Implementation of a Controllable Function Generator

Sarah Ferguson
Gavin Darcey
December 10, 2010

Standard function generators, when implemented in Verilog, are not easily
controlled or measured. The signals they generate are typically set to be a
predetermined amplitude, waveform, and frequency. This proposal outlines the
details and design methodology for the creation of a controllable function generator
with unique features to address these flaws. The system has two primary modules,
one to create and control the analog output, and the other to construct a digital
video representation of the analog waveforms. Four waveforms were generated,
each with controllable amplitude and frequency, as well as duty cycle, when
applicable. The steps taken to design each aspect of the function generator are
described, as well as the integration of all subsystems present in the design. The
system was implemented in Verilog, then tested and debugged on an FPGA. It was
found to be possible to implement the function generator using the FPGA, a
computer monitor, and a digital to analog convertor; the end result being a fully
functional prototype.

Table of Contents

List of Figures

List of Tables

1 Overview

2 Description

2.1 Implementation

211 Waveform FSM
2.1.2 Video
2.1.3 Image ROM
2.1.4 Sine Sprite
2.1.5 Ramp Sprite
2.1.6 Triangle Sprite
2.1.7 Square Sprite
2.1.8 Counter
2.1.9 Meas String
2.1.10 Char String Display
2.1.11 XVGA
2.1.12 Blob
2.1.13 Debouncer
2.1.14 Divider
2.1.15 Final Project

il

il

10

10

10

10

2.2 Testing and Debugging
3 Conclusion
References
Appendix A: Screenshots of Waveforms and Example Display
Appendix B: MATLAB Code
Appendix C: Waveform Images used by Image ROM

Appendix D: Analog Devices AD7224 Data Sheet

11

13

15

16

19

26

28

ii

List of Figures

Figure 1: Block Diagram of System
Figure 2: Square Wave on Oscilloscope
Figure 3: Ramp Wave on Oscilloscope
Figure 4: Triangle Wave on Oscilloscope
Figure 5: Sine Wave on Oscilloscope
Figure 6: Example Display

Figure 7: Bitmap Image of Sine Wave
Figure 8: Bitmap Image of Ramp Wave
Figure 9: Bitmap Image of Triangle Wave

Figure 10: Bitmap Image of Square Wave

15

15

16

16

18

26

26

27

27

iii

1. OVERVIEW

This project implements a basic function generator capable of creating periodic
square, sine, and sawtooth (triangle) waveforms. The output is very similar to that
found on a standard lab function generator, and this implementation is unique in
that it provides controllable frequency and amplitude for each of the 4 waveforms.
In addition to the generation and basic control of the wave through pushbuttons on
the labkit, this design implements video output for additional measurement display.

There are two major components to this project - the wave generation and the
video output. The wave type is selected by the user via the pushbuttons on the
labkit. Wave generation is handled exclusively by one functional state machine
(FSM) that accepts user input — wave type, frequency, and amplitude, and generates
8 bits of data that are fed to an 8-bit digital to analog converter in order to create the
proper analog waveform. Due to the mechanical “bounce” seen on the labkit
buttons when depressed, all button inputs are debounced and synchronized with
the necessary clocks before being interpreted by the FSM. At power-up, the
frequency and amplitude are standardized to start at 250 Hz and 2.5V peak to peak,
respectively, and the generator begins with synthesis of a square wave. The
frequency and amplitude can then be adjusted up and down by the user, via the
labkit pushbuttons. The FSM maintains measurements of the current frequency and
amplitude, as well as the wave type, in order for this information to be properly
displayed on the video screen.

The digital to analog converter used is the Analog Devices AD7224, which somewhat
limited the maximum frequencies attainable due to the inherent device limitations
in high-speed switching. Nonetheless, frequencies of up to 16 kHz are obtainable
when generating square waves. Appendix D contains the data sheet for this device;
for this design the device was wired to operate in Unipolar Output Operation mode,
with all input registers transparent, for simplicity.

The video display is not necessarily a real-time view of the waveform; such a
measurement can be quickly verified with an oscilloscope, as was done during the
debugging of the project. Instead, it is a real-time summary of what is being
generated and what operations are being performed on the wave - it illustrates
wave type, and shows on screen the relative increases and decreases in amplitude
and frequency. The display component also shows on-screen the maximum
amplitude being output by the DAC, and was intended to show the frequency as
well, but this portion was not fully debugged. The video encoding used is XVGA,
which necessitates the 65 MHz system clock that all other modules rely on.

The two components - wave generation and display - pass information about the
wave between them, in order to maintain consistency. This block diagram provides
a glimpse of the system as a whole, and show the inputs and outputs to the major

modules.

button_up =———pp]
button_down ——P
button_left ———p]
button_right =

button_0 —_

DEBOUNCER

vlv y v VJV v va

switch [7:0] —¥

WAVEFORM FSM

[7:0] waveform

-—

65 MHz system clock
(to all modules)

enable

\ 4

A4

enable —f I

reset

IMAGE RAM

reset

amplitude
frequency
wave type

>l
<
<
”
«

_ duty cycle

DAC

analog
output

image
select

4

image

A 4

VIDEO

mon

itor output

v

Figure 1: Block diagram of system

2. DESCRIPTION
2.1 Implementation

This section describes in detail each of the major Verilog modules used in the
implementation of the project.

2.1.1 Waveform FSM:

The Waveform FSM module is the sole control module behind the digital-to-analog
converter (DAC). The DAC operates by using its 8 input bits to determine an
appropriate analog voltage output, so this module continually outputs 8 bits
(DAC_out[7:0]) that are always changing.

[t uses many inputs to operate, nearly all of which are received from buttons on the
labkit. These buttons correspond to changes in frequency and amplitude, as well as
the selection of the wave type. The module assumes that these inputs have already
been debounced using the debouncer module.

The operation of the Waveform FSM is highly dependent on a signal generated
within the module called clock_vary. Clock _vary is generated by dividing down the
65 MHz system clock into a clock signal that is slower and more usable for proper
signal generation. This dividing down is accomplished by using the standard
technique in Verilog to divide signals down to a lower frequency by counting up to a
certain limit before issuing a pulse, but the caveat with clock_vary is that this limit is
always changing. Hence, even though a separate divider module is used later in the
FSM to handle user inputs, clock_vary is generated by separate, explicit code. This
allows the limit to be constantly changed by user input, which affects the frequency
of clock_vary. Because the states in the FSM are changed at the positive edge of
clock_vary, the final wave frequency is controlled by clock_vary.

