ImprovTetris
6.111 Final Project Report

Scott Bezek & Ray Li

December 12, 2011

Table of Contents

1_Abstract
2 _Overview
3 Implementation
3.1 Image-processing Subsystem (Scott)
3.1.1 The ntsc_to_zbt module
3.1.2 The image_analysis module
3.1.3 The memory_manager module
3.2 FSM (Ray)
3.2.1 Timing
3.2.2 Memory
3.2.3 Falling State
3.2.4 Clearing State
3.2.5 Flash State
3.2.6 Collapse State
3.2.7 Game_over State
3.2.8 Reset State
3.2.9 Testing Strategy
3.3 Display Module (Ray and Scott)
3.3.1 Testing strateqgy:
4 Challenges
5 External Hardware
6 _Conclusion
Appendix A: Code listings
image_analysis.v

display.v
memory_manager.v

ntsc2zbt.v
sil_display.v
zbt 6111 _sample.v
ESM.v
Appendix B: ROM Images
Playing field tiles
Logo
Score Text
Score Number

1 Abstract

In the classic version of Tetris, the player must orient and piece together randomly-picked
falling blocks in an attempt to complete and clear entire rows before everything piles up

to the top. ImprovTetris aims to implement the game of Tetris on an FPGA, but with an
improvisational twist: instead of just using the standard seven Tetris blocks in ImprovTetris,

the falling block shapes are defined by the player’s actual physical stance - much like a Microsoft
Kinect game. As the block falls, the player can make up their own custom blocks on the fly and
use two wireless buttons to move left and right in the game.

2 Overview

In order to provide this real-world control interface, ImprovTetris uses a camera to capture
video of the player, which is then analyzed by an FPGA to generate a quantized Tetris piece
based on the player’s silhouette. An overview of the analysis process is shown in Figure 1, and is
detailed in depth in Section 3.1.

Current
Frare:

Reference
Frarme:

Silhouette Tetris Piecs

Figure 1 - ImprovTetris analyzes live video and simplifies the
player’s body shape to generate custom Tetris pieces.

While the block is falling, the player can contort his/her body to change the block’s shape in
real-time. This allows the player to create blocks that perfectly fit into the existing playing
field, or even squeeze a block through a small crevice before expanding it to fill the open space.
ImprovTetris provides on-screen feedback of the player’s silhouette and the simplified block
shape to help with forming useful pieces. Figure 2 shows a screenshot of the implemented
display along with the originally proposed mock-up.

The rest of the gameplay is standard Tetris: the current block falls at a constant rate, and the
user can slide it left or right by pressing buttons on a wireless controller. When an entire row

is filled, it disappears and the remaining blocks shift downward. Each cleared row counts as a
point towards the total score. The player can step out of the camera frame to pause the game and
step back in to resume playing. If the pieces pile up to the top, the game ends and everything
freezes. To restart a new game, the player simply needs to make a cross-shaped block (See
Figure 12).

In order to accommodate different skill levels, ImprovTetris has 4 different falling speeds that
can be increased and decreased with the up and down buttons on the FPGA. Additionally, the
player can choose between 3 different starting boards with pre-filled block patterns:
1. Beginner - Blank board
2. Moderate - Jagged incomplete rows of blocks filled on the bottom
3. Expert - Almost completely-filled board with a gaping hole in the middle that can only be
reached with a single block navigating through a narrow tunnel.

Seore: 100

@uant »d Hook

Slihous the

|
[2] -

Figure 2 - Side-by-side comparison of the proposed GUI mock-up and
the actual display as implemented.

3 Implementation

The implementation of ImprovTetris is broken down into three major subsystems: Image-
Processing, the finite state machine logic (FSM), and the Display Module (Figure 3). The Image-
Processing subsystem takes in image frames from the camera and outputs a 3x4 grid of the
player’s block shape to the FSM. The FSM controls the game logic and updates the playing

field: it causes the current block to fall, detects when the block has settled, and clears/scores any
complete rows. The Display Module takes the silhouette, the quantized Tetris piece, the playing
field and score, and images from the ROM to piece together the display output. The following
sections describe how these subsystems function and interact.

MTSC Camera

Vg;ﬁ;’ Up/Down, LeftRight
Signal and Reset Buttorn-press

YCrCh [v, h Ad

Tetris

Fiece
ER AM
ROM
Silouette
RGE, haync,
VEFIC
Monitor

Figure 3 - Block Diagram of ImprovTetris, highlighting the three major subsystems.

3.1 Image-processing Subsystem (Scott)

The image-processing subsystem is responsible for capturing NTSC video, filtering, down-
sampling, and quantization to determine what block shape the player’s body forms.

The basic process is to capture and save a reference image at the beginning of the game when
the player is not standing in front of the camera, and then compare each video frame during
the game to this reference image (as shown previously in Figure 1). If any pixel differs enough
between the reference frame and the current frame, then that pixel is considered “occupied.”
These occupied pixels form a silhouette of the player, which is then quantized into a 3x4 grid -
this is the custom Tetris piece that falls in the game.

‘i - ¥
ty_in . "
—=—p| video_decoder ntsc to_zht
-m-l YCIGHZRGE Ln’agg
3619
_ zht addr o iEE_ne
- T -t
rhi_wdaita _ nis wdala
ZBT -t S e mory_manager [
b ?;#a _ mhsz waddr
% 9} a3g| 3s| w9}
B ™ " [proc rmddr
roc rdah image_analysis
disp_mddr disp_mdiata 12 eur biock shaps
l'__ (fo display moduk) ¥ Y

Figure 4 - Block diagram of modules within the Image-Processing subsystem

The Image-Processing subsystem (Figure 4) is composed of the following modules:

1. video_decoder - [Provided by 6.111 staff] Accepts signals from an NTSC camera and
decodes that information into YCrCb, vertical and horizontal sync signals, and a field bit
which denotes even vs. odd interlaced fields

2. YCrCb2RGB - [Provided by 6.111 staff] Converts the 30 bit YCrCb data into an 18 bit
RGB value.

3. ntsc_to_zbt - Determines where to store each pixel of the NTSC video (as 18-bit RGB
values) in ZBT memory

4. image_analysis - Reads the current video frame out of memory and compares it to the
reference frame. Calculates the silhouette and outputs a 3x4 Tetris piece

5. memory_manager - Arbitrates access to the ZBT

3.1.1 The ntsc_to_zbt module

The ntsc_to_zbt module accepts the horizontal /vertical /field signals from the video_decoder
along with the 18-bit RGB values for the current pixel and outputs the memory address and data
to write to memory. A sample implementation of this module was provided, but it needed to be
changed substantially to adapt to a different memory-addressing scheme and to correct bugs.
The most notable issue we fixed was getting full vertical resolution; previously, incorrect logic
prevented odd rows (of the interlaced video) to be saved to the ZBT, duplicating the even rows
instead.

The core of this module calculates the appropriate address within ZBT to store each camera
pixel. It also synchronizes between the two clock domains (27MHz for NTSC, 65MHz for VGA).
Since the memory lines of the ZBT SRAM are 36 bits wide, we stored 2 pixels with 18 bits each
of color information at each memory address. With 512x512 pixels of video data, this uses
131,072 addresses in the ZBT memory chip, which has a total of 512K addresses (~25% usage).
However, since we store a reference frame along with the current frame, this usage is doubled,

for a total of 262,144 addresses. In addition, we modified the memory addressing code to
mirror the video frames horizontally - this way the silhouette on screen appears to move in the
same direction as the player instead of the inverse. An example current/reference image can be
seen in Figure 5.

Figure 5 - “Preview” mode shows the 2 banks of ZBT memory, holding the current
image (left), along with the reference image (right). Camera is purposefully out of
focus to act as a low-pass filter.

Inputs:
1. f,v, h-The field, vertical, and horizontal sync for NTSC
2. RGB - The 18 bit RGB value for the current pixel
3. is_reference - Determines whether or not to save this as the reference image

Outputs:
1. ntsc_waddr - The address to write in ZBT
2. ntsc_wdata - The data to write in ZBT (combined 2 pixels of RGB data)

3. ntsc_we - Controls write-enable on the ZBT

Testing Strategy:
To test this module, we downloaded it to the FPGA and visually inspected the output. This way

it was easy to spot bugs (like the vertical resolution issue) that would have been easy to overlook
in a simulation.

3.1.2 The image_analysis module

This module reads the current frame and reference frame out of ZBT memory, does some simple
filtering, and calculates the “silhouette,” It uses the silhouette to calculate the custom 3x4 Tetris
piece, which it outputs to the main FSM and display modules.

This image processing is done sequentially (i.e. pixel-by-pixel) during one frame of the VGA

display. When the image_ analysis module “visits” each pixel, it actually performs 2 reads from
the ZBT memory - it needs to read both the current image and the reference image and then
determine how much the pixel differs between the two images. The difference between the
images is the summed difference of each of the red, green, and blue color components:

dif f =|r1—r2| + |gl—g¢2| + |b1—b2|

The absolute value is necessary for each color component so that a positive change in red can’t
cancel out a negative change in green or blue.

It takes on the order of 262,144 cycles to process the images (there are 512*512 pixels).
Rendering the VGA frame takes ~600,000 cycles which provides plenty of time for the
processing to take place in parallel.

The pixels in the images are analyzed in small 4x4 pixel blocks, so that noisy fluctuations in a
single pixel’s color are outweighed by the other 15 pixels within that block. This acts as a simple
filter to reduce the inherent noisiness of cameras. The order in which pixels are visited is shown
in Figure 6. By visiting the pixels in this order, it’s easy to keep a running sum of the pixel
differences within a particular 4x4 block and reset it when you jump up to the next block (i.e.

reset the difference accumulator during 16 — 17 transition in Figure 6).

1 2 3 4 17 18 | 19 | 20

" = I = |4

s Le 7 |8 2t faz23 | 24|

e]

g Lao 11 |12 |25 bes2r | 28

— | — !
- |

13 7] 15 | 16/ 29 80| 31 | 32

Figure 6 - Pixels are analyzed in chunks of 4x4, as indicated by
the red line and numbering.

Since the ZBT reads have a two clock cycle delay, they are pipelined while traversing the image.
The pipelined process looks like:

e Step 1: Request current (CUR) pixel 1

e Step 2: Request reference (REF) pixel 1

e Step 3: Request CUR pixel 2. CUR pixel 1 data is now available - save it to a register.

e Step 4: Request REF pixel 2. REF pixel 1 data is now available. Subtract each R, G,

B component from the saved CUR pixel (in the register). Sum differences and add to
accumulator

Finished with 4x4 block

After each 4x4 pixel block, the accumulator holds the total pixel difference of those 16 pixels

- this is compared to a user-adjustable threshold (see Figure 7), and if the value is high

enough, a corresponding bit is set to 1 in the silhouette BRAM bitmap indicating that the block
is “occupied.” In addition to setting a bit in the silhouette BRAM, one of 12 accumulators (one
for each of the 12 possible cells for the user’s Tetris piece) is incremented. When the entire
image has been analyzed, each of those 12 accumulators is compared to a second threshold, and

if high enough the corresponding cell of the user’s Tetris piece will become filled.

