, which is used to
mirror the video feed horizontally, making it more natural for the user. The module also
combines video signals from the following outputs:

-ZBT video pixels

-Sprite pixels

-Sword pixels

-Splash screen pixels

-Score Ul pixels

-Level Ul pixels

-Lives left Ul pixels

The ZBT video output from the camera has the lowest priority in video display, with
everything else overlaying it. The module includes functionality to change the thresholds
for detecting the user’s glove. In addition, the switches turn on and off the following
debugging info:

-Hand position mapping to entire screen

-Hilighting pixels within the color detection threshold

-Producing crosshairs representing hand position and vector

-Masking ZBT pixels surrounding valid video frame

-Master game reset

17

10.

Wednesday, December 12, 2012
6.111 Final Project Report

This module also incorporates muxes controlled by the level. If the level is zero,

the ‘sprite on’ and ‘sprite position’ values are forced to produce the start screen.

This module also accounts for the implementation detail that sprite position is given by
the sprite logic as the center of the sprite, but taken in to the sprite blob generator as the
upper left corner.

Splash Screen - Drew

Generates video signals for a start screen. We were running low on available BRAM so
we used a single bit for each of the 250x100 pixels to generate a mask that is ANDed
with the video feed.

Welcome to

Start Screen Splash Mask

Inputs: X and Y of top left corner
Outputs: VGA video signal

Python Helpers - Drew

We wrote 2 python scripts to help with this project. The first one serialized an image into
a stream of 24 bit RGB values and transmitted this bitstream over a virtual serial-over-
USB to a DLP-USB245M USB to 8-bit output. This python script worked perfectly and
even though we ended up not using the compact flash, it was a significant portion of the
overall work.

The second python script was written after we made the design decision to switch to
BRAM and we needed a way to generate .coe files from images. This bmp2coe script
worked perfectly and it was faster to write a simple python script than try to modify the
MatLab script from the website

Unused CF code - Drew

A very significant portion of Drew’s time was spent trying to get the compact flash and
USB-to-fifo board working. | ran into a number of issues that | had to debug using the
built-in display and the logic analyzer. Eventually, | got the code from the Conductor
Hero team from 2007 working and modified for our purposes. Unfortunately, the compact
flash was just too slow. It was an order of magnitude slower than we needed to refresh
the pixels for VGA output. We would have had to cache portions of the CF to either

ZBT or BRAM dynamically. We made the design decision to just switch to using BRAM

18

Wednesday, December 12, 2012
6.111 Final Project Report

directly. ZBT was a strongly considered option but given the fact that would have to be
pipelined to cope with the 2-cycle delay in read times, we chose to keep it simple and try
the BRAM and only worry about ZBT or flash if we ran out of BRAM space. This was a
good design decision and greatly reduced the number of places in our code that needed
to be debugged.

Future Work

Even though our Fruit Ninja project met all of our expectations and most of our stretch goals,
we know it could be even better with several additional features. The most impressive would be
to add fruits that appear to be cut and have each part of the fruit continue its trajectory taking
into account conservation of momentum instead of simply disappearing. The way we would
accomplish this would be to have each fruit be composed of four independent quadrants for
each image.

A really fun and definitely doable extension of our work would be add tracking for a second hand
to enable two players to compete or cooperate. In addition, we would like to improve the user
interface such that a trail follows the sword, giving a cutting effect and added feedback.

We would also like to implement a “high score” functionality, as well as some form of
competition mode for multiple players.

Conclusion

Augmented Reality Fruit Ninja was a successful project that exceeded our expectations. We
all learned a lot from this project and it was so much fun to build a recognizable game that
everyone in lab enjoyed watching and playing.

One of the best lessons we learned as a team is that it is very difficult to debug hardware

and we still have some unexplained glitches that will seemingly randomly appear that we can
only attribute to subtle timing issues. Also, the project was at times frustrating because of ISE
crashes, refusal to load files, and just the generally long compile times.

This was a fun, challenging project to design, program, test, debug, play, and complete. We will
miss it!

Acknowledgements

Thank you Gim for a wonderful class that taught us the magic of programmable digital
hardware!

19

Wednesday, December 12, 2012
6.111 Final Project Report

We would like to thank all the TAs for their wonderful help, feedback, endless patience and
advice. Best of luck in your future endeavors.

Team member Monroe would like to point out that he owes TA Devon Rosner a beer, as
promised, in return for his help in debugging the game logic module.

20

Wednesday, December 12, 2012
6.111 Final Project Report

Appendix A: Game parameters - Nathan

Level Delay before Score to next Delay before Notes
next fruit (sec) level next bomb (fruits)
1 5 5 -
2 4 15 7 Bombs now on
3 4 30 7
4 3 50 7
5 2 85 6
6 1.5 125 6
7 1 200 5
8 0.5 400 4 Game won at
score of 400

21

Wednesday, December 12, 2012
6.111 Final Project Report

Appendix B: Fruit Ninja Verilog Code

NTSC2ZBT Verilog Code

/I ntsc_2 zbt.v
// 6.111 final project
// Modified by Isaac Evans, ine@mit.edu

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

input clk; //system clock

input vclk; //video clock from camera

input [2:0] fvh;

input dv;

input [17:0] din; / modification for b&w -> color

output [18:0] ntsc_addr;

output [35:0] ntsc_data;

output ntsc_we; // write enable for NTSC data

input sw; /I switch which determines mode (for debugging)

parameter COL START = 10'd150;
parameter ROW_START = 10'd50;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 * 788 XGA display

reg [9:0] col=0;
reg [9:0] row = 0;
reg [17:0] vdata = 0; // modification for b&w -> color

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced
reg even_odd; // decode interlaced frame to this wire

wire frame = fvh|[2];
wire frame edge = frame & ~old_frame;

22

mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

always @ (posedge vclk) /LLC1 is reference
begin
old dv <=dv;
vwe <= dv && fvh[2] & ~old_dv; // if data valid, write it
old frame <= frame;
even_odd = frame edge 7 ~even odd : even_odd;

if (!1fvh[2])
begin
col <= fvh[0] ? COL_START :
("fvh[2] && "vh[1] && dv && (col < 1024)) 7 col + 1 : col;
row <= fvh[1] ? ROW_START :
(Mfvh[2] && fvh[0] && (row < 768)) ? row + | : row;
// for b&w -> color - check this conditional?
vdata <= (dv && !fvh([2]) 7 din : vdata;
end
end

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];

reg [17:0] data[1:0]; // modification for b&w -> color
reg we[1:0];

reg eo[1:0];

always @(posedge clk)

begin

{x[1].x[0]} <= {x[0].col}:
ty[11.y[0]} <= {y[0].row:
{data[1],data[0]} <= {data[0],vdata};
{we[l],we[0]} <= {we[0],vwe};
{eo[1].e0[0]} <= {eo[0].even_odd}:
end

// edge detection on write enable signal

23

Wednesday, December 12, 2012
6.111 Final Project Report

reg old we;
wire we_edge = we[l]| & ~old_we;
always @(posedge clk) old we <= we[1];

// shift each set of four bytes into a large register for the ZBT

// mydata WILL go into the ZBT. ergo, nothing below this should be modified,
/I except perhaps the clock rate

// reg [31:0] mydata; // modification for b&w -> color

reg [35:0] mydata; // modification for b&w -> color

always @(posedge clk)
if (we_edge)
begin
//mydata <= { mydata[23:0], data[1] }; // modification for b&w -> color
mydata <= { mydata[17:0], data[1] };
end

// NOTICE : Here we have put 4 pixel delay on mydata. For example, when:

/1 (x[1], y[1]) = (60, 80) and eo[1] = 0, then:

// mydata[31:0] = (pixel(56,160), pixel(57,160), pixel(58,160), pixel(59,160))
// This is the root of the original addressing bug.

// NOTICE : Notice that we have decided to store mydata, which
/l contains pixel(56,160) to pixel(59,160) in address

// (0, 160 (10 bits), 60 >> 2 = 15 (8 bits)).

/1

// This protocol is dangerous, because it means

/l pixel(0,0) to pixel(3,0) is NOT stored in address

/l (0, 0 (10 bits), 0 (8 bits)) but is rather stored

/l in address (0, 0 (10 bits), 4 >>2 =1 (8 bits)). This

// calculation ignores COL_START & ROW_START.

//

/l 4 pixels from the right side of the camera input will
// be stored in address corresponding to x = 0.

/1

24

Wednesday, December 12, 2012
6.111 Final Project Report

/l To fix, delay col & row by 4 clock cycles.
// Delay other signals as well.

always @ (posedge clk)

begin
x_delay <= {x_delay[29:0], x[1]};
y_delay <= {y delay[29:0], y[1]};
we_delay <= {we delay[2:0], we[l]};
eo_delay <= {eo_delay[2:0], eo[1]};

end

// compute address to store data in
wire [8:0] y addr =y delay[38:30];
wire [9:0] x_addr = x_delay[39:30];

// TODO - modify this?

//wire [18:0] myaddr = {1'b0, y_addr[8:0], eo_delay[3], x _addr[9:2]}; // modification for b&w
-> color

wire [18:0] myaddr = {y addr|8:0], eo_delay[3], x_addr[9:1]};

// Now address (0,0,0) contains pixel data(0,0) etc.

// alternate (256x192) image data and address

//wire [31:0] mydata2 = {data[0],data[1]};

wire [35:0] mydata2 = {data[0],data[1]}; // modification for b&w -> color

wire [18:0] myaddr2 = {1'b0, y_addr[8:0], eo_delay[3], x_addr[7:0]};

/Iwire [18:0] myaddr2 = {y addr[8:0], eo_delay[3], x_addr[9:1]}; // modification for b&w ->

color

// update the output address and data only when four bytes ready

25

Wednesday, December 12, 2012
6.111 Final Project Report

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
// wire ntsc_we =sw ? we_edge : (we_edge & (x_delay[31:30]==2'000)); // modification
for bw = color
wire ntsc we = sw ? we_edge : (we_edge & (x_delay[30]==1'b0)); //

always @(posedge clk)
/I if (ntsc_we)
begin
ntsc_addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
//ntsc_data <= sw ? {4'b0,mydata2} : {4'b0,mydata}; // modification for b&w -> color
ntsc_data <= sw ? mydata2 : mydata;
end

endmodule // ntsc_to zbt

Vram Display Verilog Code

// vram_display.v

/1 6.111 final project

/ Modified by Isaac Evans, ine@mit.edu

module vram_display(reset.clk,hcount,vcount,vr pixel,
vram_addr,vram read data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;

/I output [7:0] vr_pixel; // modification for b&w -> color
output [17:0] vr_pixel;

output [18:0] vram_addr;
input [35:0] vram read data;

//forecast hcount & vcount 8 clock cycles ahead to get data from ZBT
wire [10:0] hcount f= (hcount >= 1048) ? (hcount - 1048) : (hcount + 8);

26

mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

wire [9:0] vcount f= (hcount >= 1048) ? ((vcount == 805) ? 0 : vcount + 1) : vcount;

// wire [18:0] vram_addr = {1'b0, vcount f, hcount]9:2]}; // modification for b&w -> color
wire [18:0] vram_addr = { vcount f, hcount f[9:1] };// use all but the last bit of hcount

/I wire [1:0] hc4 = hcount[1:0]; // modification for b&w -> color
wire hc2 = hcount[0] ; // hc = horizontal counter?

// reg [7:0] vr_pixel; / modification for b&w -> color
reg [17:0] vr pixel;

reg [35:0] vr_data latched;

reg [35:0] last vr data;

always @(posedge clk)
/Nast_vr data <= (hc4==2'd3) ? vr_data_latched : last vr data; // modification for b&w ->
color
last vr data <= (hc2) ? vr_data_latched : last vr data;

always @(posedge clk)
/Ivr_data latched <= (hc4==2'd1l) ? vram read data : vr data latched; // modification for
b&w -> color
vr_data_latched <= ('hc2) ? vram_read data : vr_data latched;

// modification for b&w -> color

/I always @(*) // each 36-bit word from RAM is decoded to 4 bytes
/I case (hc4)

/- 2'd3: vr_pixel = last_vr data[7:0];

/- 2'd2: vr_pixel = last_vr data[7+8:0+8];

/- 2'dl: vr_pixel = last_vr_data[7+16:0+16];

/- 2'd0: vr_pixel = last_vr_data[7+24:0+24];

// endcase

always @(*)

case (hc2) // we now have two pixels stored in the zbt
1'd1: vr_pixel = last vr data[17:0];
1'd0: vr_pixel = last vr data[35:18];

endcase

27

Wednesday, December 12, 2012
6.111 Final Project Report

endmodule // vram_display

Center of Mass Verilog Code

/I CenterOfMass.v
// 6.111 final project

// By Isaac Evans, ine@mit.edu

// calculates center of mass for a target hue within [target hue low,
// target _hue high], or [0, target hue low] union [target hue high, 2"8] if
// invert is ==

module CenterOfMass #(parameter OLD POINTS = 15)(inframe, clk, reset,

ntsc_address, ntsc we, x,y, H, S, V,
target hue low, target hue high, comX, comY,
detected, used, comXOIld0, comYOId0, comXOld1,
comYOld1l, comXOld2, comYOIld2, comXOIld3, comYOId3,
comXO0ld4, comYOIld4, minX, minY, extrapolate);

input wire extrapolate;

input wire inframe;

input wire clk;

input wire reset;

input wire [18:0] ntsc_address;

input wire ntsc_we;

input wire detected;

input wire [10:0] x;3

input wire [9:0] y;

input wire [7:0] H;

input wire [7:0] S;

input wire [7:0] V;

input wire [7:0] target hue low;

]

input wire [7:0] target hue high;
output reg [10:0] comX;

output reg [9:0] comY;

input wire [10:0] minX;

input wire [9:0] minY;