The states of the waveform FSM are named for the wave types they control: square,
ramp, sawtooth (triangle), and sine. The current wave type is controlled by the
labkit pushbuttons; however, the system begins at a square wave. The square state
operates by analyzing the current 8 bits to the DAC - if they are all 0, then it flips
them to all 1s, otherwise it directs them to be all 0. Because of this very simple
operation of flipping between eight Os and eight 1s, the square wave is able to be
generated at a much higher frequency than the rest of the waves. The ramp state
operates by checking if the DAC'’s 8 bits are currently less than all 1s - if they are,
then it increments them by 1, finally resetting them back to 0 once the limit is
reached. This creates a very linear increase in the output coming out of the DAC,
followed by a straight drop to 0. Because of the long time it takes to count from 0 to
255 (eight Os to eight 1s) the ramp is not able to reach nearly the frequencies that
the square wave can. The sawtooth, or triangle wave, is very similar to the ramp - it
linearly counts up to the limit, but when the limit is reached, it simply counts back
down. This counting up or counting down condition is controlled by a simple one-

bit register that is TRUE if the count should be incrementing, FALSE otherwise, and
set within the sawtooth state. Finally, the sine state operates by using one of Xilinx’s
intellectual property cores, and creates a sine module that uses 10 bits of input to a
signal (here, “theta”) and a look-up table to calculate the 8-bit signed value of
sine(theta). The FSM shifts this value so it is no longer signed; this allows it to
operate between 0 and 5 volts of amplitude. The 8 bit value of sine(theta) is sent to
the DAC to generate the proper voltage. Theta is increased by 32 after each
successful calculation, which means that although the wave is more jagged than
normally expected of a sine wave, it is able to reach higher frequencies.

Though the FSM itself handles the creation of the wavetype and has a frequency
determined by clock_vary, it is a simplified control scheme - the FSM is always
generating a waveform that varies between the minimum and maximum voltage
levels (between 0 and 5 volts). Therefore, another variable must be used to actually
scale the output of the FSM before it is sent to the DAC. The amplitude scaling is
controlled by an 8-bit register, gain. Gain ranges between 0 and 255, and the output
from the FSM (as directed by one of its four states) is multiplied by gain and then
divided by 256 in order to scale the final analog voltage. Gain begins at 128 (thus,
creating a wave that varies between 0 and 2.5 volts) and is increased or decreased
according to user input.

The last component of the waveform FSM is the handling of user input. The FSM
begins at a predetermined frequency and gain (to set the amplitude) and in the
square state. Using the divider module, a very slow clock at 20 Hz is generated. At
the positive edge of this clock, the buttons on the labkit to increase/decrease
frequency/amplitude and select the wave type are analyzed; if they are depressed,
then the appropriate change is made. By holding the button down, the change is
repeated, at 20 times per second. This allows the user to continuously change the
frequency and amplitude without repeatedly pressing the button. As a final note, for
safety precautions, the FSM will not output any bits to the DAC if its enable signal is
false. This allows the labkit to remain on for easy, convenient rewiring.

2.1.2 Video:

The Video module controls the output to the monitor based on inputs from the
Waveform FSM. The Video module is the top-level module for several other
modules, which generate the appropriate pixels to display the text, real-time
waveforms, and waveform images. Three registers store the amplitude, frequency,
and duty cycle outputs from the Waveform FSM, which are changed on the positive
edge of the 65 MHz clock if the frame is being updated. These values are fed to the
Sine Sprite, Ramp Sprite, Triangle Sprite, and Square Sprite modules, which
generate the real-time sine, ramp, triangle, and square waveforms. They are also fed
to the Counter module, which converts the binary measurements to decimal
numbers. The Char String Display module displays these measurements, in addition

to the labels, as text on the monitor. The Image ROM module generates the buttons
on the right side of the monitor.

The Video module determines the appropriate waveform to display using a simple
case statement. The waveform selector input determines which real-time waveform
to display. A 3-bit register stores the appropriate waveform, in the form of a pixel.
For each waveform selection, this pixel is continuously assigned to the pixel for the
corresponding real-time waveform, which is combined with a highlight pixel via an
or gate. This highlight pixel is generated with the Blob module. It is a simple
rectangle of the same size and position as the waveform being displayed, so that
when displayed, it alters the colors of the image to set it apart from the other
images. If the square is being displayed, the text for the duty cycle measurement is
also added to the register via an or gate.

The Video module has three outputs, which are fed to the computer monitor. The 3-
bit pixel output is the combination of all of the pixels necessary to display the text,
real-time waveforms, and waveform images. Since the pixels from the Image ROM
are delayed by one clock cycle, the pixel output is likewise delayed. One register for
each of the horizontal sync, vertical sync, and blanking outputs is used to also delay
them by one clock cycle. The combination of these outputs creates an analog output
which results in a monitor image representing the waveform, an example of which is
shown in Appendix A, with real-time waveforms and measurements which
correspond to those of the Waveform FSM.

2.1.3 Image ROM:

The Image ROM module stores and displays the sine, square, ramp, and triangle
waveform images. The waveform images were created in MATLAB, then converted
to bitmap images. These bitmap images were run through an additional MATLAB
script to create coe files. For each image, four coe files are created. One contains the
actual image bits, while the other three are color maps for red, green, and blue. For
each coe file, a ROM is created using Coregen, resulting in four ROM’s per image. An
image address, corresponding to the location of each pixel in the image, is fed into
the ROM containing the actual image bits. The 8-bit output from this memory is the
input into each of the three ROM’s containing the red, green, and blue color maps.
The 8-bit output from these three ROM’s is delayed by one clock cycle, then
continuously assigned to the 24-bit pixel output at the positive edge of the clock, if
the pixel is in the correct location.

A simple case statement, corresponding to the image selector input from the
Waveform FSM, determines which image to display. At all times, the memories are
being accessed for each waveform, as described above; however, the pixel output is
only assigned to the red, green, and blue color maps of the appropriate waveform.
Initially, this enabled the user to simply display static images in place of the real-
time waveforms.

The MATLAB code, images, coe files, and ROM Verilog modules used in the Image
ROM module are all available in the Appendix.

2.1.4 Sine Sprite:

The Sine Sprite module is used to create the real-time sine waveform, which
changes in amplitude and frequency corresponding to the inputs from the
Waveform FSM. At the positive edge of the 65 MHz clock, the amplitude and
frequency inputs are respectively assigned to 8- and 14-bit registers.

The horizontal and vertical measurements of the sine wave are determined by two
wires. A 21-bit wire is continuously assigned to the first nine bits of hcount,
multiplied by the 14-bit register storing the frequency, then divided by 256 to create
the horizontal measurement. The vertical measurement is stored in a 16-bit wire.
To create it, the Sine Real module was generated using the Coregen Trigonometry
function. This module uses a lookup table to output the correct value for each value
of theta. The theta input corresponds to the first eight bits of the horizontal
measurement. The 8-bit output is multiplied by the 8-bit register storing the
amplitude, then scaled by 255/256 to create the vertical measurement. This vertical
measurement is then shifted to place it in the correct region.

The single output of this module is a 3-bit pixel. At the positive edge of the clock, if
the pixel is in the region specified by the x, y, hcount, and vcount inputs, it is
assigned to one of two colors, also specified as inputs. If the pixel is above the
vertical shifted measurement, it is assigned to one color, while it is assigned to
another if it is below. If the pixel is outside of this region, it is assigned to be black.
The resulting sine wave corresponds to the amplitude and frequency inputs from
the Waveform FSM module.

