
Page | 1

ASTEROIDS

6.111 Fall 2011

Final Project Report

Richard Agbeyibor Phillip Mercer

Page | 2

Abstract

Our project will be to recreate the Atari classic video game, Asteroids, using the Xilinx II FPGA

board. In the game Asteroids, you navigate a spaceship in a simple square wrap around screen

and shoot at incoming asteroids and space debris in order to protect your ship. The ship is able

to rotate and continuously accelerate based on user input. The difficulties in this project are the

number of sprites, the object interactions, and the ship acceleration.

We will separate this game into fundamental modules of game logic, physics, audio, and visual

display. Additional modules would be associated with multiplayer game play, such as any

wireless transmissions and communications protocols

Page | 3

Table of Contents:

Introduction 4
Block Diagram 4
Modules
 Ship 5
 Intro
 Inputs
 Outputs
 Proposed Design
 Implementation
 Testing
 Trigonometry 6
 Implementation
 Testing
 Bullet 7
 Intro
 Inputs
 FSM
 Wrapper
 Testing
 Proposed Design
 Asteroid 7
 Intro
 Inputs
 FSM
 Testing
 Proposed Design
 Game Logic 8
 Intro
 Inputs
 Implementation
 Testing
 Sound 9
 Existing Solutions
 Implementation
Integration 9
Conclusion 10
Appendix A
 Top Module 11
 Ship Module 19
 Logic Module 24
 Bullet Module 27
 Asteroid Module 29
Appendix B 32

Page | 4

Introduction

The objective of this project is to recreate the classic video game Asteroids, which was
originally released to the Atari 2600, on the Xilinx II FPGA. In the game Asteroids, the player
navigates a spaceship in outer space and shoots at incoming asteroids and other space debris
in order to protect the ship. The ship has thrusters and a gun, which allow it to rotate,
accelerate, and shoot incoming asteroids.
 The game design is divided into the physical design of the objects: the ship, the bullets,
the asteroids, and their physical behavior on screen. There are multiple instances of these
objects on screen and they all interact with each other. A sound module provides a musical
score to the game events.

Block Diagram

Page | 5

Modules

Ship

The ship module controls the position, velocity and heading of the spaceship in the
game Asteroids. This object moves freely in 2-Dimensional space. A gun is mounted to the ship
which keeps the bearing of the ship, and determines the azimuth of the bullets.

The ship module takes as input user-controlled buttons for right and left rotate, and
thrust to control the movement of the ship.

The ship module outputs the center coordinates of the ship, its velocity and heading. The

module also outputs to the bullet module information about the gun, such as its center

coordinates, and velocity.

In the project proposal, the specifications describe a triangular ship, as in the original

Asteroids game. An equilateral triangle would be drawn given center coordinates using the

Bresenham line drawing algorithm.

In the original game, the ship reacts to drag and thus slows down and eventually stops

when the user releases the thrust button.

As the ship can be drawn directly from its center coordinates, it is possible to represent it

as a point object and calculate its movement using Newtonian equations of motion.

The following formulas can be used to calculate the acceleration, velocity and position of the

ship:

acc <= (thrust)? (thrust_coeff - drag_coeff) : (vx>0 or vy>0) ? (- drag_coeff) : 0

vx <= vx + acc*arccos(heading)*delta_t

vy <= vy + acc*arcsin(heading)*delta_t

x <= x + vx* delta_t

y <= y + vy* delta_t

delta_t is an experimentally determined change coefficient.

If the user turns on the thrusters, the ship will accelerate with a magnitude obtained by

subtracting the drag coefficient from the thrust coefficient. If there is no user input to thrust, the

ships continuously decreases its velocity and stops after some time depending on its initial

speed. The acceleration during this period is negative and equivalent in magnitude to the drag

coefficient.

The calculation of the acceleration of the ship involves a feedback loop as it uses the

current velocity of the ship as input.

In order to calculate the x and y components of the velocity, sines and cosines of the

current heading are required. To calculate the sine and cosine values, the module trig stores a

look up table for all possible angles the ship heading can be and returns the previously

calculated sine and cosine values. To minimize the size of the trig look up table, the heading of

the ship is quantized by 15 degree increments.

The final implemented design of the ship varies in parts from the proposed solution. The

proposed design involved the drawing of complex geometrical shapes and a motion control

system with a feedback loop.

Page | 6

In the first couple weeks of the implementation of the ship module, further research into

the Bresenham line drawing algorithm revealed emerging complexities with the plan to render

the three sides of a triangle for every frame.

A decision was made to implement a prototype version of the ship and gun as circles.

Therefore the ship module is composed of two sub-modules, one called saucer and the other

gun. As circles are symmetric on all axes, a rotate move does not change the appearance of the

saucer. The gun however is mounted in a fixed position on the ship; therefore it rotates with the

ship.

The gun module takes as input the center coordinates of the ship, its radius, as well as

its current heading. Using these input values, the gun module calculates its center coordinates

on the perimeter of the ship, and draws itself at that position.

The proposed motion control system for the ship involved an acceleration variable with a

feedback loop. This control mechanism was implemented as a proportional controller with a

threshold absolute velocity below which the ship stopped slowing down. The drawback of a

proportional controller is the oscillatory behavior that emerges. Such a behavior in addition to an

accumulated error term appeared in the first implementation of the ship module. The ship would

oscillate when directed to move in a straight line and at high speeds the magnitude of the

oscillation diverged and created an unstable system.

After several failed attempts to fine-tune the coefficients, and stabilize the system, the

decision was made to abandon this control system and devise a simpler mechanism.

The second implementation of a control mechanism for the ship dejected the feedback

system for a simple feed-forward system with no acceleration or drag. The user command to

thrust simply increases the velocity of the ship in the appropriate heading, by a delta_vel

parameter which was experimentally derived. This parameter was selected to be high enough to

give the user the ability to increase velocity from rest to avoid incoming asteroids, and low

enough to allow the user to slow down and change directions for evasive action when on the

move.

 Trigonometry

The Trig module stores a look-up table with sine and cosine values for angle values
allowed in the game. The sine and cosine values were calculated in python. In hexadecimal it is
not possible to store decimal values between 0 and 1, therefore the real values were multiplied
by a scaling factor of 1024. The resulting scale values were converted to a signed hexadecimal
value by using the two’s complement method.

To recover the original sine and cosine values, all modules which use the trig module
must divide their results by 1024 or shift right by 10 bits. This normalization move must be done
after the desired calculation has been done.

The test setup for this module involved manual selection of the heading using the
switches on the lab kit. A visual inspection of the drawn ship was used to debug errors in the
module.

