
1

David Greenberg

6.111 Final Project Proposal

Theory

Idea
Deterministic multiprocessing systems can provide important benefits in many
applications. A deterministic multiprocessing system has the same output given the
same input. For our purposes, we will fix the inputs to the system to be the code
that’s running and the data supplied to the program when it starts running or read
by the program at well-defined times. This precludes nondeterminism introduced by
button presses by forcing it to be only read in a deterministic way.

Concept
This implementation of deterministic multiprocessing will essentially be a time-
slicing multitasking system in which the inherent parallelism of the problem is
recovered across the multiple CPU cores. In order to recover determinism, we must
look at how a time-slicing multitasking system orders reads and writes to memory.
Essentially, reads and writes only must ordered on the inter-time slice level, since
within a single time slice the ordering of the reads and writes taking effect is given
by the order of instructions executed. We will snoop inter-thread communications
and enforce a deterministic ordering on them. By enforcing determinism at this
point, we will produce a deterministic system.

High Level Design
In order to enforce determinism between time slices, we will implement this system
as a cache that sits between the processors and the main memory. To account for
the time slices, each processor will incorporate an instruction counter, as this gives
us fine-grained deterministic times-slicing (a timer interrupt would not work
because it would be nondeterministic if the interrupt didn’t have the highest
preemption priority). We will use a scheme similar to CoreDet in which we buffer all
loads and stores in per-processor caches. Since we store all this information, we can
construct a snooping protocol that will detect communication between threads.
When threads communicate, their communication must be handled
deterministically. Otherwise, we can rely on each processor to remain self-
consistent, and allow them to run without synchronization until communication is
detected (or the end of a timeslice is reached). Synchronization is handled by a
protocol that causes all pending writes to be flushed quickly and deterministically.

2

Design Details
The system operates by moving through three phases: the parallel phase, the
commit phase, and the serial phase. The parallel phase is when the bulk of the work
is done by all processors in parallel. The processors halt when they begin to
communicate or reach the end of their time slice. When all processors are halted,
they move to the commit phase, where pending writes are flushed to main memory
in a deterministic order. Finally, the serial phase happens, when each processor is
given a second, short time slice to run as the only processor in the system. This
allows short extents of operations on mutexes to occur without causing most of a
time slice to be wasted due to the processor halting due to communication.

The system is broadly divided into 3 components: the Processors (CPUs), the
Arbitrators, and the CAM (content addressable memory) buffers. The CPUs execute
and issue reads and writes to the arbitrators. The arbitrators maintain coherency in
the CAM Buffers, detect communication between threads, and execute the
algorithms. The CAM buffers provide a fast way to check what memory locations
have been modified to maintain the protocol. In addition, there is a state machine
that maintains which phase is currently being executed, as well as several support
modules like the instruction counters, main memory controller, and graphics output.
On the following page is a block diagram.

3

CPU0 CPU1 CPU2

Arbitrator Arbitrator Arbitrator

Instruction
Counter

Instruction
Counter

Instruction
Counter

CAM
Buffer

CAM
Buffer

CAM
Buffer

Main Memory

Phase State Machine
(also connected to arbitrators)

Graphics
Module

4

Parallel Phase
The parallel phase takes place until the instruction counter has expired or an
arbitrator has detected communication. Thus, the majority of the complexity in the
components that run this phase is in detecting communication, since instruction
counting and processor halting are trivial operations. Each CAM buffer slot must
store the address of memory that was accessed, the data that is in that location
after the most recent access, and three additional bits of information (the tag):
whether the address has been accessed Exclusively by the local processor or
whether it is Shared, whether the address has been Read or not (0), and whether
the address has been Written or not (0). Example states of a memory location could
thus be E/R/W (exclusively held, read and written) or S/R/0 (shared, read-only). The
following table describes how the state transitions must take place. Any transition
not listed in the table represents a communication and thus results in a halt until
after the deterministic commit phase. From the perspective of each arbitrator, a
memory address can either be found in the local, directly connected CAM buffer or
found in one of the other arbitrator's CAM buffers (a friend buffer).