2.1.5 Ramp Sprite:

The Ramp Sprite module is used to create the real-time ramp waveform, which
changes in amplitude and frequency corresponding to the inputs from the
Waveform FSM. At the positive edge of the 65 MHz clock, the amplitude and
frequency inputs are respectively assigned to 8- and 14-bit registers.

The horizontal and vertical measurements of the ramp wave are determined by two
wires. A 21-bit wire is continuously assigned to the first nine bits of hcount,
multiplied by the 14-bit register storing the frequency, then divided by 256 to create
the horizontal measurement. The vertical measurement is stored in a 16-bit wire.
To create it, a simple line is generated. The line has a base measurement of negative
HEIGHT/4. The first seven bits of the horizontal measurement are added to the
base value so that it is incremented by one with each increase in the horizontal
measurement, until the horizontal measurement overflows and returns to zero. The

8-bit measurement is multiplied by the 8-bit register storing the amplitude, then
scaled by 255/256 to create the vertical measurement. This vertical measurement
is then shifted to place it in the correct region.

The single output of this module is a 3-bit pixel. At the positive edge of the clock, if
the pixel is in the region specified by the x, y, hcount, and vcount inputs, it is
assigned to one of two colors, also specified as inputs. If the pixel is above the
vertical shifted measurement, it is assigned to one color, while it is assigned to
another if it is below. If the pixel is outside of this region, it is assigned to be black.
The resulting ramp wave corresponds to the amplitude and frequency inputs from
the Waveform FSM module.

2.1.6 Triangle Sprite:

The Triangle Sprite module is used to create the real-time triangle waveform, which
changes in amplitude and frequency corresponding to the inputs from the
Waveform FSM. At the positive edge of the 65 MHz clock, the amplitude and
frequency inputs are respectively assigned to 8- and 14-bit registers.

The horizontal and vertical measurements of the triangle wave are determined by
two wires. A 21-bit wire is continuously assigned to the first nine bits of hcount,
multiplied by the 14-bit register storing the frequency, then divided by 256 to create
the horizontal measurement. The vertical measurement is stored in a 16-bit wire.
To create it, two simple lines are generated. One line has a base measurement of
negative 3*HEIGHT /4. The first eight bits of the horizontal measurement are added
to the base value so that it is incremented by one with each increase in the
horizontal measurement. The other line has a base measurement of HEIGHT /4. The
first eight bits of the horizontal measurement are subtracted from the base value so
that it is decremented by one with each increase in the horizontal measurement.
Both lines are also shifted upwards by one pixel. If the first eight bits of the
horizontal measurement are greater than WIDTH/4, then the first line is used for
the vertical measurement; otherwise, the second line is used. The 8-bit
measurement is multiplied by the 8-bit register storing the amplitude, then scaled
by 255/256 to create the vertical measurement. This vertical measurement is then
shifted to place it in the correct region.

The single output of this module is a 3-bit pixel. At the positive edge of the clock, if
the pixel is in the region specified by the x, y, hcount, and vcount inputs, it is
assigned to one of two colors, also specified as inputs. If the pixel is above the
vertical shifted measurement, it is assigned to one color, while it is assigned to
another if it is below. If the pixel is outside of this region, it is assigned to be black.
The resulting triangle wave corresponds to the amplitude and frequency inputs
from the Waveform FSM module.

2.1.7 Square Sprite:

The Square Sprite module is used to create the real-time square waveform, which
changes in amplitude, frequency, and duty cycle corresponding to the inputs from
the Waveform FSM. At the positive edge of the 65 MHz clock, the amplitude,
frequency, and duty cycle inputs are respectively assigned to 8-, 14-, and 3-bit
registers.

The horizontal and vertical measurements of the square wave are determined by
two wires. A 21-bit wire is continuously assigned to the first nine bits of hcount,
multiplied by the 14-bit register storing the frequency, then divided by 256 to create
the horizontal measurement. The vertical measurement is stored in a 16-bit wire.
To create it, two simple lines are generated. One line is equal to negative HEIGHT /4
+ 1, while the other equaled HEIGHT/4 - 1. If the first seven bits of the horizontal
measurement are greater than or equal to the 4-bit register storing the duty cycle,
then the first line is used for the vertical measurement; otherwise, the second line is
used. The 8-bit measurement is multiplied by the 8-bit register storing the
amplitude, then scaled by 255/256 to create the vertical measurement. This vertical
measurement is then shifted to place it in the correct region.

The single output of this module is a 3-bit pixel. At the positive edge of the clock, if
the pixel is in the region specified by the x, y, hcount, and vcount inputs, it is
assigned to one of two colors, also specified as inputs. If the pixel is above the
vertical shifted measurement, it is assigned to one color, while it is assigned to
another if it is below. If the pixel is outside of this region, it is assigned to be black.
The resulting triangle wave corresponds to the amplitude and frequency inputs
from the Waveform FSM module.

2.1.8 Counter:

The Counter module is used to convert binary numbers to decimal digits. It can
convert any binary number with up to sixteen bits to the corresponding decimal
number with up to five digits. Several registers are used to accomplish this. Three
16-bit registers store the binary count input, old binary count input, and current
count. At the positive edge of the clock, the only other input to the module besides
the binary number, one register is assigned to the binary count input, while the
other is assigned to the previous value of the binary count input. If these values are
not the same, the count register is assigned to the current value of the binary input,
and the count begins. A 1-bit register, which is high if the count is incomplete, is
assigned to a high value, which remains high until the count is complete.

Five 4-bit registers are used for each of the five decimal digits. When the count
begins, these registers are all assigned to zero. With each positive edge of the clock
the binary count is decremented by one, while the decimal count is incremented by

one, until the binary count is equal to zero and the decimal count is equal to its final
value. To handle decimal overflow, a series of if else statements are used to decide
the appropriate values for each digit. If the first four digits, which are least
significant, are equal to nine, they are all assigned to zero and the fifth digit is
assigned to one. A similar process occurs if the first three, first two, or first digits
are equal to nine. If none of these cases are true, the first digit is incremented by
one. This process continues until the binary count is equal to zero, at which point
the 1-bit register is assigned a low value and the digits are no longer incremented.
The 20-bit decimal output is continuously assigned to these five digits.

2.1.9 Meas String:

The Meas String module is used to convert a decimal number into strings for display
on the monitor. It can convert any decimal number with up to five digits to the
appropriate strings. Five case statements, corresponding to each 4-bit digit in the
decimal number, are used to accomplish this. For each digit, the string output
corresponds to the appropriate decimal number. The five 11-bit registers
corresponding to each digit are continuously assigned to the appropriate string,
then output by the module.

