Field Programmable Digital Audio Effects Rack

Andrew B. Shapiro Marc P. Resnick

6.111 Final Project, Fall 2010

Abstract

This report presents the design and implementation for a Field Programmable Digital Audio Effects
Rack using the Xilinx 2 series FPGA. With an 18-bit AC’97-compatible codec (audio) and a 24-bit VGA
output (video), the FPGA can be used to synthesize the large, even cumbersome devices normally used
by musicians and sound engineers to modify sound in real-time. Common audio effect tools such as
signal generators, delay, and filters will be available to the user. Modular effects blocks and configurable
dataflow allow for an extensible library and numerous arrangements of effects. A routing module allows
for the use of a patch bay to configure the signal path, and a video display shows the activity of each
effect’s input. The final result is a modular system for emulation of audio effect devices many times the

size of an FPGA which is compatible and interchaneable with the devices it emulates.

Contents

1_Introduction| 4
2 Overview] 4
I Effectd o 5

R B 6

DBDIAY] « « « o o o o e e 6

2.4 Composition and Extensions|. e e 6

[3 Description| 7
[3.1 Patchbay (Drew)| 7
[3.2 Routing (Drew)|[. 8
B3 Effectd 8
[3-3.1 Mix (Marc)| o oo 8

[3.3.2 Signal Generator (Marc)[. 9

[3.3.3 FIR Filter (Marc)| 9

[3.3.4 Delay (Marc)| 9

[3.3.5 Pan (Drew)| L 11

[3.4 Display (Drew)| e 11
3.5 Demo Configuration| e 11

|4 Testing and Troubleshooting| 11
4.1 Use of the Signal Generator for Testingl 12

12 R . TR 12
4.3 Delay and ZBT RAM| e 12
6_Conclusions| 13
|6 Appendices| 13
[A" Code Listing (alpha-order)| 14
[A.1 Main Audio Support (audio.v)] L 14
[A.2 Router (audiorouter.v)| L 21
[A.3 Main Labkit File (audiofxbox.v)[. 23

|[A.4 Audio-Visual Feedback (channel display.v)[. 36
[A.5 Delay (delay.v)|l« o 38
[A.6 ZBT Suuport for Delay (delay_zbt.v)| L 42
[A.7 FIR (filter.v)| . . . o o o 44
[A.8 Mix (MiX.v)| . . . o o oo 47
[A.9 Pan (pan.v)| 48
[A.10 Patchbay (patchbay.v)| o 51
[A.11 Signal Generator (signal_generator.v)|. 53

List of Figures

I Overview of Demonstration Configuration. LPF is an instance of a Low-Pass Filter. The |
effects such as Delay (D), Signal Generator (SG), and other Filters (FIR) receive their inputs |
from input_vector and pipe their ouputs into output_vector.|. 7
12 Sliding Window of ZBT Memory used by Delay| 10

1 Introduction

The Field Programmable Digital Audio Effects Rack is a system designed to emulate, replace, or work
alongside a rack of dedicated audio effect devices. The patch bay and signal routing provide a familiar
method of directing an audio signal through many effects. This implementation includes a signal generator,
delay, filters, pan, and mix, allowing for both the modulation of sound input and synthesis of new sound.
Additionally, multiple modules can be composed to create new effects, and the entire system is designed to

be extensible; additional modules can easily be created and integrated into the system.

Background

Since the early 20th century, electronic music and instruments have risen in popularity. From the
theremin, to the tape recorder, to the synthesizer, and so on, new musical techniques have accompanied
technological advances. In order to integrate music with computers and other digital hardware, a technique
called Digital Signal Processing (DSP) is used to manipulate audio in the form of quantized samples, rather
than a continuous analog signal. Using an FPGA, the Field Programmable Digital Audio Effects Rack

performs DSP to create and route electronic music effects.

Motivation

The Field Programmable Digital Audio Effect Rack emulates a “patch panel.” This type of devices
allows the user to reconfigure the order of effects in real time using a physical interface. Most patchbays
literally connect the ports of separate audio modules such as the effects we have implemented for this project.
However, we forego sending audio data into an external routing of physical cables and instead use a routing
table to internally pass signals to the appropriate audio effects. This approach avoids the issue of noise due
to cable or patchbay electrical imperfections, i.e., the click one would here when disconnecting the input to

the speaker.

2 Overview

The Audio Effects Rack can be divided into four main components: Audio Support, Audio Effects,
Routing, and User Interaction. The Audio Support modules interact with an AC’97 codec chip which uses

18-bit resolution ADC’s and DAC’s; audio samples are converted from the audio input jack and produced

at the at the audio output jack at a rate of 48kHz. The Audio Effects that this project implements
are a foundational set of modules essential for an effective demonstration of the live routing features. The
Routing-related modules orchestrate the updating and enforcing of routing configurations, and the User

Interaction component allows audio channel activity to be visually monitored.

2.1 Effects

The Audio Effects Rack implements several modules which synthesize and modulate sound based on
parameters specific to each intended audio effect. All signals coming into and out of audio effects are signed
18-bit buses which can be interpretted as audio PCM samples or parameter settings. Sound effect primitives

are composed to make higher-order blocks which may be more familiar to electronic musicians.

Signal Generator

The signal generator is the main producer of audio signals besides the microphone input. Lookup tablse
for sine, sawtooth, triangle, and square waves are used to provide a choice in the timbre of the produced
sound. The frequency of all of these sounds is selectable by indicating a count which is used to increment
the index into the appropriate look-up table. An optional input is also available which will be mixed equally

with the generated signal (see Mix).

Finite Input Response (FIR) Filter

In order to attenuate unwanted frequencies the filter module applies a convolution of a 31-tap FIR filer
with a historical buffer of input samples. This effect is not only useful in live performace, but doubles as an
audio support module. Instances of this module are used on the main input and output signals to/from the
AC’97 codec chip (see Figure 1) to counteract aliasing and reconstruction artifacts. Malformed filters can

be used to generate irregular sounding transformations for more experimental sounds.

Delay

The delay introduces intentional latency to the signal path by buffering audio samples in ZBT memory.
The size of this buffer and speed of playback are ideally paramterized, but have been set to constants for
this demonstration. Delay is an useful effect for higher-order compsition of effects such as Chorus, Flanger,

and Echo.

2.2 Routing

Routing in the Audio Effects Rack is achieved using two components with a shared memory to store a
routing table. The patchbay scans the physical interface and updates the routing table. The router uses

the information in the routing table to pass input signals to the appropriate destination.

Patchbay

The patchbay uses a set of scanning and probing channels which are normally pulled up to VDD. To scan
for active connections, a scan pattern of one bit on is shifted through scan channels. If there is a connection
from Output O to Input 1, the FPGA-driven low signal on the Output 0 scan channel will be read at the
probe channel corresponding to Input 1. All combinations of sources and destinations are tested continuously
using the high and low halves of a 1kHz 8-bit counter. When a scan hit is sensed, the write enable for the
routing table is asserted. In the case of a scan miss, the source channel set the highest patchbay address to

indicate a no-connect.

Router

Information describing the connectivity of modules is stored in the Routing Table. This data is used on
the rising edge of the AC’97s ready signal to synchronously assign slices of data from the input vector to the
appropriate slices of the routing output vector. Generally, the outputs of the effects blocks are sent to the
input vecotr of the routing table, and the inputs to the effects blocks are connected to slices of the output

vector of the router.

2.3 Display

A VGA display provides visual feedback of audio channel activity to aid in live performance. The values
of input samples to effects blocks are displayed at 60Hz so that a signal that isn’t neccassirly heard can be
visually checked by a performer. In addition to the volumetric displays, the routing table is also outputted

to the 16-segment displays on the 6.111 labkit.

2.4 Composition and Extensions

Each effect module is designed for easy composition with other effects. All input selectors have an 18-bit

resolution, meaning that the output of any module can be used as a selector, and not just the signal input,

to another module. For example, a sine wave from the signal generator can vary the buffer size of the delay
module.

The 18-bit standardization of all effects modules also allows for extensibility of the system as a whole.
If the specifications set by the modules already implemented are followed, any new effect module can be
implemented and added into the routing system. This design therefore represents more than simply a series
of implemented digital effects, but rather a framework for the routing of a digital signal through any included

modules.