The LED matrix on the right shows the current user-created Tetris shape.

Inputs:
1. proc_rdata - The data being read from ZBT

Outputs:
1. proc_raddr - The address to read a pixel from the ZBT memory
2. cur_block_shape - The 12-bit representation of the calculated 3x4 Tetris piece

Testing Strategy:

This module was tested directly on the FPGA due to the complexity of the signals involved. To
debug and verify correct operation, each of the image analysis steps was individually tied to a
switch on the labkit (instead of running in real-time). This way we could see the intermediate
output at each step of the way. We also used the second ZBT as a place to store the difference
image of the current frame vs. the reference frame for debugging purposes.

3.1.3 The memory_manager module

One of the major challenges of the image-processing subsystem was storing and accessing the
camera images in memory. ZBT memory cannot simultaneously read and write at different
addresses, so we needed to carefully specify when image data is being stored vs. accessed. There
was also a limit on the amount of data that the ZBT memory can hold, so we had to be careful to
allocate it appropriately.

The memory_manager uses the “blank” signal from the VGA driver to control access to the ZBT.
If blank is high, then the NTSC decoder is allowed to write to ZBT, otherwise only the display

module is allowed to read the playing field from BRAM. Although the memory_manager is
simple, it offers clean modularity between the components.

3.2 FSM (Ray)

The FSM handles the general game logic and keeps track of the scores. The Tetris game starts

off in the Falling state when the player’s custom block is falling down. When it lands, the game

goes into the Clearing state to calculate all the complete rows. Then, the game goes through a
flashing animation in the Flash state, and finally shift the blocks down in the Collapse state to
collapse the complete rows. If nothing can be cleared and the most recent piece hits the top of

the playing field, then the game ends in the Game_ Over state. The player may reset and initiate

a new game, which starts over in the Falling state. The state diagram is shown in Figure 8.

-~

Allful-rows
cleared

Stopped
Falling

Flash

Stopped
Flashing

Done Done
Reselting Collap sing

Game_aover Collapse
Top Row Non-
empty

Cross-shaped
falling block

o

Figure 8 - Diagram of FSM state machine that governs the game logic.

Inputs:
1. (FP): Shape (3x4 grid) of player’s quantized silhouette
(left, right): Left/right button presses
(up, down): Up/down button presses
(blank): Vertical Blank Signal
(coord): Coordinate of block color in playing field BRAM (4-bit x, 5-bit y)
. (reset): Resets the FSM and restarts the game.
Outputs:
1. (score): Score (to display)
2. (blockColor): 3-bit pixel color of block selected by coord.

NN

~

3. (rowFilled): Tell Display if current block selected is in a rowed that’s completed. This is

used to generate the flashing animation.

10

3.2.1 Timing

Since the Display module needs to read the playing field state from the BRAM to know what to
display, the FSM module cannot have access to the BRAM and calculate next states at the same
time. Thus, the FSM will only step through its states during the vertical blanking periods of the
monitor and halt all reading and writing operation from/to the BRAM when Display is running
(See Figure 9). The vertical blanking period lasts about 12,160 clock cycles - way more than
enough to step through any state completely.

hecount
1] 1023 1024 «—a1343
0 .
Y,
hsync
interval
veount vliﬁf Display Module
4 Running
767
768 : .
$ |pvsyne interval t FSM Module Running
805

Figure 9 - Pink part of the timing gives Display Module access to BRAM
memory while the Blue part gives FSM Module access to BRAM for calculations

3.2.2 Memory

Playing Field
The FSM uses double-buffered BRAMs with each 32-by-32 bits large (2048 bits in total) to

represent the playing field of the tetris board (See Figure 10).

11

30-bits 2-bit
Dirty-bit

Unmarked
Marked

Unmarked
Unmarked

Unmarked
31 Unmarked

Figure 10 - Structure of each BRAM representing the Playing Field. The 21st row
has the whole row permanently filled solid with its dirty-bit unmarked while
in 2nd row, the dirty-bit has been marked for the FSM to flash the row
and then collapse it.

Each 32-bit memory block represents a row in the playing field. 30-bits hold each of the 10
blocks’ 3-bit color and the remaining 2-bit dirty bits are used for book-tracking when collapsing
the rows and calculating the score.

BRAM1

32-by-32bit

BRAM2

32-by-32bit

Address], wel, AddressZ, weZ,
Drata-inl, Data-outl Drata-in2, Data-out?
— Switch

Fead Read Wite Tite TWrite Write
Metnory Merory Enable MWernory Iemory Memory
address Drata-out (we) address Data-in Drata-out

Figure 11 - Diagram of the double-buffered BRAMs. The switch module abstracts out the two flip-
flopping BRAMs into a reading BRAM (Orange) and a Writing BRAM (Purple). The flip
input flips which BRAM is being and which BRAM is being read.

We used double-buffered BRAMs to make reading and writing to memory instantaneous and

12

hassle-free (See Figure 11). This makes the logic for calculating the playing board states much
cleaner and easier since we don’t have to buffer the memory read when writing it back into the
same memory address (Required in collapsing rows as well as flashing animations). The playing
field has the 21st row permanently filled with white blocks and its dirty-bits unmarked to ensure
collision checking to stop all falling piece when they hit the bottom. Non of the states will ever
clear this row.

Falling Piece
The FSM uses the 12-bit register passed-in from image_ processing and a 3-bit register to

represent the shape and color of the falling piece.

3.2.3 Falling State

The game spends most of its time in this state. Each falling block is represented in memory

as a12-bit register passed in from the image_processing module. The block keeps track of its
current upper-left x and y coordinates in the variables FP_x (0 to 9 going right) and FP_y (0 to
19 going down). A speed counter determines how fast the block falls and can vary from 3 to 15
with 3 being the fastest speed and 15 the slowest. The the up and down buttons on the FPGA
decrements and increments this counter, respectively, to speed up and down the game. Every
(speed * 140,000) cycles on a 65mHz clock (~ speed * 0.002 second), the state will calculate
if:

e (GAME_OVER): It's game over by checking to see if the falling block hasn’t dropped
from its initial position (FP_x = 3, FP_y = 0) and has already collided with blocks in the
playing field stored in the BRAM.

o (YES): If game over, the state will freeze the playing field and transition to
game_over state.

o (NO): If the game can continue, the falling state will attempt to decrement the
falling block’s FP_y counter and check if there’s a collision with blocks in the
playing field.

m (COLLISION): If there’s a collision, the state will simply store the falling
block shape into the BRAM playing field at coordinates FP_x and FP_y
and begin treating it as a filled block in the playing field. Additionally,
the state will transition to the Clearing state to begin clearing potentially
completed rows.

m (NO COLLISION): If there’s no collision, the state increments the FP_y
counter and the falling piece will automatically shift down on the next
monitor frame refresh.

The remaining time when the Falling state is not calculating the next position of the falling piece,
it's handling left/right button requests from the player to move the falling piece left or right.
However before handling the left/right request, the state tries to move the piece left/right and
checks for collision with the playing field in BRAM:

e (COLLISION): If there’s a collision, then the state won’'t move falling block left or right.

e (NO COLLISION): If there’s no collision, then the state will increment/decrement FP_x

between 0 and 7 depending on the button pressed and the block image will update its

13

position on the next monitor refresh

3.2.4 Clearing State

This state takes roughly 20 clock cycles to step through. So to the player, this state is invisible.
The Clearing state steps through each row of the playing field and checks to see if any row has
been completed - all the colors of each block is not black (3’b000) and marks their dirty bits to
be (2’b10) and transitions to the Flash state.

3.2.5 Flash State

This state simply waits for ~0.002 * speed, the amount of time it takes to drop the falling block
one step, and transitions to Collapse state. During this time, display will flicker rows with
marked dirty bits on and off between the colors black and white to produce a flashing effect for
completed rows about to be cleared.

3.2.6 Collapse State

The Collapse state takes at most ~160 clock cycles to find all rows with marked dirty bits (Since
you can only have cleared at most 4 rows with one 3-by-4 falling block) and shift all the rows
above down. This is a simple for loop nested within another. The outer loop iterates through
each row and looks for the row marked for clearing. Once found, it increments the score counter
by 1 and enters the inner loop that iterates through each each row above the marked row

and shifts each down by one row. The outer loop keeps on searching for marked rows and
collapsing them with the inner loop until it can no longer find any more marked rows to clear.
When done with collapsing, the state simply resets FP_x and FP_y to their initial conditions (0,
3), generates a new color for the falling block and transitions back to the Falling state to start
dropping the new falling piece.

3.2.7 Game_over State

This State halts the game and waits until the falling piece (12-bit registers) become a cross
shape (See Figure 12). Once the player makes a cross shape, the state will transition to Reset
state to reset the board and load in the new falling piece.

O

-
Figure 12 - Shape of falling block that resets and restarts the game.

3.2.8 Reset State

This state resets all internal variables (scores, FP_x, FP_y, etc.., clears every row and their
dirty-bits in the playing field and writes a solid row on the 21st row with its dirty-bits unmarked
(See Memory section for the reason). This state also alternately writes custom preset block
patterns to the playing field depending on which level of difficulty the user has selected. Once
done resetting, the state transitions to the Falling state and begins the game.

14

3.2.9 Testing Strategy

To test this module, we specified the shape of the falling block through the switches[7:0] and the
left/right movement with button_left and button_right. This was enough to test all the states of
the game to check for correctness.

3.3 Display Module (Ray and Scott)

The display pieces together the sprites from the ROM, the silhouette from the SRAM, the score
and the game state from the FSM, and the calculated quantized block shape. These elements are
combined on a pixel-by-pixel basis so that the display module can output the appropriate signals
to the computer monitor. It also handles special effects, such as flashing blocks rapidly when a
row is cleared.

Depending on the current (x,y) coordinate being drawn on screen, the display module will get
the pixel data from a different source. For instance, if the coordinate lies within the playing field
region, it will request the 3-bit color of the playing field cell (from the FSM), and then use that 3-
bit “color” number along with the x and y coordinate as an address into the tile ROM to get the
graphical pixel to draw. The display module requests the 3-bit color by outputting the current
coordinate (x = 0 to 9, y = 0 to 19), and receives the 3-bit color via the blockColor input from the
FSM. A listing of the ROMs we generated for this project is available in Appendix B.

Inputs:
1. (blockColor): render the blocks in grid
2. (ROM):render fancy logo and custom block images for styling
3. (score): renders the score using cstring module written long-time ago.
4. (sil_r, sil_g, sil_b): render silhouette of player
Outputs:
1. (coord): Selects blockColor of piece at x, y coordinate in the playing field
2. (r, g, b): Monitor

3.3.1 Testing strategy:

We simply inputted static scores, falling block shapes, playing field colors and checked for pixel
correctness on the monitor.