28

mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

output reg used;

/I reg [1024*768] neighbors;
/I reg [1024] last scan_line;

reg [10:0] xDelayLine [OLD POINTS:0];
reg [9:0] yDelayLine [OLD POINTS:0];
output wire [10:0] comXOIldO0;

output wire [9:0] comYOIdO;

output wire [10:0] comXOld1;

output wire [9:0] comYOId1;

output wire [10:0] comXOld2;

output wire [9:0] comYOId2;

output wire [10:0] comXOId3;

output wire [9:0] comYOId3;

output wire [10:0] comXOld4;

output wire [9:0] comYOIld4;

// 28 bits for x and y accumulators because 28 = ceil(log2(1024*768*2"8))
wire [27:0] center of mass div_x;

wire [27:0] center of mass div_y;

reg [27:0] H sum x;

reg [27:0] H sum y;

// appropriate for x in range [0, 1024] and y in range [0, 768]
wire [10:0] center of mass_x;
wire [9:0] center of mass_y;

// pixel count accumulator is 21 bits = ceil(log2(1024*768))
reg [20:0] used pixel count;

reg [9:0] prev_detected;

reg [20:0] prev_detected count;

reg [20:0] frameCount;

// OLD POINTS =3

/11012 3]

/l A frameCount

/11012 3]

29

Wednesday, December 12, 2012
6.111 Final Project Report

/I~ frameCount

//

assign comXO0Id0 = xDelayLine[(frameCount + OLD POINTS) % (OLD POINTS + 1)];
assign comYOId0 = yDelayLine|[(frameCount + OLD POINTS) % (OLD POINTS + 1)];

assign comXOld1 = xDelayLine[(frameCount + 12) % (OLD _POINTS + 1)];
assign comYOId1 = yDelayLine[(frameCount + 12) % (OLD _POINTS + 1)];

assign comXO0Id2 = xDelayLine[(frameCount + 9) % (OLD_POINTS + 1)];
assign comYOIld2 = yDelayLine|(frameCount + 9) % (OLD_POINTS + 1)];

assign comXOId3 = xDelayLine[(frameCount + 6) % (OLD_POINTS + 1)];
assign comYOId3 = yDelayLine[(frameCount + 6) % (OLD_POINTS + 1)];

assign comXO0Ild4 = xDelayLine[(frameCount + 3) % (OLD POINTS + 1)];
assign comYOld4 = yDelayLine[(frameCount + 3) % (OLD_POINTS + 1)];

always @(posedge clk) begin
// nearest neighbor stuff

if (reset) begin // do initialization
used pixel count <= 0;
H sum x <=0;
H sum y <=0;
comX <= 0;
comY <= 0;
frameCount <= 0;
end
else if (x == 0 && y == 0) begin // next frame, latch output
if (frameCount == 0)
frameCount <= OLD POINTS - 1;
else
frameCount <= frameCount - 1;
xDelayLine[frameCount| <= comX;
yDelayLine[frameCount] <= comY;
if (extrapolate) begin
comX <= ((center_of mass x - minX) << 1); //* 2;

30

Wednesday, December 12, 2012
6.111 Final Project Report

comY <= ((center_of mass y - minY) << 1); //* 2;
end
else begin
comX <= ((center_of mass Xx));
comY <= ((center_of mass y));
end
used pixel count <= 0);
H sum x <=0;
H sum y <=0;
end
else if (inframe && detected) begin // ok b/c pixel is sync'd with clk
if (prev_detected[9:0] == 10'b1111111111) begin
used pixel count <=used pixel count + 1;
H sum x <=H sum x + x;
H sum y<=H sum y +y;
used <= 1;
end
else begin
used <= 0;
end
prev_detected = {prev_detected|8:0], detected | ;
end
end // always @ (posedge clk)

wire rfdA;
wire rfdB;

div mydivX(.dividend(H_sum_x), .divisor(used pixel count),
.quot(center of mass div_x), .clk(clk), .rfd(rfdA));

div mydivY(.dividend(H_sum y), .divisor(used pixel count),
.quot(center_of mass_div_y), .clk(clk), .rfd(rfdB)):

assign center of mass x = rfdA ? center of mass div_x[10:0] : center of mass x;
assign center_of mass y = rfdB ? center of mass div_y[9:0] : center of mass y;

endmodule // CenterOfMass

31

Center of Mass Testbench Verilog Code

// test_center of mass.v
// 6.111 final project

/I By Isaac Evans, ine@mit.edu
//Testbench for center of mass module

module test_center_of mass;

// Inputs

reg clk;

reg reset;

reg [18:0] ntsc_address;

reg ntsc_we;

reg [10:0] x;

reg [9:0] y;

reg [7:0] H;

reg [7:0] S;

reg [7:0] V;

reg [7:0] target hue low;
reg [7:0] target hue high;
// Outputs

wire [10:0] comX;
wire [9:0] comY

integer fin, code;

// Instantiate the Unit Under Test (UUT)

CenterOfMass uut (

clk(clk),
-reset(reset),

ntsc_address(ntsc_address),

.ntsc_we(ntsc_we),
X(X),
Yy,

Wednesday, December 12, 2012

6.111 Final Project Report

32

mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

H(H),

S(S),

V(V),

target_hue low(target hue low),
target_hue high(target hue high),
.comX(comX),

.comY(comY)

)

initial begin
fin = $fopen("h.jpg"."r");
if (fin == 0) begin
$display("can't open file...");
$stop:;
end

// Initialize Inputs
clk =0;

reset = 0;
ntsc_address = 0;
ntsc_we = 0;

=0;
0;

0;

0;

V=0;

target hue low = 3;

target hue high = 15;

n o<

// Wait 100 ns for global reset to finish
#100;
reset = 0;
#10;
reset = 1;
#10;
reset = 0;
end // initial begin

33

always #5 clk = ~clk;

always @(posedge clk) begin
code = $fscanf(fin,"%d", H);
if (code != 1) begin
$fclose(fin);
$stop:
end
//sat = $fscanf(fin,"%d",x);
//val = $fscanf(fin,"%d",x);

ntsc_address <= ntsc_address + 1;
ntsc_we = 1;
if (x == 1024) begin
X <=0;
y<=ytlL
end
else if (y == 768) begin
$stop:;
end
else begin
X <=x-+1;
end

/*
if (cycle == 6'd63) begin

// assert ready next cycle, read next sample from file

ready <= 1;
code = $fscanf(fin,"%d",x);

// if we reach the end of the input file, we're done

if (code != 1) begin
$fclose(fout);
$stop;

end

end

Wednesday, December 12, 2012
6.111 Final Project Report

34

Wednesday, December 12, 2012
6.111 Final Project Report

else begin
ready <= 0;
end

if (ready) begin

// starting with sample 32, record results in output file
if (scount > 31) $fdisplay(fout,"%d",y);

scount <= scount + 1;

end

cycle <= cycle+1;
*/
end

endmodule

Geto Cut Detector Verilog Code
// geto_cut_detector.v
//'6.111 final project

// By Isaac Evans, ine(@mit.edu
//Detects if fruit has been cut based on hand vectors and fruit positions

module geto _cut_detector (

input clock,

input reset,

input [9:0] spOy, //sprite Y positions
input [9:0] sply,

input [9:0] sp2y,

input [9:0] sp3y,

input [9:0] sp4y,

mput [9:0] spSy,

input [10:0] spOx, //sprite X positions
input [10:0] splx,

input [10:0] Sp2X,

input [10:0] sp3x,

input [10:0] sp4x,

input [10:0] spSX,

35

mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu
mailto:ine@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

input [9:0] b0y,
input [9:0] bly,
input [10:0] bOx,
input [10:0] blx,
input [5:0] spon,
input [1:0] bombon,

// input [2:0] linemaker,
input [10:0] com_x_oldo0,

[
input [9:0] com_y old0,
input [10:0] com_x oldl,
input [9:0] com_y oldl,
input [10:0] com_x old2,
input [9:0] com_y old2,
input [10:0] com_x_old3,
input [9:0] com_y old3,

[

input [10:0] com_x_old4,
input [9:0] com_y old4,
output reg [5:0] cut,

output reg [1:0] bombcut

)s

wire bomb0A;
wire bombl1A;

wire spSA;
wire sp4A;
wire sp3A;
wire sp2A;
wire splA;
wire spOA;

always @(posedge clock) begin
if (cut[5]) cut[5] <= 0;
if (cut[4]) cut[4] <=
if (cut[3]) cut[3] <=
if (cut[2]) cut[2] <=
if (cut[1]) cut[1] <=

36

Wednesday, December 12, 2012
6.111 Final Project Report

if (cut[0]) cut[0] <= 0;
if (bombcut[1]) bombcut[1] <= 0;
if (bombcut[0]) bombcut[0] <= 0;

if (bombon[0] && bomb0A) bombceut[0] <= 1;
if (bombon[1] && bombl1A) bombcut[1] <= 1;

2

if (spon[5] && sp5SA) cut[5]
if (spon[4] && sp4A) cut[4]
if (spon|[3] && sp3A) cut[3]
if (spon[2] && sp2A) cut[2]
]]
]]

b

b

1
1
1
L;
1
1

if (spon[1] && splA) cut[1
if (spon[0] && sp0A) cut[0

2

<
<
<
<
<
<

2

/*

wire spPROTOA; wire spPROTOB;

isInside 1iIPROTOA(hand1X, hand1Y, spPROTOx, spPROTOy, 10'd64, 10'd64,
spPROTOA);

isInside 1IPROTOB(hand2X, hand2Y, spPROTOx, spPROTOy, 10'd64, 10'd64,
spPROTOB);

always @(posedge clock) begin

if (spon[PROTO] && (spPROTOA || spPROTOB)) cut[PROTO] <= 1;

end

*/

end

// oldest vector

isVectorCut izOA(com_x_old0, com_x oldl, com x old2, com x old3, com x old4,
com_y old0, com_y oldl, com y old2, com y old3, com y old4,
spOx, spOy, 10'd64, 10'd64, sp0A);

isVectorCut iz1 A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com y oldl, com y old2, com y old3, com y old4,
splx, sply, 10'd64, 10'd64, splA);

isVectorCut iz2A(com_x old0, com x oldl, com x old2, com x old3, com x old4,

com_y old0, com_y oldl, com y old2, com y old3, com y old4,

37

Wednesday, December 12, 2012
6.111 Final Project Report

sp2x, sp2y, 10'd64, 10'd64, sp2A);

isVectorCut iz3A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com_y oldl, com y old2, com y old3, com y old4,
sp3x, sp3y, 10'd64, 10'd64, sp3A);

isVectorCut iz4A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com y oldl, com y old2, com y old3, com y old4,
sp4x, spdy, 10'd64, 10'd64, sp4A);

isVectorCut iz5A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com_y oldl, com y old2, com y old3, com_ y old4,
spSx, spSy, 10'd64, 10'd64, sp5A);

isVectorCut iz6A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com y oldl, com y old2, com y old3, com y old4,
b0x, b0y, 10'd64, 10'd64, bomb0A);

isVectorCut iz7A(com_x old0, com x oldl, com x old2, com x old3, com x old4,
com_y old0, com_y oldl, com y old2, com y old3, com_ y old4,
blx, bly, 10'd64, 10'd64, bombl1A);

endmodule //geto cut detector

Is Vector Cut Verilog Code

//'is_vector_cut.v

//'6.111 final project

// By Isaac Evans, ine@mit.edu

//determines if a vector is cutting a single sprite based on game rules

module isVectorCut(x0, x1, x2, x3, x4, y0, y1, y2, y3, y4,
sprite X, sprite vy, sprite height, sprite width, isCut);
input wire [10:0] x0;
input wire [10:0] x1
input wire [10:0] x2;
input wire [10:0] x3

38

Wednesday, December 12, 2012
6.111 Final Project Report

input wire |1]
input wire [
input wire [
input wire [
input wire |

[

0:0
9:0] y
9:0] y
9:0] y
9:0] y

input wire [9:0] y

output wire 1sCut;

input wire [10:0] sprite_x;
input wire [9:0] sprite_y;

input wire [9:0] sprite_height;
input wire [9:0] sprite_width;

isInside i1 (x0, y0, sprite_x, sprite y, sprite_height, sprite width, in0);
isInside 12 (x1, y1, sprite_x, sprite y, sprite_height, sprite_width, inl);
isInside 13 (x2, y2, sprite_x, sprite_y, sprite_height, sprite_ width, in2);
isInside 14 (x3, y3, sprite_x, sprite y, sprite_height, sprite_ width, in3);
isInside 15 (x4, y4, sprite_x, sprite y, sprite_height, sprite_width, in4);

// vector

// 101nl ... 1n2 ... in3 ... in4 (oldest to newest)
// want at least one of (inl, in2, in3) true

// and at least one of (in0, in4) NOT true

// harder

assign isCut = (! in0 || ! in4) && (inl || in2 || in3);
// easier

//assign isCut = (in0 || in4 || inl || in2 || in3);

endmodule

Is Inside Verilog Code
//'is_inside.v

//'6.111 final project

// By Isaac Evans, ine@mit.edu

//detects if a given point is within the sprite’s area.