3 Description

Figure 1: Overview of Demonstration Configuration. LPF is an instance of a Low-Pass Filter. The effects
such as Delay (D), Signal Generator (SG), and other Filters (FIR) receive their inputs from input_vector
and pipe their ouputs into output_vector.

speaters «—| 5 [¢ PAN [« LPF
a
)
Microphone —»| < —> LPF
outputvector > ¥ ¥ ¥ ¥y
Routing
Table
ROUTER
e
updates

inputvector -> NN\

EFFECTS PATCHBAY /

\ \ N\

D sG FIR “8@6&5&566
@® 00000 Oo

¥ ¥ ¥

3.1 Patchbay (Drew)

The patchbay is operated using two of the user ports on the lab kit as scan and probe channels. For the

sixteen channel example we configured for the lab demonstration, an 8-bit counter is used to address every

pair of input and output channels. Each cycle augments the test circuit, exposing the correct address, data,
and write enable signals to the routing table. For each source address, a scan pattern with an active low
signal on the given source channel is driven. Then each destination channel is probed to find if its value is
zero (meaning a connection is present).

The physical ports of the patchbay must be connected to pull-up resistors in order to ensure a high logic
value throughout no-connect scenarios. The external user buses on the labkit also require a slower clock
speed of 1kHz. These periodic updates of connectivity directly effect the internal routing table of the router

module.

3.2 Routing (Drew)

The routing provided by the Audio Effects Rack takes advantage of register/wire-arrays, input/ouput-
vector slicing, and a lookup table for routing. The module receives all the outputs from the effects blocks
as one concatenated vector of 18-bit audio samples (called the output vector). Similarly, the router exposes
a concatenated vector of samples to go into the effects blocks (called the input vector). Generate blocks are
used to assign 18-bit slices of the input and output vectors to wire and reg arrays which can be indexed by
src/dest channel.

To synchronously assign all outputs to their appropriate input channels, a for-loop iterates through all
routing table address and performs the appropriate deferred assignment using the more convenient array
data structure. This allows arbitrary routing changes from the patchbay to be applied seamlessly in the next

48kHz frame.

3.3 Effects
3.3.1 Mix (Marc)

Mix allows for two input signals to be combined and output as one. An 18-bit input selector is used to
calculate the relative weight of each signal in the combination. The signals are multiplied by the appropriate
weight, then summed into the output signal.

This module is especially useful when instantiated by other modules, providing for a “wet/dry” selector
commonly found in audio effects devices. “Wet” and “dry” represent the modulated and unaffected input

signals, respectively.

3.3.2 Signal Generator (Marc)

The signal generator is capable of creating 1024-sample, 18-bit sine, square, sawtooth, and triangle waves
at varying frequencies. The module takes a frequency and shape selector as in put, and produces the desired
digital signal as its output.

To generate the shapes, look-up tables for sine, sawtooth, and triangle waves are instantiated. The tables
return the value of a sample for an index between 0 and 1023. The incrementation speed of the index is
controlled by a counter that increments on every clock cycle. When the counter reaches a certain value,
decided by the frequency select input, the index increments, and the counter resets. This allows the user
to control the frequency of the output signal. The sine look-up table was generated in Xilinx ISE using
coregen, and the triangle and sawtooth tables were created using MATLAB. The square shape is generated
by combinational logic in the signal generator module. It is low for the first 512 samples, and high for the
rest.

A mix module is also instantiated by the signal generator in order to allow other signals to pass through

it. Different sounds can then be chained together, to generate polyphonic tones.

3.3.3 FIR Filter (Marc)

The Finite Impulse Response filter module attenuates and intensifies certain frequencies of an input signal
given the filter coefficients of the desired frequency response. The output is the convolution of the coefficients
with the input signal. An accumulator performs the convolution by adding incrementing by the product of
a coefficient and sample on every clock cycle. An offset is used to step through the samples backwards, in
order to properly calculate the convolved output.

MATLAB was used to generate filter coefficients, and a python script was written to generate a case
statement given a list of coefficients. The case statement is implemented as a ROM on the FPGA. Like the

signal generator look-up tables, a coefficient is returned given an index.

3.3.4 Delay (Marc)

Delay can best be described as a window that moves along a set of memory addresses with time. When
a new sample is ready from the AC’97, it is written to the address specified by front end of the window,
while the address at the back end of the window is read from and sent to the AC’97 for playback. Using
this method, a sample which has been recorded into memory will be played back after the full length of the

window has passed over it. Therefore, the delay time is controlled by the length of the window, specified

by the number of samples in the window by an input to the module, as shown in Figure 2. For example, a

window size of 48,000 samples results in a one second delay, since the sample rate is 48KHz.

Figure 2: Sliding Window of ZBT Memory used by Delay.

(=8 B [aV] [so] Bonl 1ed K00 D fod Foz] B [20] (@] [m] [NR) [T K ELl EVH Kol Bl K¥od Kol [feed Ke2d £ o [a0] [@] [} [TRY [V Fl ol VA Ko BA ¥e] [4ed [N [ee] [o3) £ [01] (@]
(=] (=] [=] [=] [=] [=] [=] [=] [=] [=] [=] =] [=] [=] (=] (=] E¥1 Aol Rold Eol Rl Aol Rod Rl Rod Rod Rod ot hod Eod ot Bod L0 EaV0 KoVH KaH K0 KoV A1 KoY A K Y YT |
XXX XXX XXX X XIIREUZZUR <) 2% <)) 2] x|] <] 5] <] 5 3¢ <) 2 < <] < <<] x<) <) <) x| <) x| <) %
SliElsIElElEl SIS S EE EE EE E E E EEEEE EE E E E E EE E E S E S EE EE S E TS E

1 L | 1 1

1 [1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1 1]

1 1 1 1

1

1

1

| ' 1

1 1

< » '

~ BUFFER_SIZE | 4 !

_ | '

Read Address Write Address

The labkit’s onboard ZBT SRAM is used as the memory for the delay. In order to account for clock skew
between the FPGA and memory modules, a helper module, provided by the 6.111 staff in 2005, was used to
invert the clock to the SRAM. It also provided an easy interface to the RAM by allowing write data to be
input and providing read data as output, even though the memory is single-port. A write-enable signal to
this module pulls low the write-enable signal to the RAM, indicating that it should write the current data in
the bus to the specified address. Otherwise, the memory returns the data in the specified address along the
data bus. Each of these operations has a two-cycle delay. Therefore, the data from a read request cannot be
latched until two cycles later, and the written data is not available in memory until two cycles after write
functionality was enabled.

To accomplish the reading, writing, and moving of the window along the memory, a finite state machine

manages the module’s current task. The state machine operates as follows:

1. Do nothing until ready signal is asserted.

[\

. On ready signal, write current sample to highest address in window.
3. After write, read sample from lowest address in window. Wait two clock cycles, then latch data.
4. Latched data is next sample out from module. Wait again for ready signal.

A mix module is also instantiated to allow for both the original input sample and the delayed output

sample to be output, allowing for a “wet/dry” signal selector to be used.

10

3.3.5 Pan (Drew)

The pan module duplicates a mono signal and weights left and right output channels to reflect the
currently select pan value. The transfer curve for pan is equal-power which means that the gain applied
to the stereo channel does not grow linearly. To achieve this equal-power curve, a 16-bin lookup table is
used. The appropriate gain coeflicient is selected for left and right channels, and the new weighted values

are output to the left and right output channels

3.4 Display (Drew)

The display is a simple feedback mechanism for the potential musician who would use the Audio Effects
Rack. The DCM is used to generate a buffer 65MHz clock which is used as a pixel clock with an xvga module
(this builds the appropriate control signals for the VGA display). Each channel’s input is latched at 60Hz
and displayed as a vertical value bar of a color matching a patchbay channel. Appropriate spacing is coded
for the given modules setup during the Demo Configuration. Due to undersampling and the resolution of
the current video setup, this display is mostly useful for check alive-or-dead activity on a given channel (e.g.,

microphone in).

3.5 Demo Configuration

The labkit setup for the demo was designed for a live performance. We included 4 signal generators
(with selected shape mapped to the labkit switched) of frequencies in an A Major chord. Each one of the
signal generators had a equal-gain mix passing upstream signals through to the next effect. Two FIR filters
were also mapped to the patchbay to show the effects of not including the anti-aliasing and reconstruction
filters. Finally a delay module was provided to utilize during feedback improvisation. The main in/out on
the patchbay represented the live microphone samples and the outgoing speaker samples. Using all of these

effects together made for an entertaining demostration of patchable sounds.