4 Challenges

We initially used two 2-D register arrays to represent the state of the playing field as well as
the position of the falling piece. This took up about ~1200 registers and made wire routing
impossible. The code was left compiling over multiple days and still couldn’t finish. There
simply weren’t enough wires in the FPGA coming into/out of each register to make the routing
feasible. We then switched to double-buffered BRAMs to store the playing field states and
reduced the routing problem significantly. The constraint ratio went from 98/100 down to

15

2/100 and the code finally compiled under 2 minutes. However, getting the double-buffered
BRAMs to read and write properly took significant efforts because reading no longer took 1 clock
cycle delays to setup correctly but rather 2 cycles and had to be model-simulated extensively to
smooth out all the timing issues.

We decoupled our modules fairly well and only share about 12-bits of memory (falling block
shape). All out components ran on the same 65mHz clock so we didn’t run into any timing
issues when piecing together all the components. The worst integration issue we ran into was
that we hadn’t agreed on the bit order of the 12-bit block shape, so the bits had to be reversed
when connecting the modules in order to get the game to work correctly.

5 External Hardware

ImprovTetris requires minimal external hardware - only an NTSC video camera and 2 wireless
push buttons are needed to capture the movements of the player and control the left/right
movement of the falling block far away from the FPGA. All of the remaining image processing
and game logic can be implemented directly on the FPGA labkit.

The wireless pushbuttons were configured using two “HappyBoard” microcontrollers loaned to
us by 6.270. One HappyBoard monitored the digital input of two buttons (see Figure 13) and
sent this information over RF to another HappyBoard base-station which had digital outputs
connected to the USER inputs of the labkit.

Figure 13: HappyBoard (left) with wireless transmitter, with two
microswitches (right) connected to the digital inputs

6 Conclusion

This project re-implemented the classic Tetris game to allow the user to generate custom falling
block shapes on the fly and control left/right movements via wireless buttons much like a Wii/

16

Kinect game console. We used push buttons hooked up to HappyBoards to communicate via RF
with the FPGA, along with an NTSC camera to capture the player’s body shape. By combining
these different pieces - image analysis and game logic - we were able to create a functional real-
world interface to the classic game of Tetris.

7 Acknowledgements

ImprovTetris was inspired by Maximilian Wendt and Markus Wellmann’s “Silhouetris” project."
We would like to thank all the TAs/LAs/Instructors: Professor Stojanovic, Gim, Kevin, and Jon
for all the help and advice that made everything possible. Thank you.

T http://vimeo.com/25952122

17

Game Over

18

Appendix A: Code listings

image_analysis.v

// Image Processing Module

module image analysis(
input clk,
input enable,
input restart,
output [18:0] zbt read_addr,
input [35:0] zbt read data,

output reg [11:0] cur block shape,
input [10:0] occupied threshold,

// silhouette-related io

input [11:0] block diff threshold,
output reg [13:0] sil waddr,
output reg sil wdata,

output reg sil we,

// debug io
output [8:0] x_ dbg, // TODO: removeme
output [8:0] y dbg, // TODO: removeme
output [11:0] diff dbg,
output step dbg

)i

reg [8:0] x 0;
reg [8:0] y = 0;

// There are 2 steps that must occur for each pixel - reading

// the current frame pixel, reading the reference frame pixel.

// This also works out conveniently so when we are in READ_CUR,

// the read data is the current frame data from the previous READ CUR
parameter READ CUR = 0;

parameter READ REF = 1;

reg step = READ CUR;

assign step dbg = step;

// delayed position registers (these are the x,y we're currently looking at)
// x _d[1l] is x delayed 2 cycles

reg [8:0] x d [2:0];

reg [8:0] y d [2:0];

assign x _dbg =
assign y dbg = y d[1];

|
X
[
=

reg [35:0] current two pixels;

// Calculate the R,G,B pixel differences (absolute value) between the
// "current" pixel stored in register and the reference pixel being
// read from zbt
wire [3:0] red 0 diff = (current two pixels[35:32] > zbt read data[35:32]) ?
(current two pixels([35:32]-
zbt read data([35:32]):
(zbt read data[35:32]-
current two pixels[35:32]);
wire [3:0] green 0 diff = (current two pixels([29:26] > zbt read data[29:26]) 2

(current two _pixels[29:26]-

zbt read data[29:26]):
(zbt read data[29:26]-
current two pixels[29:26]);
wire [3:0] blue 0 diff = (current two pixels[23:20] > zbt read data[23:20]) ?

(current two pixels[23:20]-

zbt read data[23:20]):
(zbt read data[23:20]-
current two pixels[23:20]);
wire [5:0] diff 0 = red O diff + green 0 diff + blue 0 diff;

wire [3:0] red 1 diff = (current two pixels[17:14] > zbt read data[l17:14]) 2

(current two pixels[17:14]-

zbt read data[l7:14]):
(zbt read data[l7:14]-
current two pixels[17:14]);
wire [3:0] green 1 diff = (current two pixels[11:8] > zbt read data[11:8]) ?

(current two_pixels[11:8]-

zbt read data[l11:8]):
(zbt read data[l1l:8]-
current two pixels[11:8]);
wire [3:0] blue 1 diff = (current two pixels[5:2] > zbt read data[5:2]) ?
(current two pixels([5:2]-
zbt read data[5:2]):
(zbt read data[5:2]-
current two _pixels[5:2]);
wire [5:0] diff 1 = red 1 diff + green 1 diff + blue 1 diff;

// accumulator for total pixel difference in a 4x4 block

// 4px*4px = lépx * [max diff per px = 63*3 = 189] = 3024 (12 bits)
reg [8:0] block diff 0 = 0;

reg [8:0] block diff 1 = 0;

assign diff dbg = block diff 0;
reg [10:0] occupied count [15:0];

reg running;
reg was_running;

always @ (posedge clk) begin
was_running <= running;

// keep running if we're not at the last pixel, or if restart is 1
running <= (running && ! (x d[1l] == 510 && y d[1] == 511)) | restart;

// Update X and Y to move through entire image in a specific
// pattern which makes 4x4 block analysis easy.
//
// This is the order that pixels are visited:
// 0 1 2 3 16 17 18 19
// 4 5 6 7 20 21 22 23
9

// 8 10 11 24 25 26 27
// 12 13 14 15 28 29 30 31
//
//
//

if (running) begin
// always iterate steps
step <= (step == READ REF || ~enable) 2 0 : step + 1;

// update x position
if (step == READ REF && enable) begin

// done with READ REF step, and enabled, so it's time to move on

if (x[1:0] == [l y[1:0] == 3) begin

// 1f we're on the left edge of a 4x4px block (x[1:0]==0)

20

// or if we're on the bottom row of the 4x4 block (y[1:0]==3)
// then we should increment the x pos by 2
X <= x+2;
end else begin
// otherwise we actually step back 2
X <= x-2;
end

end else begin

end

// not enabled, or not done with READ REF step, so stay here
X <= X;

// update y position
if (x[1:0] == 2 && step == READ REF && enable) begin

// we will only change the y position if we've finished a row
// of the 4x4 block (x[1:0] == 2) and if we're done with the
// READ REF step, and enabled

if (y[1:0] !'= 3 || x == 510) begin

// 1f we're not on the bottom row of the 4x4 block (y[l:0] != 3)
// or if we're at the last x of the image, we should move down

// one row
y <=y + 1;
end else begin
// otherwise we're on the bottom row, so we should move up 3
// rows to get to the top row of the next block
y <=y - 3;
end

end else begin

end

y <= y;

// update the position delay registers

x d[2] <= x d[1l];
x d[1l] <= x d[0];
x d[0] <= x;
y d[2] <= y d[1];
y_d[l] <= y_d[0];
y_d[0] <= y;
if (step == READ CUR) begin
current two pixels <= zbt read data;
end else if (step == READ REF && enable) begin

if (x d[1][1:0] == 0 && y d[1][1:0] == 0) begin

// we just finished a block, so reset the block diff accumulator

block diff 0 <= 0;
block diff 1 <= 0;

sil wdata <= block diff 0 + block diff 1 > block diff threshold;

if (block diff 0 + block diff 1 > block diff threshold &&

y d[2][8:2] < 127) begin // slight hack here to

ignore the bottom row of the silhouette

quadrant of the

// figure out which accumulator to use based on the

// image we were in (use upper 2 bits of delayed x and y)

occupied count[{y d[2][8:7], x d[2][8:7]}] <=

occupied count[{y d[2]([8:7], x d[2][8:7]}] + 1;

end

end
end else begin
// accumulate the total pixel difference
block diff 0 <= diff 0;
block diff 1 <= diff 1;
sil waddr <= {y d[1][8:2], x d[1][8:2]};
end

sil we <= enable && (x d[1][1:0] == 0 && y d[1]([1:0] == 0);

21

end else begin
// not running
sil we <= 0;

step <= 0;

x <= 0;

y <= 0;

x d[0] <= 0;
x d[1l] <= 0;
y _d[0] <= 0;
y d[1l] <= 0;

if (was_running) begin
// compare the accumulators to the threshold,
// value into the 12-bit block shape registers
cur_block shape[0] <= occupied count[0] > occupied threshold;

and put that

cur_block shape[1] <= occupied count[1] > occupied threshold;
cur_block shape[2] <= occupied_count[2] > occupied_ threshold;
cur _block shape[3] <= occupied count[4] > occupied threshold;
cur _block shape[4] <= occupied count[5] > occupied threshold;
cur_block shape[5] <= occupied count[6] > occupied threshold;
cur_block shape[6] <= occupied_count[8] > occupied threshold;
cur_block shape[7] <= occupied count[9] > occupied threshold;
cur _block shape[8] <= occupied count[10] > occupied threshold;
cur block shape[9] <= occupied count[12] > occupied threshold;
cur_block shape[10] <= occupied_count[13] > occupied threshold;
cur_block shape[ll] <= occupied count[14] > occupied threshold;

// reset the accumulators
occupied count[0] <= 0;

occupied count[1] <= 0;
occupied count[2] <= 0;
occupied count[3] <= 0;
occupied count[4] <= 0;
occupied count[5] <= 0;
occupied count[6] <= 0;
occupied count[7] <= 0;
occupied count[8] <= 0;
occupied count[9] <= 0;
occupied count[10] <= 0;
occupied count[11l] <= 0;
occupied count[12] <= 0;
occupied count[13] <= 0;
occupied count[14] <= 0;
occupied count[15] <= 0;
end
end
end
assign zbt read addr = {step, 1'b0, y[8:0], x[8:1]}; //MSB is reference flag = step

endmodule

display.v

module display (
input wire vclock,
input wire reset,
input wire [10:0]
input wire [9:0]
input wire hsync,
input wire vsync,

// 65MHz clock
// 1 to initialize module
hcount, // horizontal index of current pixel

(0..1023)

vcount, // vertical index of current pixel (0..767)
// XVGA horizontal sync signal (active low)
// XVGA vertical sync signal (active low)

input wire blank, // XVGA blanking
input wire [9:0] score,
input wire [2:0] boardColor,
input wire sil r,

input wire sil g,

input wire sil b,

input wire preview,

input wire [7:0] preview r,
input wire [7:0] preview g,
input wire [7:0] preview b,
output reg [7:0] r,
output reg [7:0] g,
output reg [7:0] Db,

output wire [8:0] coord,
input wire isFallingPiece,
input wire rowFilled,
input wire gameOver