2.1.10 Char String Display:

The Char String Display module displays 8 x 12 pixel characters by translating
inputs of strings of characters into 3-bit pixel output. A Font ROM module, which
was generated using Coregen and a coe file, contains all of the characters. For each
character in the input string, the module creates the appropriate address, which is
input to the Font ROM. The 8-bit output is used to determine which pixels are
colored, if they are in the appropriate region.

2.1.11 XVGA:

The XVGA module uses the 65 MHz system clock to determine the appropriate
hcount, vcount, hsync, vsync, and blank signals to send to the monitor. Because the
clock is 65 MHz, the horizontal display is 1024 pixels wide, and the vertical display
is 768 pixels high.

2.1.12 Blob:

The Blob module displays a rectangle on the screen, with the width, height, and
color specified by the parameters. It contains two 3-bit registers, which are used to
determine the 3-bit pixel output. If the pixel is in the correct region, it is assigned to
the color input; otherwise, it is assigned to be black. The pixel is delayed by one
clock cycle, then continuously assigned to be the sole output of the module.

2.1.13 Debouncer:

The debouncer module is necessary for this design due to the use of pushbutton
switches. The need for a debouncer arises due to the “ringing” associated with a
mechanical button. When the button is depressed to create contact between its two
metal leads, the button will assuredly continue to vibrate back and forth, potentially
creating unwanted noise and generating undesired signals. This debouncer module
solves this issue by taking as input the initial button press, along with any transient
signals produced by the press. By latching this initial input and requiring it to be
stable for 0.01 seconds before passing it along as output, the module essentially
provides a perfectly clean ‘on’ or ‘off” signal to the rest of the system. The debouncer
module has the added benefit that it synchronizes the button presses with the
necessary clock signals as well.

2.1.14 Divider

The divider module is designed to create a 20 Hz clocking signal out of the system'’s
own 65 MHz clock. This slower clock is used when interpreting button presses in
the waveform FSM.

2.1.15 Final Project:

These modules are all implemented on the labkit FPGA. The code to load data to the
labkit is available elsewhere, but the alterations made to the Final Project module to
instantiate the modules described above can be found in the Appendix.

10

2.2 Testing and Debugging

There were several levels of testing and debugging in the implementation of this
controllable function generator. All modules were individually built, and when
feasible, individually tested using various inputs and outputs from the labkit FPGA,
monitor, and oscilloscope. After individual testing, the modules were connected
into two main groups, each controlling the digital and analog output. Once these
groups were each functioning, the entire project was wired to its final state.

The monitor was the primary source for debugging the digital output. The Video,
XVGA, and Blob modules were all tested first, to ensure that the clocking and display
were correct. When rectangles could be displayed in the place of each image, the
Image ROM module was tested. Each waveform was successfully displayed in the
appropriate location, although the colors were never correct due to an artifact from
the MATLAB script. Once these images were correctly displayed, the real-time
waveforms were created. To debug these modules, the up, down, left, and right
labkit buttons were used to control amplitude and frequency, while switches were
used to control the duty cycle. Once the waveforms could all be appropriately
displayed using these inputs, the functionality for amplitude, frequency, and duty
cycle inputs was added. During testing, switches were used to represent all possible
values of amplitude, frequency, and duty cycle.

One aspect of the video module which did not use the monitor for initial debugging
was the Counter module. For this module, the 16-digit hex display on the labkit was
used to display the decimal digits, while switches were used as the binary inputs.
Once this module correctly displayed the decimal digits corresponding to the binary
input, the monitor was used to test the Char String Display, Font ROM, and Meas
String modules. The correct display of the measurements as pixels on the monitor
indicated that all four modules were functional.

The oscilloscope was used to test the output from the Waveform FSM. Initially, the
challenge was to display each of the four types of waveforms. After each waveform
was displayed cleanly, the functionality to change amplitude and frequency
according to the labkit buttons was added. The challenge with waveform generation
was mostly due to the waveform’s dependence on clock_vary, which is always
changing frequency as buttons are pressed. This made it much more difficult than
was predicted to properly measure the frequency for display on-screen; though the
amplitude was successfully decoded from binary to decimal and displayed on the
monitor, frequency was not. The duty cycle displayed on screen was also correct in
that it matched the labkit switches that set its value. However, the duty cycle was
not implemented successfully with the waveform generator, and so the square
waves were stuck at a 50% duty cycle when coming out of the DAC.

11

Once all of the tests were passed, the modules were wired to their final states. Final
testing involved the manipulation of inputs in all possible scenarios. The waveforms
displayed on the oscilloscope matched those on the monitor, verifying the
functionality of the system.

12

3. CONCLUSION

This report describes the functionality and implementation of a controllable
function generator. Inputs from the labkit allow the user to select and control
periodic square, sine, ramp, and triangle waveforms. The 8-bit output is very
similar to that found on a standard lab function generator, but this implementation
improves usability with the addition of a video display, which contains a digital
representation of the waveform, complete with associated measurements for
amplitude, frequency, and duty cycle. The video display also has buttons on the
side, which light up to indicate which waveform is being displayed, especially useful
for cases in which changes in amplitude, frequency, or duty cycle alter the waveform
such that it is unrecognizable.

Though the new system is a great improvement over current function generators,
further modifications are possible. The frequency measurement is incorrect and
should be altered, as described previously. This change, in addition to the ability to
change the duty cycle of the analog square wave, would make the displayed
measurements completely and accurately match the analog output. A further
enhancement would be the addition of mouse control. The four images on the right
side of the monitor could function as buttons, which would change the waveform
type when clicked. The mouse could also be used to change the amplitude and
frequency of the waveform, by pulling the waveform up and down or left and right
to indicate changes. These changes would need to be output to the Waveform FSM
so that the analog waveform output by the DAC would likewise change. The final
possible improvement is to the images displayed by the Image ROM. Diagnosing the
problem, most likely with the MATLAB script, would allow for the display of images
with the correct color.

One issue that is more of an inconvenience than actual failure is the speed at which
frequencies change when the labkit buttons are pressed. Due to the design, it
results in extremely rapid changes in frequency if the generator is already
producing a higher frequency. Likewise, the generator is slow to change frequencies
if it is already producing a slower signal. One solution to get around this is the
addition of a quick-jump feature, which would, after a single button press, jump the
signal to a desired frequency; from there it could be increased or decreased as
desired. This is a minor addition and would only serve to make the use of the
function generator a little more user-friendly and convenient.

The design is functional even without these improvements, as rigorous testing
demonstrated. When feasible, modules were tested individually, using the labkit
FPGA, oscilloscope, and computer monitor. For modules that required a great deal
of communication with other modules, specifically the modules controlling the
video and analog output, connections were made to the necessary modules, which
had already been individually tested. These two clusters of modules were then
tested, again using inputs and outputs from the labkit FPGA, oscilloscope, and

13

computer monitor. To finally test the entire system, all modules were wired to their
final states, and then all possible scenarios were input. The major problems
encountered during testing occurred because the Waveform FSM used different
clocks to generate different waveforms, so the frequency changed slower than that
of the monitor.