5

On Read

Found in Valid Tags Change Tag To

Local CAM Buffer E/?/? or S/R/0 E/R/? or S/R/0

Friend CAM Buffer E/R/0 or S/R/0 S/R/0

Not found (fetch) --- E/R/0

On Write

Found in Valid Tags Change Tag To

Local CAM Buffer E/?/? or S/0/W E/?/W or S/0/W

Friend CAM Buffer E/0/W or S/0/W S/0/W

Not found (fetch) --- E/0/W

Reads and writes will proceed in the above-defined way until every CPU halts. CPUs
halt for three reasons: during a read or write operation, an address was found in a
local or friend buffer but wasn't in a valid state; the instruction count for that CPU
was reached; or the CAM buffer for that CPU overflowed.

The snooping protocol will work as follows. Every arbitrator will have a connection to
every other arbitrator. When an arbitrator wants to know whether a friend has a
piece of memory in its CAM buffer, it signals all arbitrators that it needs to read or
write some address. Then all of the other arbitrators will signal the requesting
arbitrator when they've determined that they A) do not have that address, B) have
that address and the pending operation can continue, or C) they have that address
and the pending operation must be deferred until the commit phase runs. This
interconnect protocol allows the address bits to be shared, so that for K processors
and an N bit address bus, N+2 bits are required to signal the other arbitrators
(address bus, start, read/write), and each arbitrator needs 2*K bits to get responses
from the others (A, B, C, or invalid encoded in two bits).

Commit Phase
The commit phase runs after all CPUs have been halted. The commit algorithm
works as follows:

6

 1. For each CPU in a deterministic round-robin order:

 1.1. For each written CAM buffer cell in chronological order:

 a) Write out modified bytes in buffer cell

 b) Notify other arbitrators that the given address has been written once
and should not be written again

• This causes the other arbitrators to erase their copies of this
address

 c) Mark this cell as empty

 1.2. Mark all CAM buffer cells invalid

This algorithm is easily executed by having each arbitrator flush its pending writes
in deterministic order and using the communication channels from the parallel
phase to notify the other arbitrators as addresses are committed.

It is important to note here that this system is not exactly a cache, since it
periodically flushes all of the cached data regardless of whether or not it has been
modified. This is necessary to prevent stale data from being kept in the cache after
a commit cycle.

This algorithm is intended to be amenable to deep pipelining, which should mitigate
any performance impact caused by this stage.

Serial Phase
There may not be enough time to implement this phase, as it only exists to improve
performance by exploiting locality in lock acquisition. It only requires use of the
instruction counter and a simple round-robin state machine, and it essentially
bypasses the CAM memory, causing all reads and writes to be directly read from or
written to main memory.

Other Elements

Memory Controller
The main memory controller will have to multiplex access to the ZBT RAM in the
labkit so that all of the arbitrators can access it. It will use a request queue to
schedule memory operations in the order they're received. This request queue will
be of limited size, and will attempt to be fair in the order it services requests from
arbitrators. For the commit phase, there may be an alternative mode that exposes
the pipelining available in the ZBT RAM to increase performance.

7

Graphics Device
A region of main memory will be mapped to the VGA output controller from Lab 5
for use as a frame buffer for demonstration applications.

Processors
The processors will be the PicoBlaze compatible processors we went over in lecture
due to their simplicity unless there is enough time to integrate with a more complex
architecture. They will need to modified to support reading and writing to another
memory controller, arbitrary halting, and instruction counting.

Instruction Counter
Each processor will be retrofitted with a programmable instruction counter that
signals when a specifiable number of instructions has been reached. This will be
used by the halt detection logic and the serial phase.

Testing
For the three phases of operation, testing will be relatively straightforward, as each
phase is essentially an algorithm that maintains a set of invariants. The testing code
will apply a variety of inputs to the state machines and ensure that the invariants
are maintained. Nondeterminism will be introduced by varying the clock frequencies
of the processors to simulate cache misses, pipeline bubbles, and bus protocol
overheads. Every module will be heavily tested prior to synthesis in order to ensure
that the entire system behaves exactly as expected.

Hardware Usage
Each PicoBlaze processor takes very few slices of logic (on the order of 100). The
arbitrators shouldn't take more than the processors, and the CAM buffers should
take very few slices and no more than 3 BRAMs. If there are enough BRAMs
available, I will not implement a ZBT memory controller and just use the other
BRAMs to simulate main memory. No other hardware will be needed.

	Theory
	Idea
	Concept
	High Level Design

	Design Details
	Parallel Phase
	Commit Phase
	Serial Phase

	Other Elements
	Memory Controller
	Graphics Device
	Processors
	Instruction Counter
	Testing
	Hardware Usage