)i

reg isFallingPiece d;
reg [2:0] boardColor d;
reg rowFilled d;

/*
* Tile ROM setup
*/
wire [12:0] tile addr;
wire [23:0] tile data;

(1 means output black pixel)

tile rom tiles (.clka(vclock), .addra(tile addr), .douta(tile data));

wire [3:0] x;
wire [4:0] vy;

wire [10:0] hcount f = hcount + 11'dl;

assign x = hcount f[8:5] 6;
assign y = vcount[9:5] -

assign coord = {x,Vv};

2;

assign tile addr = {boardColor([2:0], vcount([4:0], hcount f[4:0]};

/*

* Logo ROM setup

*/
wire [15:0] logo_addr;
wire [23:0] logo_data;

logo_rom logo (.clka(vclock), .addra(logo_addr), .douta(logo data));

parameter LOGO W = 512;

parameter LOGO H = 96;

parameter LOGO START X = 1024 - LOGO W;
wire [8:0] logo x = hcount[8:0];

wire [6:0] logo y = vcount[6:0];

assign logo_addr = {logo_y, logo x};

23

wire [3:0] score ones;
wire [3:0] score tens;
wire [1:0] score hundreds;
binary2bcd bcd(.A(score), .ONES (score_ones),
.TENS (score_tens), .HUNDREDS (score hundreds)) ;

reg [3:0] disp digit val;
wire [13:0] num addr;
wire [7:0] num data;

font _num rom nums (.clka(vclock), .addra(num_addr), .douta(num data));

parameter SCORE_START X = 768;

parameter SCORE_END X = SCORE_START X + 3*32;
parameter SCORE_START Y = 256;

parameter SCORE_END_Y = SCORE_START Y + 32;

always @(*) begin
case (hcount[6:5])
2'd0: disp digit val = score hundreds;
2'dl: disp digit val = score tens;

2'd2: disp digit val = score_ones;
2'd3: disp_digit val = 0;
endcase
end
assign num addr = {disp _digit val, vcount[4:0], hcount f[4:0]};

wire [11:0] score_ text addr;
wire [7:0] score text data;

score_rom score text (.clka(vclock), .addra(score text addr),

parameter TEXT START X = 640;

parameter TEXT END X = TEXT START X + 128;
parameter TEXT START Y = SCORE_START Y;
parameter TEXT END Y = SCORE _END Y;

assign score_text addr = {vcount[4:0], hcount[6:0]};

reg flip = 0;
reg [31:0] counter;

always @ (posedge vclock) begin
if (counter == 139999) begin
counter <= 0;
flip <= !flip;
end else begin
counter <= counter + 1;
end

rowFilled d <= rowFilled;
isFallingPiece_d <= isFallingPiece;
boardColor d <= boardColor;

if (preview) begin
r <= preview r;
g <= preview g;
b <= preview b;
end else begin

.douta (score_ text data));

if (hcount[8:5] >= 6 && hcount[10:5] < 16 && vcount[9:5] >= 2 && vcount[9:5]

begin

// If we're within the playing field section:

if (rowFilled) begin
r <= (flip ? 8'b00000000
g <= (flip ? 8'b00000000
b <= (flip ? 8'b00000000
end else begin

8'b11111111);
8'b11111111);
8'b11111111);

if (isFallingPiece d && boardColor d == 3'd0) begin
// This is part of the falling piece - highlight it by

< 22)

24

// setting the lower bits to 1
r <= {tile data([23:22], 6'bl11111};
g <= {tile data[15:14], 6'b111111};
b <= {tile data[7:6], 6'bl111111};
end else begin
// Display the tile normally (or with a red hue if game
// is over
r <= (gameOver ? (tile data[23:16] | 7'bl1111111)

tile data[23:16]);
g <= tile data[l5:8];
b <= tile data[7:0];
end
end
end else if (hcount >= LOGO_START X && vcount < LOGO_H) begin
// we're in the logo region of the screen (upper right corner)
r <= logo data[23:16];
g <= logo data[1l5:8];
b <= logo datal[7:0];
end else if (hcount >= SCORE_START X && hcount < SCORE_END X &&
vcount >= SCORE_START Y && vcount < SCORE _END Y)
begin
// we're in the score region of the screen
r <= 0;
g <= {1'b0, num data[6:0]};
b <= num data;
end else if (hcount >= TEXT START X && hcount < TEXT END X &&
vcount >= TEXT_START_Y && vcount < TEXT_END Y)
begin
// display the text "Score:"
r <= 0;
g <= {1'b0, score text data[6:0]};
b <= score_text data;
end else begin
// £ill the rest of the area with whatever the silhouette gives us
r <= {8{sil_r}};
g <= {8{sil_g}};
b <= {8{sil b}};
end
end
end
endmodule
/*
From:
http://www.ee.duke.edu/~dwyer/courses/ece52/Binary to BCD Converter.pdf
*/
module binary2bcd (A,ONES, TENS, HUNDREDS) ;
input [7:0] A;
output [3:0] ONES, TENS;
output [1:0] HUNDREDS;
wire [3:0] cl,c2,c3,cd4,c5,c6,c7;
wire [3:0] d1,d2,d3,d4,d5,d6,d7;
assign dl = {1'bO0,A[7:5]1};
assign d2 = {cl[2:0],A[4]1};
assign d3 = {c2[2:0],A[3]};
assign d4 = {c3[2:0],A[2]};
assign d5 = {c4[2:0],A[1l]};
assign d6 = {1'b0,cl[3],c2[3]1,c3[3]1};
assign d7 = {c6[2:0],c4[3]};
add3 ml(dl, cl)
add3 m2 (d2,c2);
add3 m3(d3,c3);
add3 m4 (d4,c4);
add3 m5(d5 c5);
add3 m6 (d6,c6) ;
add3 m7(d7,c7);
assign ONES = {c5[2:0],A[0]};

assign

TENS = {c7[2:0],c5[31};

assign HUNDREDS = {c6[31,c7([3]1};
endmodule

module add3 (in,out);
input [3:0] in;

output [3:0] out;

reg [3:0] out;

always @ (in)

case (in)

4'b0000: out<=4'b0000;
4'p0001: out<=4'b0001;
4'p0010: out<=4'b0010;
4'b0011: out<=4'b0011;
4'p0100: out<=4'b0100;
4'p0101: out<=4'b1000;
4'p0110: out<=4'b1001;
4'b0111: out<=4'b1l010;
4'p1000: out<=4'bl011l;
4'p1001: out<=4'b1100;
default: out<=4'b0000;
endcase

endmodule

26

memory_manager.v

module memory manager (
input clk,
input blank,
input switch,
input preview,

input [18:0] ntsc waddr,
input [35:0] ntsc wdata,
input ntsc_we,

input [18:0] disp raddr,
output [35:0] disp rdata,

input [18:0] proc_raddr,
output [35:0] proc rdata,

output zbt 0 we,

output [18:0] zbt 0 addr,

output [35:0] zbt 0 wdata,
input [35:0] zbt 0 rdata,

output zbt 1 we,
output [18:0] zbt 1 addr,
output [35:0] zbt 1 wdata,
input [35:0] zbt 1 rdata
):

assign zbt 0 we = blank && ntsc we;

assign zbt 0 addr = blank ? ntsc waddr : (preview ? disp raddr
assign zbt 0 wdata = blank ? ntsc wdata : 0;

assign disp rdata zbt 0 rdata;
assign proc_rdata = zbt 0_rdata;

o

assign zbt 1 we = 0;

assign zbt 1 addr = 0;

assign zbt 1 wdata = 0;
endmodule

proc_raddr) ;

27

ntsc2zbt.v

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

L1717 777 0777077077 777

File: ntsc2zbt.v
Date: 27-Nov-05

Author: I. Chuang <ichuang@mit.edu>

Example for MIT 6.111 labkit showing how to prepare NTSC data
(from Javier's decoder) to be loaded into the ZBT RAM for video

display.

The ZBT memory is 36 bits wide; we only use 32 bits of this, to
store 4 bytes of black-and-white intensity data from the NTSC

video input.

Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>
Date : 11-May-09 // gph mod 11/3/2011

Significantly modified by sbezek

// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc to zbt (clk, vclk,

fvh, dv, din, ntsc_addr, ntsc data, ntsc_we, ref frame,

input clk; // system clock

input velk; // video clock from camera
input [2:0] fvh;

input dv;

input [17:0] din;

output [18:0] ntsc_addr;
output [35:0] ntsc_data;
output reg ntsc_we;
input ref frame;
output new frame;

parameter COL_START
parameter ROW_START

// write enable for NTSC data

// switch which determines mode (for debugging)

0;//10'd30;
0;//10'd30;

// here put the luminance data from the ntsc decoder into the ram
// this is for 800 * 600 XGA display

reg [9:0] col = 0;

reg [9:0] row = 0;

reg [17:0] vdata = 0;

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced
reg even_odd; // decode interlaced frame to this wire
wire frame = fvh[2];

wire frame _edge = frame & ~old_frame;

wire valid edge = dv & ~old dv;

reg old h;

assign new frame = col ==

1 && row == 1 && frame == 1;

always @ (posedge vclk) begin //LLCl is reference

old dv <= dv;
old h <= fvh[0];

vwe <= dv && col >= 32 && col < 544 && row < 272;

old frame <= frame;

even_odd <= valid edge ? frame

col <= fvh[0] ? COL START : (valid edge && col < 1000 2 col+l

// if data valid,

even_odd;// frame_edge ? ~even_odd

col);

write it

even_odd;

new_frame) ;

28

row <= fvh[1l] ? ROW_START : (fvh[0] & ~old h ? row + 1 : row);
vdata <= valid edge ? din : vdata;

end
// synchronize with system clock

reg [9:0] x[1:0],y([1:0];
reg [17:0] datall:0];
reg we[l:0];
reg eo[1:0];

always @ (posedge clk)
begin

{x[11,x[0]} <=
{yl[1],y[0]} <=
{data[l],data[0]} <= {data[0], vdata};
{we[l],we[0]} <= {we[0],vwe};
{eo[l],e0[0]} <= {eo[0],even_odd};

end

{x[0]-32,col};
{y[0], row};
]

// edge detection on write enable signal
reg old we;

wire we_edge = we[l] & ~old_we;

always @ (posedge clk) old we <= we[l];

// compute address to store data in

wire [7:0] x addr = 8'd255 - x[1][8:1]; // Subtract from 255 to mirror left-to-right
wire [8:0] y addr {y[11[7:0], eolll};

wire [18:0] myaddr = {ref frame, 1'd0, y addr, x addr};
// Now address (0,0,0) contains pixel data(0,0) etc.