39

Wednesday, December 12, 2012
6.111 Final Project Report

module isInside(x, y, sprite_x, sprite y, sprite_height, sprite_width, isInside);
input wire [10:0] x;
input wire [9:0] y;

input wire [10:0] sprite_x;
input wire [9:0] sprite_y;

input wire [9:0] sprite height;
input wire [9:0] sprite_width;
output wire isInside;

assign isInside = (x >= (sprite_x - sprite_width) &&
X <= (sprite_x + sprite_width) &&
y >= (sprite_y - sprite_height) &&
y <= (sprite_y + sprite_height));
endmodule

Geto Randomizer Verilog Code

// geto_randomizer.v

//'6.111 final project

// By Nathan Monroe, monroe@mit.edu

//generates pseudorandom numbers based on hand position

module geto_randomizer(input [10:0] xpos, input [9:0] ypos, output [9:0] rando);

assign rando = {xpos[4], ypos[4], xpos[3], ypos[3], xpos[2], ypos[2], xpos[1], ypos[1], xpos[0],

ypos[0]};
endmodule //geto randomizer

Game Logic Verilog Code

// game logic.v

// 6.111 final project

// By Nathan Monroe, monroe(@mit.edu

//core game rules. Keeps track of score, lives, levels. Brings sprites into and out of the game.

40

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

module game_logic(

);

input clock,
input reset,
input [5:0] cut, //up to 6 fruits simultaneously

]
input [1:0] bombcut, //up to 2 bombs simultaneously
input [9:0] spOy, //sprite Y positions
input [9:0] sply,
input [9:0] sp2y,
input [9:0] sp3y,
input [9:0] sp4y,
input [9:0] spSy,
input [9:0] b0y, /bomb Y positions
input [9:0] bly,

output reg [5:0] spon, //sprite on

output reg [1:0] bombon, /bomb on

output reg [3:0] level, /8 levels plus an end level
output reg [8:0] score, /max score of 512

output reg [2:0] lives, //5 lives

output reg gameon //1 bit signal for game state

//Parameters
parameter lv_1 delay = 4'd10; /10 half-seconds (5sec) between fruits for level 1

parameter lv_2 score = 9'd5; //5 points to get to level 2
parameter lv_2 delay = 4'd8; //8 half-seconds (4sec) between fruits for level 2

parameter lv_3 score = 9'd15; //15 points to get to level 3

Wednesday, December 12, 2012
6.111 Final Project Report

parameter lv_3 delay = 4'd8; //8 half-seconds (4sec) between fruits for level 3

parameter lv_4 score = 9'd30; //30 points to get to level 4

parameter lv_4 delay = 4'd6; /6 half-seconds (3sec) between fruits for level 4
parameter bomb_delay 4 = 4'd7; //7 fruits per bomb

parameter lv_5 score = 9'd50; /50 points to get to level 5

parameter lv_5 delay = 4'd4; /4 half-seconds (2sec) between fruits for level 5
parameter bomb_delay 5 = 4'd6; /6 fruits per bomb

41

Wednesday, December 12, 2012
6.111 Final Project Report

parameter lv_6 score = 9'd85; //85 points to get to level 6
parameter lv_6_delay = 4'd3; //3 half-seconds (1.5sec) between fruits for level 6
parameter bomb_delay 6 = 4'd6; /6 fruits per bomb

parameter lv_7 score = 9'd125; /125 points to get to level 7
parameter lv_7 delay = 4'd2; //2 half-seconds (1sec) between fruits for level 7
parameter bomb_delay 7 = 4'd5; //5 fruits per bomb

parameter lv_8 score = 9'd200; /200 points to get to level 8
parameter lv_8 delay =4'dl; //1 half-seconds (0.5sec) between fruits for level 8
parameter bomb delay 8 = 4'd4; /4 fruits per bomb

parameter win_score = 9'd400; /400 points to win the game

reg [3:0] timerval;

reg start timer;

reg prevreset;

wire half hz enable, expired;
reg bomb_go;

reg [3:0] bomb_delay;

reg [3:0] bomb_counter;

reg bomb_ready;

reg [7:0] waitone;

initial begin
waitone <= 0;
timerval <= lv_1_delay;
spon <= 6'd0;
level <= 4'd0;
score <= 9'd0;
lives <= 3'b101;
gameon <= 0;
prevreset <= 0;
start_timer <= 0;
bomb go <= 0;
bomb ready <= 0;

42

Wednesday, December 12, 2012
6.111 Final Project Report

bomb_delay <= bomb delay 4://bomb delay is the number of fruits that get sent for each
bomb

bomb_counter <= 0; //this counts number of fruits sincs last bomb. Reloaded with
bomb_ delay.
end //initial

always @(posedge clock) begin

if (level == 4'd0) begin //start screen logic
if (cut[0] || cut[1]) begin
gameon <= 1'bl;
level <= 4'dl;
start timer <= 1'bl;
end //cut 0 or cut 1
end

if (gameon) begin
if (start_timer) start _timer <= 0; //start timer only asserted for one cycle

/1111111/1///Fruit starting logic

if (level == 4'd1) begin //level 1

timerval <= Iv_1_delay; /fruits come more frequently at higher levels

if (score == 1v_2 score) level <= 4'd2; //once you hit a certain score, go to the next level
end //level 1

if (level == 4'd2) begin //level 2
timerval <= lv_2 delay;
if ('bomb_go) begin
bomb go <= 1; //start sending bombs at level 4
bomb_counter <= bomb_delay;
end //if 'bombgo

if (score == lv_3 score) level <= 4'd3;
end //level 2

if (level == 4'd3) begin //level 3

43

Wednesday, December 12, 2012
6.111 Final Project Report

timerval <= 1v_3 delay;
if (score == 1v_4 score) level <= 4'd4;
end //level 3

if (level == 4'd4) begin //level 4
timerval <= lv_4 delay;
/* if ('bomb_go) begin
bomb go <= 1; //start sending bombs at level 4
bomb counter <= bomb delay;
end //if !bombgo
*/ if (score == 1v_5 score) level <= 4'd5;
end //level 4

if (level == 4'd5) begin //level 5
timerval <= lv_5 delay;
bomb delay <= bomb_delay 5;
if (score == 1v_6_score) level <= 4'd6;
end //level 5

if (level == 4'd6) begin //level 6
timerval <= lv_6_delay;
bomb_delay <= bomb delay 6;
if (score == 1v_7 score) level <= 4'd7;
end //level 6

if (level == 4'd7) begin //level 7
timerval <= lv_7 delay;
bomb_delay <= bomb delay 7:
if (score == 1v_8 score) level <= 4'dS;
end //level 7

if (level == 4'd8) begin //level 8
timerval <=1v_8 delay;
bomb_delay <= bomb delay 8:
if (score == win_score) level <= 4'd9;
end //level 8

44

Wednesday, December 12, 2012
6.111 Final Project Report

if (level == 4'd9) begin //endgame state
spon <= 6'd0;
gameon <= (;

end

if (expired) begin //time to send a new sprite
if (bomb_go) begin
bomb counter <= bomb counter - 1'b1;
if (bomb_counter == 4'd0) begin //time to send a new bomb
bomb ready <= I;
bomb_counter <= bomb_delay;
end //if bomb counter expired
end //if bomb go

if (!(level == 4'd9) || !(level == 4'd0)) start_timer <= 1'bl; //start the timer for another sprite
if the game isn't won or hasn't started
if (!(spon[0])) begin
spon[0] <= 1'bl;
waitone[0] <= 0;
end
else begin
if (!(spon[1])) begin
waitone[1] <= 0;
spon[1] <= 1'bl;
end
else begin
if ((!spon[2])) begin
spon[2] <= 1'bl;
waitone[2] <= 1'bO0;
end
else begin
if ((!spon[3])) begin
spon[3] <= 1'bl;
waitone[3] <= 1'bO0;
end
else begin
if (('spon[4])) begin

45

Wednesday, December 12, 2012
6.111 Final Project Report

spon[4] <= 1'bl;
waitone[4] <= 1'b0;
end
else begin
spon[5] <= 1'bl;
waitone[5] <= 1'b0;
end
end
end
end
end

end //if expired
/11111111777 Frait ending logic

if (spon[0]) begin
waitone[0] <= 1'bl;
if (waitone[0]) begin
if (cut[0]) begin //if cut, increment score and turn off that fruit
spon[0] <= 1'b0;
score <= score + 1;
end //cut logic

if (spOy > 767) begin //if you miss the fruit, decrement lives and turn it off
spon[0] <= 1'b0;
lives <= lives - 1;
end //life lost logic
end
end //sprite 0 logic

if (spon[1]) begin
waitone[1] <= 1'bl;
if (waitone[1]) begin
if (cut[1]) begin
spon[1] <= 1'b0;

46

score <= score + 1;
end //cut logic

if (sply > 767) begin
spon| 1] <= 1'b0;
lives <= lives - 1;
end //life lost logic
end
end //sprite 1 logic

if (spon[2]) begin
waitone[2] <= 1'bl;
if (waitone[2]) begin
if (cut[2]) begin
spon|2] <= 1'b0;
score <= score + 1;
end //cut logic

if (sp2y > 767) begin
spon[2] <= 1'b0;
lives <= lives - 1;
end //life lost logic
end
end //sprite 2 logic

if (spon[3]) begin
waitone[3] <= 1'b1;
if (waitone[3]) begin
if (cut[3]) begin
spon|3] <= 1'b0;
score <= score + 1;
end //cut logic

if (sp3y > 767) begin
spon[3] <= 1'b0;
lives <= lives - 1;

end //life lost logic

Wednesday, December 12, 2012
6.111 Final Project Report

47

Wednesday, December 12, 2012
6.111 Final Project Report

end
end //sprite 3 logic

if (spon[4]) begin
waitone[4] <= 1'bl;
if (waitone[4]) begin
if (cut[4]) begin
spon[4] <= 1'b0;
score <= score + 1;
end //cut logic

if (spdy > 767) begin
spon[4] <= 1'b0;
lives <= lives - 1;
end //life lost logic
end
end //sprite 4 logic

if (spon[5]) begin
waitone[5] <= 1'bl;
if (waitone[5]) begin
if (cut[5]) begin
spon|5] <= 1'b0;
score <= score + 1;
end //cut logic

if (spSy > 767) begin
spon[5] <= 1'b0;
lives <= lives - 1;
end //life lost logic
end
end //sprite 5 logic

1111111111117 17leomb logic
if (bombon[0]) begin
waitone[6] <= 1'b1;
if (waitone[6]) begin

48

Wednesday, December 12, 2012
6.111 Final Project Report

if (bombcut[0]) begin
bombon[0] <= 1'b0);
lives <= 0;

end //cut logic

if (bOy > 767) begin
bombon[0] <= 1'b0;
end //bomb ending logic
end
end //bomb0 logic

if (bombon[1]) begin
waitone[7] <= 1'b1;
if (waitone[7]) begin
if (bombcut|[1]) begin
bombon| 1] <= 1'b0;
lives <= 0;
end //cut logic

if (bly > 767) begin
bombon[1] <= 1'b0;
end //life lost logic
end
end //bomb]1 logic

1NN

if (bomb_ready) begin

if (half hz enable) begin
bomb ready <= 0;
if ((!bombon[0])) begin
bombon[0] <= 1;
waitone[6] <= 1'b0);
end
else begin
bombon[1] <= 1;
waitone[7] <= 1'b0;
end

49

end //if half hz enable
end //if bomb ready

if (lives == 4'd0) begin
gameon <= 0;
end //game over scenario

end //gameon
/*if (1(reset) && prevreset) begin
start_timer <= 1;
gameon <= [;
level <= 1;
prevreset <= 0;
end //letting go of reset, start the game
*/
if (reset) begin
start_timer <= 0;
timerval <= lv_1 delay;
spon <= 6'd0;
score <= 9'd0;
lives <= 3'b101;
level <= 0;
gameon <= 0;
/Iprevreset <= 1;
bombon <= 0;
bomb go <= 0;
bomb ready <= 0;

Wednesday, December 12, 2012
6.111 Final Project Report

bomb_delay <= bomb delay 4;//bomb delay is the number of fruits that get sent for each

bomb

bomb_counter <= 0; //this counts number of fruits sincs last bomb. Reloaded with

bomb_delay.
waitone <= 0;

end //reset

if (!gameon) begin
spon <= 6'd0;

50

Wednesday, December 12, 2012

bombon <= 2'd0;
end //if not game on
end //always block

time divider div(clock, start timer, reset, half hz enable);
timer tim(clock, half hz enable, start timer, reset, timerval, expired);

endmodule //game logic

Game Logic Testbench Verilog Code
// game _logic tb.v

// 6.111 final project

// By Nathan Monroe, monroe(@mit.edu

//tests game logic module

module game_logic_tb; //testbench for game logic module

reg clock, reset;
reg [3:0] cut;
reg [9:0] spOy;
reg [9:0] sply;
reg [9:0] sp2y;
reg [9:0] sp3y;
wire [3:0] spon;
wire [3:0] level;
wire [8:0] score;
wire [2:0] lives;
wire gameon;

initial
begin
clock = 0;
reset = 1;
cut = 0;

spOy = 10'd500;

6.111 Final Project Report

51

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

sply = 10'd500;

sp2y = 10'd500;

sp3y = 10'd500;

#50;

reset = 0;

#325; //all four should be activated at this point

cut [3:0] = 4'd1; //should turn off sprite 0 and increment score
#10

spOy = 769; //should do nothing

#10

sply = 769; //should reduce number of lives and turn off sprite 1
#10

cut [3:0] = 4'b1100; //should increment score by 2, turn off sprites 2 and 3
#5

cut [3:0] = 4'b0000;

spOy = 10'd500;

#60; //sprite 0 should turn back on at 55ns into this

cut[0] = 1; //increase score, turn off sprite 1

#40

cut[0] = 0;

#40

cut[0] = 1, //increase score, turn off sprite 1

#40

cut[0] = 0;

#40

cut[0] = 1; //increase score, turn off sprite 1 (should be in level 2 by now)
#40

cut[0] = 0;

spOy = 10'd800;

sply = 10'd800;

sp2y = 10'd800;

sp3y = 10'd800; //should eventually end the game with lost lives

end //initial

always #(1) clock = ~clock; //2ns clock period

52

Wednesday, December 12, 2012
6.111 Final Project Report

game logic dut(clock, reset, cut, spOy, sply, sp2y, sp3y, spon, level, score, lives, gameon);
endmodule //game logic testbench