Page | 7

Bullet

 The Bullet module controls the movement of an individual bullet and is closely related to
the Ship. As this module only controls an individual bullet, there is a higher level module that
wraps multiple Bullet modules.
 The Ship module passes to the bullet its heading as well as the X and Y positions of its
gun. This module also takes in the user input of when the fire button is pressed and a signal
from the Game Logic representing whether or not the bullet has been hit.
 The life of the bullet is controlled through a two state state-machine. The default state is
a Not Visible state. In this state, nothing occurs until the fire button has been pressed. Once
this has occurred, the location and heading of the bullet are set and the state changes to a
Visible state.
 While in the Visible state, the position of the bullet is incremented according to its X and
Y velocities upon completion of the frame, as signaled by the horizontal and vertical pixel counts
of the VGA. Should the bullet go off of the screen, or receive a high hit signal, the bullet will
cease to be drawn and the state will change back to the Not Visible state.
 In order to moderate which bullets have been shot and which are to be shot, there is a
wrapper module. This module has four instances of the bullet module and passes along the
relevant information to the appropriate instances. This module also maintains an index of which
bullet is to be fired next, which is updated upon the release of the fire button.
 The basic Bullet module was tested thoroughly. The first step was a test module ran in
ModelSim to assure that the logic functioned as desired and all the variables updated as
expected. Once this passed, the module was tested visually; making sure that the bullet began
in the expected position and could move in all of the directions that were currently permissible.
Upon integration of the trigonometric look-up table, the module was again tested to be sure it
could move correctly in all of the possible directions.
 Initially the bullets were to move with a relative velocity of the ship. This feature worked
when tested individually; however, when it was integrated with the ship it stopped functioning.
Unfortunately, we could not remedy the cause of the undesired behavior and thus the feature
was removed.

Asteroid

 The Asteroid module is responsible for the creation, size, movement and destruction of a
single asteroid. In order to create multiple asteroids, we create multiple Asteroid modules.
There are three different sizes of asteroids that can be seen, each with a specific speed.
 The randomness of the asteroid is determined by a 12 bit seed variable that is passed to
the module. This variable is squared every cycle and used as a pseudorandom number
generator. The initial X and Y locations are determined by selecting a range of bits from this
variable, 11 bits and 10 bits respectively. The remaining relevant variables that are determined
from this variable are as follows: heading (5 bits), size (2 bits), spawn time (4 bits). The heading
is passed into a lookup table of trigonometric functions which returns two 12 bit results
corresponding to a signed cosine and signed sine result. The spawn time is passed to a timer
which will return a signal of one when the designated time has elapsed and a new asteroid will
be created. The size is used to determine the size of the asteroid as well as its speed. The
larger the asteroid is, the slower it moves. The appropriate speed is multiplied by the results of
the trigonometric table to determine the velocities in the X and Y directions.
 The actual creation and termination of the asteroid is controlled by a three state state
machine. The initial state is a Check state where it assures that the randomness variable is

Page | 8

greater than one, as a variable of zero or one will not produce interesting behavior. Should the
variable be a zero or one, the variable is arbitrarily set as 17. Here the spawn time is
determined from the randomness variable and is arbitrarily set to 4 if the spawn time would be
zero. Finally, a start signal is sent to the timer and the state is changed to a Not Visible state.
 In this Not Visible state, the start signal is returned to a low value and the initial X and Y
positions, heading, and size are determined from the randomness variable. The state then
transitions to a Visible state upon an expire signal from the timer going high, stating that the
asteroid should now be spawned.
 While visible, the position of the asteroid needs to be updated as it moves across the
screen. This is done by updating the X and Y positions of the asteroid with the corresponding
velocities at the end of each frame, as signaled by the horizontal and vertical counts of the VGA.
The position of the asteroid is also monitored to determine if the asteroid has gone off of the
screen. This, as well as a high hit signal, will terminate the asteroid, square the randomness
variable and change state back to the Check state.
 This module was tested visually using the VGA to display the asteroids. The 16 digit
display on the FPGA was used to show the current value of the randomness variables, as well
as other test variables, and they were monitored to be correct over several generations of
asteroids.
 Initially, we had intended on implementing asteroids such that the larger asteroids would
break off into smaller pieces as opposed to all asteroids being terminated on collision.
However, after a base implementation of the asteroid as described would have required a large
restructuring of the code. Similarly, the implementation of an animation when the asteroid was
destroyed would have been tedious. The number of asteroids was also narrowed down from
ten to five as it was more reasonable during game play.

Game Logic

The Game Logic module keeps track of any and all object interactions before sending

out information to be displayed. While there are many potential interactions, the only
interactions that we are concerned about in our game are those between asteroids and bullets
or asteroids and the ship. In the case that an asteroid were to hit a bullet, both are destroyed
and the user’s score increments. If, instead, the asteroid hits the ship, the game ends.
Alternatively, if there are no interactions at the current stage, the game proceeds.
 Due to all of the interactions, this module requires an input signal from each of the
objects in the game. In order to support this, each object reports a reduction OR of its pixel
information for the current positioning of the horizontal and vertical synchronous signals. The
colors are designed such that the least significant bit of the color will be a one, thus if the object
is currently being drawn the module will receive a one else it will receive a zero. These bits are
then used in collision detection.
 Internally, the module maintains, for each asteroid, a list that has the same number of
bits as there are bullets and ship so that each bit may represent a collision. On the first clock
cycle, the bits for the relevant collisions are compared using AND gates and the bit representing
the respective collision is updated based on this result. At this point there are multiple bits
signaling whether or not each object has been a part of a collision, and since this is a binary
possibility, this is inadequate. In order to narrow it down to one bit, all of the bits referring to a
specific object are compared using OR gates, thus giving the final result as to whether the
object itself has been involved in a collision. These signals are then sent to the appropriate
objects.
 The module also contains an 8 bit register that maintains the player’s score. This is
incremented by one when any of the bullets register a hit and is limited to a maximum score of

Page | 9

99. Since the process to determine a hit and remove both the bullet and asteroid from play
takes multiple cycles, the hit signal can be high for multiple cycles thus incrementing the score
by up to three points. This encourages better accuracy so that the objects may overlap for
longer before being eliminated. The score is then sent to the VGA module where it is converted
to a string and then displayed on the screen.
 In order to test the functionality of this module we wrote a ModelSim test module. In this
module we created a wire large enough to accommodate each of the object inputs. Initially this
was set to zero, then incremented by one. Upon each increment, we looked to see what inputs
were high, and if any collisions occurred, we assured that the appropriate hit signals
represented this.

Sound

To implement the sound module, there were two existing solutions that could be adapted

for the Asteroids game.
The first was to use a Matlab script written by Yuta Kuboyama which converted .wav

files into a .coe containing an audio signal the ac97 can interpret. With this approach, a .wav file
of the desired sound effects would be converted and stored on a ROM on the FPGA and played
on command. The advantage of this method is the ability to create any sound effect desired,
and the potential to replicate the original game sound effects. The drawback is the introduced
time investment associated with learning how to use unfamiliar technology and to integrate it
seamlessly into the existing system.