This extensive testing resulted in a controllable function generator with its own
display, which provides enhanced usability over standard factory units.

14

REFERENCES

[1]

"AD7224 | LC2ZMOS 8-Bit DAC with Output Amplifiers | All D/A Converters |
Digital to Analog Converters | Analog Devices." Analog Devices | Mixed-signal
and Digital Signal Processing ICs. Analog Devices, Dec. 1984. Web. 10 Dec.
2010. <http://www.analog.com/en/digital-to-analog-converters/da-
converters/ad7224/products/product.html>.

Various modules, including hex display, xvga, blob, font rom, char string
display, debouncer, labkit. MIT. "6.111." 6.111 Fall 2005. Sept. 2005. Web. 10
Dec. 2010. <http://web.mit.edu/6.111/www/f2005/index.html>.

15

APPENDICES

Appendix A: Screenshots of waveforms and monitor

Hifi!
i

MEASURE
: : : : : : it CH1
L S eeestonnaten. ., U
e B R ey
- ODPEDPRRLARS . ||
: : : : : : : : Freq
ook GEERH CEEEE! CERRS: SRR 16,17kHz
R B : CH3 Off
Freq

CH2
Pk~Pk
s
CH2
Freq
f4.96kHz ?

A
1616 75kHz

Figure 2: Square wave as viewed on oscilloscope. This screenshot is taken from the in-lab oscilloscope and
demonstrates a successful square (in yellow). Clock_vary is shown in blue, below it. Note that the square still
maintains clean transitions, even at its maximum frequency of 16 kHz.

‘ lu.m sddnle amd I 1! ‘i HW

e il CHI
L Deeeetenneteean ... JIREE
! : - . . : : : 2.18Y
CH1
: : / : : Freq
Sy Ay] 252.5Hz

CH3 Oft

Freq

CH2
Pk-Pk
S.04v

CH2

Freq
?

oH1 ./ 2,08y
252617Hz

Figure 3: Ramp wave as viewed on oscilloscope. This screenshot is taken from the in-lab oscilloscope and
demonstrates a successful ramp (in yellow). Clock vary is shown in blue, below. The ramp is shown here at its
maximum frequency of just above 250 Hz.

KR Tried M P %ﬂ
i _ .

Mean
2.16%

CH1
Freq
126.9Hz2

CH3 Off
Freq

CH1 2,008 |7 CHZ 2008 T

Figure 4: Triangle/sawtooth wave as viewed on O.S‘CIIIOSCOpe. This screenshot is taken from the in-lab oscilloscope
and demonstrates a successful triangle (in yellow). Clock_vary is shown in blue, below. The wave is shown here at
its maximum frequency of just above 125 Hz.

MEASURE
CHT
Mean
20N
CH1
Freq
1.004kHz 7

N] Frrrrr et

EEEE NN NEN]

fi3,3" kH, T
CHT 2.00% | CHE 200 M 500 us CH1 7 2084
1.071046kHz

Figure 5: Sine wave as viewed on oscilloscope. This screenshot is taken from the in-lab oscilloscope and
demonstrates a successful sine wave (in yellow). Clock_vary is shown in blue, below. The ramp is shown here at its

maximum frequency of just above 1 kHz.

17

Amplitude: 3V
Frequency: 100 Hz

Duty Cycle: N/A %

Triangle

N

Figure 6: Example display shown on the monitor while function generator is active.

18

Appendix B: Matlab Code
Note: Verilog code is too lengthy to include; please check the code uploaded to website.

o

Sarah Ferguson
6.111 Final Project: A Controllable Function Generator
Generation of MATLAB images

oe

oe

oe

define range of plot
= -2*pi:0.01:2*pi;

i

%% plot sine wave

figure;
plot(x,sin(x), 'm', 'Linewidth',2);
axis equal;

axis off;

%% plot square wave, 50% duty cycle
figure;
plot(x,square(x,50), 'b', 'Linewidth',2);
axis equal;

axis off;

%% plot square wave, 25% dudy cycle
figure;
plot(x,square(x,25), 'b', 'Linewidth',2);
axis equal;

axis off;

%% plot triangle wave

triangle = zeros(l,length(x));

J=0;
for i = -2*%pi:0.01:2*pi;
J = J+1;

if (i>=-2*pi && i<-pi)
triangle(j) = i;
elseif (i>=-pi && 1i<0)
triangle(j) = -i-2*pi;
elseif (i>=0 && i<pi)
triangle(j) = i-2*pi;
else

triangle(j) -i;
end

end

figure;
plot(x,triangle, 'g', 'LineWidth',2);
axis equal;

axis off;

%% plot ramp wave

ramp = zeros(l,length(x));
j=0;
for i = -2*%pi:0.01:2*pi;
o= J+1;
if (i>=-2*pi && i<-pi)
ramp(j) = ij

elseif (i>=-pi && 1i<0)

19

ramp(j) = i-2+*pi;
elseif (i>=0 && i<pi)
ramp(j) = i-2+*pi;
else
ramp(j) = i-4+*pi;
end
end

figure;
plot(x,ramp, 'y', 'LinewWidth',2);
axis equal;

axis off;

20

$6.111 Image Color Table MATLAB deme
$Edgar Twigg bwayr@mit.edu
$4/1/2008 (But I swear this file isn't a joke)

%% How to use this file

$Notice how %% divides up sections? If you hit ctrl+enter, then MATLAB
$will execute all the lines within that section, but nothing else. You
can

%also navigate quickly through the file using ctrl+arrow_ key

$% Getting 24 bit data

$So when you look at a 24 bit bitmap file, the file specifies three 8
bit

$values for each color, 8 each for red, green, and blue.

[picture] = imread('square256x192.bmp');

$% View the image

$This command image will draw the picture you just loaded

figure gopens a new window

image(picture) $draws your picture

title('24 bit bitmap') %gives it a title so you don't forget what it
is

$% Manipulate the data in the image

$So now you have a matrix of values that represent the image. You can
%access them in the following way:

%

$picture(row,column,color)

%

$Remember that MATLAB uses l-based indexes, and Verilog uses 0!

%

$Also, you can use MATLAB's slice operator to do nifty things.
$picture(:,:,1) would return a 2D matrix with the red value for every
row and

%column.

%

$picture(:,1,2) would return a 1D matrix with the green value for every
row

$in the first column.

%$This is how MATLAB indexes the colors

RED = 1;
GREEN = 2;
BLUE = 3;

$So if we wanted to see the red values of the image only, we could say
figure

image(picture(:,:,RED))

title('Red values in 24 bit bitmap')

$Because the image we gave matlab above specifies only one value per
pixel

$rather than usual three (red,blue,green), MATLAB colors each pixel
from

$blue to red based on the value at that pixel.

$% Getting 8 bit data
$When you store an 8 bit bitmap, things get a little more complicated.