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;

always @ (posedge clk) begin
if (we_edge) begin
ntsc_addr <= myaddr;
// shift each of 2 pixels into a large register for the ZBT
// (new pixel is high-order instead of low-order because we're mirroring the

image)
ntsc_data <= { data[l], ntsc data[35:18]};
end
if ((we_edge) && (x[1][0]==1)) begin
ntsc_we <= 1;
end else begin
ntsc we <= 0;
end
end
endmodule

29

sil_display.v

module sil display(

input wire clk,
input wire [10:0] hcount,
input wire [9:0] vcount,
output wire [13:0] sil read addr,
input wire sil read data,
output reg r,

output reg g,

output reg b
)i

parameter SIZE = 256;

parameter X OFF = 640;
parameter Y OFF = 768 - SIZE - 64;

wire [7:0] raw x;
wire [7:0] raw_y;

assign raw x = hcount - X OFF;
assign raw y = vcount - Y OFF;

wire [6:0] x addr;
wire [6:0] y addr;

assign x_addr = raw x[7:1];
assign y _addr = raw_y[7:1];

assign sil read addr = {y addr,x addr};
always @ (posedge clk) begin

if (X_OFF <= hcount && hcount < X OFF+SIZE &&
Y OFF <= vcount && vcount < Y OFF+SIZE)

begin

0)

begin

if (x_addr[4:0] == || y addr[4:0] ==
r <=1;
g <= 0;
b <= 0;
end else if (x_addr > 95 && y addr([1l]) begin
r <= 0;
g <= 0;
b <= 1;

end else begin

r <= sil read data;
g <= sil read data;
b <= sil read data;

end

end else begin
r <= 0;
g <= 0;
b <= 0;

end

end
endmodule

30

zbt_6111_sample.v

L1777 7007707777777 7777777777777 7777777777 7777777777777777777777777777777777
//

// 6.111 FPGA Labkit -- Template Toplevel Module
//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//

[0 0777777777777 7777777777777 77777777 7777777777777
//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in ycrcb" to 20 bits.

// 3) Renamed "tv_out_data" to "tv_out i2c_data" and "tv_out_sclk" to

// "tv_out i2c clock".

// 4) Reversed disp data in and disp data out signals, so that "out" is an
// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash ce b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output
// 2) Renamed "mousedata" to "mouse data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into

// the data bus, and the byte write enables have been combined into the
// 4-bit ram# bwe b bus.

// 4) Removed the "systemace clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//

L1707 07 7007777777 77
//
// Complete change history (including bug fixes)

//

// 2009-May-11: Fixed memory management bug by 8 clock cycle forecast.

// Changed resolution to 1024 * 786 was ... 800 * 600.

// Reduced clock speed to 40MHz.

// Disconnected zbt 6111's ram clk signal.

// Added ramclock to control RAM.

// Added notes about raml default values.

// Commented out clock_feedback out assignment.

// Removed delayN modules because ZBT's latency has no more effect.
//

// 2005-Sep-09: Added missing default assignments to "ac97 sdata out",

// "disp data out", "analyzer[2-3] clock" and

// "analyzer[2-3] data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to

// 256Mb devices, with 25 address lines.)

//

// 2004-0Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp data_in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to
// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to

// 72Mb devices, with 21 address lines.)

31

//

// 2004-Apr-29: Change history started

!/

L1707 00 70077770777 77

module zbt 6111 sample(beep, audio reset b,
ac97_sdata out, ac97_sdata in, ac97_ synch,
ac97 bit clock,

vga_out red, vga out green, vga out blue, vga out sync b,
vga_out_blank b, vga out pixel clock, vga out hsync,

vga out vsync,

tv_out ycrcb, tv_out reset b, tv out clock, tv_out i2c clock,
tv_out _i2c data, tv_out pal ntsc, tv_out hsync b,

tv_out vsync b, tv out blank b, tv out subcar reset,

tv_in ycrcb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv_in hff, tv_in aff,

tv_in i2c_clock, tv_in_i2c data, tv_in fifo read,

tv in fifo clock, tv_in iso, tv in reset b, tv in clock,

ram0_data, ram0O_address, ram0O_adv_1d, ram0O_clk, ramO_cen Db,
ram0 ce b, ram0 oe b, ram0 we b, ram0 bwe b,

raml data, raml address, raml adv_1d, raml clk, raml cen b,
raml ce b, raml oe b, raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oe b, flash we b,
flash_reset b, flash sts, flash byte b,

rs232_txd, rs232 rxd, rs232 rts, rs232 cts,
mouse_clock, mouse data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock2,

disp_blank, disp_data out, disp clock, disp_rs, disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter, button right,
button_left, button down, button up,

switch,

led,

userl, user2, user3, userd,
daughtercard,

systemace data, systemace address, systemace ce b,
systemace we b, systemace oe b, systemace irq, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

output beep, audio reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata in;

output [7:0] vga_out red, vga_ out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,
vga_out hsync, vga out vsync;

output [9:0] tv_out ycrcb;
output tv out reset b, tv out clock, tv_out i2c clock, tv out i2c data,
tv_out pal ntsc, tv_out hsync b, tv out vsync b, tv out blank b,

/*

tv_out subcar reset;

input [19:0] tv_in ycrcb;

input tv_in _data_valid, tv_in line clockl, tv_in line clock2, tv_in_aef,
tv_in hff, tv_in aff;

output tv_in i2c clock, tv_in fifo read, tv_in fifo clock, tv_in iso,
tv_in reset b, tv_in clock;

inout tv in i2c data;

inout [35:0] ramO data;

output [18:0] ram0O_address;

output ram0 adv 1d, ram0O clk, ram0 cen b, ram0 ce b, ram0 oe b, ram0 we b;
output [3:0] ram0O bwe b;

inout [35:0] raml data;

output [18:0] raml address;

output raml adv 1d, raml clk, raml cen b, raml ce b, raml oe b, raml we b;
output [3:0] raml bwe b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

output flash ce b, flash oe b, flash we b, flash reset b, flash byte b;
input flash sts;

output rs232 txd, rs232 rts;
input 1rs232 rxd, rs232 cts;

input mouse clock, mouse data, keyboard clock, keyboard data;
input clock 27mhz, clockl, clock2;

output disp blank, disp clock, disp rs, disp ce b, disp reset b;
input disp_data in;
output disp data out;

input button0, buttonl, button2, button3, button enter, button right,
button_left, button_down, button up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe b;
input systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzer4d data;
output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

[11117170777
//

// 1/0 Assignments

//
[17117170777

// Audio Input and Output
assign beep= 1'b0;

assign audio reset b = 1'b0;
assign ac97 synch = 1'b0;
assign ac97 sdata out = 1'b0;

// ac97 sdata_in is an input

33

// Video Output
assign tv_out ycrcb =
assign tv_out reset b 1'b0;
assign tv_out clock = 1'b0;
assign tv_out i2c clock = 1'b0;
assign tv_out i2c data = 1'b0;
assign tv_out pal ntsc = 1'b0;
assign tv_out hsync b = 1'bl;

10"h0;

assign tv_out vsync b = 1'bl;
assign tv_out blank b = 1'bl;
assign tv_out subcar reset = 1'b0;

// Video Input

//assign tv_in i2c_clock = 1'b0;

assign tv_in fifo read = 1'bl;

assign tv_in fifo clock = 1'b0;

assign tv_in _iso = 1'bl;

//assign tv_in reset b = 1'b0;

assign tv_in clock = clock 27mhz;//1'b0;

//assign tv_in i2c data = 1'bZ;

// tv_in ycrcb, tv_in data valid, tv_in line clockl, tv_in line clock2,
// tv_in_aef, tv_in hff, and tv_in_aff are inputs

// SRAMs
/* change lines below to enable ZBT RAM bank0O */

/*
assign ram0 data = 36'hZ;
assign ram0_address = 19'h0;
assign ram0 clk = 1'b0;
assign ram0 _we b = 1'bl;
assign ram0 cen b = 1'b0; // clock enable

*/

/* enable RAM pins */

assign ram0 ce b = 1'b0;
assign ram0 oe b = 1'b0;
assign ram0_adv_1d = 1'b0;
assign ram0 bwe b = 4'h0;

/**********/

/*
assign raml data = 36'hZ;
assign raml address = 19'h0;
assign raml clk = 1'b0;

assign raml we b = 1'bl;

assign raml cen b = 1'bl;

*/

//These values has to be set to 0 like ram0 if raml is used.
assign raml ce b = 1'b0;

assign raml oe b = 1'b0;

assign raml_adv_1d = 1'b0;

assign raml bwe b = 4'h0;

//clock_feedback out will be assigned by ramclock
//assign clock feedback out = 1'b0;
// clock feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b = 1'bl;
assign flash oe b = 1'bl;
assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;
// flash_sts is an input

// RS-232 Interface

/*

*/

assign rs232 txd = 1'bl;
assign rs232 rts = 1'bl;
// rs232_rxd and rs232 cts are inputs

// PS/2 Ports
// mouse_clock, mouse_data, keyboard clock, and keyboard data are inputs

// LED Displays

assign disp blank = 1'bl;
assign disp clock = 1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp_data out = 1'b0;

// disp _data in is an input

// Buttons, Switches, and Individual LEDs

//lab3 assign led = 8'hFF;

// button0, buttonl, button2, button3, button enter, button right,
// button_left, button_down, button_up, and switches are inputs

// User I/0s
assign userl = 32'hZ;

assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4[31:12] = 20'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace data = 16'hZ;
assign systemace address = 7'h0;
assign systemace ce b = 1'bl;
assign systemace we b = 1'bl;
assign systemace oe b = 1'bl;

// systemace irq and systemace mpbrdy are inputs

// Logic Analyzer

assign analyzerl clock = 1'bl;
assign analyzer2 clock = 1'bl;
assign analyzerd4 clock = 1'bl;

LIPDT070770 777077777707 77707777777777777777777777777777777777777177777777777

// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock 65mhz_unbuf,clock 65mhz;

DCM vclkl (.CLKIN (clock 27mhz), .CLKFX(clock 65mhz_unbuf));
// synthesis attribute CLKFX DIVIDE of vclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclkl is 37

BUFG vclk2(.0(clock 65mhz),.I(clock 65mhz_unbuf));

wire [11:0] hex in = userl1[11:0];

wire clk;
wire locked;

ramclock rc(.ref clock(clock 65mhz), .fpga clock(clk),
.ram0_clock(ram0_clk),
.raml_clock(raml clk), //uncomment if raml is used
.clock_feedback in(clock feedback in),
.clock feedback out (clock feedback out), .locked(locked));

35

// power-on reset generation

wire power on_reset; // remain high for first 16 clocks
SRL16 reset sr (.D(1'b0), .CLK(clk), .Q(power on reset),
A0O(1'b1), .Al1(1l'bl), .A2(1'bl), .A3(1'bl));

defparam reset sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user_reset;

debounce dbl (power_on_reset, clk, ~button enter, user reset);
assign reset = user reset | power on reset;

// display module for debugging

wire [63:0] dispdata;
assign dispdata = {54'hFFFFFFFFFFFFFF, hex in};
display l6hex hexdispl (reset, clock 27mhz, dispdata,
disp_blank, disp_clock, disp_rs, disp ce b,
disp reset b, disp data out);