The second option was to use a sound effect module written by Eric Fellheimer in 2005
which produced 4 simple sound tones: slash, ramp, triangle and boing. This module worked out
of the box and was selected for its ease of use. The drawback is of course the limited number of
sound effects.

The sound effect module plays a ramp sound every time the fire button is depressed.
There was not enough time to implement a sound effect for collisions or any other interesting
interaction.

The sound effect module drives the ac97 components of the lab kit, according to their
specs, and restarts the sound for each press of the fire button.

Integration

The individual object modules were implemented and tested independently.
Once the ship and bullet modules were complete, the two were tested together. During

this testing phase it was discovered that giving the bullet a relative velocity to the velocity of the

ship sometimes caused a register overflow and other unexplainable behaviors. The bullets were

then implemented with fixed velocity only.

Once the ship could reliably fire a bullet at stand still, in any direction, and while moving,

a module called manybullets was implement to manage multiple bullets. In the proposed game

design, 10 bullets were planned. However, 10 bullets turned out to be too many as it would

allow the user a continuous stream of bullets which they could shoot while spinning and

effectively create a shield. For game play design purposes, it was decided to limit the bullet clip

to 4 bullets.

Page | 10

The module manybullets keeps a count of the current bullet_index and fires the next one

available in the clip. If all bullets are on screen and have not hit the edge, the player is unable to

shoot again until one of the bullets has hit a target or reached the edge of the screen.

Once Asteroids had passed independent testing, it was then added to the game. As

game logic had not been integrated all objects could traverse each other.

Game Logic was added in and collisions were tested. A freeze motion switch was

added to allow for analysis of a fixed frame using the logic analyzer. The various object pixels

and output of the game logic were sent to the logic analyzer to compare inputs, expected

outcomes and actual outcomes.

The system did not work at once, but after a rigorous round of methodological testing,

the problem was discovered to be one of timing in the collision calculations.

Conclusion

 This project was to recreate the game Asteroids on the FPGA board. Initially we were to
replicate the game as it was produced, with: a triangle ship, asteroids that splinter, hyperspace,
and intricate asteroid shapes. However we did not realize the difficulties that were faced due to
the line drawing to form the asteroids and ship. Atari developed a Line Drawing Machine that
handled these intricacies. The original game also provided a universe where momentum was
not conserved and there was an inherent drag force. We saw this system as a feedback loop to
determine the velocity of the using the drag force. Unfortunately, the inclusion of this drag made
the system unstable.
 The resulting project is a more basic implementation of the game Asteroids and still is
amusing to play. However, with a higher analysis of the feedback systems and line drawing
techniques, the project could be more similar to the original game. Despite this we still faced
interesting design issues such as the randomness of the asteroids and the angular movement of
the objects and were able to complete a fun game.

Page | 11

Appendix A

Top Module

///
//
// Pushbutton Debounce Module (video version)
//
///

module debounce (input reset, clock, noisy,
 output reg clean);

 reg [19:0] count;
 reg new;

 always @(posedge clock)
 if (reset) begin new <= noisy; clean <= noisy; count <= 0; end
 else if (noisy != new) begin new <= noisy; count <= 0; end
 else if (count == 650000) clean <= new;
 else count <= count+1;

endmodule

//
//
// 10 hz Counter
//
///
module counter10hz(input clk, reset, output reg enable);
 reg [26:0] count;

 always @(posedge clk) begin
 if (reset) count <= 0;
 else if (count == 6500000) begin
 enable <= 1;
 count <=0;
 end
 else begin
 enable <= 0;
 count <= count + 1;
 end
 end
endmodule
//
//
// 1 hz Counter
//
///
module counter1hz(input clk, reset, output reg enable);
 reg [26:0] count;

 always @(posedge clk) begin
 if (reset) count <= 0;
 else if (count == 65000000) begin
 enable <= 1;

Page | 12

 count <=0;
 end
 else begin
 enable <= 0;
 count <= count + 1;
 end
 end
endmodule

 //
 //
 // Asteroid Top Module
 //
 //

 // use FPGA's digital clock manager to produce a
 // 65MHz clock (actually 64.8MHz)
 wire clock_65mhz_unbuf,clock_65mhz;
 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10
 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE
 // synthesis attribute CLKIN_PERIOD of vclk1 is 37
 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

 // power-on reset generation
 wire power_on_reset; // remain high for first 16 clocks
 SRL16 reset_sr (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),
 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
 defparam reset_sr.INIT = 16'hFFFF;

 // ENTER button is user reset
 wire reset,user_reset;
 debounce db1(.reset(power_on_reset),.clock(clock_65mhz),.noisy(~button3),.clean(user_reset));
 assign reset = user_reset | power_on_reset;

 // LEFT and RIGHT buttons for rotate
 wire left,right;
 debounce db2(.reset(reset),.clock(clock_65mhz),.noisy(~button_left),.clean(left));
 debounce db3(.reset(reset),.clock(clock_65mhz),.noisy(~button_right),.clean(right));

 // FIRE, THRUST, BRAKE buttons for ship
 wire fire, thrust, brake;
 debounce db4(.reset(reset),.clock(clock_65mhz),.noisy(~button_up),.clean(thrust));
 debounce db5(.reset(reset),.clock(clock_65mhz),.noisy(~button_down),.clean(brake));
 debounce db6(.reset(reset),.clock(clock_65mhz),.noisy(~button_enter),.clean(fire));

 //play
 wire play_fx;
 debounce db7(.reset(reset),.clock(clock_65mhz),.noisy(~button2),.clean(play_fx));

 // generate basic XVGA video signals
 wire [10:0] hcount;
 wire [9:0] vcount;
 wire hsync,vsync,blank;

Page | 13

 xvga xvga1(.vclock(clock_65mhz),.hcount(hcount),.vcount(vcount),
 .hsync(hsync),.vsync(vsync),.blank(blank));

 // feed XVGA signals to ship module
 wire [2:0] pixel;
 reg [2:0] frame_pixel;
 wire phsync,pvsync,pblank;

