6.111 Final Project Status Report
Adam Gleitman, Andrew Shum, Tim Balbekov

OVERALL

Safety Goals

Capture static left and right images of an object and store a single, anaglyph-filtered
frame into the front buffer ZBT

Display a static anaglyph image onto the screen from this buffer

Track the location of a dot on two camera frames and triangulate its location in three-
dimensional space

Translate a gestural motion to a change in virtual camera position

Render a 2D image of a wire-frame polyhedron as viewed from a hard-coded virtual
camera position

Ambitious Goals

Continually capture left and right images of an object and store a single, live-updated,
anaglyph-filtered frame into the front buffer ZBT
Provide a live anaglyph feed onto the screen from this buffer

Obtain more advanced virtual camera movements, such as rotation and panning, by
tracking more dots

Render a 2D image of a wire-frame polyhedron as viewed from a virtual camera position
specified using gestural motion

Im
Checkoff List
e NTSC decoder controller automatically switches between two video feeds after a video
field is recorded.
e Frame grabber converts NTSC signal to appropriate RGB values, and stores them to
ZBT via the ZBT controller.
ZBT Controller generates appropriate SRAM control signals in ModelSim.
ZBT Controller has a functional hardware implementation, and timing constraints for the
safety goal are met.
e ZBT controller copies from back to front buffer, prioritizing front buffer read access to the
VGA controller, and back buffer write access by the frame grabber.
ANDREW
Checkoff List

Demonstrate test jig with left pixel / right pixel as input into Anaglyph Filter module and
resultant pixel as output. Validate the accuracy of the anaglyph rendering using a Python
script and the Python Imaging Library

Demonstrate test jig with hard-coded virtual camera position as input and 3D rendering
frame data as output. Validate the accuracy of the wire-frame rendering using a Python
script and the Python Imaging Library

Demonstrate VGA controller rendering hard-coded anaglyph images and wire-frame



polyhedron models onto the screen. Verilog code for hard-coding these images into
memory will be generated with a Python script

ADAM
Checkoff List
e Track the location of a single dot on a single camera frame using a center of mass
calculator
e Calculate the position of a dot in three-dimensional given two centers of mass as seen
from two different camera angles
Translate a dot position into a change in a virtual camera angle
Demonstrate functionality of modules using test jigs and live testing