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] wvcount;

wire hsync,vsync,blank,next vblank;

xvga xvgal (clk,hcount,vcount, hsync,vsync,blank, next vblank);

// wire up to ZBT ram
wire [35:0] zbt 0 wdata;
wire [35:0] zbt 0 rdata;
wire [18:0] zbt 0 addr;
wire zbt 0_we;
wire useless clk 1;

zbt 6111 zbtO(clk, 1'bl, zbt 0 we, zbt 0 addr,
zbt 0 wdata, zbt 0 rdata,
useless clk 1,//ram0_clk, //to get good timing, don't connect
ram clk to zbt 6111
ram0_we b, ram0O_address, ram0O_data, ram0O_cen b);

// wire up to ZBT ram
wire [35:0] zbt 1 wdata;
wire [35:0] zbt 1 rdata;
wire [18:0] zbt 1 addr;
wire zbt 1 we;
wire useless clk 2;

zbt 6111 zbtl(clk, 1'bl, zbt 1 we, zbt 1 addr,
zbt 1 wdata, zbt 1 rdata,
useless clk 2,//ram0_clk, //to get good timing, don't connect
ram clk to zbt 6111
raml we b, raml address, raml data, raml cen b);

// generate pixel value from reading ZBT memory

wire [7:0] vr _pixel r;
wire [7:0] vr_pixel g;
wire [7:0] vr pixel b;
wire [18:0] disp raddr;
wire [35:0] disp_rdata;

vram display vdl (0,clk,hcount,vcount,vr_pixel r,vr pixel g,vr pixel Db,
disp raddr,disp rdata);

// Silhouette BRAM

wire sil write data;

wire [13:0] sil write_ addr;
wire sil write_enable;

wire [13:0] sil read addr;

36

wire sil read data;
sil ram sil_ raml (

wire step dbg;

wire [8:0] x dbg;
wire [8:0] y dbg;
wire [11:0] diff dbg;

o

wire [18:0] proc_raddr;
wire [35:0] proc_rdata;

wire [11:0]

image_analysis ial

(.clk(clk),
.zbt_read_addr (proc_raddr),

.clka(clk), .dina(sil _write data),

.addra(sil write addr),
.clkb(clk),
.doutb(sil read data));

cur block shape;

.enable (~blank),
.zbt_read data(proc_rdata)

.cur_block shape (cur block shape),

.occupied threshold({3"

d0,hex in[11:8], 4'd0}),

.block diff threshold({4'b0000, hex in[7:0]}),

.sil waddr(sil write addr),

.sil wdata(sil _write data)

.51l we(sil write enable),

.x_dbg (x_dbg),
.diff dbg(diff dbg)
)i

.y_dbg (y_dbg) ,

.step dbg(step dbg),

// 3 bit color VGA output for silhouette display

wire sil disp r;
wire sil disp _g;
wire sil disp b;

sil display sdl (.clk(clk),

.sil read addr(sil read addr),
.g(sil disp g),

.r(sil disp r),

.hcount (hcount),

.b(sil disp b));

// ADV7185 NTSC decoder interface code
// adv7185 initialization module

adv7185init adv7185(.reset(0),

.source (1'b0),

.clock 27mhz (clock 27mhz),

.tv_in reset b(tv_in reset b),

.tv_in i2c clock(tv_in i2c_clock),
.tv_in_i2c data(tv_in_i2c_data));

.wea(sil write enable),

.addrb(sil_read_ addr),

.restart ({vcount == 0}),

’

’

.vcount (vcount),
.sil read data(sil read data),

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; // data valid

ntsc_decode decode

(.clk(tv_in line clockl)
.tv_in ycrcb(tv_in ycrcb[19:10]

)

.reset (0),

.ycrcb (ycrcb), .f(fvh[2]),
.v(fvh[1]), .h(fvh[0]), .data valid(dv));
wire [7:0] red;
wire [7:0] green;
wire [7:0] blue;
wire [18:0] rgb = {red[7:2], green[7:2], blue[7:2]};

YCrCb2RGB convert (.R(red),

.G(green),

.Y (ycrcb[29:20]

// code to write NTSC data to video memory

wire [18:0] ntsc waddr;
wire [35:0] ntsc_wdata;
wire ntsc_we;

wire new frame;

ntsc_to zbt n2z

(clk, tv_in_ line clockl,

) 14

fvh, dv,

.B(blue),
.clk(tv_in line_clockl),

.rst (0),
.Cr(ycrcb[19:101]),

rgb,

.Cb(ycrcb([9:0]));

37

/*

*/

ntsc_waddr, ntsc wdata, ntsc we, switch[6], new frame);

wire [7:0] wvga red;
wire[7:0] vga green;
wire [7:0] vga blue;
reg b,hs,vs;

reg [7:0] vga_ r old;
reg [7:0] vga_g old;
reg [7:0] vga b old;
reg clk half;
reg clk out;

always @ (posedge clk) begin
clk half <= ~clk half;
clk _out <= clk half && !b;
vga_r old <= vga_ red;
vga g old <= vga green;
vga b old <= vga blue;

end

assign analyzer3 clock = clk out;
assign analyzerl data = {vga red, vga green};
assign analyzer3 data = {b,hs,vs, vcount[9:5], vga blue};

assign analyzer2 data = {vga r old, vga g old};
assign analyzer4 data {hcount[10:3], vga b old};

wire [18:0] pattern_addr;
wire [35:0] pattern data;
zbt pattern ptl(.clk(clk), .write addr(pattern addr),
.write data(pattern data));

wire preview = switch([2];

// wire up the memory manager
memory manager mml (.clk(clk), .blank(blank), .switch(new frame), .preview(preview),
.ntsc _waddr (ntsc_waddr), .ntsc wdata(ntsc_wdata), .ntsc we(ntsc_we),
.disp raddr(disp_raddr), .disp rdata(disp_rdata),
.proc_raddr (proc_raddr), .proc_ rdata(proc_rdata),
.zbt 0 we(zbt 0 we), .zbt 0 addr(zbt 0 addr),
.zbt 0 wdata(zbt 0 wdata), .zbt 0 rdata(zbt 0 rdata),
.zbt 1 we(zbt 1 we), .zbt 1 addr(zbt 1 addr),
.zbt 1 wdata(zbt 1 wdata), .zbt 1 rdata(zbt 1 rdata)
)i

// select output pixel data

wire [9:0] score;

wire [2:0] boardColor;
wire [8:0] coord;

wire rowFilled;

wire isFallingPiece;
wire gameOver;

display dsl(.vclock(clk), .reset(0), .hcount (hcount),
.vcount (vcount), .hsync(hsync), .vsync(vsync), .blank(blank),
.score (score),
.boardColor (boardColor),
.sil r(sil disp r), .sil g(sil disp g), .sil b(sil disp b),
.preview (preview),
.preview r(vr pixel r), .preview g(vr_pixel g), .preview b(vr pixel b),
r(vga_red), .g(vga_green), .b(vga blue),
.coord (coord), .isFallingPiece (isFallingPiece),
.rowFilled(rowFilled),

38

.gameOver (gameOver)) ;

// UP an
wire up,
debounce
debounce
debounce
debounce

wire le
debounce
debounce

wire re
wire re

wire [1
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

FSM fsml

d DOWN buttons

down, left, right;

db2 (.reset (reset), .clk(clock 65mhz), .noisy(~button up),.clean(up));

db3 (.reset (reset), .clk(clock 65mhz), .noisy(~button down), .clean(down));
db4 (.reset (reset), .clk(clock 65mhz), .noisy(~button left), .clean(left));
db5 (.reset (reset), .clk(clock 65mhz), .noisy(~button right),.clean(right));

ft switch, right switch;

db6 (.reset (reset), .clk(clock 65mhz), .noisy(user3[1]), .clean(left switch));
db7 (.reset (reset), .clk(clock 65mhz),.noisy(user3[0]), .clean(right switch));
al left = left | left switch;

al right = right | right switch;

1:0] rev block;

rev _block[0] = cur block shape[ll];
rev_block[1l] = cur _block shape[1l0];
rev_block[2] = cur_block shape[9];
rev_block[3] = cur_block_shape[8];
rev _block[4] = cur block shape[7];
rev _block[5] = cur block shape[6];
rev_block[6] = cur_block shape[5];
rev_block[7] = cur_block shape[4];
rev _block([8] = cur block shape[3];
rev _block[9] = cur block shape[2];
rev_block[10] = cur block shape[l];
rev_block[11] = cur_block _shape[0];

(.clk(clock 65mhz),

.reset (reset),
.blanking (next vblank),

.FP(rev _block),

.left(real left),

.right (real right),

.coord (coord),

.score (score),

.blockColor (boardColor),

.up (up) ,

.down (down) ,

.startlLevel ({switch[1l],switch[0]}),
.rowFilled(rowFilled),
.isFallingPiece (isFallingPiece),
.gameOver (gameOver)) ;

always @

(posedge clk)

begin

b <= bl
hs <= h
vs <= v

end

// VGA O
// AD712

ank;
sync;
sync;

utput. In order to meet the setup and hold times of the
5, we send it ~clk.

39

assign vga out red = vga_ red;

assign vga_out green = vga_ green;

assign vga out blue = vga blue;

assign vga out sync b = 1'bl; // not used
assign vga out pixel clock = ~clk;

assign vga_out blank b = ~b;

assign vga_out hsync = hs;

assign vga out vsync = vs;

// debugging

assign led = ~{6'b0, real left, real right};

assign user4[11:0] = ~cur block shape;
endmodule

L1177 7707777077777 777777777 77
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

module xvga (vclock,hcount,vcount, hsync,vsync,blank, next vblank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output vsync;

output hsync;

output blank;

output next vblank;

reg hsync, vsync, hblank, vblank, blank;

reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line

wire hsyncon, hsyncoff, hreset, hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total
// display 768 lines

wire vsyncon,vsyncoff,vreset, vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

// sync and blanking

wire next hblank, next vblank;

assign next hblank = hreset ? 0 : hblankon ? 1 : hblank;

assign next vblank = vreset ? 0 : vblankon ? 1 : vblank;

always @ (posedge vclock) begin
hcount <= hreset ? 0 : hcount + 1;
hblank <= next hblank;
hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low
vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
blank <= next vblank | (next_hblank & ~hreset);

end

endmodule

module vram display(reset,clk,hcount,vcount,vr pixel r,vr pixel g,vr pixel b,
vram addr,vram read data);

input reset, clk;
input [10:0] hcount;

40

input [9:0] vcount;
output [7:0] vr_pixel r;
output [7:0] vr pixel g;
output [7:0] vr pixel b;
output [18:0] vram addr;
input [35:0] vram read data;

parameter MAX HCOUNT = 1344;
parameter LOOKAHEAD = 6;
parameter WRAP_HCOUNT = MAX HCOUNT - LOOKAHEAD;