 // ship
 wire [2:0] ship_pixel;
 wire [10:0] ship_x, gun_x;
 wire [9:0] ship_y, gun_y;
 wire [11:0] ship_vel_x, ship_vel_y;
 wire [4:0] ship_heading;
 wire ship_hit;
 wire ship_freeze;
 ship enterprise(.left_rot(left),.right_rot(right),
 .fire(fire),.thrust(thrust),.brake(brake),
 .ship_hit(ship_hit),
 .vclock(clock_65mhz),.reset(reset),
 .hcount(hcount),.vcount(vcount),
 .hsync(hsync),.vsync(vsync),.blank(blank),
 .phsync(phsync),.pvsync(pvsync),.pblank(pblank),
 .pixel(ship_pixel),.center_x(ship_x),.center_y(ship_y),
 .vel_x(ship_vel_x),.vel_y(ship_vel_y),
 .gun_x(gun_x), .gun_y(gun_y),
 .heading(ship_heading),
 .ship_freeze(ship_freeze)
);

 // bullets
 wire [2:0] bullet0_pixel,bullet1_pixel;
 wire [2:0] bullet2_pixel,bullet3_pixel;
 reg [2:0] bullets_pixel;
 wire [3:0] bullets_hit;
 wire [1:0] bullet_index;
 manybullets ak47(.fire(fire && ~ship_freeze),.ship_heading(ship_heading),
 .lead_vertex_x(gun_x),.lead_vertex_y(gun_y),
 .clock(clock_65mhz),.reset(reset),.bullets_hit(bullets_hit),
 .ship_x_speed(ship_vel_x),.ship_y_speed(ship_vel_y),
 .hcount(hcount),.vcount(vcount),
 .bullet0_pixel(bullet0_pixel),
 .bullet1_pixel(bullet1_pixel),
 .bullet2_pixel(bullet2_pixel),
 .bullet3_pixel(bullet3_pixel),
 .switch(switch[2])),
 .bullet_index(bullet_index)
);

 // asteroids
 reg [2:0] asteroids_pixel;

Page | 14

 wire [2:0] a0_pixel;
 wire a0_hit;
 reg [11:0] seed0;
 asteroid a0(.hit(a0_hit),.reset(reset),.clock(clock_65mhz),
 .hcount(hcount),.vcount(vcount),.square_in(seed0),
 .pixel(a0_pixel), .switch(switch[3]));
 wire [2:0] a1_pixel;
 wire a1_hit;
 reg [11:0] seed1;
 asteroid a1(.hit(a1_hit),.reset(reset),.clock(clock_65mhz),
 .hcount(hcount),.vcount(vcount),.square_in(seed1),
 .pixel(a1_pixel), .switch(switch[3]));
 wire [2:0] a2_pixel;
 wire a2_hit;
 reg [11:0] seed2;
 asteroid a2(.hit(a2_hit),.reset(reset),.clock(clock_65mhz),
 .hcount(hcount),.vcount(vcount),.square_in(seed2),
 .pixel(a2_pixel), .switch(switch[3]));
 wire [2:0] a3_pixel;
 wire a3_hit;
 reg [11:0] seed3;
 asteroid a3(.hit(a3_hit),.reset(reset),.clock(clock_65mhz),
 .hcount(hcount),.vcount(vcount),.square_in(seed3),
 .pixel(a3_pixel), .switch(switch[3]));
 wire [2:0] a4_pixel;
 wire a4_hit;
 reg [11:0] seed4;
 asteroid a4(.hit(a4_hit),.reset(reset),.clock(clock_65mhz),
 .hcount(hcount),.vcount(vcount),.square_in(seed4),
 .pixel(a4_pixel), .switch(switch[3]));

 // sound
 reg [1:0] sound_fx;
 sfx sound(.reset(reset),.clock_27mhz(clock_27mhz),
 .audio_reset_b(audio_reset_b),
 .ac97_sdata_out(ac97_sdata_out),
 .ac97_sdata_in(ac97_sdata_in),
 .ac97_synch(ac97_synch),
 .ac97_bit_clock(ac97_bit_clock),
 .mode(2'b01),.play(fire));

 // game logic
 wire as1, as2, as3, as4, as0, b1, b2, b3, b0, s;
 wire[7:0] points;
 Logic collision(.clock(clock_65mhz), .reset(reset),
 .asteroid1(|a0_pixel),.asteroid2(|a1_pixel),
 .asteroid3(|a2_pixel),.asteroid4(|a3_pixel),
 .asteroid5(|a4_pixel),
 .bullet1(|bullet0_pixel),.bullet2(|bullet1_pixel),
 .bullet3(|bullet2_pixel),.bullet4(|bullet3_pixel),
 .ship(|ship_pixel),
 .hitA1(a0_hit),.hitA2(a1_hit),
 .hitA3(a2_hit),.hitA4(a3_hit), .hitA5(a4_hit),

Page | 15

 .hitB1(bullets_hit[0]),.hitB2(bullets_hit[1]),
 .hitB3(bullets_hit[2]),.hitB4(bullets_hit[3])
 .hitS(ship_hit), .score(points));

 //char string displays
 reg[2:0] char_pixel;
 wire [2:0] score_pixel,points_pixel, gameover_pixel;
 wire [15:0] points_str;
 bin2str pointsascii (.clock(clock_65mhz),.binary(points),.string(points_str));
 char_string_display pointsdisp(.vclock(clock_65mhz), .hcount(hcount), .vcount(vcount), .cstring(points_str),
 .cx(11'd202), .cy(10'd20), .pixel(points_pixel));
 wire [151:0] score_str = "ASTEROIDS - score: ";
 char_string_display scoredisp(.vclock(clock_65mhz), .hcount(hcount), .vcount(vcount), .cstring(score_str),
 .cx(11'd10), .cy(10'd20), .pixel(score_pixel));
 defparam scoredisp.NCHAR = 19;
 defparam scoredisp.NCHAR_BITS = 5;

 wire [71:0] gameover_str = "GAME OVER";
 wire [71:0] not_gameover_str = " ";
 wire [71:0] game_str = (ship_freeze)?gameover_str:not_gameover_str;
 char_string_display gameoverdisp(.vclock(clock_65mhz), .hcount(hcount), .vcount(vcount), .cstring(game_str),
 .cx(11'd412), .cy(10'd343), .pixel(gameover_pixel));
 defparam gameoverdisp.NCHAR = 9;
 defparam gameoverdisp.NCHAR_BITS = 4;

 assign pixel = frame_pixel;
 display_16hex debug1(.reset(reset), .clock_27mhz(clock_27mhz),
 .data({57'b0, points}),
 .disp_blank(disp_blank), .disp_clock(disp_clock),
 .disp_rs(disp_rs), .disp_ce_b(disp_ce_b),
 .disp_reset_b(disp_reset_b), .disp_data_out(disp_data_out));

 assign analyzer1_data ={|(a0_pixel),|(a1_pixel),|(a2_pixel),
 |(a3_pixel),|(a4_pixel),|(bullet0_pixel),
 |bullet1_pixel,|(bullet2_pixel),
 |bullet3_pixel,|ship_pixel,
 a0_hit,a1_hit,a2_hit,
 bullets_hit[0],bullets_hit[1],
 ship_hit} ;
 assign analyzer1_clock = clock_65mhz;

 assign analyzer3_data = {phsync, pvsync,pblank, 5'b0};
 assign analyzer3_clock = clock_65mhz;