4 Testing and Troubleshooting

All modules were initially tested with GTKwave andor ModelSim, using a Verilog test module that
provided the appropriate clock, ready, and other input signals. However, simulation proved insufficient in
several cases, most of which involved components that ModelSim could not simulate. Each module presented

new challenges and issues that needed to be overcome for successful implementation. After simulation,

11

modules were tested individually on the FPGA, and when they proved functional, were integrated with the

rest of the system.

4.1 Use of the Signal Generator for Testing

The signal generator was intentionally one of the first modules to be implemented. All of the available
wave shapes are useful for testing audio-related modules, both to hear using the AC’97, and to see with the

logic analyzer or modelsim. It therefore became the primary testing tool for most other modules.

4.2 Routing

To develop a scheme for updating the routing table, many aproaches were explored in simulation. It
be came clear that each pair of source and destination channels needed to be tested, so a simulation was
first developed which would iterate through all possible pairs. This was achieved by the use of a counter
that was twice as wide as an value in the routing table. This meant that the higher four bits could be
regarded as a steady address while the lower four bits changed every clock cycle. Simulation also helped
confirm that syntax for slicing the input and output vectors was working correctly. There were generally
two test cases for the Patchbay simulations: (1) every channel n was fed into channel (Max —n), or (2) only
one connection existed between the out of channel 4 and the in of channel 2. These scenarios were all that
needed to be confirmed in order to expect functional behavior. Unfortunately, the unforseen circumstance
of run an external bus faster than it can be read is not revealed through simulation. Only once the program
was running on the FPGA did we notice off-by-one and off-by-two errors which symptoms of such a timing

problem

4.3 Delay and ZBT RAM

The delay effect experience several phases of memory management before settling on the use of the
onboard ZBT SRAM. Initially, it was written to operate using coregen-created dual port BRAM. However,
the synthesis of the amount of memory desired (28 bits) was taking almost an hour to complete. The same
was apparently true when creating an inferred amount of BRAM using arrays of registers. Therefore, it was
decided that the delay’s data would be located in ZBT RAM.

The ZBT RAM presented several new obstacles to be surmounted in order to have a working delay.
Many of these were taken care of by the ZBT helper module provided by the 6.111 2005 website. It inverts

the clock to the ZBT RAM in order to insure that data is held for a sufficient period of time. The main

12

issue with interfacing with the memory was latching data at the correct time. Read requests to the RAM
do not yield data until two clock cycles later. It was therefore necessary for the delay’s state machine to use
a counter to remain in its read state until it read data from the correct address. The other major problem
involved some of the signals that needed to be held low in order for the RAM to function properly. After
realizing that I had not assigned some of them to a value, it became apparent that this was the problem,

and the delay began working soon after I corrected it.

5 Conclusions

The Field Programmable Digital Audio Effects Rack is a modular, extensible system designed to integrate
many audio effects easily into one device. The provided, on-the-fly signal routing system provides a familiar
method for choosing and arranging effects, and the high sample rate and resolution are aimed at preserving
sound quality. The FPGA provides a unique angle from which to approach an audio effects rack such as this
one. It can, for instance, be thought of as a series of pre-programmed digital effects, with a provided routing
system. We prefer to think of it as a framework that provides a musician or developer with an environment

for managing digital effects on an FPGA, routing signals, and synthesizing new sounds.

6 Appendices

13

=

w

ot

N

©

11

13

15

17

19

21

23

25

27

29

31

33

35

A Code Listing (alpha-order)

A.1 Main Audio Support (audio.v)

N A A A A a4
//

// bi—directional monaural interface to AC97

// augmented by Drew Shapiro

// TODO: Make input channel binaural and (18—bit) [11/28/2010]

/7

N A A A A A A da

module audio_support (/*AUTOARGx/
// Outputs
ready , mono_channel_in, ac97_sdata_out, ac97_synch, audio_reset_b ,
// Inputs
reset , clock_-27mhz, volume, left_channel_out, right_channel_out,
ac97_sdata_in, ac97_bit_clock
)
input reset, clock_27mhz;
input [4:0] volume;
input [17:0] left_channel_out, right_channel_out;

input ac97_sdata_in, ac97_bit_clock; //ac97 interface signal

output ready ;
output [17:0] mono_channel_in;
output ac97_sdata_out , ac97_synch; //ac97 interface signal

output reg audio_reset_b; //ac97 interface signal

wire [7:0] command_address;
wire [15:0] command_data;
wire command_valid ;

wire [19:0] left_in_data , right_in_data;

wire [19:0] left_out_-data , right_out_data;

// wait a little before enabling the AC97 codec
reg [9:0] reset_count;
always Q(posedge clock_27mhz) begin

if (reset) begin

14

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

audio_reset_b = 1’b0;
reset_count = 0;
end else if (reset_count = 1023)
audio_reset_b = 1’bl;
else
reset_count = reset_count+41;

end

wire ac97_ready;

ac97 ac97 (.ready(ac97_ready),
.command_address (command_address) ,
.command_data (command_data) ,
.command_valid (command_valid) ,
.left_data(left_out_data), .left_valid (1’bl),
.right_data(right_out_data), .right_valid(1’bl),
.left_in_data (left_in_data), .right_in_data(right_in_data),
.ac97_sdata_out (ac97_sdata_out),
.ac97_sdata_in(ac97_sdata_in),
.ac97_synch (ac97_synch),
.ac97_bit_clock (ac97_bit_clock));

// ready: omne cycle pulse synchronous with clock_-27mhz
reg [2:0] ready_sync;
always @ (posedge clock_27mhz) ready_sync <= {ready_sync[1:0], ac97_ready };

assign ready = ready-sync[1l] & “ready-sync[2];

reg [17:0] 1l_left_data , l_right_data; //latch incoming audio data
always @ (posedge clock_27mhz)

if (ready) begin
I_left_data <= left_channel_out;
l_right_data <= right_channel_out;

end
assign mono_channel_in = left_in_data [19:2]; //FIX — monaural
assign left_out_data = {l_left_data , 2’b00};

assign right_out_data = {l_right_data, 2’b00};

// generate repeating sequence of read/writes to AC97 registers

ac97commands cmds (. clock (clock_27mhz), .ready(ready),

15

75 .command_address (command_address) ,
.command_data (command_data) ,

s .command_valid (command_valid) ,
.volume (volume) ,

79 .source (3’b000)); // mic
endmodule // audio

81
// assemble/disassemble AC97 serial frames

83| module ac97 (

output reg ready,

85| input wire [7:0] command_address,

input wire [15:0] command_data,

87 input wire command_valid,

input wire [19:0] left_data,

89 input wire left_valid ,

input wire [19:0] right_data,

91 input wire right_valid ,

output reg [19:0] left_-in_data , right_in_data,
93 output reg ac97_sdata_out ,

input wire ac97_sdata_in ,

95 output reg ac97_synch,

input wire ac97_bit_clock

971) ;

reg [7:0] bit_count;

99
reg [19:0] l_.cmd-addr;

101| reg [19:0] l.cmd_data;

reg [19:0] 1l_left_data , l_right_data;

103 reg l-.cmd_v, l_left_v , l_right_v;

105 initial begin

ready <= 1’b0;

107 // synthesis attribute init of ready is ”07;
ac97_sdata_out <= 1’b0;

109 // synthesis attribute init of ac97_sdata_out is 707;
ac97_synch <= 1’b0;

111 // synthesis attribute init of ac97_-synch is 707;

113 bit_count <= 8’h00;

16

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

// synthesis attribute init of
l.cmd-v <= 1’b0;
// synthesis attribute init of
I_left_v <= 1’b0;
// synthesis attribute init of
l_right_v <=

// synthesis

1’b0;
attribute init of

left_in_data <= 20’h00000;

// synthesis attribute init of

right_in_data <= 20’h00000;

// synthesis attribute init of

end

always Q(posedge ac97_bit_clock)

// Generate the sync signal

if (bit_count 255)

ac97_synch <= 1’bl;

if (bit_count

15)
ac97_synch <= 1’b0;

// Generate the ready signal

if (bit_count =— 128)
ready <= 1’bl;
if (bit_-count == 2)

ready <= 1’b0;

// Latch user data at the end of each frame.

bit_count is

l_cmd_v 1is

I_left_v 1is

I_right_v 1is

left_in_data

right_in_data

begin

// first frame after reset will be empty.