//forecast hcount & vcount 8 clock cycles ahead to get data from ZBT

wire[10:0] hcount f = (hcount >= WRAP HCOUNT) ? (hcount - WRAP HCOUNT) : (hcount + LOOKAHEAD) ;
wire [9:0] vcount f = (hcount >= WRAP HCOUNT) ? ((vcount == 805) ? 0 : vcount+l) : vcount;
reg [18:0] vram_addr;

reg [7:0] vr _pixel r;

reg [7:0] vr pixel g;

reg [7:0] vr pixel b;

reg [35:0] vr_data latched;

reg [35:0] last_vr data;

always @ (posedge clk) begin

vram addr <= {hcount f[10:9] != 0, 1'd0, vcount f[8:0], hcount f[8:1]};

last_vr data <= (hcount f[0]==1) ? vram read data : last vr data;

//vr _data latched <= (hc4==2'dl) ? vram read data : vr data latched;
// each 36-bit word from RAM is decoded to 4 bytes
if (hcount f[0]==1) begin
vr pixel r <= {last vr data[l17:12],2'b00};
vr_pixel g <= {last_vr data[11:6],2'b00};
vr pixel b <= {last _vr data[5:0],2'b00};
end else begin
vr pixel r <= {last vr data[l7+18:12+18],2'b00};
vr_pixel g <= {last_vr data[11+18:6+18],2'b00};
vr pixel b <= {last vr data[5+18:0+18],2'b00};
end
end

endmodule // vram display

41

FSM.v

[1170777777777777077
//

// Module FSM (Controls Tetris Game Logic)

//
[1170777777777777077

module FSM(input wire clk,
input wire reset,
input wire blanking,
input wire [0:11] FP,
input wire left,
input wire right,
input wire [8:0] coord,
input wire up,
input wire down,
input wire [1:0] startLevel,
output reg [9:0] score,
output reg [2:0] blockColor,
output reg rowFilled,
output reg isFallingPiece,
output wire gameOver

)i

wire cross = (FP == 12'b000010111010);
assign gameOver = (state == GAME OVER) ;

parameter GAME OVER =
parameter FALLING = 1;
parameter CLEARING = 2;
parameter FLASH = 3;
parameter COLLAPSE = 4;
parameter RESET = 5;

0;

//in .1 seconds

parameter FLASH SPEED = 1;
reg [3:0] falling speed = 5;
parameter LOGSIZE = 5;
parameter WIDTH = 32;
//Falling Piece (FP) indices:

/*

012

345

6 7 8

9 10 11
*/
VAR B 25 BN E A AR S A A A
reg [LOGSIZE-1:0] al = 0;
reg [LOGSIZE-1:0] a2 = 0;
reg [LOGSIZE-1:0] aR = 0;
reg [LOGSIZE-1:0] aW = 0;
reg wel = 0;
reg we2 = 0;
reg we = 0;

reg [WIDTH-1:0] mInl;
reg [WIDTH-1:0] mIn2;
reg [WIDTH-1:0] mInR;
reg [WIDTH-1:0] mInW;

wire [WIDTH-1:0] mOutl;
wire [WIDTH-1:0] mOut2;
wire [WIDTH-1:0] mOutR;
wire [WIDTH-1:0] mOutW;

//playing field - Double buffer
//Falling piece 32 x 32bit memory block
bram # (.LOGSIZE (LOGSIZE), .WIDTH(WIDTH))
PF(.addr (al), .clk(clk), .we(wel), .din(mInl), .dout (mOutl));
bram # (.LOGSIZE (LOGSIZE), .WIDTH(WIDTH))
PF1l(.addr (a2), .clk(clk), .we (we2), .din(mIn2), .dout (mOut2)) ;

//write switch (ws BRAM is writing)

reg ws = 0;
assign mOutW = (ws ? mOut2 : mOutl);
assign mOutR = (ws ? mOutl : mOut2);

//Switching logic that abstracts out the double-switching-buffers into two Read and Write BRAMs
always Q@ (*) begin

wel = (ws ? 0 : we);
we2 = (lws ?2 0 : we);
mInl = (ws ? mInR : mInW);
mIn2 = (!ws ? mInR : mInW);
al = (ws ? aR : aW);
a2 = (!'ws 2 aR : aW);

end

//counter to properly setup collision reading address
reg [1:0] waitCo = 2;

//index for falling block

reg [4:0] fi = 0O;

//indicate the position of falling piece at any given time.
reg [3:0] FP_x = 3;

//FP_x counting by 3's

reg [5:0] P_x = 9;

reg [4:0] FP_ y = 0;

reg [2:0] state = 0;
reg startClearing = 0;

//color of current falling piece
reg [2:0] color;

reg go, co;

//test if the falling piece is empty and need to pause the game

wire empty = ! (|FP[0:11]);

//check 1if the top row is nonempty

//speeds of flashing and falling piece

reg [3:0] speed = 5;

reg [2:0] flash speed = FLASH SPEED;

//BA1l the counters to keep track of left/right/up/down button presses
reg rpressed = 0;

reg lpressed = 0;
reg upressed = 0;
reg dpressed = 0;
reg ry = 0;
reg ly = 0;
reg uy = 0;
reg dy = 0;

//bool to check if any rows were cleared
reg clr = 0;

//row keeping track the row # to collapse
reg [4:0] corow = 21;

//checks to see if row is complete

wire complete = ! ((mOutR[2:0] == 3'b000) || (mOutR[5:3] == 3'b000) || (mOutR[8:6] == 3'b000) |
(mOutR[11:9] == 3'b000) || (mOutR[14:12] == 3'b000) || (mOutR[17:15] == 3'b000) || (mOutR[20:18]
== 3'b000) || (mOutR[23:21] == 3'b000) || (mOutR[26:24] == 3'b000) || (mOutR[29:27] == 3'b000));
reg [31:0] counter = 0;

always @ (posedge clk) begin

if (reset) begin
state <= RESET;

43

end

//only step through FSM if monitor is blanking. (do I even need to do this?)
if (blanking && !reset) begin
//Counter that determines the speed of falling block.
if (counter == 139999 || reset) begin
counter <= 0;
ena <= !ena;
end
else begin
counter <= counter + 1;
end

//Logic that handles up/down button presses to increase and decrease block falling speed
if (up) begin
if (!upressed) begin
upressed <= 1;
uy <= 1;
end
end else begin
upressed <= 0;
uy <= 0;
end
if (down) begin
if (!dpressed) begin
dpressed <= 1;
dy <= 1;
end
end else begin
dpressed <= 0;
dy <= 0;
end

if(uy && !dy && (falling speed > 3)) begin
falling speed <= falling speed - 1;
uy <= 0;

end

if(dy && l!uy && (falling speed < 15)) begin
falling speed <= falling speed + 1;
dy <= 0;

end

case (state)
GAME_OVER: begin
//keep old playing field and look for either a reset
//or cross shaped player indicating a new game
if (cross) begin
state <= RESET;
startClearing <= 0;
end
else begin
state <= GAME_OVER;
end
end
FALLING: begin
if (counter == 0)begin
//make sure the piece is not empty (user paused) and on .l second pulse steps
we calculate logic.
if (speed > 0) begin
speed <= speed - 1;
end
end

if (speed >= 1) begin
//handle left/right movement separately.
if (left) begin

44

if (!lpressed) begin
lpressed <= 1;
ly <= 1;
end
end else begin
lpressed <= 0;
ly <= 0;
end
if (right) begin
if (!rpressed) begin
rpressed <= 1;
rpressed <= 1;
ry <= 1;
end

end else begin
rpressed <= 0;

ry <= 0;
end
if(ly && !ry && FP_x > 0) begin
if (waitCo == 2) begin
//start reading memory from where falling piece is currently
aR <= FP y;
fi <= 0;
co <= 0;
we <= 0;
state <= FALLING;
waitCo <= 1;
end else if (waitCo == 1) begin
//iteratively checking for collision
if (aR >= (FP_y+1)) begin
if(((aR-1) >= FP y) && ((aR-1) <= FP y + 3)) begin
if(fi <= 9) begin
//
co <= (co || (FP[fi] && (mOutR[P_x-3] || mOutR[P x-3+1] |
mOutR[P x-3+2])) ||
(FP[fi+1] && (mOutR[P x-3+3] || mOutR[P x-3+4] || mOutR[P_x-
3+51)) ||
(FP[fi+2] && (mOuUtR[P_x-3+6] || mOutR[P_x-3+7] || mOutR[P_ x-
3+81))) 5
//
end
fi <= ((fi < 15) 2 fi + 3 15);
end
end

if(fi < 15) begin
aR <= aR + 1;

end else begin
waitCo <= 0;
startClearing <= 0;

aR <= 0;
aW <= 5'b11111;
we <= 0;

end

state <= FALLING;
end else begin
//update coords only if no collision detected
if (!co) begin
FP x <= FP_x - 1;
P x <=P x - 3;

co <= 0;
end
ly <= 0;
waitCo <= 2;
end
end
if(ry && !ly && FP_x < 7) begin
if (waitCo == 2) begin

45

//start reading memory from where falling piece is currently

aR <= FP_y;
fi <= 0;
co <= 0;
we <= 0;

state <= FALLING;
waitCo <= 1;
end else if (waitCo == 1) begin
//iteratively checking for collision
if (aR >= (FP_y+1l)) begin
if (((aR-1) >= FP_y) && ((aR-1) <= FP_y + 3)) begin
if(fi <= 9) begin

co <= (co ||
(FP[fi] && (mOutR[P_x+3] || mOutR[P x+3+1] || mOutR[P_x+3+2])) ||
(FP[fi+1] && (mOutR[P_x+3+3] || mOutR[P_x+3+4] || mOutR[P_x+3+5])) ||
(FP[fi+2] && (mOutR([P x+3+6] || mOutR[P x+3+7] || mOutR[P_x+3+8])));
end
fi <= ((fi < 15) 2 fi + 3 : 15);
end

end

if(fi < 15) begin
aR <= aR + 1;

end else begin
waitCo <= 0;
startClearing <= 0;

aR <= 0;
aw <= 5'b11111;
we <= 0;

end

state <= FALLING;
end else begin
if(!co) begin
FP_x <= FP_x + 1;
P x <= P_x + 3;
co <= 0;
end
ry <= 0;
waitCo <= 2;
end
end
state <= FALLING;
end

//Make falling piece fall one row if no collision detected
if (speed==0) begin
//1f empty, stop calculating
if (empty) begin
speed <= falling speed;
startClearing <= 0;
waitCo <= 2;
state <= FALLING;
end else begin

if (waitCo == 2) begin
//start reading memory from where falling piece is currently
aR <= FP_y;
fi <= 0;
co <= 0;
go <= 0;
we <= 0;

state <= FALLING;
waitCo <= 1;
end else if (waitCo == 1) begin
//iteratively checking for collision
if(aR >= (FP_y+l)) begin
if(((aR-1) >= FP_ y) && ((aR-1) <= FP y + 4)) begin
if(fi <= 9) begin

go <= (go ||
(FP[fi] && (MOutR[P_x] || mOutR[P x+1] || mOutR[P x+2])) ||
(FP[fi+1l] && (mOutR[P_x+3] || mOutR[P_x+4] || mOutR[P x+5]1)) ||