 //assign led = ~{a0_hit, a1_hit,a2_hit,bullets_hit[0], bullets_hit[1],
 // bullets_hit[2],bullets_hit[3],ship_hit};
 reg a0hitled, a1hitled,a2hitled, b0hitled,b1hitled,b2hitled,b3hitled,shiphitled;
 assign led = ~{a0hitled, a1hitled,a2hitled, b0hitled,b1hitled,b2hitled,b3hitled,shiphitled};

 initial begin
 seed0 = 6;
 seed1 = 8;
 seed2 = 12;
 seed3 = 14;
 seed4 = 18;

Page | 16

 sound_fx = 3;
 end

 // switch[1:0] selects which video generator to use:
 // 00: user's game
 // 01: 1 pixel outline of active video area (adjust screen controls)
 // 10: color bars
 reg [2:0] rgb;
 reg b,hs,vs;
 always @(posedge clock_65mhz) begin
 if (switch[1:0] == 2'b01) begin
 // 1 pixel outline of visible area (white)
 hs <= hsync;
 vs <= vsync;
 b <= blank;
 rgb <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ? 7 : 0;
 end else if (switch[1:0] == 2'b10) begin
 // color bars
 hs <= hsync;
 vs <= vsync;
 b <= blank;
 rgb <= hcount[8:6];
 end else begin
 // default: Asteroids
 if (reset) begin
 a0hitled <= 0;
 a1hitled <= 0;
 a2hitled <= 0;
 b0hitled <= 0;
 b1hitled <= 0;
 b2hitled <= 0;
 b3hitled <= 0;
 shiphitled <= 0;
 end
 else if (a0_hit) a0hitled <= 1;
 else if (a1_hit) a1hitled <= 1;
 else if (a2_hit) a2hitled <= 1;
 else if (bullets_hit[0]) b0hitled <= 1;
 else if (bullets_hit[1]) b1hitled <= 1;
 else if (bullets_hit[2]) b2hitled <= 1;
 else if (bullets_hit[3]) b3hitled <= 1;
 else if (ship_hit) shiphitled <= 1;
 else begin
 a0hitled <= a0hitled;
 a1hitled <= a1hitled;
 a2hitled <= a2hitled;
 b0hitled <= b0hitled;
 b1hitled <= b1hitled;
 b2hitled <= b2hitled;
 b3hitled <= b3hitled;
 shiphitled <= shiphitled;
 end

 sound_fx[1:0] <= switch[7:6];
 char_pixel <= score_pixel|points_pixel|gameover_pixel;

Page | 17

 bullets_pixel <= bullet0_pixel|bullet1_pixel|bullet2_pixel|bullet3_pixel;
 asteroids_pixel <= a0_pixel|a1_pixel|a2_pixel|a3_pixel|a4_pixel;
 frame_pixel <= ship_pixel | bullets_pixel | asteroids_pixel | char_pixel;

 hs <= phsync;
 vs <= pvsync;
 b <= pblank;
 rgb <= pixel;
 end
 end

 // VGA Output. In order to meet the setup and hold times of the
 // AD7125, we send it ~clock_65mhz.
 assign vga_out_red = {8{rgb[2]}};
 assign vga_out_green = {8{rgb[1]}};
 assign vga_out_blue = {8{rgb[0]}};
 assign vga_out_sync_b = 1'b1; // not used
 assign vga_out_blank_b = ~b;
 assign vga_out_pixel_clock = ~clock_65mhz;
 assign vga_out_hsync = hs;
 assign vga_out_vsync = vs;

endmodule

//
//
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)
//
//

module xvga(input vclock,
 output reg [10:0] hcount, // pixel number on current line
 output reg [9:0] vcount, // line number
 output reg vsync,hsync,blank);

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 reg hblank,vblank;
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount == 1023);
 assign hsyncon = (hcount == 1047);
 assign hsyncoff = (hcount == 1183);
 assign hreset = (hcount == 1343);

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount == 767);
 assign vsyncon = hreset & (vcount == 776);
 assign vsyncoff = hreset & (vcount == 782);
 assign vreset = hreset & (vcount == 805);

 // sync and blanking
 wire next_hblank,next_vblank;

Page | 18

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always @(posedge vclock) begin
 hcount <= hreset ? 0 : hcount + 1;
 hblank <= next_hblank;
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
 vblank <= next_vblank;
 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);
 end
endmodule

Page | 19

Ship Module

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 11:39:32 11/10/2011
// Design Name:
// Module Name: ship
// Project Name: Asteroids
//
//

//
//
// gun: draws a circle on the outer edge of ship to mark gun turret
//
//
module gun
 #(parameter RADIUS = 6,
 COLOR = 3'b011)
 (input [10:0] ship_x_center, hcount,
 input [9:0] ship_y_center,vcount,
 input [4:0] ship_radius,heading,
 input clk,
 output reg [2:0] pixel,
 output [10:0] gun_x,
 output [9:0] gun_y);

 reg [21:0] r_sq;
 reg signed [11:0] x_dist, x_center, y_center;
 reg signed [10:0] y_dist;
 reg signed [23:0] x_delta;
 reg signed [23:0] y_delta;
 reg [21:0] x_sq;
 reg [21:0] y_sq;
 reg [2:0] pixelbuff1;

 assign gun_x = x_center[10:0];
 assign gun_y = y_center [9:0];

 wire signed [11:0] cos, sin;
 trig gun_trig(.clock(clk),.heading(heading),.signedcos(cos),.signedsin(sin));

 always @(*) begin
 r_sq = RADIUS*RADIUS;
 x_delta = ship_radius*cos;
 y_delta = ship_radius*sin;
 //divide by 10 bits to remove cos and sin scaling
 x_center = ship_x_center + x_delta[23:10];
 y_center = ship_y_center + y_delta[23:10];
 end

 always @(posedge clk) begin
 pixel <= pixelbuff1;