if (bit_count

255) begin

l_.cmd_addr <= {command_address,

l_cmd_data <= {command_data,
l_.cmd_v <= command_valid;
I_left_data <= left_data;
I_left_v <= left_valid;
I_right_data <= right_data;
l_right_v <= right_valid;

end

12°h000 };
4°h0};

17

700007,

707
’

707 -
’

L ER
’

is 7000007;

is 7000007;

This ensures that

the

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

if ((bit_count >= 0) && (bit_count <= 15))
// Slot 0: Tags
case (bit_count [3:0])
4’h0: ac97_sdata_out <= 1’bl; // Frame valid
4’hl: ac97_sdata_out <= l_cmd_v; // Command address valid
4’h2: ac97_sdata_out <= l_cmd_v; // Command data valid
4°h3: ac97_sdata_out <= l_left_v; // Left data valid
4’h4: ac97_sdata_out <= l_right_v; // Right data wvalid
default: ac97_sdata_out <= 1’b0;
endcase
else if ((bit_count >= 16) && (bit_count <= 35))
// Slot 1: Command address (8—bits, left justified)
ac97_sdata_out <= l.cmd_v ? l.cmd_addr[35—bit_count] : 1’bO0;
else if ((bit_count >= 36) && (bit_count <= 55))
// Slot 2: Command data (16—bits, left justified)
ac97_sdata_out <= l.cmd_v ? l.cmd_data[55—bit_count] : 1’b0;
else if ((bit_count >= 56) && (bit_count <= 75)) begin
// Slot 3: Left channel
ac97_sdata_out <= 1_left_v ? l_left_data[19] : 1’b0;
l_left_data <= { l.left_data [18:0], l_.left_data[19] };
end
else if ((bit_count >= 76) && (bit_count <= 95))
// Slot 4: Right channel
ac97_sdata_out <= l_right_v ? l.right_data[95—bit_count] : 1’b0;
else
ac97_sdata_out <= 1’b0;
bit_count <= bit_count+1;
end // always @ (posedge ac97_bit_clock)
always @Q(negedge ac97_bit_clock) begin
if ((bit_count >= 57) && (bit_count <= 76))
// Slot 3: Left channel
left_in_data <= { left_in_data [18:0], ac97_sdata_in };
else if ((bit_count >= 77) && (bit_count <= 96))
// Slot 4: Right channel
right_in_data <= { right_in_data[18:0], ac97_sdata_in };
end
endmodule

18

193

195

197

199

201

203

205

207

209

211

213

215

217

219

223

225

227

229

// issue initialization commands to AC97

module ac97commands (

input wire clock,

input wire ready,

output wire [7:0] command_address,
output wire [15:0] command_data,
output reg command_valid,

input wire [4:0] volume,

input wire [2:0] source

reg [23:0] command;

reg [3:0] state;

initial begin
command <= 4’h0;
// synthesis attribute init of command is ”07;
command_valid <= 1’b0;
// synthesis attribute init of command_valid is
state <= 16’ h0000;

// synthesis attribute init of state is ”0000”;

end
assign command_address = command[23:16];
assign command_-data = command[15:0];

wire [4:0] vol;

assign vol = 3l1-volume; // convert to attenuation

always Q(posedge clock) begin

if (ready) state <= state+1;

case (state)
4’h0: // Read ID
begin
command <= 24’h80_.0000;
command_valid <= 1’bl;
end

4°hl: // Read ID

19

707
’

231

233

235

237

239

241

243

245

247

249

command <= 24’h80_0000;
4°h3: // headphone wvolume

command <= { 8’h04, 3’b000, vol, 3’b000, vol };

4’h5: // PCM volume
command <= 24’h18_0808;
4°h6: // Record source select
command <= { 8’hlA, 5’b00000,
4’h7: // Record gain = maz
command <= 24 ’h1C_0FO0OF;
4°h9: // set +20db mic gain
command <= 24 h0E_8048;
4’hA: // Set beep volume
command <= 24 h0A_0000;
4’hB: // PCM out bypass mizl
command <= 24’h20_8000;
default:
command <= 24’h80_0000;
endcase // case(state)
end // always @ (posedge clock)

endmodule // ac97commands

source , 5’b00000 ,

source };

20

o~

0

10

12

14

16

18

20

22

24

26

28

30

32

34

36

A.2 Router (audio_router.v)

N A s

//
// Audio Router

// for Field—Progrmmable Audio Effect Rack
// author: Drew Shapiro
//
N A A A A N A a4
module audio_router (/*AUTOARGx/

// Outputs

block_input_vector , current_routing,

// Inputs

reset , clk, ready, block_output_vector, route_clk, route_data, route_address,

update_routing

);

parameter WIDTH = 18;
parameter LOGN = 4;

localparam N = 1 << LOGN;

input reset , clk, ready;

//accept a concatenated bus of output samples
input [WIDTH*N—1:0] block_output_vector;
wire [WIDTH—1:0] rcv_from_block [N—1:0];
//provide a concatenated bus of input samples
output [WIDTH«N—1:0] block_input_vector;

reg [WIDTH—1:0] snd_to_block [N—1:0];

//maintain a routing table which can be updated exzternally
input route_clk , update_routing;

input [LOGN-1:0] route_data, route_address;

output [LOGN#N—1:0] current_-routing;

reg [LOGN-1:0] routing_table [N—1:0];

//slice input and output vectors
generate
genvar i;

for (i=0;i<N;i =i+1) begin: slice

21

38

40

42

44

46

48

50

52

54

assign rcv_from_block[i] = block_output_vector [(i+1)*WIDTH—1:i+«WIDTH];

assign block_input_vector [(i+1)*WIDTH—1:i+«WIDTH] = snd_to_-block[i];
assign current_routing [(i+1)*LOGN—-1:i*LOGN] = routing_table[i];
end
endgenerate
//maintain a routing table which can be updated externally
always @ (posedge route_clk)
if (update_routing) routing_table[route_address] <= route_data;
//enforce routing table
integer j;
always @ (posedge clk) begin
for (j=0;j<N;j =j+1) begin
snd_to_block[j] <= rcv_from_block|[routing_-table[j]]; // handle no—connects?
end
end
endmodule

22

[\

=]

10

12

14

16

18

20

22

24

26

28

30

32

34

36

A.3 Main Labkit File (audiofxbox.v)

‘timescale 1ns / 1lps

A A A A s
/7

// Audio Effects Box

//
A A A A A A s

module audiofxbox (
// ACI97
output wire beep, audio_reset_b , ac97_synch, ac97_sdata_out ,

input wire ac97_bit_clock , ac97_sdata_in ,

// VGA

output wire [7:0] vga_out_red, vga_out_green, vga_out_blue,
output wire vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock , vga_out_hsync,

vga_out_vsync ,

// PS2

inout wire mouse_clock , mouse_data, keyboard-clock, keyboard_data,

// FLUORESCENT DISPLAY
output wire disp_blank , disp_clock, disp.rs, disp.ce_.b, disp_reset_b ,
input wire disp-data_in ,

output wire disp_data_out ,

// BUTTONS, SWITCHES, LEDS
//input wire buttonO,
//input wire buttonl,
//input wire button2,
//input wire buttond,
//input wire button_enter,
//input wire button_right ,
//input wire button_left ,
//input wire button_down ,
//input wire button_up ,
input wire [7:0] switch,

output wire [7:0] led,

23

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

// USER CONNECTORS, DAUGHTER CARD, LOGIC ANALYZER

inout
inout
inout

inout

wire [31:0]
wire [31:0] user3,
]

wire [31:0

wire [11:0] userl,

user2 ,

user4 ,

//inout wire [43:0] daughtercard,

output

wire [15:0] analyzerl_data, output wire analyzerl_clock,

//output wire [15:0] analyzer2_data, output wire analyzer2_clock,

output

output

wire [15:0] analyzer3_data, output wire analyzer3_clock,

wire [15:0] analyzer4d_data, output wire analyzer4_clock,

input wire clock_27mhz,

// ZBT RAM

inout

output
output
output
output
output

output

)

[35:0] ramO-_data,
[18:0] ramO_address,
ram0O_adv_ld ,

ramO_clk , ramO_cen_b,
ramO_ce_b, ramO_oe_b ,
ram0O_we_b ,

[3:0] ramO_bwe_b

A N A aaa

//

// ZBT Signals

//

N A A A A aaa

assign ramO_ce_b = 0;
assign ramO_oe_b = 0;
assign ramO_adv_ld = O0;

assign ramO_bwe_b = 3’b0;