21

Now

%each pixel in the image only gets one 8 bit value. But, you need to
send

$the monitor an r,g, and b! How can this work?

%

%8 bit bitmaps include a table which specifies the rgb values for each
of

$the 8 bits in the image.

%

$So each pixel is represented by one byte, and that byte is an index
into a

$table where each index specifies an r, g, and b value separately.

%

$Because of this, now we need to load both the image and it's colormap.
[picture color table] = imread('square256x192.bmp');

%% Displaying without the color table

$If we try to display the picture without the colormap, the image does
not

$make sense

figure

image(picture)

title('Per pixel values in 8 bit bitmap')

%% Displaying WITH the color table

$So to display the picture with the proper color table, we need to tell
$MATLAB to set its colormap to be in line with our colorbar. The image
$quality is somewhat reduced compared to the 24 bit image, but not too
bad.

figure

image(picture)

colormap(color table) $This command tells MATLAB to use the image's
color table

colorbar $This command tells MATLAB to draw the color
table it is using

title('8 bit bitmap displayed using color table')

%% More about the color table
%$The color table is in the format:

%

$color table(color index,l=r 2=g 3=b)

%

$So to get the r g b values for color index 3, we only need to say:
disp(' r g b for color 3 is:')
disp(color table(3,:)) ¢disp = print to console

$Although in the bitmap file the colors are indexed as 0-255 and each
rgb

$value is an integer between 0-255, MATLAB images don't work like that,
so

$MATLAB has automatically scaled them to be indexed 1-256 and to have a
$floating point value between 0 and 1. To turn the floats into integer
$values between 0 and 256:

color_ table 8bit = uint8(round(256*color table));

disp(' r g b for color 3 in integers is:')
disp(color table 8bit(3,:))

22

$Note that this doesn't fix the indexing (and it can't, since MATLAB
won't
$let you have indexes below 1)

$another way to look at the color table is like this (don't worry about
how

$to make this graph)

figure

stem3 (color table 8bit)

set(gca, 'XTick',1:3);

set(gca, 'YTick',[1,65,129,193,256]);

set(gca, 'YTickLabel',[" 0';' 64';'128"';'192"';'255"']1);

set(gca, 'zTick',[0,64,128,192,255]);

xlabel('red = 1, green = 2, blue = 3")
ylabel('color index')

zlabel('value')

title('Another way to see the color table')

$% Even smaller bitmaps

$You can extend what we did for 8-bit bitmaps to even more compressed
$forms, such as this 4-bit bitmap. Now we only have 16 colors to work
with

$though, and our image quality is significantly reduced:

[picture color table] = imread('square256x192.bmp');

figure

image(picture)

colormap(color_table)

colorbar

title('4 bit bitmap displayed using color table')

$% Writing data to coe files for putting them on the fpga

$You can instantiate BRAMs to take their values from a file you feed
them

$when you flash the FPGA. You can use this technique to send them
$colortables, image data, anything. Here's how to send the red
component

$of the color table of the last example

red = color_table(:,3); ¢grabs the red part of the
colortable

scaled_data = red*255; $scales the floats back to 0-255
rounded data = round(pixel columns); %rounds them down

data = dec2bin(rounded data,8); $convert the binary data to 8 bit
binary #s

%open a file

output name = 'square.coe';

file = fopen(output name, 'w');

gwrite the header info
fprintf(file, 'memory initialization radix=2;\n'");
fprintf(file, 'memory initialization vector=\n');
fclose(file);

$put commas in the data

23

rowxcolumn = size(data);
rows = rowxcolumn(1l);
columns = rowxcolumn(2);
output = data;
for i = 1l:(rows-1)
output(i, (columns+1)) = ',';
end
output(rows, (columns+l)) = ';';

$append the numeric values to the file
dlmwrite(output name,output, '-append', 'delimiter','', 'newline', 'pc');

%You're done!

oo

$ Turning a 2D image into a 1D memory array
$The code above is all well and good for the color table, since it's 1-

(well, at least you can break it into 3 1-D arrays). But what about a
D
$array? We need to turn it into a 1-D array:

N oo O

picture size = size(picture); $figure out how big the image is
num_rows = picture size(l);
num_columns = picture size(2);

pixel columns = zeros(picture size(l)*picture size(2),1, 'uint8');
¢pre-allocate a space for a new column vector

for r = l:num rows
for ¢ = l:num columns
pixel columns((r-1)*num columns+c) = picture(r,c); $pixel# =
(y*numColumns)+x
end
end

$so now pixel columns is a column vector of the pixel values in the
image

$just to make sure that we're doing things correctly
regen picture = zeros(num_rows,num columns, 'uint8');
for r = l:num rows
for ¢ = l:num columns
regen picture(r,c) = pixel columns((r-1)*num columns+c,l);
end
end

figure

subplot(121)
image(picture)

axis square
colormap(color_ table)
colorbar

title('Original Picture')

subplot(122)
image(regen picture)
axis square
colormap(color_ table)

24

colorbar
title('Regenerated Picture')

25

Appendix C: Waveform Images used by Image ROM

The following four images were generated with the first MATLAB script from
Appendix A, then used as the inputs for the second MATLAB script from the same

Appendix to create coe files. These coe files were used by the Image ROM module to
display the images on the monitor.

Figure 7: Bitmap image of sine wave, used on display

Figure 8: Bitmap image of ramp wave, used on display

26

Figure 9: Bitmap image of triangle wave, used on display

Figure 10: Bitmap image of square wave, used on display

27

Appendix D: Analog Devices AD7224 Data Sheet

28

ANALOG
DEVICES

LC*MOS
8-Bit DAC with Qutput Amplifiers

AD7224

FEATURES

8-Bit CMOS DAC with Output Amplifiers
Operates with Single or Dual Supplies
Low Total Unadjusted Error:

Less Than 1 LSB Over Temperature
Extended Temperature Range Operation
rP-Compatible with Double Buffered Inputs
Standard 18-Pin DIPs, and 20-Terminal Surface

Mount Package and SOIC Package

GENERAL DESCRIPTION

The AD7224 is a precision 8-bit voltage-output, digital-to-
analog converter, with output amplifier and double buffered
interface logic on a monolithic CMOS chip. No external trims
are required to achieve full specified performance for the part.

The double buffered interface logic consists of two 8-bit regis-
ters—an input register and a DAC register. Only the data held in
the DAC registers determines the analog output of the con-
verter. The double buffering allows simultaneous update in a
system containing multiple AD7224s. Both registers may be
made transparent under control of three external lines, CS, WR
and LDAC. With both registers transparent, the RESET line
functions like a zero override; a useful function for system cali-
bration cycles. All logic inputs are TTL and CMOS (5 V) level
compatible and the control logic is speed compatible with most
8-bit microprocessors.

Specified performance is guaranteed for input reference voltages
from +2 V to +12.5 V when using dual supplies. The part is also
specified for single supply operation using a reference of +10 V.