Time Divider Verilog Code
// time_divider.v

/1 6.111 final project

// By Nathan Monroe, monroe@mit.edu

//outputs signal at a given frequency based on countval parameter

module time_divider (input clock, Start Timer, reset, output reg half hz enable);
//parameter countval = 25'd13 500 _000;
parameter countval = 25'd5 000 000; /FOR DEBUG TESTING timer =5 for 10ns / 0.5s

reg [24:0] count = countval;
always @(posedge clock) begin

count <= count-1; //decrement the count

if (count == 0) begin
count <= countval; //reset count, set the one hz signal
half hz enable <= 1'bl;

end

if (half hz enable == 1) half hz enable <= 0; //this is only 1 for one cycle out of
13,500,000

if (reset | Start Timer) begin //reset logic
count <= countval;
half hz enable <= 0;
end //if reset
end
endmodule //time divider

53

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

Timer Verilog Code

// Timer.v
/1 6.111 final project
// By Nathan Monroe, monroe@mit.edu
//keeps time based on input values
module timer (input clock, half hz, start timer, reset, input [3:0] value, output reg expired);
reg running = 03 //the timer is running if signal running=1
reg waitone = 03 //give 1 clock cycle delay
reg [3:0] curr_count;
always @(posedge clock) begin
if (running) begin //if the timer is running
if (curr_count == 0) begin
waitone <= 1; //one cycle delay for timing reasons
if (waitone) begin
expired <= 1'b1; //after the delay, set the expired signal
running <= 1'b0;
end
end //curr_count=0

else begin
if (half _hz) curr_count <= (curr_count-1);
end //else

end //if running

if (~running & start timer) begin
running <= 1'b1; //start timer if it's not running and the start signal is asserted
curr_count <= value; //load the count with input value

end //not running

if (expired) expired <= 1'b0; //expired only asserted for one clock cycle
if (reset) begin
expired <= 1'b0);
running <= 1'b0;
end //reset
end //always block

54

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012

endmodule //timer

Sprite Logic Verilog Code

// sprite_logic.v

// 6.111 final project

// By Nathan Monroe, monroe(@mit.edu
//calculates sprite positions based on game physics

module sprite_logic(
input clock,
input reset,
input vsync, //vsync of video signal
input on, //sprite on
input [9:0] rando,
output reg [9:0] ypos, //sprite Y position
output reg [9:0] xpos, //sprite x position
output reg syncstate //sprite on synced to hsync

);

6.111 Final Project Report

parameter gravity = 6'd22; //enter as integer. Gravity will be this number divided by 64 (frames

per second per second).

reg state;

reg [5:0] floatgrav; //used for fractional gravity

reg signed [11:0] xvector; //x component of fruit's vector

reg signed [10:0] yvector; //y component of fruit's vector max 63
reg prevvsync;

initial begin
xpos <= 0);
ypos <= 0;
state <= 0;
xvector <= 0;
yvector <= 0;
floatgrav <= 0;
syncstate <= 0;

end //initial

55

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

always @(posedge clock) begin

if (!state) begin

ypos <= 10'd766;

xpos <= 10'd500;

xvector = 12'd0;

yvector <= -10;

end

if ((!state) && on) begin //indicates new sprite
if (rando[6] && rando[4]) begin //25% of the time the fruit falls downwards from the top
ypos <= 10'd1;
yvector <= 1;
end

else begin
ypos <= 10'd766; //otherwise it starts at the bottom, moving upwards between -26 and -32
pix/frame upwards
//if (rando[0]) yvector <= -29 + rando[2:1];
//if ('rando[0]) yvector <= -29 - rando[2:1];
yvector <= -22;
if (rando[0]) yvector <= -18 + rando|[2:1];
if (rando[0])yvector <= -18 - rando[2:1];
end
xpos <= rando;
case (rando[9:7]) //values selected based on X position so it never wraps around the screen
3'b000 : xvector = {9'd0,rando[2:0]} + {11'd0,rando[4]} + {11'dO,rando[5]}; //max of 7 +
1+1=9
3'b001: xvector = {9'd0, rando[2:0]} + {11'd0,rando[4]}; /max of 7+ 1 =8
3'b010: xvector = {9'd0, rando[2:0]}; /max of 7
3'b011: xvector = {10'd0,rando[1:0]} + {11'dO,rando[2]} + {11'dO,rando[3]}; /max of 3 +
1+1=5
3'b100: xvector =-1 * ({10'd0,rando[1:0]} + {11'dO,rando[2]} + {11'dO,rando|[3]}); //max
of3+1+1=-5
3'b101: xvector = -1 * ({9'd0, rando[2:0]}); //max of -7
3'b110: xvector =-1 * ({9'd0, rando[2:0]} + {11'dO,rando[4]}); /max of 7 + 1 = -8
3'b111: xvector =-1 * ({9'd0,rando[2:0]} + {11'd0,rando[4]} + {11'dO,rando[5]}); //max
of 7+1+1=-9

56

Wednesday, December 12, 2012
6.111 Final Project Report

/*
3'b000 : xvector = {10'd0,rando[1:0]} + {10'd0,rando[3:2]}; /max of 7+ 1+ 1 =9
3'b001: xvector = {10'd0, rando[1:0]} + {11'd0,rando[2]} + {11'dO,rando[3]}; //max of 7
+1=8
3'b010: xvector = {10'd0, rando[1:0]} + {11'd0,rando[2]} + {11'd0,rando[3]}; //max of 7
3'b011: xvector = {10'd0,rando[1:0]} + {11'd0,rando[2]}; /max of 3+ 1+1=5
3'b100: xvector = -1 * ({10'd0,rando[1:0]} + {11'd0,rando[2]}); /max of 3+ 1+ 1=-5
3'b101: xvector = -1 * ({10'd0, rando[1:0]} + {11'd0,rando[2]} + {11'd0,rando[3]}); //
max of -7
3'b110: xvector = -1 * ({10'd0, rando[1:0]} + {11'd0,rando[2]} + {11'dO,rando[3]}); //
max of 7+ 1=-8
3'b111: xvector =-1 * ({10'd0,rando[1:0]} + {10'd0,rando[3:2]}); /max of 7+ 1+ 1 =-9
*/
default: xvector = 0;
endcase //rando
state <= 1;
end //start of new sprite
if (vsync & !prevvsync) begin
if (state) begin
syncstate <= 1'b1; //state synchronized with the vsync signal
//$display("%d, %d", xpos, ypos); //for debugging
XpOSs <= Xpos + xvector;
ypos <= ypos + yvector;
floatgrav <= floatgrav + gravity;
if (floatgrav > (floatgrav + gravity)) yvector <= yvector + 1'b1; //this will be true gravity/
64 of the time. Poor man's floating point unit.
if (on) begin
state <= 0; //turn sprite off
syncstate <= 0);
end
end //sprite on
end //vsync and not prevvsync
prevvsync <= vsync;
if (reset) begin
xpos <= 0;
ypos <= 0;

57

state <= 0;
yvector <= 0;
xvector = 0;
floatgrav <= 0;
syncstate <= 0;
end //if reset
end //posedge clock

endmodule //sprite logic

Sprite Logic Testbench Verilog Code

// sprite logic tb.v
// 6.111 final project

// By Nathan Monroe, monroe(@mit.edu

//testbench for sprite logic module
module spritelogic_tb; //testbench for the sprite logic

reg clock, reset, vsync, on;
reg [9:0] rando;

wire [9:0] ypos;

wire [10:0] xpos;

initial begin

clock = 0;

vsync = 0;

rando = 10'b1110000110;
on = 0;

reset = 1;

#50

reset = 0;

#50

on=1;

end //initial

always #(1) clock = ~clock; //2ns clock period

Wednesday, December 12, 2012

6.111 Final Project Report

58

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

always #(15) vsync = ~vsync; //30ns vsync period
sprite_logic dut(clock, reset, vsync, on, rando, ypos, Xpos);

endmodule //sprite logic testbench

Game Audio Verilog Code

/I game_audio.v
//'6.111 final project

// By Nathan Monroe, monroe@mit.edu

///This module runs the game audio and plays sound effects based on game events

module game_audio(

input wire clock, // 27Tmhz system clock

input wire reset, // 1 to reset to initial state

input wire ready, //'1 when AC97 data is available
input wire [5:0] cut,

input wire bombcut,

input wire lives,

input wire score,

output reg to_ac97 data // 8-bit PCM data to headphone
);
parameter AUDIO IDLE = 1'b0;
parameter AUDIO PLAYING = 1'bl;
parameter cut max_addr = 15'd23386; //goes with cutmem5
parameter newlevel max_addr = 15'd31996; //goes with levelmem1
parameter lifelost max_addr = 15'd22254; //goes with lifemem|
parameter win_max_addr = 16'd41806; //goes with winmem|
parameter fail max addr = 16'd50387; //goes with failmem]|

[1:0]
[2:0]
input wire [3:0] level,
[8:0]
[7:0]

parameter win_score = 9'd400; //score to win the game. Should match the one from game logic

module.
parameter boom max_addr = 16'd42128;

reg audiostate; //tells if any audio is playing or not

59

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

reg cut_ready; //tells if the corresponding sound is ready to play
reg newlevel ready;

reg lifelost ready;

reg win_ready;

reg fail ready;

reg boom_ready;

reg cutplaying; //tells if the corresponding sound is playing
reg newlevelplaying;

reg lifelostplaying;

reg winplaying;

reg failplaying;

reg boomplaying;

reg [14:0] cut_addr; // address to corresponding memory brams. width based on cutmem5
reg [14:0] newlevel addr; //width based on levelmem|

reg [14:0] lifelost_addr; //width based on lifemem1

reg [15:0] win_addr; //width based on winmem1

reg [15:0] fail_addr; //width based on failmem1

reg [15:0] boom_addr;

wire [7:0] cut_data; //output from corresponding memories
wire [7:0] newlevel data;

wire [7:0] lifelost data;

wire [7:0] win_data;

wire [7:0] fail data;

wire [7:0] boom_data;

reg [3:0] curr_level; //current level

reg [2:0] curr_lives;

reg [8:0] curr_score;

reg [5:0] cutprev; //Previous state of cut. Used to tell if a new fruit has been cut
reg [1:0] bombcutprev;

initial begin

cut_ready <= 1'b0;

newlevel ready <= 1'b0;

lifelost ready <= 1'b0;

60

Wednesday, December 12, 2012
6.111 Final Project Report

win_ready <= 1'b0;
fail ready <= 1'b0;
boom_ready <= 1'b0;

cutprev <= 1'b0;
bombcutprev <= 2'b0);
audiostate <= AUDIO IDLE;
curr_level <= level;
curr_lives <= lives;
CUIT_ScCore <= Score;

cutplaying <= 1'b0;
newlevelplaying <= 1'b0;
lifelostplaying <= 1'b0;
winplaying <= 1'b0;
failplaying <= 1'b0;
boomplaying <= 1'b0);

cut_addr <= 1'b0;
newlevel addr <= 13'b0;
lifelost addr <= 13'b0;
win_addr <= 0;
fail_addr <= 0;
boom_addr <= 0;

end //initial

always @ (posedge clock) begin
if (audiostate == AUDIO _IDLE) begin //this handles sounds waiting to play and makes sure
only one is playing at a time.
if (cut_ready) begin
cut_ready <= 1'b0;
audiostate <= AUDIO PLAYING;
cutplaying <= 1'bl;
end //if cut ready
else if (newlevel ready) begin
newlevel ready <= 1'b0;

61

audiostate <= AUDIO PLAYING;
newlevelplaying <= 1'bl;
end //if newlevel ready

else if (lifelost ready) begin
lifelost_ready <= 1'b0;
audiostate <= AUDIO PLAYING;
lifelostplaying <= 1'b1;

end //if lifelost ready

else if (win_ready) begin
win_ready <= 1'b0;
audiostate <= AUDIO PLAYING;
winplaying <= 1'bl;

end //if win_ready

else if (boom_ready) begin
boom_ready <= 1'b0;
audiostate <= AUDIO PLAYING;
boomplaying <= 1'b1;

end //if boom ready

else if (fail ready) begin
fail ready <= 1'b0;
audiostate <= AUDIO PLAYING;
failplaying <= 1'bl;

end //if fail ready

end //idle audio state
T tarn on ready signals for different sounds based on input

if((cut[0] && !cutprev[0]) || (cut[1] && !cutprev[1]) || (cut[2] && !cutprev[2]) || (cut[3] && !
cutprev|3]) || (cut[4] && !cutprev[4]) || (cut[5] && !cutprev[5])) cut ready <= 1; //play the cut
sound if a new fruit has been cut

cutprev <= cut;

Wednesday, December 12, 2012
6.111 Final Project Report

if ((level > curr_level) && (level !=4'b1)) newlevel ready <= 1'bl; //play level sound if you
level up

62

Wednesday, December 12, 2012
6.111 Final Project Report

curr_level <= level;

if (lives < curr_lives) begin
if (lives == 3'd0) fail _ready <= 1'bl; //if you ran out of lives, play fail sound.
else lifelost_ready <= 1'bl; //otherwise play the life lost sound

end //life change

curr_lives <= lives;

if ((score == win_score) && (score > curr_score)) win_ready <= 1'bl; //if you got the score to
win, play the win sound.
CUIT_Score <= score;

if ((bombcut[0] && 'bombcutprev([0]) || (bombcut[1] && !bombceutprev|1])) boom ready <=
1'bl;
bombcutprev <= bombcut;
77T/ /manage output to AC97 based on which sound is playing
if (audiostate == AUDIO_PLAYING) begin
if (cutplaying) to_ac97 data <= cut_data;
if (newlevelplaying) to_ac97 data <= newlevel data;
if (lifelostplaying) to _ac97 data <= lifelost data;
if (winplaying) to_ac97 data <= win_data;
if (failplaying) to_ac97 data <= fail data;
if (boomplaying) to ac97 data <= boom_data;
//put other sounds here
end //if audio is playing