46

{3{{color[0],

switching

(FP[fi+2] && (mOutR[P_x+6] || mOutR[P_x+7] || mOutR[P_x+8])));
end
if(fi > 2 && fi < 15) begin
co <= (co ||

(FP[fi-3] && (mOutR[P_x] || mOutR[P x+1] || mOutR[P_x+2])) ||
(FP[fi-2] && (mOutR[P x+3] || mOutR[P_x+4] || mOutR[P x+5]))
(FP[fi-1] && (mOutR[P x+6] || mOutR[P x+7] || mOutR[P x+8]))
end
fi <= ((fi < 15) 2 fi + 3 : 15);
end

end

if(fi < 15) begin
aR <= aR + 1;

end else begin
waitCo <= 0;
startClearing <= 0;

aR <= 0;
aW <= 5'b11111;
we <= 0;

end

state <= FALLING;

end else begin

color([1l],

//waitCo = 0, freeze here until falling finishes calculating
if(go && (FP_y == 0) && (FP_x == 3)) begin
state <= GAME OVER;
startClearing <= 0;
speed <= falling speed;
end else begin
if (co) begin
//don't calculate until collision testing is done calculating
if (!startClearing) begin

aR <= 0;
aW <= 5'b11111;
we <= 0;
fi <= 0;

startClearing <= 1;
state <= FALLING;
end else begin
//only write when aR ==
if(aR >= 1) begin
//If collision, just copy over, don't move
if(((aR-1) < FP_y) || ((aR-1) > (FP_y+3))) begin
mInW <= mOutR;
end else begin
mInW <= ({22'b0, {{3{FP[fi+2]}}, {(3{FP[fi+1]1}}, {3{FP[fil}}} &
color[2]}1}}
}<<(P_x)) | mOutR;

fi <= ((fi < 11) 2 fi + 3 : 12);
end
end

//need to wait 2 more cycles for values to be calulated before

if (aR < 23) begin
//have not swept through the whole thing yet
aR <= aR + 1;
if(aR >= 1) begin
aW <= aW + 1;
we <= 1;
end
state <= FALLING;
end else begin
//stop writing
ws <= lws;
we <= 0;
aR <= 0;

47

aW <= 5'bl1111;
speed <= falling speed;
go <= 0;
co <= 0;
startClearing <= 0;
waitCo <= 2;
clr <= 0;
state <= CLEARING;
end
end

end else begin
//main purpose
FP_y <= FP_y + 1;
//setup logic
we <= 0;
speed <= falling speed;
startClearing <= 0;
waitCo <= 2;
state <= FALLING;

end

//end of !go

end
//end of else after co/go calculation
end
//end of empty else
end
//end of speed ==
end

end

CLEARING: begin
//A1l the buffers should be clean and the switch in the correct place
//need to clear rows in PF, find all solid rows and mark them for clearing
if (!startClearing) begin
//refresh the addresses as well as clean the pipes

aR <= 0;
aw <= 5'b11111;
we <= 0;

startClearing <= 1;
state <= CLEARING;
end else begin
if(aR >= 1) begin
if (complete && (aR < 22)) begin
mInW <= {2'bl0, 30'b000000000000000000000000000000};
clr <= 1;
end else begin
mInW <= mOutR;
end
end

if (aR < 22) begin
aR <= aR + 1;
if(aR >= 1) begin
aW <= aWw + 1;
we <= 1;
end
state <= CLEARING;
end else begin
ws <= lws;

aR <= 0;
aW <= 5'b11111;
we <= 0;

flash _speed <= FLASH_SPEED;
speed <= falling speed;
state <= FLASH;
end
end

end
FLASH: begin

//Waits while Display flashes the rows to be cleared

if(!clr) begin
state <= COLLAPSE;
end else begin
//ONLY SIMULATION
if (counter == 0) begin
speed <= ((speed > 0)
end else begin
if (speed == 0) begin

? (speed - 1) : speed);

//finished flashing, next state is collapse
flash speed <= FLASH SPEED;
speed <= falling speed;

we <= 0;
aR <= 0;
startClearing <= 0;
corow <= 21;
state <= COLLAPSE;
aW <= 5'bl1111;

end else begin
state <= FLASH;

end
end

end
end
COLLAPSE: begin
//00000000000000000000000
//00000000000000000000000
//00000000000000000000000
//0000000000000000000000#

if(!clr) begin

//the only way out of this state is through here

we <= 0;

aR <= 0;

aW <= 5'b11111;

speed <= falling speed;
go <= 0;

co <= 0;

startClearing <= 0;
waitCo <= 2;

FP_x <= 3;
P x <= 9;
FP y <= 0;
color <= ((color == 3'b1l1l1l) ? 3'b001 : color+l);

corow <= 21;
state <= FALLING;
end else begin

//handle general row shifting

if (corow < 21) begin
//shift all rows down

to corow

if (!startClearing) begin
//refresh the addresses as well as clean the pipes

aR <= 0;
aW <= 5'bl11111;
we <= 0;

startClearing <= 1;
end else begin
if(aR >= 1) begin

//override row with the read in prevRow
if((aR-1) == 21) begin

mInW <= {2'b00,
end else begin
mInW <= mOutR;
end
end else begin

30'b111111111111111111111111111111};

49

mInW <= 32'b00000000000000000000000000000000;
end

if (aR < 23) begin
aR <= aR + 1;
//1f read is ready and current row isn't marked out row, keep going

if(((aR-1) != (corow))) begin// || ((aR-1) != (corow+2))) begin
aW <= aWw + 1;
we <= 1;

end else begin
//else stop writing for one cycle and wait for read address to catch
up.
we <= 0;
end
end else begin
//clearing corow, flip memory and start over
corow <= 21;
score <= score + 1;
ws <= lws;

aR <= 0;

aW <= 5'bl1111;

we <= 0;

startClearing <= 0;
end

end
state <= COLLAPSE;
end else begin
//looking for the marked row (corow) for clearing
//reading ONLY
if (!startClearing) begin
//refresh the addresses as well as clean the pipes
aR <= 0;
we <= 0;
startClearing <= 1;
end else begin
if(aR >= 1) begin
//found the row!
if (mOutR[31]) begin
//save row for collapsin'
corow <= aR - 1;
startClearing <= 0;

aR <= 0;
aw <= 0;
end

end

if (aR < 22) begin
aR <= aR + 1;
end else begin

aR <= 0;
aw <= 0;
we <= 0;
//no more rows to collapse
clr <= 0;
end
end
state <= COLLAPSE;
end

//end of clr
end

end
RESET: begin
if (!startClearing) begin
//clear the playing board and falling piece, reset to state FALLING
co <= 0;
go <= 0;
FP x <= 3;

P x <= 9;

FP y <= 0;

speed <= falling speed;
flash speed <= FLASH_SPEED;
score <= 0;

clr <= 0;

aR <= 0;

aW <= 5'b11111;

mInR <= 0;

mInW <= 0;
corow <= 21;
we <= 0;

falling speed <= 5;

rowFilled <= 0;

color <= 3'b001;

startClearing <= 1;

state <= RESET;

end else begin

//write to the whole board 0's except row 20 where it fills solid
//(aR - 1) < 19

if (aR != 21) begin

//Difficulty levels for starting board

if (startlevel == 0) begin
mInW <= 32'b0;
end else if (startLevel == 1) begin

case (aR)
18: mInW <= {2'b00, 30'b000000000000000000000000111000};
19: mInW <= {2'b00, 30'b000000111111111000000000111111};
20: mInW <= {2'b00, 30'b000111111000111111000000111111};
default: mInW <= 32'b0;
endcase
end else if (startlLevel == 2) begin
case (aR)
10: mInW <= {2'b00, 30'b000000111000000000000000000000};
11: mInW <= {2'b00, 30'b000000111000000000000000000000};
12: mInW <= {2'b00, 30'b000000111000000000000000000000};
13: mInW <= {2'b00, 30'b000000111000000000000000000000};
14: mInW <= {2'b00, 30'b000000111000000000000000000000};
15: mInW <= {2'b00, 30'b000000111000000000000000000000};
16: mInW <= {2'b00, 30'b000000111000000000000000000000};
17: mInW <= {2'b00, 30'b000000111000000000000000000000};
18: mInW <= {2'b00, 30'b000000111000000111000111000000};
19: mInW <= {2'b00, 30'b111000111111111000111000111111};
20: mInW <= {2'b00, 30'b000111000111000111000111000111};
default: mInW <= 32'b0;
endcase
end else if (startlLevel == 3) begin
case (aR)
8: mInW <= {2'b00, 30'b000000000111111111000000111000};
9: mInW <= {2'b00, 30'b000000000111111111111000111000};
10: mInW <= {2'b00, 30'b000000000111111111111000111000};
11: mInW <= {2'b00, 30'b000000000111111111000000111000};
12: mInW <= {2'b00, 30'b000000000111111111000111111000};
13: mInW <= {2'b00, 30'b000000000111111111000111111000};
14: mInW <= {2'b00, 30'b111111111111111000000000111111};
15: mInW <= {2'b00, 30'b111111000000000000000000000111};
16: mInW <= {2'b00, 30'b111111000000000000000000000111};
17: mInW <= {2'b00, 30'b111111111000000000111000000111};
18: mInW <= {2'b00, 30'b111111000000000000000000000111};
19: mInW <= {2'b00, 30'b111111000000000000000000000111};
20: mInW <= {2'b00, 30'b111111000000000000000000000111};
default: mInW <= 32'b0;
endcase
end
end else begin
mInW <= {2'b00, 30'b111111111111111111111111111111};
end

if (aR < 30) begin
aW <= aW + 1;

aR <= aR + 1;

we <= 1;

state <= RESET;
end else begin

ws <= lws;
we <= 0;
aw <= 0;
aR <= 0;

state <= FALLING;
startClearing <= 0;
wait2 <= 2;

end

end

end
default: begin
state <= GAME_OVER;
end

endcase

end else begin
//When not blanking, handle coord requests from Display and output the blockColor at
coordinate coord
aR <= (coord[4:0]+1);
if (mOutR[31]) begin
blockColor <= 3'b000;
rowFilled <= 1;
end else begin
rowFilled <= 0;
if (coord[8:5] >= FP_x && coord[8:5] < FP x+3 &&
(coord[4:0]+1) >= (FP_y) && (coord[4:0]+1) < (FP_y+4) &&

{mOutR[3*coord[8:5]], mOutR[3*coord[8:5]+1], mOutR[3*coord[8:5]+2]} == 3'b000) begin
blockColor <= (FP[3* (coord[4:0]-FP_y+1)+(coord[8:5]-FP_x)] ? color : 3'b000);
isFallingPiece <= 1;

end else begin
isFallingPiece <= 0;
blockColor <= {mOutR[3*coord[8:5]], mOutR[3*coord[8:5]+1], mOutR[3*coord[8:5]1+2]};

end

end
end
end
endmodule

52

Appendix B: ROM Images

Playing field tiles

Logo

fmpr‘OvTe'/'r-is

E"'-'n?- Scott Bezek and Em?- L

Score Text

Score Number

Ol 23456789

53