The output amplifier is capable of developing +10 V across a

2 kQ load.

The AD7224 is fabricated in an all ion-implanted high speed
Linear Compatible CMOS (LC?MOS) process which has been
specifically developed to allow high speed digital logic circuits
and precision analog circuits to be integrated on the same chip.

REV.B

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

Vier Voo
MmsB N [N
DATA INPUT DAC
@Bm} ! Jneclsrea REGISTER| DAC) Vour
LsB —/
cs |
oS cae
LDAC AD7224
RESET
e\ i\ e\
\ \y U/
Vss AGND DGND

PRODUCT HIGHLIGHTS

1. DAC and Amplifier on CMOS Chip
The single-chip design of the 8-bit DAC and output amplifier
is inherently more reliable than multi-chip designs. CMOS
fabrication means low power consumption (35 mW typical
with single supply).

2. Low Total Unadjusted Error
The fabrication of the AD7224 on Analog Devices Linear
Compatible CMOS (LC2MOS) process coupled with a novel
DAC switch-pair arrangement, enables an excellent total un-
adjusted error of less than 1 LSB over the full operating tem-
perature range.

3. Single or Dual Supply Operation
The voltage-mode configuration of the AD7224 allows opera-
tion from a single power supply rail. The part can also be op-
erated with dual supplies giving enhanced performance for
some parameters.

4. Versatile Interface Logic
The high speed logic allows direct interfacing to most micro-
processors. Additionally, the double buffered interface en-
ables simultaneous update of the AD7224 in multiple DAC
systems. The part also features a zero override function.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703

AD7224—SPECIFICATIONS

DUAL SUPPLY

(Vop = 11.4 V10 16.5V, Vss = =5V = 10%; AGND = DGND = O V; Vger = +2 V to (Vpp — 4 V)* unless otherwise noted.
All specifications Ty to Tyax unless otherwise noted.)

K,B, T L,C,U
Parameter Versions? Versions? Units Conditions/Comments
STATIC PERFORMANCE
Resolution 8 8 Bits
Total Unadjusted Error +2 +1 LSB max Vpp=+15V + 5%, Vrgr = +10 V
Relative Accuracy +1 +1/2 LSB max
Differential Nonlinearity +1 +1 LSB max Guaranteed Monotonic
Full-Scale Error +3/2 +1 LSB max
Full-Scale Temperature Coefficient +20 +20 ppm/°C max Vop =14V 1t016.5V, Vgge = +10 V
Zero Code Error +30 +20 mV max
Zero Code Error Temperature Coefficient +50 +30 W/°C typ

REFERENCE INPUT
Voltage Range
Input Resistance

2to (VDD - 4)
8

2to (VDD - 4)
8

V min to V max
kQ min

Input Capacitance® 100 100 pF max Occurs when DAC is loaded with all 1s.
DIGITAL INPUTS
Input High Voltage, Vinn 2.4 2.4 V min
Input Low Voltage, Vin. 0.8 0.8 V max
Input Leakage Current +1 +1 HA max Vin=0VorVpp
Input Capacitance® 8 8 pF max
Input Coding Binary Binary
DYNAMIC PERFORMANCE
Voltage Output Slew Rate® 2.5 25 V/ps min
Voltage Output Settling Time®
Positive Full-Scale Change 5 5 Hs max Vger = +10 V; Settling Time to £1/2 LSB
Negative Full-Scale Change 7 7 Hs max Vger = +10 V; Settling Time to £1/2 LSB
Digital Feedthrough 50 50 nV secs typ Veee =0V
Minimum Load Resistance 2 2 kQ min Vour =+10V
POWER SUPPLIES
Vpp Range 11.4/16.5 11.4/16.5 V min/V max For Specified Performance
Vss Range 4.5/5.5 4.5/5.5 V min/V max For Specified Performance
IDD
@ 25°C 4 4 mA max Outputs Unloaded; V\y = VinL OF VinH
Tain 10 Tpmax 6 6 mA max Outputs Unloaded; V\y = VinL OF VinH
ISS
@ 25°C 3 3 mA max Outputs Unloaded; V\y = VinL OF VinH
Twvin to Tyax 5 5 mA max Outputs Unloaded; V\y = VinL OF VinH
SWITCHING CHARACTERISTICS®*
5]
@ 25°C 90 90 ns min Chip Select/Load DAC Pulse Width
TMIN to TMAX 90 90 ns min
7]
@ 25°C 90 90 ns min Write/Reset Pulse Width
TMIN to TMAX 90 90 ns min
]
@ 25°C 0 0 ns min Chip Select/Load DAC to Write Setup Time
Twmin t0 Tmax 0 0 ns min
7
@ 25°C 0 0 ns min Chip Select/Load DAC to Write Hold Time
Twmin t0 Tmax 0 0 ns min
ts
@ 25°C 90 90 ns min Data Valid to Write Setup Time
TMIN to TMAX 90 90 ns min
ts
@ 25°C 10 10 ns min Data Valid to Write Hold Time
TMIN to TMAX 10 10 ns min
NOTES

IMaximum possible reference voltage.
2Temperature ranges are as follows:
K, L Versions: -40°C to +85°C

B, C Versions: -40°C to +85°C

T, U Versions: -55°C to +125°C

3Sample Tested at 25°C by Product Assurance to ensure compliance.
4Switching characteristics apply for single and dual supply operation.

Specifications subject to change without notice.

REV. B

AD7224

(Vop = +15V = 5%; Vss = AGND = DGND = 0 V; Vger = +10 V! unless otherwise noted.

Sl NGLE SUPPLY All specifications Ty to Tyax unless otherwise noted.)

K,B, T L,C,U
Parameter Versions? Versions? Units Conditions/Comments
STATIC PERFORMANCE
Resolution 8 8 Bits
Total Unadjusted Error +2 +2 LSB max
Differential Nonlinearity +1 +1 LSB max Guaranteed Monotonic
REFERENCE INPUT
Input Resistance 8 8 kQ min
Input Capacitance® 100 100 pF max Occurs when DAC is loaded with all 1s.
DIGITAL INPUTS
Input High Voltage, Vinn 2.4 2.4 V min
Input Low Voltage, VN 0.8 0.8 V max
Input Leakage Current +1 +1 HA max Vin=0VorVpp
Input Capacitance® 8 8 pF max
Input Coding Binary Binary
DYNAMIC PERFORMANCE
Voltage Output Slew Rate* 2 2 V/ps min
Voltage Output Settling Time*
Positive Full-Scale Change 5 5 HS max Settling Time to +1/2 LSB
Negative Full-Scale Change 20 20 HsS max Settling Time to +1/2 LSB
Digital Feedthrough® 50 50 nV secs typ Vregr =0V
Minimum Load Resistance 2 2 kQ min Vour =+10V
POWER SUPPLIES
Vpp Range 14.25/15.75 14.25/15.75 V min/V max For Specified Performance
IDD
@ 25°C 4 4 mA max Outputs Unloaded; V\y = VL OF VinH
Tain 10 Tpmax 6 6 mA max Outputs Unloaded; V iy = VinL OF VinH
SWITCHING CHARACTERISTICS®*
5]
@ 25°C 90 90 ns min Chip Select/Load DAC Pulse Width
Twmin t0 Tmax 90 90 ns min
7}
@ 25°C 90 90 ns min Write/Reset Pulse Width
Twmin t0 Tmax 90 90 ns min
{3
@ 25°C 0 0 ns min Chip Select/Load DAC to Write Setup Time
Twmin t0 Tmax 0 0 ns min
{4
@ 25°C 0 0 ns min Chip Select/Load DAC to Write Hold Time
Twmin t0 Tmax 0 0 ns min
ts
@ 25°C 90 90 ns min Data Valid to Write Setup Time
TMIN to TMAX 90 90 ns min
ts
@ 25°C 10 10 ns min Data Valid to Write Hold Time
Twmin t0 Tmax 10 10 ns min
NOTES