11111710111777711]/ /handles memory and state for which clip is playing
if (ready) begin

s
///Cut Memory
T
if (!cutplaying) cut addr <= 13'b0;
if (cutplaying) begin
cut_addr <= cut addr + 1'b1;
if ((cut_addr+1'bl) == cut_max_addr) begin

63

Wednesday, December 12, 2012
6.111 Final Project Report

cutplaying <= 1'b0;
audiostate <= AUDIO IDLE;
end //ending cut playing
end //if cutplaying
e,
/I/New Level Memory
I
if ('newlevelplaying) newlevel addr <= 13'b0);
if (newlevelplaying) begin
newlevel addr <= newlevel addr + 1'bl;
if ((newlevel addr + 1'b1) == newlevel max_addr) begin
newlevelplaying <= 1'b0;
audiostate <= AUDIO IDLE;
end //ending new level playing
end //if new level playing

I
///Life Lost Memory
I
if (!lifelostplaying) lifelost addr <= 13'b0;
if (lifelostplaying) begin
lifelost _addr <= lifelost addr + 1'bl1;
if ((lifelost_addr + 1'bl) == lifelost max_addr) begin
lifelostplaying <= 1'b0;
audiostate <= AUDIO IDLE;
end //ending life lost playing

end //if life lost playing

T
/l[/Win Memory
s
if (winplaying) win_addr <= 16'd0;
if (winplaying) begin
win_addr <= win_addr + 1'b1;
if (win_addr + 1'b1) == win_max_addr) begin
winplaying <= 1'b0;

64

Wednesday, December 12, 2012
6.111 Final Project Report

audiostate <= AUDIO IDLE;
end //ending win playing

end //if win playing

s
///Fail Memory
I
if (!failplaying) fail addr <= 16'b0;
if (failplaying) begin
fail addr <= fail _addr + 1'bl;
if ((fail_addr + 1'bl) == fail max_addr) begin
failplaying <= 1'b0;
audiostate <= AUDIO _IDLE;
end //ending fail playing

end //if fail playing

I,
///Boom Memory
I
if (!boomplaying) boom_addr <= 16'b0;
if (boomplaying) begin
boom addr <= boom addr + 1'bl;
if ((boom_addr + 1'b1) == boom max addr) begin
boomplaying <= 1'b0;
audiostate <= AUDIO IDLE;
end //ending boom playing

end //if boom playing

end //if ready

if (reset) begin
cut_ready <= 1'b0;

65

Wednesday, December 12, 2012
6.111 Final Project Report

newlevel ready <= 1'b0;
lifelost ready <= 1'b0;
win_ready <= 1'b0;

fail ready <= 1'b0;
boom_ready <= 1'b0);

bombcutprev <= 2'b0);
cutprev <= 1'b0);

audiostate <= AUDIO IDLE;
curr_level <= level;
curr_lives <= lives;
CUIT_Score <= score;

cutplaying <= 1'b0;
newlevelplaying <= 1'b0);
lifelostplaying <= 1'b0;
winplaying <= 1'b0;
failplaying <= 1'b0;
boomplaying <= 1'b0;

cut_addr <= 1'b0;
newlevel addr <= 13'b0;
lifelost_addr <= 13'b0;
win_addr <= 0;
fail addr <= 0;
boom_addr <= 0;

end //if reset

end //posedge clock

cutmem5 cm(clock, {8'd0}, cut_addr, {1'b0}, cut data);

levelmem1 newlevel(clock, {8'd0}, newlevel addr, {1'b0}, newlevel data);
lifemem1 lostlife(clock, {8'd0}, lifelost addr, {1'b0}, lifelost data);
failmem1 fail(clock, {8'd0}, fail addr, {1'b0}, fail data);

winmem]1 win(clock, {8'd0}, win_addr, {1'b0}, win_data);

boommem1 boom(clock, {8'd0}, boom addr, {1'b0}, boom_data);

66

Wednesday, December 12, 2012
6.111 Final Project Report

endmodule //game audio

Ul Wrapper Verilog Code

//' Ul wrapper.v

/1 6.111 final project

// By Nathan Monroe, monroe@mit.edu

//interfaces the sprite generating part of the UI with the rest of the system to provide a splash
screen with functionality to choose fruits or TA’s as sprites. Also generates rotating sprites so
every possible sprite is displayed.

module Ul wrapper (
input clock, reset,
input [3:0] level,
input [10:0] hcount,
input [5:0] spon,
input [3:0] rando,
input [1:0] cut,
output reg [2:0] s0, s1, s2, s3, s4, s5, s6, s7,
output reg cheat
);
reg [5:0] prevspon;
reg cheatstate = 0;
reg [2:0] curr_sprite = 0;
always @(posedge clock) begin
if (!cheatstate) begin
if (cut[0]) begin
cheatstate <= 1;
cheat<=1;
end //if cut 0

if (cut[1]) begin

cheatstate <=1,
cheat <= 0;

67

Wednesday, December 12, 2012
6.111 Final Project Report

end //if cut 1
end //if not cheat state

if (level == 4'd0) begin
s0 <= 3'd3;
sl <= 3'd6;

if (lcut[0] && !cut[1]) begin
if (hcount[9:0] > 10'd400) cheat <= 0;
else cheat <= 1;

end //if not cut 0 and not cut 1
end //if level 0

else begin
if (spon[0] && !prevspon[0]) begin
s0 <= curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;
else curr_sprite <= curr_sprite + 1; //cycle through all sprites
end
if (spon[1] && !prevspon[1]) begin
sl <=curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;
else curr_sprite <= curr_sprite + 1; //cycle through all sprites
end
if (spon[2] && !prevspon[2]) begin
s2 <= curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;
else curr_sprite <= curr_sprite + 1; //cycle through all sprites

end
if (spon[3] && !prevspon[3]) begin
s3 <= curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;
else curr_sprite <= curr_sprite + 1; //cycle through all sprites
end

if (spon[4] && !prevspon[4]) begin
s0 <= curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;

68

Wednesday, December 12, 2012
6.111 Final Project Report

else curr_sprite <= curr_sprite + 1; //cycle through all sprites
end
if (spon[5] && !prevspon[5]) begin
s5 <=curr_sprite;
if ((curr_sprite + 1) > 3'd5) curr_sprite <= 0;
else curr_sprite <= curr_sprite + 1; //cycle through all sprites
end

end //if level is not 0
prevspon <= spon;
s6 <= 3'd6;
s7 <=3'd6;

if (reset) begin
prevspon <= 0;
cheatstate <= 0;
end //if reset

end //posedge clock

endmodule

Picture Blob Verilog Code

// picture_blob.v
//'6.111 final project
// By Drew Dennison and Nathan Monroe, dennison@mit.edu, monroe@mit.edu
//displays a picture at the desired position on the screen
module picture blob

#(parameter DIM = 32) // default picture width and height

(input pixel clk, cheat,

input [10:0] x0,x1,x2,x3,x4,x5,bomb0x,bomb1x,hcount,

input [9:0] y0,yl.y2.y3.y4,y5.bomb0Oy.bombly.vcount,
input [2:0] s0,s1,s2,s3,s4.,85,56,s7,

input [3:0] level,

input [3:0] rando,

69

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

input [5:0] spon,

input [1:0] bombon,

input hsync, vsync,

output reg phsync, pvsync,
output reg [23:0] pixel);

wire [12:0] image addr; // num of bits for 32%32%24*7 ROM
wire [23:0] image_bits;

wire [23:0] cheat bits;

wire [23:0] myimage_bits;

wire [23:0] mycheat bits;

reg [10:0] addr x = 0

reg [9:0] addr y = 03

reg [2:0] id = 03

wire [23:0] bloblout;
wire [23:0] blob2out;

assign cheat bits = (level==3'd0) ? (mycheat bits & (bloblout | blob2out)) : mycheat bits;
assign image bits = (level==3'd0) ? (myimage bits & (bloblout | blob2out)) : myimage bits;
// note the one clock cycle delay in pixel!

hackblob blob1(.x(11'd303-32),.y(11'd500-32), . hcount(hcount),.vcount(vcount), .level(level),
.mypixel(bloblout));

hackblob blob2(.x(11'd703-32),.y(11'd500-32),.hcount(hcount),.vcount(vcount), .level(level),
.mypixel(blob2out));

always @ (posedge pixel clk) begin
phsync <= hsync;
pvsync <= vsync;
pixel <= cheat ? image bits : cheat bits;
if (spon[0] &&((hcount >= x0 && heount < (x0+DIM*2)) &&

(vecount >= y0 && veount < (yO+DIM*2)))) begin
addr_x <= x0;

70

Wednesday, December 12, 2012
6.111 Final Project Report

addr_y <=y0;
id <= s0;
end

else if (spon[1] && ((hcount >= x1 && heount < (x1+DIM*2)) &&
(veount >=yl && veount < (y1+DIM*2)))) begin

addr x <=x1;

addr y <=yl;

id <=sl;

end

else if (spon[2] && ((hcount >= x2 && heount < (x2+DIM*2)) &&
(veount >=y2 && veount < (y2+DIM*2)))) begin

addr_x <=x2;

addr y <=y2;

id <=s2;

end

else if (spon[3] && ((hcount+10 >= x3 && hcount < (x3+DIM*2)) &&
(veount >=y3 && veount < (y3-+DIM*2)))) begin

addr_x <=x3;

addr y <=y3;

id <=s3;

end

else if (spon[4] && ((hcount >= x4 && hcount < (x4+DIM*2)) &&
(veount >= y4 && veount < (y4+DIM*2)))) begin

addr_x <= x4;

addr y <= y4;

id <= s4;

end

else if (spon|[5] && ((hcount >= x5 && hcount < (x5+DIM*2)) &&
(veount >=y5 && veount < (y5+DIM*2)))) begin

addr_x <=x5;

addr y <=yS5;

id <= s5;

71

Wednesday, December 12, 2012
6.111 Final Project Report

end

else if (bombon[0] && ((hcount >= bomb0x && heount < (bomb0x+DIM*2)) &&
(veount >= bomb0y && veount < (bomb0Oy+DIM*2)))) begin

addr_x <= bomb0x;

addr_y <= bomb0y;

id <= s6;

end

else if (bombon[1] && ((hcount >= bomb1x && heount < (bomb1x+DIM*2)) &&
(vecount >= bombly && veount < (bombly+DIM*2)))) begin

addr_x <= bomblx;

addr_y <= bombly:;

id <=s7;

end

else
pixel <= 0;

end
// calculate rom address and read the location

assign image addr = (1024*id) + ((hcount-addr_x)/2) + ((vcount-addr y)/2) * DIM;
sprites rom1(pixel clk,24'b0, image addr, 1'b0,myimage bits);

ta_sprites rom2(pixel clk,24'b0, image addr, 1'b0,mycheat bits);

endmodule

Level Verilog Code

/Il level.v

// 6.111 final project

// By Drew Dennison, dennison@mit.edu
//generates video signals to display level on the UI
module level(input vclock,

input [10:0] x,hcount,

input [9:0] y,vcount,

72

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

input [2:0] level, // 0-7
output [23:0] pixel
)s

wire [63:0] cstring;

wire [23:0] mypixel;

wire [55:0] text = 56'b01001100011001010111011001100101011011000011101000100000;
reg [7:0] asciilLevel;

always @ (posedge vclock) begin
case (level)
0:
asciiLevel <= 8'b00110000;

1:

asciiLevel <= 8'b00110001;
2:

asciiLevel <= 8'b00110010;
3:
asciiLevel <= 8'b00110011;
4:

asciiLevel <= 8'b00110100;
S:

asciiLevel <= 8'b00110101;
6:

asciiLevel <= 8'b00110110;
7:
asciiLevel <= 8'b00110111;
default:

asciiLevel <= 8'b00110000; // zero

endcase // case (level)

end // always @ (posedge vclock)

assign cstring = {text,asciiLevel};

assign pixel = (level==3'd0) ? 24'd0 : mypixel;

char_string display
level text(.vclock(vclock),.hcount(hcount),.veount(veount),.pixel(mypixel),.cstring(cstring),.cx(
X)..cy(y));

73

Wednesday, December 12, 2012
6.111 Final Project Report

endmodule

Lives Verilog Code

/' lives.v
// 6.111 final project
// By Drew Dennison, dennison@mit.edu
//generates proper signals to display number of lives left on the Ul
module lives(input vclock,
input [10:0] x,hcount,
input [9:0] y,vcount,
input [2:0] lives, level, // 0-7
output [23:0] pixel

)
wire [23:0] mypixel;
wire [63:0] cstring;

wire [55:0] text = 56'b010011000110100101110110011001010111001100111010001000003
reg [7:0] asciiLives;

always @ (posedge vclock) begin
case (lives)
0:
asciiLives <= 8'b00110000;
1:
asciiLives <= 8'b00110001;
2:
asciiLives <= 8'b00110010;
3:
asciiLives <= 8'b00110011;
4;
asciiLives <= 8'b00110100;
5:
asciiLives <= 8'b001101013;
6:
asciiLives <= 8'b00110110;

74

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

7:
asciiLives <= 8'b00110111;
default:
asciiLives <= 8'b00110000; // zero
endcase // case (lives)

end // always @ (posedge vclock)

assign cstring = {text,asciilLives};

assign pixel = (level==3'd0) ? 24'd0 : mypixel;

char_string display
lives_text(.vclock(velock),.hcount(hcount),.vcount(vcount),.pixel(mypixel),.cstring(cstring),.cx(

X),.cy(y));
endmodule

Score Verilog Code

// score.v
/1 6.111 final project
// By Drew Dennison, dennison@mit.edu
//generates proper video signals to display current score on the Ul
module score(input vclock, slowclock,
input [10:0] x,hcount,
input [9:0] y,vcount,
input [8:0] score, // 0-400
output [23:0] pixel,

input reset,
input [2:0] level
);
wire [127:0] cstring; // Score: 000 = 16 chars
wire [63:0] text =
63'v01010011011000110110111101110010011001010011101000100000
reg [7:0] asciiHundreds = 0;
reg [7:0] asciiTens = 03
reg [7:0] asciiOnes = 0;

75

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

reg [3:0] hundreds = 0;
reg [3:0] tens = 03
reg [3:0] ones = 0;
reg [8:0] old score = 03

wire [23:0] mypixel;

assign pixel = (level == 3'd0) ? 24'd0 : mypixel;
initial begin

ones <= 0;

tens <= 0;

hundreds <= 0;
end

always @ (posedge slowclock) begin
if(reset) begin
ones <= 0;
tens <= 0;
hundreds <= 0;
end

old score <= score;
if (score > old score) begin
ones <=ones + 1;
if (ones >= 9) begin
ones <= 0;
tens <=tens + 1;
if (tens >= 9) begin
tens <= 0;
hundreds <= hundreds + 1;
if (hundreds >= 9) begin
hundreds <= 0;
tens <= 0;
ones <= 0;
end
end
end // if (ones > 9)

76

end
case (hundreds)

0.

asciiHundreds <= 8'b00100000; // space

1:

asciiHundreds <= 8'b00110001;

2:

asciiHundreds <= 8'b00110010;

3.