N A Y e aaa

//

// Timing and Reset

//

24

7

=]

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

Y A s

wire clock_65mhz_unbuf ,clock_65mhz;

// use FPGA’s digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

DCM velkl (.CLKIN(clock-27mhz) ,.CLKFX(clock_-65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of wvclkl is 10

// synthesis attribute CLKFX MULTIPLY of wvclkl is 24

// synthesis attribute CLKFEEDBACK of wvclkl is NONE

// synthesis attribute CLKIN.PERIOD of wvclkl is 87

BUFG vclk2 (.O(clock-65mhz) ,.I(clock-65mhz_unbuf));

// power—on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1’b0), .CLK(clock_-65mhz), .Q(power_on_reset),
JAO(1°b1), .AL(1°bl), .A2(1’bl), .A3(1’bl));

defparam reset_sr .INIT = 16 hFFFF;

//divide down a 10Hz clock for wvisual display
reg clock_10hz, clock_lkhz;
reg [20:0] count_20hz;
reg [13:0] count-2khz;
assign led = {8{clock_10hz}};
always @ (posedge clock_27mhz) begin
if (power_on_reset) begin
clock_10hz <= 1;
clock_1khz <= 1;
count_20hz <= 0;
count_2khz <= 0;
end
else begin

clock_10hz <= ((count_20hz+1)

count_20hz <= ((count_20hz+1)

1.350-000) ? 0 : count-20hz+1;

clock_1khz <= ((count_2khz+1) = 13.500) ? “clock_-1khz : clock_1khz;
count_2khz <= ((count_2khz+1) = 13.500) ? 0 : count_2khz+1;
end

end

25

1.350.000) ? “clock_10hz : clock_10hz;

// 1 MHz Clock for ADC

116/ one_mhz_clock one.mhz (.clock_27mhz(clock_27mhz), .clock-1mhz(clock_1mhz));
assign user2[18] = clock_-1mhz;

118| wire [7:0] knob_value;

assign knob_value = user2[26:19];

120
Y A A
122| //

// Audio Support

124 //

N A A A ada

126 wire ready;

//assign beep = power_on_reset;

128 wire [17:0] mono_channel_in,

left _.channel_out , right_channel_out ,

130 left _channel_raw , right_channel_raw , raw_in;

wire [27:0] antialias_out , antiimage_outl, antiimage_out2;

132 //assign left_channel_out = left_channel_-raw;

//assign right_channel_out = right_channel_raw;
134
//filter64 antialias (.clock(clock_-27mhz) ,.reset(reset),.ready(ready),.z(left_.channel_raw)
,oy(left_channel_out));
136 audio_support basic_audio_interface (
.reset (reset),
138 .clock_-27mhz (clock-27mhz) ,
.ready (ready),
140 .mono_channel_in(mono_channel_in),
.left_channel_out (left_.channel_out),
142 .right_channel_out (right_-channel_out),
.ac97_bit_clock (ac97_bit_clock),
144 .ac97_sdata_in (ac97_sdata_in),
.ac97_sdata_out (ac97_sdata_out),
146 .ac97_synch(ac97_synch),
.audio_reset_b (audio_-reset_b),
148 .volume (5°b11111)
)
150
R Y

26

//

154 // Audio Effects

//

56| ///////1 S

158 wire [16%x18 —1:0] input_vector , output_vector;
//Channel 0: Main I/0

160
wire [17:0] main_out_mono;
162 assign left_channel_out = main_out_mono;
assign right_channel_out = main_out_-mono;
164
assign main_out_-mono = input_vector [17:0];
166
168

//Channel 1: Delay

170 wire [17:0] delay_signal;
delay delayl (

172 .clock (clock_27mhz) ,

.reset (reset),

174 .ready (ready),

.sample_in (input_vector [18%2—1:18]),
176 .buffer_size (19°d24000),
.mix_out (delay_signal),

178 .ram-_clk (ramO_clk) ,
.ram_we_b (ram0O_we_b) ,

180 .ram_address (ramO_address) ,
.ram_data(ramO_data) ,

182 .ram_cen_b(ramO_cen_b),
.mix_select (0)

184 'E

186 //Channel 2: FIR 1

wire [17:0] firl_signal;

188 wire [27:0] firl_signal_full;

assign firl_signal = firl_signal_full [27:10];
190 filter firl (

.clock (clock_27mhz) ,

27

192 .reset (reset),

.ready (ready) ,

194 .x(input_-vector [18+%3 —1:18%2]),
.y(firl_signal_full)

196)

198 //Channel 3: FIR 2assign
wire [17:0] fir2_signal;
200
//Channel 4: Wave 1 A440 — 61 363 counts
202| reg [17:0] wavel_count;

wire [17:0] wavel_signal;

204 signal_generator wavel (

.freq-select (18°d61.363),

206 .clock (clock_27mhz) ,
.reset (reset), .wave_in(input_vector [18%5—1:18x4]),
208 .wave_out (wavel_signal),

.shape(switch [1:0])
210);

212 //Channel 5: Wave 2 C#550 — 49 090 counts

reg [17:0] wave2_count;

214| wire [17:0] wave2_signal;

signal_generator wave2 (

216 .freq-select (187d49.090),

.clock (clock_27mhz) ,

218 .reset (reset), .wave_in(input_vector [18%6—1:18x5]),
.wave_out (wave2_signal)

220 .shape(switch [3:2])

)

222
//Channel 6: Wave 8 E660 — 40 909 counts
224 reg [17:0] wave3_count;

wire [17:0] wave3_signal;

226 signal_generator wave3 (

.freq_select (18°d40.909),

228 .clock (clock_27mhz) ,
.reset (reset), .wave_in(input_vector [18x7—1:18x6]),
230 .wave_out (wave3_signal),

28

.shape(switch [5:4])
232)

234 //Channel 7: Wave 4 A880 — 80 681 counts

reg [17:0] waved_count;

236 wire [17:0] wave4d_signal;

signal_generator waved (

238 .freq-select (18°d30.681),

.clock (clock_27mhz) ,

240 .reset (reset), .wave_in(input_-vector [18«8 —1:18x%7]),

.wave_out (wave4_signal),

242 .shape(switch [7:6])
)

244

246

248

reg [17:0] select;

250 wire signed [17:0] mix_signal;

always @ (posedge clock_10hz)

252 select <= reset 7 0 : select + 15’°b100000000000000 ;

254| mix mix_fifth (

.reset (reset),

256 .clock (clock_27mhz) ,
.ready (ready) ,

258 .mix_select (0),
.signall (wavel_signal),
260 .signal2 (wave2_signal),
.mixed (mix_signal)

262 'E

264| wire signed [17:0] select_knob = {user1[11:0],6 b0};

266 wire signed [17:0] right_panned, left_panned;

pan pan_main_out (

268 .clk (clock_-27mhz) ,.reset (reset),

.ready (ready) ,

29

270 .pan_select (select_knob),
.input_signal (main_out_-mono),
272 .left_signal_out (left_panned),

.right_signal_out (right_panned)

274)
276

assign left_channel_raw = switch [7] ? left_panned : main_out_mono;
278 assign right_channel_raw = switch[7] ? right_panned : main_out_mono;

R R A o ada
//

282| // Patchbay and Audio Routing

//

e R A A A A i da

286 wire update_routing;
wire [3:0] src, dest;

288| wire [63:0] data;

290

292| wire [14%18 —1:0] nothing;

294 assign output-vector = {0, waved_signal, wave3_signal, wave2_signal, wavel_signal, //
Waves

fir2_signal ,firl_signal , // Filters
296 delay_signal , // Delay

mono_channel_in }; // Line—In

298
audio_router #(.LOGN(4) , .WIDTH(18)) routerl (
300 .block_input_vector (input_vector),
.current_routing (data),
302 .reset (reset),
.clk (clock_27mhz) ,
304 .ready (ready) ,
.block_output_vector (output_-vector),
306 .route_clk (clock_1khz),

.route_data(src),

30

308 .route_address(dest),
.update_routing (update_routing)
310);

312 // physical pathcbay updates routing_-table inside the router
patchbay physical_interface (
314 .scan_channels (user3[15:0]),

.probe_channels (user4 [15:0]) ,

316 .update_routing (update_routing),
.src(src),
318 .dest (dest),

.reset (reset),

320 .clock (clock_1khz)