Page | 20

 x_dist <= hcount - x_center;
 y_dist <= vcount - y_center;
 x_sq <= x_dist*x_dist;
 y_sq <= y_dist*y_dist;
 if ((x_sq+y_sq) <= r_sq) pixelbuff1 <= COLOR;
 else pixelbuff1 <= 0;
 end

endmodule

//
//
// saucer: generate pixels for circle on screen
// parameters: center x,y coordinates, radius and color
//
//

module saucer
 #(parameter RADIUS = 18)
 (input [10:0] x_center, hcount,
 input [9:0] y_center,vcount,
 input clk,
 output reg [2:0] pixel);

 wire [21:0] r_sq;
 reg signed [11:0] x_dist;
 reg signed [10:0] y_dist;
 reg [21:0] x_sq;
 reg [21:0] y_sq;
 reg [2:0] pixelbuff1;

 assign r_sq = RADIUS*RADIUS;

 always @(posedge clk) begin
 pixel <= pixelbuff1;
 x_dist <= hcount - x_center;
 y_dist <= vcount - y_center;
 x_sq <= x_dist*x_dist;
 y_sq <= y_dist*y_dist;
 if ((x_sq+y_sq) <= r_sq) pixelbuff1 <= 3'b001;
 else pixelbuff1 <= 0;
 end
endmodule

///
//
// Ship
//
///
module ship(
 input left_rot,
 input right_rot,
 input thrust,
 input brake,

Page | 21

 input fire,
 input ship_hit,

 //input clock27mhz,
 input vclock, // 65MHz clock
 input reset, // 1 to initialize module
 input [10:0] hcount, // horizontal index of current pixel (0..1023)
 input [9:0] vcount, // vertical index of current pixel (0..767)
 input hsync, // XVGA horizontal sync signal (active low)
 input vsync, // XVGA vertical sync signal (active low)
 input blank, // XVGA blanking (1 means output black pixel)
 output phsync, // ship horizontal sync
 output pvsync, // ship vertical sync
 output pblank, // ship blanking
 output [2:0] pixel, // ship pixel

 output reg [10:0] center_x,
 output reg [9:0] center_y,
 output reg signed [11:0] vel_x,
 output reg signed [11:0] vel_y,
 output [10:0] gun_x,
 output [9:0] gun_y,
 output [4:0] heading,
 output ship_freeze
);

 //reg signed [5:0] acc, thrust_coeff, drag_coeff;
 reg signed [5:0] delta_t;
 wire signed [11:0] shipcos, shipsin;
 reg signed [23:0] vel_xdelta, vel_ydelta;
 reg [2:0] frame_pixel;
 reg [4:0] curr_heading;

 reg thrust_en, brake_en,fire_en;

 reg tenhzenbuff1, tenhzenbuff2;
 reg tenhzenbuff3, tenhzenbuff4;
 reg tenhzenbuff5, tenhzenbuff6;

 //reg [7:0] vel_xbuff1, vel_ybuff1;

 reg hsyncbuff1, vsyncbuff1, blankbuff1;
 reg hsyncbuff2, vsyncbuff2, blankbuff2;

 reg [12:0] velsq;
 reg [12:0] delta_tsq;

 wire [2:0] ship_pixel;
 saucer ufo(.x_center(center_x),.hcount(hcount),.y_center(center_y),.vcount(vcount),
 .clk(vclock),.pixel(ship_pixel));
 wire [2:0] gun_pixel;
 gun turret(.ship_x_center(center_x),.hcount(hcount),.ship_y_center(center_y),.vcount(vcount),
 .ship_radius(5'd18),.heading(curr_heading),.clk(vclock),.pixel(gun_pixel),
 .gun_x(gun_x),.gun_y(gun_y));

Page | 22

 trig ship_trig(.clock(vclock),.heading(curr_heading),.signedcos(shipcos),.signedsin(shipsin));
 wire tenhzen;
 counter10hz tenhz(.clk(vclock),.reset(reset),.enable(tenhzen));

 assign phsync = hsyncbuff2;
 assign pvsync = vsyncbuff2;
 assign pblank = blankbuff2;
 assign pixel = frame_pixel;

 assign heading = curr_heading;

 parameter S_FREEZE = 1;
 parameter S_MOVE = 0;
 reg state;

 assign ship_freeze = state;

 initial begin
 center_x = 500;
 center_y = 300;
 delta_t =8;
 vel_x = 0;
 vel_y = 0;
 end

 always @(*) begin
 velsq = (vel_x*vel_x)+(vel_y*vel_y);
 delta_tsq = delta_t*delta_t;

 end

 always @(posedge vclock) begin
 // pipeline hsync,vsync and blank
 hsyncbuff2 <= hsyncbuff1;
 hsyncbuff1 <= hsync;
 vsyncbuff2 <= vsyncbuff1;
 vsyncbuff1 <= vsync;
 blankbuff2 <= blankbuff1;
 blankbuff1 <= blank;

 // buffer the tenhzen signal
 // to pipeline movement operations
 tenhzenbuff6<=tenhzenbuff5;
 tenhzenbuff5<=tenhzenbuff4;
 tenhzenbuff4<=tenhzenbuff3;
 tenhzenbuff3<=tenhzenbuff2;
 tenhzenbuff2<=tenhzenbuff1;
 tenhzenbuff1<=tenhzen;

 frame_pixel <= ship_pixel | gun_pixel;

 if (reset) begin
 center_x <= 500;
 center_y <= 300;

Page | 23

 vel_x <= 0;
 vel_y <= 0;
 vel_xdelta <= 0;
 vel_ydelta <= 0;
 state <= S_MOVE;
 end

 // transition to Frozen state if ship is hit
 if (ship_hit) state <= S_FREEZE;

 case(state)
 // Moving the Ship
 S_MOVE: begin
 if (tenhzen) begin
 // poll button at 10hz and
 //increment/decrement heading
 case({left_rot,right_rot})
 2'b00: curr_heading <= curr_heading;
 2'b01: begin
 if (curr_heading==0) curr_heading <= 23;
 else curr_heading <= curr_heading -1;
 end
 2'b10: begin
 if (curr_heading==23) curr_heading <= 0;
 else curr_heading <= curr_heading +1;
 end
 2'b11: curr_heading <= curr_heading;
 default: curr_heading <= curr_heading;
 endcase
 end
 if (tenhzenbuff2) begin
 // divide by 10 bits to remove trig scaling
 vel_xdelta <=(thrust)? shipcos*delta_t:0;
 vel_ydelta <=(thrust)? (shipsin*delta_t):0;

 end
 if (tenhzenbuff4) begin
 vel_x <= vel_x + vel_xdelta[23:10];
 vel_y <= vel_y + vel_ydelta[23:10];
 end
 if (tenhzenbuff6) begin
 if (center_x>=1000) center_x <= 33;
 else if (center_x<=23) center_x <= 990;
 else center_x <= center_x + vel_x*delta_t;
 if (center_y>=744) center_y <= 33;
 else if (center_y<=23) center_y <= 734;
 else center_y <= center_y + vel_y*delta_t;
 end
 end
 // Freeze the ship
 S_FREEZE: begin
 if (tenhzenbuff6) begin
 center_x <= center_x;
 center_y <= center_y;
 end
 end endcase end endmodule