4:

asciiHundreds <= 8'b00110011;

asciiHundreds <= 8'b00110100;

5:

asciiHundreds <= 8'b00110101;

6:

’7.

asciiHundreds <= 8'b00110110;

asciiHundreds <= 8'b00110111;

8:

asciiHundreds <= 8'b00111000;

9:

asciiHundreds <= 8'b00111001;

default:

asciiHundreds <= 8'b00100000; // space
endcase // case (hundreds)

case (tens)

O.

asciiTens <= 8'b00100000; // space

1:

asciiTens <= &'b00110001;

2:

asciiTens <= 8'b00110010;

3.

4:

asciiTens <= 8'b00110011;

asciiTens <= 8'b00110100;

Wednesday, December 12, 2012
6.111 Final Project Report

77

Wednesday, December 12, 2012
6.111 Final Project Report

5:
asciiTens <= 8'b00110101;
6:

asciiTens <= 8'b00110110;
7:

asciiTens <= &'b00110111;
8:

asciiTens <= 8'b00111000;
9:

asciiTens <= 8'b00111001;

default:
asciiTens <= 8'b00100000; // space
endcase // case (tens)

case (ones)
0:

asciiOnes <= 8'b00110000;
I:

asciiOnes <= 8'b00110001;
2:

asciiOnes <= 8'b00110010;
3:

asciiOnes <= 8'b00110011;
4:

asciiOnes <= 8'b00110100;
5:
asciiOnes <= 8'b00110101;
6:
asciiOnes <= 8'b00110110;
7:

asciiOnes <= 8'b00110111;
8:

asciiOnes <= 8'b00111000;
9:

asciiOnes <= 8'b00111001;

78

Wednesday, December 12, 2012
6.111 Final Project Report

default:
asciiOnes <= 8'b00110000; // zero
endcase // case (one)

end // always @ (posedge vclock)

assign cstring = {text,asciiHundreds.asciiTens,asciiOnes};
char string display #(.NCHAR(16), NCHAR BITS(4))

score_text(.vclock(vclock), hcount(hcount),. vcount(vcount),.pixel(mypixel),.cstring(cstring),.cx(

X),.cy(y));
endmodule

Splash Screen Verilog Code

// splash_screen.v
// 6.111 final project
// By Drew Dennison, dennison@mit.edu
//Generates proper video signals for splash screen at the beginning of the game
module splash_screen
#(parameter WIDTH = 250,

parameter HEIGHT= 100) // default picture width and height
(input pixel clk,

input [10:0] x,hcount,

input [9:0] y,vcount,

input [2:0] level,

output wire [23:0] mypixel);

wire [14:0] image addr; // num of bits for 250*100*1 ROM
wire image_bit;

reg [23:0] pixel;

assign mypixel = (level == 3'd0) ? pixel : 24'hFFFFFF;

// note the one clock cycle delay in pixel!

always @ (posedge pixel clk) begin

if ((hcount >= x && hcount < (x *tWIDTH*2) &&
(veount >=y && veount < (y+tHEIGHT*2)))) begin

pixel <= image bit 7 0 : 24'hFFFFFF;

end

79

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

else
pixel <= 24'hFFFFFF;

end
// calculate rom address and read the location

assign image addr = (hcount-x)/2 + ((vcount-y)/2 * WIDTH)
splash rom1(pixel clk,24'b0, image addr, 1'b0,image bit);
endmodule

Sword Verilog Code

// sword.v
// 6.111 final project

// By Drew Dennison, dennison@mit.edu

//generates video signals to display sword on the screen at the hand position
module sword
#(parameter DIM = 64) // default picture width and height
(input pixel clk,
input [10:0] myx,hcount,
input [9:0] y,vcount,
output reg [23:0] pixel);
wire [11:0] image addr; // num of bits for 64*64*24 ROM
wire [23:0] image bits;
wire [10:0] x;
assign x = myx - 11'd64;
// note the one clock cycle delay in pixel!
always @ (posedge pixel clk) begin

if ((hcount >= x && hcount < (x +DIM)) &&
(veount >=y && veount < (y+DIM))) begin

pixel <= image bits;

end

else

80

mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

pixel <= 0;

end
// calculate rom address and read the location

assign image addr = (hcount-x) + (vcount-y) * DIM;
sword_sprite rom1(pixel clk,24'b0, image addr, 1'b0,image bits);
endmodule

Top Module Verilog Code

// top_module.v

// 6.111 final project

// By Nathan Monroe, Isaac Evans, Drew Dennison, monroe(@mit.edu, ine@mit.edu, //
dennison@mit.edu

module top_module(beep, audio reset b,
ac97 sdata out, ac97 sdata in, ac97 synch,
ac97 bit_clock,

vga out red, vga out green, vga out blue, vga out sync b,
vga out blank b, vga out pixel clock, vga out hsync,
vga out_vsync,

tv_out ycrcb, tv_out reset b, tv_out clock, tv_out i2c clock,
tv_out i2c data, tv_out pal ntsc, tv_out hsync b,
tv_out vsync b, tv_out blank b, tv_out subcar reset,

tv_in_ycrchb, tv_in_data valid, tv_in line clockl,
tv_in_line clock2, tv_in aef, tv_in hff, tv_in aff,
tv_in_i2c_clock, tv_in_i2c¢ data, tv_in_fifo read,
tv_in_fifo clock, tv_in iso, tv_in reset b, tv_in clock,

ram(_data, ram0 address, ram0_adv_ld, ram0O clk, ramO cen b,
ram(0 ce b, ram0 oe b, ram0 we b, ram0 bwe b,

81

mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:monroe@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu
mailto:dennison@mit.edu

Wednesday, December 12, 2012
6.111 Final Project Report

raml data, ram1 address, ram1 adv_ld, raml clk, raml cen b,
raml ce b,raml oe b,raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash_ce b, flash oe b, flash we b,
flash reset b, flash sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,
mouse_clock, mouse data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock?2,

disp blank, disp data out, disp_clock, disp rs, disp _ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button_enter, button_right,
button_left, button down, button_up,

switch,

led,

userl, user2, user3, user4,
daughtercard,

systemace_data, systemace address, systemace ce b,
systemace we b, systemace oe b, systemace_irq, systemace mpbrdy,

analyzerl data, analyzerl clock,

analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

82

Wednesday, December 12, 2012
6.111 Final Project Report

output beep, audio_reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,
vga out hsync, vga out vsync;

output [9:0] tv_out_ycrcb;

output tv_out reset b, tv_out clock, tv_out i2c clock, tv_out i2c data,
tv_out pal ntsc, tv_out hsync b, tv_out vsync b, tv_out blank b,
tv_out_subcar reset;

input [19:0] tv_in_ycrcb;

input tv_in data valid, tv_in_line clockl, tv_in line clock2, tv_in_aef,
tv_in_hff, tv_in aff;

output tv in_i2c clock, tv_in fifo read, tv_in fifo clock, tv_in_iso,
tv_in reset b, tv_in clock;

inout tv_in i2c data;

inout [35:0] ram0_data;

output [18:0] ram0_address;

output ram0O _adv_ld, ram0 clk, ram0 cen b, ram0O ce b, ram0 oe b, ram0 we b;
output [3:0] ram0 bwe b;

inout [35:0] raml data;

output [18:0] ram]1_address;

output raml adv Id, raml clk, raml cen b,raml ce b,raml oe b, raml we b;
output [3:0] raml _bwe b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash data;

output [23:0] flash_address;

output flash ce b, flash oe b, flash we b, flash reset b, flash _byte b;
input flash_sts;

83

Wednesday, December 12, 2012
6.111 Final Project Report

output rs232 txd, rs232 rts;
input rs232 rxd, rs232 cts;

input mouse clock, mouse data, keyboard clock, keyboard data;
input clock 27mhz, clockl, clock2;

output disp blank, disp clock, disp rs, disp_ce b, disp reset b;
input disp_data_in;
output disp_data out;

input button0, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe b;
input systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzer4 data;
output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

I
/1

/1 /O Assignments

//
s

/I Audio Input and Output
assign beep= 1'b0;

84

Wednesday, December 12, 2012
6.111 Final Project Report

/* assign audio reset b= 1'b0;
assign ac97 synch = 1'b0;
assign ac97 sdata out = 1'b0;

*/
// 'ac97 sdata_in is an input

//' Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out reset b = 1'b0;
assign tv_out clock = 1'b0;
assign tv_out i2c¢ clock = 1'b0;
assign tv_out i2c data = 1'b0;
assign tv_out pal ntsc = 1'b0;
assign tv_out hsync b= 1'bl;
assign tv_out vsync b= 1'bl;
assign tv_out blank b= 1'bl;
assign tv_out subcar reset = 1'b0;

// ' Video Input

//assign tv_in_i2¢_clock = 1'b0;

assign tv_in_fifo read = 1'bl;

assign tv_in_fifo clock = 1'b0;

assign tv_in_iso = 1'bl;

//assign tv_in_reset b = 1'b0;

assign tv_in_clock = clock 27mhz;//1'b0;

//assign tv_in_i2c_data = 1'bZ;

//'tv_in_ycrcb, tv_in data valid, tv_in_line clockl, tv_in line clock?2,
//tv_in_aef, tv_in_ hff, and tv_in_aff are inputs

// SRAMs
/* change lines below to enable ZBT RAM bankO0 */
/*

assign ram(_data = 36'hZ;
assign ram0_address = 19'h0;

85

assign ram0 clk = 1'b0;
assign ram0_we b =1'bl;
assign ram0_cen_b = 1'b0;
*/

// clock enable

/* enable RAM pins */

assign ram0_ce b = 1'b0;
assign ram0_oe b = 1'b0;
assign ram0_adv_1d = 1'b0;
assign ram0_bwe b = 4'h0;

/**********/

assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign ram1_adv_1d = 1'b0;
assign ram1_clk = 1'b0;

//These values has to be set to 0 like ramO if ram1 is used.

assign raml cen b = 1'bl;
assign raml ce b= 1'bl;
assign raml _oe b= 1'bl;
assign raml_we b= 1'bl;
assign ram1_bwe b = 4'hF;

// clock feedback out will be assigned by ramclock
// assign clock feedback out = 1'b0; //2011-Nov-10
// clock feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash_address = 24'h0;
assign flash ce b=1'bl;
assign flash oe b= 1Dbl;
assign flash we b=1'bl;
assign flash _reset b = 1'b0;

Wednesday, December 12, 2012
6.111 Final Project Report

86

Wednesday, December 12, 2012
6.111 Final Project Report

assign flash _byte b= 1'bl;
// flash_sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// 1s232 rxd and rs232 _cts are inputs

/I PS/2 Ports
// mouse_clock, mouse data, keyboard clock, and keyboard data are inputs

// LED Displays

/*

assign disp_blank = 1'b1;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp ce b=1'bl;
assign disp reset b = 1'b0;
assign disp_data out = 1'b0;
*/
// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//1ab3 assign led = 8'hFF;

// button0, button1, button2, button3, button enter, button right,
// button_left, button down, button up, and switches are inputs

// User 1/Os

// assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

/I System ACE Microprocessor Port

87

Wednesday, December 12, 2012
6.111 Final Project Report

assign systemace data = 16'hZ;

assign systemace address = 7'h0;

assign systemace ce b = 1'bl;

assign systemace we b = 1'bl;

assign systemace oe b= 1'bl;

// systemace_irq and systemace mpbrdy are inputs

// Logic Analyzer

assign analyzerl data = 16'h0;
assign analyzerl clock = 1'bl;
assign analyzer2 data = 16'h0;
assign analyzer2 clock = 1'bl;
assign analyzer3 data = 16'h0;
assign analyzer3 clock = 1'bl;
assign analyzer4 data = 16'h0;
assign analyzer4 clock = 1'bl;

T
// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock 65mhz unbuf,clock 65mhz;