)
322

assign user4 [31:8] = {24{1’bl}};
324

Y A Y A aaa

326 //
// Keyboard and Mouse Input

328 //
N A A A A A e
330 wire [11:0] mouse_x, mouse_y;
wire [2:0] mouse_click;
332 ps2_mouse_xy mouse (. clk (clock_65mhz), .reset (reset),
. ps2_clk (mouse_clock), .ps2_data(mouse_data),
334 .mx(mouse_x), .my(mouse_y), .btn_click(mouse_click));

wire [2:0] command;

336 wire new_command;

assign beep = new_command;
338 keyboard asdw_commands (
.clock_27mhz (clock_27mhz) ,
340 .reset (reset),
.kbd_data(keybaord_data) ,
342 .kbd_clock (keyboard_clock),
.command (command) ,

344 .new_command (new_command)

)i

346

31

348

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

N A A A A e daa
//
// VGA Display
//
N A Y A A e aaa

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync, blank;

xvga xvgal (. vclock (clock_65mhz) ,. hcount (hcount) ,.vcount (vcount),
.hsync(hsync) ,.vsync(vsync) ,.blank (blank));

wire [2:0] pixelmainout, pixelmainin, pixell, pixel2, pixel3, pixeld, pixel5,

pixel7, pixel8;

channel_display #(.LEFT(100) ,.COLOR(7))
main_out-display (
.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixelmainout),

.hcount (hcount) ,.vcount (vcount) ,.vsync(vsync) ,.value (main_out_mono));

channel_display #(.LEFT(175) ,.COLOR(3))
main_in_display (
.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixelmainin),

.hcount (hcount) ,.vcount (vcount) ,.vsync(vsync) ,.value(mono_-channel_in));

channel_display #(.LEFT(350) ,.COLOR(2))
wavel_display (

.vga_clock (clock_-65mhz) ,.reset (reset), .pixel(pixell),

pixel6 |

.hcount (hcount) ,.vcount(vcount) ,.vsync(vsync) ,.value(input_-vector[18+2—1:18]));

channel_display #(.LEFT(425) ,.COLOR(1))
wave2_display (

.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixel2),

.hcount (hcount) ,.vcount(vcount) ,.vsync(vsync) ,.value (input_vector [18+3 —1:18x%2]));

channel_display #(.LEFT(500) ,.COLOR(4))
wave3d_display (

.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixel3),

32

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418

420

422

.hcount (hcount) ,.vcount(vcount) ,.vsync(vsync) ,.value (input_vector [18+4 —1:18%3]));

channel_display #(.LEFT(675) ,.COLOR(6))
waved_display (
.vga_clock (clock_-65mhz) ,.reset (reset), .pixel(pixeld),

.hcount (hcount) ,.vcount(vcount) ,.vsync(vsync) ,.value(input_vector [18x5—1:18x%4]));

channel_display #(.LEFT(750) ,.COLOR(1))
waveb_display (
.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixel5),

.hcount (hcount) ,.vcount (vcount) ,.vsync(vsync) ,.value(input_-vector [18+6 —1:18x%5]));

channel_display #(.LEFT(825) ,.COLOR(4))
wave6_display (
.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixel6),

.hcount (hcount) ,.vcount(vcount) ,.vsync(vsync) ,.value (input_vector [18+7 —1:18%6]));

channel_display #(.LEFT(900) ,.COLOR(2))
wave7_display (
.vga_clock (clock_65mhz) ,.reset (reset), .pixel(pixel7),

.hcount (hcount) ,.vcount (vcount) ,.vsync(vsync) ,.value(input_vector [18+8 —1:18x%7]));

reg [2:0] rgb;
reg b, hs, vs;
always @Q(posedge clock_-65mhz) begin
hs <= hsync;

vs <= vsync;

b <= blank;
rgb <= ((hcount = mouse_x | vcount = mouse.y) ? 7 : 0) |
(pixelmainout | pixelmainin | pixell | pixel2 | pixel3 | pixeld | pixel5 | pixel6

pixel7 | pixel8) |
(switch [7] ? hcount[3:1] + vcount[3:1] : 0);

end

33

424

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it “clock_-65mhz.

assign vga_out_.red = {8{rgb[2]}};

assign vga_out_green = {8{rgb[1]}};

assign vga_out_blue = {8{rgb[0]}};

assign vga_out_sync_.b = 1’bl; // mot used
assign vga_out_blank_b = "b;

assign vga_out_pixel_clock = “clock_-65mhz;
assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

N A A A A daa
//

// Hez Display

//

N A A A A e aaa

display-16hex displ6 (.reset(reset), .clock_-27mhz(clock-27mhz),
.data(data), .disp_blank(disp-blank), .disp-clock(disp-clock),
.disp_rs(disp.rs), .disp_ce_b(disp_ce_b),

.disp-reset_b(disp-reset_b), .disp_-data_out(disp-data_out));

assign analyzerl_clock = clock_65mhz;
assign analyzerl_data[3:0] = src;

assign analyzerl_data[7:4] = dest;

assign analyzerl_data[8] = update_routing;
assign analyzerl_data[15:9] = {7{1’bl}};
assign analyzer3_clock = clock_65mhz;
assign analyzer3_data[15:0] = user3[15:0];
assign analyzer4_clock = clock_65mhz;
assign analyzer4_data[15:0] = user4 [15:0];

34

462

endmodule

35

11

13

15

17

19

21

23

25

27

29

31

33

35

37

A.4 Audio-Visual Feedback (channel display.v)

N A A A A A A Y A A e da

//
// Channel Display

// for Field Programmable Audio Effect Rack
// author: Drew Shapiro

//
Y A A A Y A A A A A e da

module channel_display (vga_-clock, vsync, reset, pixel, hcount, vcount, value);
parameter COLOR = 7;
parameter LEFT = 100;
parameter BOTTOM = 100;
parameter WIDTH = 20;
parameter HEIGHT = 512;
localparam TOP = BOTTOM + HEIGHT;

input vga_clock;

input reset;

input [17:0] value;

wire [8:0] disp-value;

reg [17:0] l_value; //grab pieces of the hi—res reading for wvisual feedback

assign disp-value[8:6] = {l_value[17],1_value[15],l_value[13]};

assign disp_value [5:3] {l_.value[11],1l_value[9],l_value [7]};

assign disp_value [2:0] {l_value [4] ,1_value [2],l_value [0]};
output reg [2:0] pixel;

input [10:0] hcount;

input [9:0] vcount;

input vsync;

reg [1:0] vsync_buffer;

wire frame_refresh; // only latch once every frame
assign frame_refresh = vsync_buffer [0] & “vsync_buffer[1];
wire within_bounds, on_border;
assign within_bounds = (hcount >= LEFT & hcount < LEFT + WIDTH) &
(vcount >= BOTTOM & vcount < BOTTOM + HEIGHT) ;
assign on_border = within_bounds & ((hcount = LEFT) | (hcount = LEFT + WIDTH-1))
((vcount == BOTTOM) | (vcount == BOTTOM + HEIGHT-1)) ;

36

39

41

43

45

47

always @ (posedge vga_clock) begin

vsync_buffer <= {vsync_buffer [0], vsync};
l_value <= frame_refresh ? value : l_value;
if (within_bounds) begin
pixel <= (vcount >= (BOTTOM + 512 — disp_value)) ? COLOR :
value wvisible
end
else
pixel <= 0;
end
endmodule

0; //only paint COLOR if

37

A.5 Delay (delay.v)

A A A A A A da
21 //
// Delay module for 6.111 2010 Final Project

o~

// Marc Resnick

//
A A A A A A s

=]

0

module delay (input clock, reset, ready, input signed [17:0] sample_in,
input [18:0] buffer_size , input signed [17:0] mix_select,

10 output signed [17:0] mix_out, output ram_clk,

output ram_we_b, output [18:0] ram_address,

12 inout [35:0] ram-data, output ram_cen.b);

14 parameter SAMPLE RATE = 480000;

16 wire [35:0] write_data;
wire [35:0] read_data;
18
reg [18:0] cur-addr;
20 wire [18:0] write_addr;
22 reg [17:0] sample_out;
24 wire we;
26 reg [1:0] rwstate = 2’b0;
reg [1:0] next_rwstate = 2’b0;
28
wire [18:0] addr;
30
assign addr = we ? write_addr : cur-addr; //if write enabled, address is write address (

front of window), otherwise, it ’s read address (back of window)