Page | 24

Game Logic Module

module Logic(
 input clock,
 input reset,
 //lots of inputs, all of which are 1 bit
 input asteroid1,
 input asteroid2,
 input asteroid3,
 input asteroid4,
 input asteroid5,

 input bullet1,
 input bullet2,
 input bullet3,
 input bullet4,

 input ship,

 //lots of outs too
 output reg hitA1,
 output reg hitA2,
 output reg hitA3,
 output reg hitA4,
 output reg hitA5,

 output reg hitB1,
 output reg hitB2,
 output reg hitB3,
 output reg hitB4,

 output reg hitS,

 output [7:0] score

);

 //an array of collisions for each asteroid
 reg[4:0] collision1;
 reg[4:0] collision2;
 reg[4:0] collision3;
 reg[4:0] collision4;
 reg[4:0] collision5;

 //score_0 is ones digit, score_1 is tens digit
 reg [3:0] score_0, score_1;

 initial begin
 collision1 = 0;
 collision2 = 0;
 collision3 = 0;
 collision4 = 0;
 collision5 = 0;
 score_0 = 0;
 score_1 = 0;
 end

 always @(posedge clock) begin

Page | 25

 if(reset) begin

 score_0 <= 0;

 score_1 <= 0;

 end

 //check asteroid 1 with everything
 collision1[0] <= (asteroid1 && bullet1) ? 1 : 0;
 collision1[1] <= (asteroid1 && bullet2) ? 1 : 0;
 collision1[2] <= (asteroid1 && bullet3) ? 1 : 0;
 collision1[3] <= (asteroid1 && bullet4) ? 1 : 0;
 collision1[4] <= (asteroid1 && ship) ? 1 : 0;

 //asteroid 2
 collision2[0] <= (asteroid2 && bullet1) ? 1 : 0;
 collision2[1] <= (asteroid2 && bullet2) ? 1 : 0;
 collision2[2] <= (asteroid2 && bullet3) ? 1 : 0;
 collision2[3] <= (asteroid2 && bullet4) ? 1 : 0;
 collision2[4] <= (asteroid2 && ship) ? 1 : 0;

 //asteroid 3
 collision3[0] <= (asteroid3 && bullet1) ? 1 : 0;
 collision3[1] <= (asteroid3 && bullet2) ? 1 : 0;
 collision3[2] <= (asteroid3 && bullet3) ? 1 : 0;
 collision3[3] <= (asteroid3 && bullet4) ? 1 : 0;
 collision3[4] <= (asteroid3 && ship) ? 1 : 0;

 //...4
 collision4[0] <= (asteroid4 && bullet1) ? 1 : 0;
 collision4[1] <= (asteroid4 && bullet2) ? 1 : 0;
 collision4[2] <= (asteroid4 && bullet3) ? 1 : 0;
 collision4[3] <= (asteroid4 && bullet4) ? 1 : 0;
 collision4[4] <= (asteroid4 && ship) ? 1 : 0;

 //...5
 collision5[0] <= (asteroid5 && bullet1) ? 1 : 0;
 collision5[1] <= (asteroid5 && bullet2) ? 1 : 0;
 collision5[2] <= (asteroid5 && bullet3) ? 1 : 0;
 collision5[3] <= (asteroid5 && bullet4) ? 1 : 0;
 collision5[4] <= (asteroid5 && ship) ? 1 : 0;

 //cool now do the specific hits

 //hitting asteroids
 hitA1 <= |(collision1);
 hitA2 <= |(collision2);
 hitA3 <= |(collision3);
 hitA4 <= |(collision4);
 hitA5 <= |(collision5);

 //hitting bullets
 hitB1 <= (collision1[0] | collision2[0] | collision3[0] | collision4[0] | collision5[0]);// | collision6[0] | collision7[0] |
collision8[0] | collision9[0] | collision10[0]);
 hitB2 <= (collision1[1] | collision2[1] | collision3[1] | collision4[1] | collision5[1]);// | collision6[1] | collision7[1] |
collision8[1] | collision9[1] | collision10[1]);

Page | 26

 hitB3 <= (collision1[2] | collision2[2] | collision3[2] | collision4[2] | collision5[2]);// | collision6[2] | collision7[2] |
collision8[2] | collision9[2] | collision10[2]);
 hitB4 <= (collision1[3] | collision2[3] | collision3[3] | collision4[3] | collision5[3]);// | collision6[3] | collision7[3] |
collision8[3] | collision9[3] | collision10[3]);

 //hitting the ship
 hitS <= (collision1[4] | collision2[4] | collision3[4] | collision4[4] | collision5[4]);

 //update the score on collisions
 if(hitB1 | hitB2 | hitB3 | hitB4) begin
 //check to see if next digit should be 0

if(score_0 == 9) begin

 //check to see if you are in the 90s already
 if(score_1 == 9) begin

 //if you are here the score is 99...stay
 score_1 <= score_1;

 score_0 <= score_0;
 end

 //if you are here you are incrementing the next tens digit
 else begin
 score_0 <= 0;
 score_1 <= score_1 + 1;
 end

 end

 //here just increment the ones digit
 else score_0 <= score_0 + 1;
 end

 end

 //concat score to be tens and ones
 assign score = {score_1,score_0};

endmodule

Page | 27

Bullet Module

module bullet #(parameter Color = 3'b001)(

 input button_fire, //fire!!
 input[4:0] ship_heading, //heading of the ship
 input[10:0] lead_vertex_x, //leading x of the ship
 input[9:0] lead_vertex_y, //leading y of the ship
 input clock, //...clock
 input reset, //...reset
 input hit, //lets you know if the bullet got hit
 input signed[11:0] ship_x_speed, //x speed of ship
 input signed[11:0] ship_y_speed, //y speed of ship
 input[10:0] hcount, //the hcount appears again
 input[9:0] vcount, //as does mr vcount
 input switch, //killswitch!

 output reg[2:0] pixel //pixel
);

 parameter Screen_Height = 767;
 parameter Screen_Width = 1023;
 parameter Width = 20;
 parameter S_Not = 0; parameter S_Visible = 1;
 reg state;
 reg[10:0] x;
 reg[9:0] y;

 //speeds are internal copies of the ship speed so if u speed up it doesnt effect the bullet
 reg signed[11:0] x_speed, y_speed;

 //the deltas represent the difference in position when considering the TRIG
 reg signed[23:0] x_delta, y_delta;

 reg signed[3:0] Speed;

 //outputs from lookup table
 wire signed[11:0] cos, sin;

 initial begin
 Speed = 4;
 state = 0;
 x = 0;
 y = 0;
 x_delta = 0;
 y_delta = 0;
 end

 //give the table the clock and the heading, receive cos and sin values
 trig t(.clock(clock), .heading(ship_heading), .signedcos(cos), .signedsin(sin));