DCM vclk1(.CLKIN(clock 27mhz),.CLKFX(clock 65mhz unbuf));
// synthesis attribute CLKFX DIVIDE of vclk1 is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclk1 is NONE

// synthesis attribute CLKIN PERIOD of vclkl is 37

BUFG vclk2(.O(clock 65mhz),.I(clock 65mhz unbuf));

// wire clk = clock_65mhz; // gph 2011-Nov-10

N
// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a
// 40MHz clock (actually 40.5MHz)

88

Wednesday, December 12, 2012
6.111 Final Project Report

wire clock 40mhz unbuf,clock 40mhz;

DCM vclk1(.CLKIN(clock 27mhz),.CLKFX(clock 40mhz_unbuf));
// synthesis attribute CLKFX DIVIDE of vclk1 is 2

// synthesis attribute CLKFX MULTIPLY of vclkl is 3

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclkl is 37

BUFG vclk2(.O(clock 40mhz),.I(clock_ 40mhz_unbuf));

wire clk = clock 40mhz;

*/

wire locked;

//assign clock feedback out=0;// gph 2011-Nov-10

wire clk;

ramclock rc(.ref clock(clock 65mhz), .fpga clock(clk),
ram0_clock(ramO_clk),
//.raml_clock(raml clk), //uncomment if raml is used
.clock feedback in(clock feedback in),
.clock feedback out(clock feedback out), .locked(locked));

// power-on reset generation

wire power on reset; //remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power _on_reset),
AO(1'bl), .A1(1'b1), .A2(1'b1), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user reset;

debounce dbl(power on_reset, clk, ~button_enter, user reset);
assign reset = user_reset | power_on_reset;

// display module for debugging
reg [63:0] dispdata;
display 16hex hexdispl(reset, clk, dispdata,

disp_blank, disp_clock, disp_rs, disp ce b,
disp_reset b, disp_data out);

89

Wednesday, December 12, 2012
6.111 Final Project Report

/I generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire [10:0] reversed hcount;

assign reversed hcount = 11'd1023 - hcount;

wire hsync,vsync,blank;
xvga xvgal(clk,hcount,vcount,hsync,vsync.blank);

// wire up to ZBT ram

wire [35:0] vram_write data;
wire [35:0] vram_read data;
wire [18:0] vram_addr;

wire vram we;

wire ram0 clk not used;

zbt 6111 zbtl(clk, 1'bl, viam we, vram_addr,
vram_write _data, vram read data,
ram0O _clk not used, //to get good timing, don't connect ram_clk to zbt 6111
ram0_we b, ram0_address, ram0_data, ram0 cen_b);

// generate pixel value from reading ZBT memory

/Iwire [17:0] vr_pixel,

wire [17:0] vr_pixel; / modification for b&w -> color
wire [18:0] vram_addrl;

vram_display vdl1(reset.clk reversed hcount,vcount,vr pixel,
vram_addrl,vram_read data);

// ADV7185 NTSC decoder interface code

// adv7185 initialization module

adv7185init adv7185(.reset(reset), .clock 27mhz(clock 27mhz),
.source(1'b0), .tv_in reset b(tv_in reset b),
tv_in_i2c_clock(tv_in i2c_clock),
tv_in_i2c¢ data(tv_in i2c data));

90

Wednesday, December 12, 2012
6.111 Final Project Report

wire [29:0] yercb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; //data valid

ntsc_decode decode (.clk(tv_in_line clockl), .reset(reset),
tv_in_ycrcb(tv_in_ycreb[19:10]),
.ycrcb(ycreb), f(fvh|[2]),
~v(fvh[1]), .h(fvh[0]), .data_valid(dv));

// convert the output to RGB
wire [23:0] rgb;
YCrCb2RGB ycreb2rgb(R(rgb[23:16]), .G(rgb[15:8]), .B(rgb[7:0]), .clk(tv_in line clockl),
rst(reset),
.Y (ycrcb[29:20]), .Cr(ycreb[19:10]), .Cb(ycreb[9:0]));

// code to write NTSC data to video memory

wire [18:0] ntsc_addr;
wire [35:0] ntsc_data;
wire ntsc_we;

// extract the 6 hi order bits from the R, G, and B bytes as we pass them in
ntsc_to_zbt n2z (clk, tv_in_line clockl, fvh, dv, {rgb[23:18], rgb[15:10], rgb[7:2]}, //
modification for b&w -> color
/lycreb[29:22],
ntsc_addr, ntsc_data, ntsc_we, 1'b0); //switch[6]);

// code to write pattern to ZBT memory
reg [31:0] count;
always @(posedge clk) count <=reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];

/l wire [35:0] vpat=(switch[1] ? {4{count[3+3:3],4'b0}}
/l :

wire [35:0] vpat = {4{count[3+4:4],4'b0} };

91

Wednesday, December 12, 2012
6.111 Final Project Report

// mux selecting read/write to memory based on which write-enable is chosen

// wire sw_ntsc = ~switch[7];

wire sw ntsc = 1'bl;

/lwire my_we =sw_ntsc ? (hcount[1:0]==2'd2) : blank; // modification for b&w -> color
wire my we =sw_ntsc ? (reversed hcount[0]==1'd1) : blank;

wire [18:0]
wire [35:0]

write_addr = sw_ntsc ? ntsc_addr : vram_addr2;

write_data = sw_ntsc ? ntsc_data : vpat;

// wire write_enable = sw_ntsc 7 (my_we & ntsc_we) : my_ Wwe;

// assign
// assign

assign vram_addr = my we ? write addr : vram_addrl;
assign vram_we = my_we;
assign vram_write data = write data;

]

wire [7:0]

vram_we = write_enable;

com_X;
com_y;

com_x_oldO;

com_y oldO;

com_x_ oldl;

com_y oldl;

com_x_old2;

com_y old2;

com_x old3;

com_y old3;

com_x_old4;

com_y old4;
hue;
saturation;
value;

isaac_vga red;

vram_addr = write_enable ? write_addr : vram_addrl;

92

Wednesday, December 12, 2012
6.111 Final Project Report

[7:0] 1isaac_vga green;
[7:0] 1isaac_vga blue;
wire [7:0] vr_vga red;
[7:0] vr_vga green;
[7:0] vr_vga blue;

// select output pixel data

/lreg [7:0] pixel; // modification for b&w -> color
reg [17:0] pixel;
reg b.hs,vs;

/I wire [17:0] delay_pixel,

//delay the hcount and vcount by 22 clock cycles to match the rgb2hsv delay

// delayN #(.NDELAY(30),.SIZE(18)) delayx(.clk(clk), .in(pixel), .out(delay pixel));

// delayN #(.NDELAY(22),.SIZE(10)) delayy(.clk(clk), .in(vcount), .out(vcount filter));

// select output pixel data

assign isaac_vga red = {pixel[17:12], 2'd1};
assign isaac_vga green = {pixel[11:6], 2'd1};
assign isaac_vga blue = {pixel[5:0], 2'd1};

assign vr_vga red = {vr_pixel[17:12], 2'd1};
assign vr_vga green = {vr_pixel[11:6], 2'd1};
assign vr_vga blue = {vr_pixel[5:0], 2'd1};

wire inframe;

// was 523 for vcount

//assign inframe = (hcount >= 80 && hcount <= 719 && vcount >= 76 && vcount <= 565) ||
switch[2];

//assign inframe = (hcount <= 880 && hcount >= 195 && vcount >= 126 && vcount <= 605) ||
switch[2];

assign inframe = (hcount <= 880 && hcount >= 200 && veount >= 126 && veount <= 605) ||
switch[2];

wire detected;

93

Wednesday, December 12, 2012
6.111 Final Project Report

//assign detected = (hue < 8 || hue > 248) && (saturation > 125) && (value > 120);
//assign detected = (hue < 2 || hue > 253) && (saturation > 130) && (value > 100);
/I assign detected = switch[7] ? (hue < 8 || hue > 248) && (saturation > 125) && (value >
switch[7:0]) : (hue <8 || hue > 248) && (saturation > switch[7:0]) && (value > 100);

reg [7:0] hue thresh high;
reg [7:0] hue thresh low;
reg [7:0] sat thresh;
reg [7:0] val thresh;

assign detected = (hue < hue_thresh low || hue > hue thresh high) && (saturation >
sat_thresh) && (value > val_thresh);

wire used;

// if you see lines running down the image, restart the FPGA dev kit
// completely and the camera

CenterOfMass com1 (.inframe(inframe), .clk(clk), .reset(reset),

X(hcount), .y(vcount), .H(hue),

.S(saturation), .V(value), .target hue low(7'b0),

target_hue high(switch[7:0]), .comX(com_x),

.comY(com_y), .detected(detected), .used(used),

.comXOldO(com_x o0ld0), .comYOIldO(com_y old0),
.comXOldI(com x oldl), .comYOIldl(com y oldl),
.comXOld2(com x o0ld2), .comYOIld2(com y old2),
.comXOld3(com_x old3), .comYOIld3(com_ y old3),
.comXOld4(com x old4), .comYOld4(com y old4),

.minX(11'd245), minY(10'd176), .extrapolate(switch[4]));

rgb2hsv
myrgb2hsv(.clock(clk), .reset(reset), .r(vr_vga red), .g(vr_vga green), .b(vr_vga blue), .h(hue), .

s(saturation), .v(value));

wire clock 250 clock;
five time divider ftd(clk, reset, clock 250 clock);

initial begin

94

Wednesday, December 12, 2012
6.111 Final Project Report

hue thresh low <= 8'h09;
hue thresh high <= 8'hec;
sat_thresh <= 8'hb7;
val thresh <= 8'h22;
val thresh <= 8'h22;

end

always @(posedge clock 250 clock) begin
if (button3 && !button_left)

hue thresh low <= hue thresh low - I;
else if (!button3 && !button_right)

hue thresh low <= hue_thresh low + I;
else if (!button2 && !button_left)

hue thresh high <= hue thresh high - 1;
else if (!button2 && !button_right)

hue thresh high <= hue thresh high + 1;
else if (!buttonl && !button left)

sat_thresh <= sat_thresh - 1;
else if (!buttonl && !button_right)

sat thresh <= sat thresh + 1;
else if (!button0 && !button_left)

val_thresh <= val thresh - 1;
else if (!button0 && !button_right)

val thresh <= val thresh + I;

end

always @(posedge clk) begin

// need to fix 22 pixel offset

if (switch[0] && (hcount == (com_x - 22) || vcount == (com_y)))
pixel <= 18'bI111111111111111111;// white

else if (switch[0] &&

((hcount == (com_x_0ld0 - 22) && vcount == (com_y 0ld0)) ||
(hcount == (com_x_oldl - 22) && vcount == (com_y oldl)) ||
(hcount == (com_x_old2 - 22) && vcount == (com_y old2)) ||
(hcount == (com_x_old3 - 22) && vcount == (com_y old3)) ||
(hcount == (com_x_old4 - 22) && vcount == (com_y_old4))))

95

Wednesday, December 12, 2012
6.111 Final Project Report

pixel <= 18'bI111111111111111111; // white
else if (switch[0] && (hcount == (com_x_o0ld0 - 22) || vcount == (com_y_0l1d0)))
pixel <= 18'b011111011111011111; // gray
/I else if (!button_left && (hue <= switch[7:0]) && inframe)
/I pixel <= 18'b000000111111000000; // solid green
/I else if (!button_right && (hue >= switch[7:0]) && inframe)
/I pixel <= 18'b000000111111000000; // solid green
else if (switch[1] && detected && inframe) //origsat 120
pixel <=wused ? 18'b111111000000000000 : 18'000000111111000000;
else if (inframe)
pixel <= vr_pixel;
else
pixel <= 18'b000000000000000000; // solid black
b <= blank;
hs <= hsync;
VS <= vSync,
end

// VGA Output. In order to meet the setup and hold times of the
/I AD7125, we send it ~clk.