32 assign write_data = sample_in; //write data always incoming sample

34

zbt_6111 delay_zbt (//helper module for zbt ram

36 .clk (clock),

38

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

.cen(1’bl),

we(we) ,

.addr (addr) ,
.write_data(write_data),
.read_data(read_data),
.ram_clk (ram_clk) ,
.ram_we_b (ram_we_b) ,
.ram_address (ram_address) ,
.ram_data(ram_data)

.ram_cen_b(ram_cen_b)

)

mix delay_mix (//instantiate miz for wet/dry signal control
.reset (reset),
.clock (clock),
.ready (ready)
.mix_select (mix_select),
.signall (sample_in),
.signal2 (sample_out),

.mixed (mix_out)

)

assign write_addr = cur_addr + (buffer_size —1’bl);

parameter WAIT = 2’b00;
parameter WRITE = 2’b01;
parameter READ = 2’b10;
parameter COUNT = 2’bl1;

reg [18:0] next_addr;

reg [17:0] next_sample_out;

reg [1:0] rcount , next_rcount;

always @Q(*) begin //state machine for delay

case (rwstate)

WAIT : begin
next_addr = cur_addr; //wait for ready, then go to WRITE
if (ready) begin

next_rwstate = WRITE;

39

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

end
else begin
next_rwstate = WAIT,
end
end
WRITE: begin
next_addr = cur_addr;
if (!ready) begin
next_rwstate = READ;
next_rcount = 2’d3;
end
else begin

next_rwstate = WRITE;

end
end
READ: begin
information to be retrieved, then
if (rcount > 0) begin
next_addr = cur_addr;
next_rcount = rcount — 1;
next_-rwstate = READ;
end
else begin
next_addr = cur_addr+1;
next_sample_out = read_data;
next_rwstate = WAIT,
end
end
default: begin
next_rwstate = WAIT;
next_addr = cur_addr;
end
endcase
end
assign we = (rwstate=—=WRIIE) ;
always Q(posedge clock) begin

if (reset) begin

latch ,

//write current sample to high end of buffer, go to READ

//wait two cycles for read

output ,

//transition

40

and go back

to WAIT

registers on posedge clock

114

116

118

120

122

124

rwstate <= 0;
cur-addr <= 0;

end

else begin
rwstate <= next_rwstate;
cur_-addr <= next_addr;
sample_out <= next_sample_out;
rcount <= next_rcount;

end

end

endmodule

41

10

12

14

16

18

20

22

24

26

28

30

32

34

36

A.6 ZBT Suuport for Delay (delay_zbt.v)

N A A N A N A A N A N A N A A N A A A A
// Ike’s simple ZBT RAM driver for the MIT 6.111 labkit

/7
// Data for writes can be presented and clocked in immediately; the actual

// writing to RAM will happen two cycles later.

//

// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.

//
// A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read-data,

ram_clk , ram_we_b, ram_address, ram.data, ram_cen_b);

input clk; // system clock

input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)

input [18:0] addr; // memory address

input [35:0] write_data; // data to write

output [35:0] read_data; // data read from memory

output ram_clk; // physical line to ram clock

output ram_we_b; // physical line to ram we_b

output [18:0] ram_address; // physical line to ram address
inout [35:0] ram-_data; // physical line to ram data

output ram_cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)

wire ram_cen_b = Tcen;

// create delayed ram_we signal: note the delay is by two cycles!

// ie we present the data to be written two cycles after we is raised
// this means the bus is tri—stated two cycles after we is raised.

reg [1:0] we_delay ;

always Q(posedge clk)

we_delay <= cen ? {we_delay[0],we} : we_delay;

42

38

40

42

44

46

48

50

52

54

56

58

// create two—stage pipeline for write data

reg [35:0]
reg [35:0]

write_data_oldl;

write_data_old2;

always Q(posedge clk)

if (cen)

{write_data_old2 ,

write_data_old1l} <= {write_data_oldl ,

// wire to ZBT RAM signals

assign

assign

assign

assign

assign

write_data };

ram_we_b = “we;

ram_clk = “clk; // RAM is not happy with our data hold
// times if its clk edges equal FPGA’s
// so we clock it on the falling edges
// and thus let data stabilize longer

ram_address = addr;

ram_data = we_delay[1] ? write_data_-old2 : {36{1’bZ}};

read_data

endmodule // zbt_6111

= ram_data;

43

—_

w

ot

EN|

11

13

15

17

19

21

23

25

27

29

31

33

35

37

A.7 FIR (filter.v)

N A N A A N A A N N A N N A A A A N A A A a4
//Filter Module for 6.111 2010 Final Project

//Marc Resnick

//
Y A Y e aa

module filter (
input wire clock ,reset ,ready,
input wire signed [17:0] x,

output reg signed [27:0] y);

reg [4:0] index, offset;

wire signed [9:0] coeff;

reg signed [17:0] sample[30:0];

coeffs31 coeffs (.index(index), .coeff(coeff));
//Instantiate coefficient LUT

always Q(posedge clock) begin
if (reset) begin
y <= 0;
offset <= 0;
index <= 0;
end
else if (ready) begin
//On ready, increment offset, read new sample, reset accumulator
offset <= offset + 1;

sample [offset | <= x;

y <= 0;
index <= 0;
end

else if (!ready && (index < 5’b11111)) begin
y <=y + (coeff x sample[offset—index]) ;
//perform convolution wusing accumulator
index <= index + 1;
end
else begin

y <=Y;

44

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

index <= index;
end

end

endmodule

N A A A A aa

//
// Coefficients for a 81—tap low—pass FIR filter with Wn=.125 (eg, 3kHz for a
// 48kHz sample rate). Since we’re doing integer arithmetic, we’ve scaled

// the coefficients by 2xx10
// Matlab command: round(firl (30,.125)x1024)

//

N A A A A A A da

module coeffs31 (
input wire [4:0] index,
output reg signed [9:0] coeff
)
// tools will turn this into a 31210 ROM
always @(index)

case (index)

5’d0: coeff = —10’sd1;
5’dl: coeff = —10’sdl;
5’d2: coeff = —10’sd3;
5’d3: coeff = —10’sd5;
5’d4: coeff = —10’sd6;
5’d5: coeff = —10’sd7;
5’d6: coeff = —10’sd5;

5’d7: coeff = 10’sd0;

5’d8: coeff = 10’sd10;
5’d9: coeff = 10’sd26;
5’d10: coeff = 10’sd46;
5’d11: coeff = 10’sd69;
5’d12: coeff = 10’sd91;
5’d13: coeff = 10’sd110;
5’d14: coeff = 10’sd123;

45

7

79

81

83

85

87

89

91

93

95

5’d15:
5’d16:
5°d17:
5°d18:
5°d19:
57d20:
5°d21:
5°d22:
5’d23:
5°d24:
5°d25:
5°d26:
57d27:
5°d28:
5°d29:
5°d30:
default:

endcase

endmodule

coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff
coeff

coeff

10’sd128;
10’sd123;
10’sd110;
10’sd91;
10’sd69;
10’sd46;
10’sd26;
10’sd10;
10’sdO0;
—10’sd5;
—10’sd7;
—10’sd6 ;
—10’sd5;
—10’sd3;
—10’sd1;
—10’sd1;

coeff = 10’hXXX;

46

=

w

N

11

13

15

17

19

21

23

25

27

29

31

33

35

A.8 Mix (mix.v)

Y A s

//
// Miz Module for 6.111 2010 Final Project

// Marc Resnick
/7
A A A A aa

module mix(input reset, clock, ready, input signed [17:0] mix_select,
input signed [17:0] signall, signal2,

output wire signed [17:0] mixed);

reg signed [17:0] sigout_d , sigout;
reg signed [17:0] l_mix_select; //latch miz—select on positive edge of
clock

always Q(posedge ready)