 //state transitions
always @(posedge clock) begin
 case(state)
 //when you get a fire button, set the relevant variables
 S_Not: if(button_fire) begin
 //start point of bullet

Page | 28

 x <= lead_vertex_x;
 y <= lead_vertex_y;

 //heading info
 x_delta <= Speed * cos;
 y_delta <= Speed * sin;

 //switch states
 state <= S_Visible;
 end

 S_Visible: //if you get hit, or the bullet goes off the screen then go to not visible

 if((hit) || (x >= Screen_Width) || (y >= Screen_Height)) state <= S_Not;

 default: state <= S_Not;
 endcase

 if (reset) begin
 //defaults
 state <= 0;
 x <= 0;
 y <= 0;
 x_speed <= 0;
 y_speed <= 0;
 x_delta <= 0;
 y_delta <= 0;
 end

 //update the position of the bullet if it is visible and after the last frame finished
 else if((hcount == Screen_Width) && (vcount == Screen_Height) && (state == S_Visible)) begin

 //due to the fact that the speeds and deltas are signed, simply add them to the current position
 if(~switch) begin
 x <= x + x_delta[23:10];// + x_speed;
 y <= y + y_delta[23:10];// + y_speed;
 end
 end
 end

 //handle shaping
 always @(*) begin
 //if you are INSIDE the square make it yellow
 if (((hcount >= x) && (hcount <= (x + Width))) &&
 ((vcount >= y) && (vcount <= (y + Width))) && (state == S_Visible))
 pixel = Color;
 else pixel = 0;
 end
endmodule

Page | 29

Asteroid Module

module asteroid(
 input hit, //letting the Asteroid know if it has been hit
 input reset,
 input clock, //clock
 input[10:0] hcount, //count of horizontal pixels
 input[9:0] vcount, //count of vertical pixels
 input[11:0] square_in, //term to be squared
 input switch, //debug tool to set velocity to zero

 output reg[2:0] pixel //color of pixel
);

 parameter Screen_Width = 1023; parameter Screen_Height = 767;
 parameter S_Not = 0; parameter S_Visible = 1; parameter S_Check = 2;
 parameter Small = 0; parameter Medium = 1; parameter Big = 2;
 parameter Color = 7;

 //have signed speed so that you can go either direction
 reg signed[13:0] x_speed;
 reg signed[13:0] y_speed;
 reg[2:0] size;
 reg[5:0] asteroid;
 reg[10:0] x_pos;
 reg[9:0] y_pos;
 reg signed[23:0] x_delta, y_delta;
 reg signed[2:0] speed_s;
 reg signed[3:0] speed_m;
 reg signed[4:0] speed_f;
 reg[4:0] heading;
 reg[3:0] value;
 reg start;
 wire enable, expire;
 wire signed[11:0] cos, sin;
 reg[11:0] square;
 reg [1:0] state;

 initial begin
 //def don't want these signed!
 x_pos = 0;
 y_pos = 0;
 state =0;
 speed_s = 3;
 speed_m = 4;
 speed_f = 6;
 start = 0;
 end

 trig t(.clock(clock), .heading(heading), .signedcos(cos), .signedsin(sin));

 //use counter and timer to count up some second value until the asteroid respawns
 counter c(.clk(clock), .reset(reset), .enable(enable));
 timer timer(.clock(clock), .enable(enable), .start(start), .reset(reset), .value(value), .expire(expire));

 always @(posedge clock) begin

Page | 30

 case(state)
 //if you aren't visible you will be right here
 S_Not: begin
 start <= 0;
 //create some new value of parameters from z
 x_pos <= square[10:0];
 y_pos <= square[11:2];
 heading <= square[5:1];
 size <= {square[8],square[4]};

 //if it is time to be visible again go to visible
 if (expire) begin
 state <= S_Visible;
 end
 end

 //if you are visible then go here
 S_Visible: //if you are hit...you are done, also if u go off the screen
 if((hit) || (x_pos >= Screen_Width) || (y_pos >=
Screen_Height)) begin
 //change state
 state <= S_Check;
 square <= square * square;
 end

 //this state assures that the square term and the spawn time are not zero
 S_Check: begin
 if(square <= 1) square <= 17;
 if(square[3:0] == 0) value <= 4;
 else value <= square[3:0];
 start <= 1;
 state <= S_Not;
 end
 endcase

 if(reset) begin
 //if reset then go to defaults
 state <= 2;
 square <= square_in;
 if(square_in[3:0] == 0) value <= 4;
 else value <= square_in[3:0];
 end

 else if((hcount == Screen_Width) && (vcount == Screen_Height) && (state == S_Visible)) begin

 //update the position with the velocity
 //switch is used in debugging to prevent movement
 if(~switch) begin
 x_pos <= x_pos + x_speed;
 y_pos <= y_pos + y_speed;
 end
 end
 end

 //handle shaping
 always @(*) begin
 //if you are INSIDE the square make it white

Page | 31

 if (((hcount >= x_pos) && (hcount <= (x_pos + asteroid))) &&
 ((vcount >= y_pos) && (vcount <= (y_pos + asteroid))) && (state == S_Visible))
 pixel = Color;
 else pixel = 0;
 end

 //whenever you get a new size you will be here
 always @(posedge clock) begin
 case(size)
 //set the speed based on the size of the asteroid
 Small: begin
 //use the cosine and sine to get the effective change of x and y
 x_delta <= speed_f * cos;
 y_delta <= speed_f * sin;

 //divide delta by 1024
 x_speed <= x_delta[23:10];
 y_speed <= y_delta[23:10];

 //set the asteroid size
 asteroid <= 15;
 end

 Medium: begin
 x_delta <= speed_m * cos;
 y_delta <= speed_m * sin;

 x_speed <= x_delta[23:10];
 y_speed <= y_delta[23:10];

 asteroid <= 31;
 end

 Big: begin
 x_delta <= speed_s * cos;
 y_delta <= speed_s * sin;

 x_speed <= x_delta[23:10];
 y_speed <= y_delta[23:10];

 asteroid <= 63;
 end

 default: begin
 x_delta <= speed_m * cos;
 y_delta <= speed_m * sin;

 x_speed <= x_delta[23:10];
 y_speed <= y_delta[23:10];

 asteroid <= 31;
 end
 endcase
 end
endmodule

Page | 32

Appendix B

References:

Sound Module:
 http://web.mit.edu/6.111/www/f2005/code/sfx.v

Character Display:
 http://web.mit.edu/6.111/www/f2005/code/cstringdisp.v
 http://web.mit.edu/6.111/www/f2005/code/font_rom.v
 http://web.mit.edu/6.111/www/f2005/code/font_rom.ngo