// these three lines: modification for b&w -> color
/I assign vga out red = vga red;

/| assign vga out green = vga green,;

/I assign vga out blue = vga blue;

assign vga out sync b= 1'bl; //notused
assign vga out pixel clock = ~clk;

assign vga out blank b = ~b;

assign vga out_hsync = hs;

assign vga out _vsync = vs;

// debugging

//assign led = ~{vram_addr[18:13],reset,1};
//assign led = {com_Xx, com

always @(posedge clk)
// dispdata <= {vram read data,9'b0,vram_addr};

96

Wednesday, December 12, 2012
6.111 Final Project Report

//dispdata <= {ntsc data,9'b0,ntsc_addr};

//dispdata <= {12'b0,switch[7:0],1'b0,com_x,2'b0,com y};

//dispdata <= {12'b0,switch[7:0],1'b0,com_x,2'b0,com_y};

dispdata <= {12'b0.hue_thresh low,hue thresh high sat thresh,val thresh};

HnINATHAN
I
wire [7:0] from_ac97 data, to ac97 data;

wire ready;

// allow user to adjust volume
wire vup,vdown;
reg old vup,old vdown;
debounce bup(.reset(reset),.clk(clock 27mhz),.noisy(~button_up),.clean(vup));
debounce bdown(.reset(reset),.clk(clock 27mhz), noisy(~button down),.clean(vdown));
reg (4:0] volume;
always @ (posedge clock 27mhz) begin
if (reset) volume <= 5'd22;
else begin
if (vup & ~old_vup & volume != 5'd31) volume <= volume+1;
if (vdown & ~old_vdown & volume != 5'd0) volume <= volume-1;
end
old vup <= vup;
old vdown <= vdown;
end
wire myreset;
wire myresetinv;
assign myreset = ~myresetinv;
/I AC97 driver

wire [5:0] cut;
wire [2:0] lives;
wire [3:0] level;

wire [2:0] linemaker; //generates cuts from buttons
//wire [10:0] hcount;

/Iwire [9:0] vcount;

//wire hsync,vsync,blank;

97

wire gameon;
wire
wire
wire
wire
wire

[8:0] score;
[9:0] spOx; //sprite X positions
[9:0] splx;
[9:0] sp2x;
[9:0] sp3x;
wire [9:0] sp4x;
wire [9:0] sp5x;

[9:0]

[9:0]

[9:0]

[9:0]

[9:0]

[9:0]

wire spOy; //sprite Y positions
wire sply;
wire sp2y;

wire
wire
wire

sp3y;
spdy;
spSy;

wire [9:0] myspOx; //used for start screen generation
wire [9:0] mysplx;

wire [9:0] myspOy;

wire [9:0] mysply;

wire [1:0] myspon;

wire [1:0] mysponsync;

wire [23:0] livespixel, levelpixel, scorepixel;

wire [5:0] spon; //sprites on
wire [9:0] rando; //Random number GENERATE THIS
wire [5:0] sponsync;

wire [1:0] bombcut;
wire [9:0] bombQy;
wire [9:0] bomblys;
wire [9:0] bombOx;
wire [9:0] bomb1x;
wire [1:0] bombon;
wire [1:0] bombonsync;

// output useful things to the logic analyzer connectors

Wednesday, December 12, 2012
6.111 Final Project Report

98

Wednesday, December 12, 2012
6.111 Final Project Report

/I assign analyzerl clock =ac97 bit clock;

/I assign analyzerl data[0] = audio reset b;

/I assign analyzerl data[l1]=ac97 sdata out;

/I assign analyzerl data[2] =ac97 sdata in;

/I assign analyzerl data[3]= ac97 synch

// assign analyzerl data[15:4] =

//assign led = {8'd0};

/I assign analyzer3 clock = ready;

/I assign analyzer3 data = {from_ac97 data, to_ac97 data};

/* wire clock_65mhz_unbuf,clock 65mhz;
DCM vcelk1(.CLKIN(clock 27mhz),.CLKFX(clock 65mhz unbuf));
// synthesis attribute CLKFX DIVIDE of vclk1 is 10
// synthesis attribute CLKFX MULTIPLY of vclkl1 is 24
// synthesis attribute CLK _FEEDBACK of vclkl is NONE
// synthesis attribute CLKIN PERIOD of vclkl is 37
BUFG vclk2(.O(clock 65mhz),.I(clock 65mhz_unbuf));
*/
/I reg[23:0] rgb;
/I reg b,hs,vs;
reg [23:0] nathanpixelreg;
wire [23:0] nathanpixell, nathanpixel2, splashpixel;
wire phsync,pvsync,pblank;
always @(posedge clock 65mhz) begin
nathanpixelreg <= nathanpixell | nathanpixel2;
/I hs <= phsync;
// vs <= pvsync;
//" b <= pblank;
end

//start screen logic

assign myspon[0] = (!(|level)) ? 1'b1 : spon[0]; //force proper signals for start screen
assign myspon[1] = (!(|level)) ? 1'b1 : spon[1];

assign myspOx = (!(|level)) ? 10'd300 : spOx;

assign myspOy = (!(|level)) ? 10'd500 : spOy;

assign mysplx = (!(|level)) ? 10'd700 : splx;

99

Wednesday, December 12, 2012
6.111 Final Project Report

assign mysply = (!(|level)) ? 10'd500 : sply;
assign mysponsync[0] = (!(|level)) ? 1'b1 : sponsync|[0];
assign mysponsync|[1] = (!(/level)) ? 1'b1 : sponsync[1];

/1

/>X<

assign vga out red =rgb[23:16];

assign vga out green = rgb[15:8];

assign vga_out_blue = rgb[7:0];

assign vga_out sync b=1'bl; //notused
assign vga out blank b = ~b;

assign vga out pixel clock = ~clock 65mhz;
assign vga out_hsync = hs;

assign vga_out_vsync = vs;

*/
//assign led = {~(score[7:0])};

assign led = 8'b11111010;
// ~rando[7:0];

assign userl= {31'hZ, ready};

//isaac_vga red

assign vga out red = (|(nathanpixelreg[23:16]) ? nathanpixelreg[23:16] : (isaac_vga red &
splashpixel[23:16])) | (livespixel[23:16] | levelpixel[23:16] | scorepixel[23:16]) ;

assign vga out green = (|(nathanpixelreg|15:8]) ? nathanpixelreg|15:8] : (isaac_vga green &
splashpixel[15:8])) | (livespixel[15:8] | levelpixel[15:8] | scorepixel[15:8]) ;

assign vga out blue = (|(nathanpixelreg[7:0]) ? nathanpixelreg|7:0] : (isaac_vga blue &
splashpixel[7:0])) | (livespixel[7:0] | levelpixel[7:0] | scorepixel[7:0]) 3

debounce b1(.reset(myreset),.clk(clock 27mhz),.noisy(button0),.clean(linemaker[0]));
debounce b2(.reset(myreset),.clk(clock 27mhz), noisy(buttonl),.clean(linemaker[1]));
debounce b3(.reset(myreset),.clk(clock 27mhz), noisy(button2),.clean(linemaker[2]));
debounce bent(.reset(myreset),.clk(clock 27mhz),.noisy(button enter),.clean(myresetinv));

game_audio

sound(.clock(clock 27mhz), reset(myreset), .ready(ready), .cut(cut), .bombcut(bombcut), .lives(li
ves), .level(level), .score(score), .to_ac97 data(to _ac97 data));

100

Wednesday, December 12, 2012
6.111 Final Project Report

lab5audio a(clock 27mhz, myreset, volume, from ac97 data, to_ac97 data, ready,
audio_reset b, ac97 sdata out, ac97 sdata in,
ac97 synch, ac97 bit clock);

//xvga xvgal(.vclock(clock 65mhz),.hcount(hcount),.vcount(vcount),
/l .hsync(hsync),.vsync(vsync),.blank(blank));

/* game video pg(.vclock(clock 65mhz),.reset(myreset),
.hcount(hcount),.vcount(vcount),
.hsync(hsync),.vsync(vsync),.blank(blank),
.sp0x(mysp0x), .splx(mysplx), .sp2x(sp2x), .sp3x(sp3x), .sp4x(sp4x), .sp5x(sp5x),

sp0y(mysp0y), .sply(mysply), .sp2y(sp2y), .sp3y(sp3y), .sp4y(sp4y), .spSy(spSy), .bOx(bomb0x
), .b0y(bomb0y), .b1x(bomblx), .bly(bombly), .bombon(bombonsync), .spon({sponsync[5:2],
mysponsync}), .comx(com_x), .comy(com_y), .linemaker({~linemaker[2], ~linemaker|[1],
~linemaker[0]}),

.pixel(nathanpixel));
*/
wire [2:0] s0,s1,52,53,54,55,56.,57;
wire cheat;

Ul wrapper dw(.clock(clock 27mhz), .reset(myreset),.level(level),.hcount(hcount),
.spon(spon),.rando(rando|3:0]
),.80(s0), .s1(sl), .s2(s2), .s3(s3), .s4(s4), .s5(s5), .s6(s6), .s7(s7),.cheat(cheat), .cut(cut| 1:0]));

sword swd(.pixel clk(clock 65mhz), myx(com x - 22),. hcount(hcount),.y(com_y
),.vcount(vcount),.pixel(nathanpixel2));

lives
liv(.vclock(clock 65mhz),.x(11'd150),.hcount(hcount),.y(10'd675),.vcount(vcount), lives(lives), .
level(level), .pixel(livespixel));

level

lev(.vclock(clock 65mhz),.x(11'd750),.hcount(hcount),.y(10'd675),.vcount(vcount),.level(level)..
pixel(levelpixel));

101

Wednesday, December 12, 2012
6.111 Final Project Report

score
sco(.vclock(clock 65mhz), .slowclock(clock 27mhz),.x(11'd400),. hcount(hcount),.y(10'd675),.v
count(vcount),.score(score),.pixel(scorepixel),.reset(myreset),. level(level));

splash_screen
spl(.pixel clk(clock 65mhz), .level(level), x(11'd262), hcount(hcount),.y(10'd200),.vcount(vcoun
t),.mypixel(splashpixel));

picture blob pb(.pixel clk(clock 65mhz),.cheat(cheat), .level(level),

X0(mysp0x-32), x1(mysplx-32), x2(sp2x-32), .x3(sp3x-32), .x4(sp4x-32), .x5(sp5x-
32), .bomb0x(bomb0x-32), .bomblx(bomblx-32), .hcount(hcount),

.yO(myspOy-32), .yl(mysply-32), .y2(sp2y-32), .y3(sp3y-32), .y4(spdy-32), .y5(spSy-
32), .bomb0y(bomb0y-32), .bombly(bombly-32),

.vcount(vcount), .spon({sponsync|5:2]|, mysponsync}

), .bombon(bombonsync), .s0(s0), .s1(s1), .s2(s2), .s3(s3), .s4(s4), .s5(s5), .s6(s6), .s7(s7),
pixel(nathanpixell), .hsync(hsync), .vsync(vsync), .phsync(phsync), .pvsync(pvsync));

geto cut detector ged(.clock(clock 27mhz), .reset(myreset),
-spOy(myspOy), .sply(mysply), .sp2y(sp2y), .sp3y(sp3y). .sp4y(sp4y), .spSy(sp5y).
sp0x(mysp0x), .splx(mysplx), .sp2x(sp2x), .sp3x(sp3x), .sp4x(sp4x), .sp5x(sp5x),
.b0y(bomb0y), .bly(bombly),
.b0x(bomb0x), .blx(bomb1x),
.spon({spon|5:2], myspon}), .bombon(bombon),
.cut(cut), .bombcut(bombcut),
.com_x_oldO(com_x 0ld0 - 22), .com_y oldO(com_y old0),
.com_x_oldl(com x oldl - 22), .com_y oldl(com_ y oldl),
.com_x_old2(com x old2 - 22), .com_y old2(com_ y old2),
.com_x_old3(com x old3 - 22), .com_y old3(com_ y old3),
.com_x old4(com_x old4 - 22), .com_y old4(com_y old4));

game logic
gl(.clock(clock 27mhz), .reset(myreset), .cut(cut), .bombcut(bombcut), .spOy(sp0Oy), .sply(sply),

Sp2y(sp2y), .sp3y(sp3y), .spdy(spdy), .spSy(spSy), .bOy(bomb0Qy), .bly(bombly), .spon(spon), .
bombon(bombon), .level(level), .score(score), .lives(lives), .gameon(gameon));

102

Wednesday, December 12, 2012
6.111 Final Project Report

sprite_logic slO(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon[0]
), .rando(rando), .ypos(sp0y), .xpos(sp0x), .syncstate(sponsync[0]));
sprite_logic sl1(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon|1]
), .rando(rando), .ypos(sply), .xpos(splx), .syncstate(sponsync|1]));
sprite_logic sl2(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon|2]
), .rando(rando), .ypos(sp2y), .xpos(sp2x), .syncstate(sponsync[2]));
sprite_logic sl3(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon|3]
), .rando(rando), .ypos(sp3y), .xpos(sp3x), .syncstate(sponsync[3]));
sprite_logic sl4(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon[4]
), .rando(rando), .ypos(sp4y), .xpos(sp4x), .syncstate(sponsync[4]));
sprite_logic sI5(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(spon|[5]
), .rando(rando), .ypos(spSy), .Xpos(sp5x), .syncstate(sponsync[5]));
sprite_logic bomb0(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(bombon[0]
), .rando(rando), .ypos(bombQy), .xpos(bomb0x), .syncstate(bombonsync[0]));
sprite_logic bombl(.clock(clock 27mhz), .reset(myreset), .vsync(vsync), .on(bombon|[1]
), .rando(rando), .ypos(bombly), .xpos(bomb1x), .syncstate(bombonsync[1]));

geto _randomizer random(.xpos(com_Xx), .ypos(com_y), .rando(rando));

endmodule

103

Wednesday, December 12, 2012
6.111 Final Project Report

Python Serializer (Drew)

from PIL import Image
import struct, serial

def img2list(filename):
extracts the raw values (0-255) from an image as a list of 3-tuples
im = Image.open(filename)
return list(im.getdata())

def unpack(l):
flattens a list
return [item for sublist in I for item in sublist|

def img2flat(filename):
return repr(" join([struct.pack("B", 1) for i in unpack(img2list(filename))]))

def send(s, always=False):
ser = serial.Serial('/dev/tty.usbserial-DPEOAJZN') # open the serial port
ser.write(s)
while always:
ser.write(s)
ser.close()

s = img2flat("test cf.bmp")

print "Raw hex stream:"

#s

= "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x 0b\x0c\x0d\x 0e\x 0f\x 10\x 1 1\x 12\x 1 3\x 14\x
61" * 200

#s = "\x62" * 6400

104

Wednesday, December 12, 2012
6.111 Final Project Report

print s

print "length: ", len(s)
print "Sending via serial..."
send(s)

print "Data sent"

Python: BMP2COE (Drew)

from PIL import Image
import struct, serial

def img2list(filename):
extracts the raw values (0-255) from an image as a list of 3-tuples
im = Image.open(filename)
return list(im.getdata())

def unpack(l):
flattens a list
return [item for sublist in | for item in sublist]|

def bin(x, width):
return " join(str((x>>1)&1) for 1 in xrange(width-1,-1,-1))

def img2flat(filename):
f = open(filename|:-4]| + ".coe', "w")
f.write("memory _initialization radix=2;\nmemory initialization_vector=\n")
for 1 in img2list(filename):
print i[0], i[1], i[2]
f.write("%s%s%s,\n" % (_bin(i[0],8), bin(i[1],8), bin(i[2],8)))
f.write(";");
f.close()

img2flat('sword.bmp')

105