I_mix_select <= mix_select;

wire signed [4:0] mix_mask ;

assign mix_mask = (l_mix_select [17:13]); //mask the lower bits, get 5 bit miz selector

assign mixed = sigout;

wire signed [5:0] signall_weight , signal2_weight;

assign signall_weight = {1’b0,((mix-mask >>> 1) + 8) }; //calculate weights of both
signals

assign signal2_weight = {1’b0,(15—((mix-mask >>> 1) + 8))}; //based on mask

reg signed [31:0] sig_weightl , sig_weight2;

reg signed [31:0] sigl_mult , sig2_mult;

always Q(posedge clock) begin

sigl_mult <= signallx*signall_weight; //multiply by weight (out of 16)
sig2_mult <= signal2x*signal2_weight; //divide by 16 to get actual weight
sig-weightl <= (sigl-mult/16); //

sig-weight2 <= (sig2_mult/16);
sigout_-d <= sig_-weight1[17:0] + sig_-weight2[17:0]; //add two weighted signals
sigout <= sigout_d; //pipeline calculation

end

endmodule

47

—_

w

ot

EN|

11

13

15

17

19

21

23

25

27

29

31

33

35

37

A.9 Pan (pan.v)

N A A A A A A Y A A e da
//

// Pan
// for the Field—Programmable Audio Effects Rack

// author: Drew Shapiro
//
A A A A A

module pan(clk, reset, ready, pan_select, input_signal, left_signal_out , right_signal_out);
input clk, reset, ready;
input signed [17:0] pan_select, input_signal;

output signed [17:0] left_signal_out, right_signal_out;

//5—bits yields —16 (full left) to 15 (rull right) pan
wire signed [4:0] pan_mask;

reg signed [17:0] l_pan_select;

assign pan_mask = l_pan_select [17:13];
wire signed [5:0] left_index , right_index;
reg signed [5:0] left _.weight , right_weight;

assign left_index = {1’'b0,((pan_-mask >>> 1) + 8)};
assign right_index = {1’b0,(15—((pan_-mask >>> 1) + 8)) };

reg signed [31:0] left_weighted , right_weighted ,left_mult, right_-mult;
assign left_signal_out = left_weighted [17:0];
assign right_signal_out = right_weighted [17:0];
always Q(posedge clk) begin
if(ready) l_pan_select <= reset ? 0 : pan_select;
left _mult <= (input_signal*left_weight);
right _mult <= (input_signal*right_weight);
left_weighted <= (left_mult/16);
right_weighted <= (right_mult/16);

end
//equal—power gain lookup table

always @ (%) begin

case(left_index)

48

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

0: begin
left_weight <= 16;
right _weight <= 0;
end
1: begin
left_weight <= 15;
right_weight <= 4;
end
2: begin
left_weight <= 15;
right_weight <= 5;
end
3: begin
left_weight <= 14;
right _weight <= 7;
end
4: begin
left_weight <= 14;
right _weight <= 8§;
end
5: begin
left_weight <= 13;
right_weight <= 9;
end
6: begin
left_weight <= 12;
right _weight <= 10;
end
7: begin
left_weight <= 11;
right_weight <= 11;
end
8: begin
left_weight <= 11;
right_weight <= 11;
end
9: begin
left _weight <= 10;

right _weight <= 12;

49

7

79

81

83

85

87

89

91

93

95

97

99

101

103

end
10: begin
left_weight <= 9;
right_weight <= 13;
end
11: begin
left_weight <= 8;
right_weight <= 14;
end
12: begin
left _weight <= 7;
right _weight <= 14;
end
13: begin
left _weight <= 5;
right _weight <= 15;
end
14: begin
left _weight <= 4;
right _weight <= 15;
end
15: begin
left _weight <= 0;
right _weight <= 16;
end
endcase
end

endmodule

50

10

12

14

16

18

20

22

24

26

28

30

32

34

36

A.10 Patchbay (patchbay.v)

‘timescale 1ns / 1lps

Y A A A Y A A A A A da
/7

// Patchbay — provides physical interface for routing table update
// for the Field—Programmable Audio Effects Rack

//

//

A A A A e
module patchbay (/*AUTOARGx/

// Outputs

scan_channels , update_routing, src, dest, scan_hit, scan_miss, match_history ,
// Inputs

reset , clock, probe_channels

);

//TODO: read exzternal routing table to silence redundant updates...

parameter LOGN = 4;

localparam N = (1 << LOGN);

output [LOGN-1:0] src, dest;

input reset , clock;

reg [2*xLOGN-1:0] src_dest;

input [N—1:0] probe_channels;
output [N-—1:0] scan_channels;

reg [N—1:0] scan_pattern;

assign scan_channels = 7(1’bl << (src));
output update_routing;

reg update;

output reg [N—1:0] match_history;
output wire scan_hit , scan_miss;

assign scan_hit = (probe_channels|[dest] = 0);
assign src = src_dest [LOGN—-1:0]; //routing table address
assign scan_miss = (src¢ = {LOGN{1’b1}})&& (& match_history);

assign dest = src_dest [2xLOGN—-1:LOGN]; //routing table data

assign update_routing = scan_miss | scan_hit;

51

38

40

42

44

46

48

always @ (posedge clock) begin
if (reset) begin

src_dest <= 0;

match_history <= {N{1’bl}};
end
else begin

src_dest <= src_dest + 1;

match_history <= {match_history [14:0], probe_channels[dest]};

end
end

endmodule

52

11

13

15

17

19

21

23

25

27

29

31

33

35

37

A.11 Signal Generator (signal generator.v)

‘timescale 1ns / 1lps
Y A A A Y A A A A A da

//
// Signal Generator Module for 6.111 2010 Final Project

// Marc Resnick/Drew Shapiro

L1117 7777777777777 777777777 7 7

module signal_generator (freq_select , clock, reset, ready, shape, wave_in, wave_out);
parameter CLK.FREQ = 27.000-000; //27Mhz clock on lab kit

input signed [17:0] freq-select;

localparam SINE = 2’b00;
localparam SQUARE = 2’b01;
localparam SAWTOOTH = 2’b10;
localparam TRIANGLE = 2’bl1l;

input clock, reset, ready;
input [1:0] shape;
input signed [17:0] wave_in;

output signed [17:0] wave_out;

//select the appropriate signal to ezxpose
reg signed [17:0] value;

//assign wave = value;

wire signed [17:0] mix_select;
assign mix_select = wave_in =— 0 ? 18’b100000000000000000 : O;
mix wet_dry_mix (//allow signals to be chained/combined
.reset (reset),
.clock (clock) ,
.ready (ready) ,
.mix_select (18’b0),
.signall (value),
.signal2 (wave_in),

.mixed (wave_out)

)i

53

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

reg [9:0] index;
reg [24:0] count, count_stop;
always Q(posedge clock) begin
if (reset) begin
index <= 0;
count <= 0;
count_stop <= 0;
end else begin
count <= (count == count_stop) 7 0 count + 1;
//count until count_stop is reached
count_stop <= $unsigned (freq_select) >> 10;
//then increment index and reset count
index <= (count == count_stop) ? ((index == 10’d1023) 7 10’b0
//also reset index when it reaches 1023
end
end
wire signed [17:0] square_value, sine_value, sawtooth_value,
//make 4 different shapes awvailable
assign square_value = (index > 10°d511)? 18’b100000000000000000
//logic for square wave
sinelut lut_sine (.THETA(index), .SINE(sine_value));
others
sawtoothlut lut_sawtooth (.index(index), .wave(sawtooth_value));
, output is wvalue
trianglelut lut_triangle (.index(index), .wave(triangle_value));
//LUTs are full—wave, 1024 samples
always @ (*) //select wave to output
case (shape)
SINE: value = sine_value;
SQUARE: value = square_value;
SAWTOOTH: value = sawtooth_value;
TRIANGLE: value = triangle_value;
endcase
endmodule

index + 1) index;

triangle_value;

18’b011111111111111111

//and lookup tables for

//input is index

54

	Introduction
	Overview
	Effects
	Routing
	Display
	Composition and Extensions

	Description
	Patchbay (Drew)
	Routing (Drew)
	Effects
	Mix (Marc)
	Signal Generator (Marc)
	FIR Filter (Marc)
	Delay (Marc)
	Pan (Drew)

	Display (Drew)
	Demo Configuration

	Testing and Troubleshooting
	Use of the Signal Generator for Testing
	Routing
	Delay and ZBT RAM

	Conclusions
	Appendices
	Code Listing (alpha-order)
	Main Audio Support (audio.v)
	Router (audio_router.v)
	Main Labkit File (audiofxbox.v)
	Audio-Visual Feedback (channel_display.v)
	Delay (delay.v)
	ZBT Suuport for Delay (delay_zbt.v)
	FIR (filter.v)
	Mix (mix.v)
	Pan (pan.v)
	Patchbay (patchbay.v)
	Signal Generator (signal_generator.v)