IMaximum possible reference voltage.

2Temperature ranges are as follows:
AD7224KN, LN: 0°C to +70°C
AD7224BQ, CQ: -25°C to +85°C

AD7224TD, UD: -55°C to +125°C

3See Terminology.

“Sample tested at 25°C by Product Assurance to ensure compliance.
Specifications subject to change without notice.

REV. B

AD7224

ABSOLUTE MAXIMUM RATINGS! ORDERING GUIDE

VoptoAGND -0.3V, +17V
VoptODGND ..ot -0.3V, +17V Total
VoD O VSS « v eee e e e 0.3V, +24V . Temperature Unadjusted Paclfagze
AGNDtODGND ..o -03V,Vpp Model Range Error (LSB) | Option
Digital Input Voltage to DGND -0.3V,Vpp+0.3V AD7224KN _40°C to +85°C | +2 max N-18
xREF tto i%’;‘\]%z -------------------- 03V, VDDV+ 05’ V' AD7224LN | -40°C to +85°C | +1 max N-18
our IO AGIND™ .o PO $s» VDD AD7224KP -40°C to +85°C +2 max P-20A
Power Dissipation (Any Package) to +75°C 450 mW AD7224LP _40°C to +85°C | +1 max P-20A
o Der?_tes zjllPove 75‘;C by ..o 6 mw/°C AD7224KR-1 | —-40°C to +85°C | +2 max R-20
perating | emperature . . AD7224LR-1 | -40°C to +85°C | +1 max R-20
Commercial (K, L Versions) -40°C to +85°C AD7224KR-18 | —-40°C to +85°C | +2 max R-18
Industrial (B, C Versions) -40°C to +85°C AD7224LR-18 | —40°C to +85°C | +1 max R-18
Extended (T, U Versions) -55°C to +125°C AD7224BQ _40°C to +85°C | +2 max 0-18
Storage Temperature -65°C to +150°C AD7224CQ _40°C to +85°C +1 max Q-18
Lead Temperature (Soldering, 10 secs) +300°C AD7224TQ _55°C to +125°C | +2 max Q-18
NOTES AD7224UQ -55°C to +125°C | +1 max Q-18
IStresses above those listed under “Absolute Maximum Ratings” may cause AD7224TE _55°C to +125°C | +2 max E-20A
permanent damage to the device. This is a stress rating only and functional o o N
operation of the device at these or any other conditions above those indicated in AD7224UE -55°C 10 +125°C | £1 max E-20A
the operational sections of this specification is not implied. Exposure to absolute NOTES

maximum rating conditions for extended periods may affect device reliability.
2The outputs may be shorted to AGND provided that the power dissipation of the
package is not exceeded. Typically short circuit current to AGND is 60 mA.

CAUTION

1To order MIL-STD-883 processed parts, add /883B to part number.
Contact your local sales office for military data sheet.

2E = Leadless Ceramic Chip Carrier; N = Plastic DIP;
P = Plastic Leaded Chip Carrier; Q = Cerdip; R = SOIC.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily

accumulate on the human body and test equipment and can discharge without detection.
Although the AD7224 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!
W“@

ESD SENSITIVE DEVICE

PIN CONFIGURATIONS

DIP and SOIC (SOIC) (SOIC)
Y
Vss E L E Vbp Vss E o E Vbp Vss E [} E Vpp
Vour [2] [17] RESET Vour [2] 17] RESET Vour [2] [19] RESET
veer [3] [16] Loac Veer [8] g P PAC Veer [3] 18] toac
aeND [41 Ap7224 18] WR oo [4] TRy 8] wR acno [4] AD7224 |17] we
DGND [5| ToPviEwW [14] CS DGND [5| ToPviEW [14] CS DGND [5 | l16] cs
(Not to Scale) (Not to Scale) TOP VIEW
(MsB) DB7 [6 13] DBO (LSB) (vsg) DB7 [6 | 23] pBO (LSE) MsB) 087 [6] (Not to Scale) [15] DBO (LSB)
DB6 [7| 12] pB1 DB6 [7 | [12] pB1 DB6 [7] 14] pB1
DB5 [8] 11] pB2 DB5 [8] 1] pB2 DB5 [38] [13] pB2
DB4 [9] 10] DB3 DB4 [9] [10] bB3 pB4 [9] [12] pB3
v [) e
LCCC NC = NO CONNECT
o
-
3 8o 8|4
> > z2 >l
3 2 12019
Veer 4 0 s LDAC
AGND 5 E AD7224 17 WR AD7224 WR
DGND 6 TOP VIEW 16 Cs TOP VIEW cs
(MSB) DB7 7 (Not to Scale) 15 DBO (LSB) (Not to Scale) DBO (LSB)
DB6 8 14 DB1 DB1
9 10 11 12 13
Lt O ®m o
0 0 zZ O o
a o a o

NC = NO CONNECT

NC = NO CONNECT

REV.

AD7224

TERMINOLOGY

TOTAL UNADJUSTED ERROR

Total Unadjusted Error is a comprehensive specification which
includes full-scale error, relative accuracy and zero code error.
Maximum output voltage is Vger — 1 LSB (ideal), where 1 LSB
(ideal) is Vrer/256. The LSB size will vary over the Vger range.
Hence the zero code error, relative to the LSB size, will increase
as Vger decreases. Accordingly, the total unadjusted error,
which includes the zero code error, will also vary in terms of
LSBs over the Vger range. As a result, total unadjusted error is
specified for a fixed reference voltage of +10 V.

RELATIVE ACCURACY

Relative Accuracy or endpoint nonlinearity is a measure of the
maximum deviation from a straight line passing through the
endpoints of the DAC transfer function. It is measured after al-
lowing for zero code error and full-scale error and is normally
expressed in LSBs or as a percentage of full-scale reading.

DIFFERENTIAL NONLINEARITY

Differential Nonlinearity is the difference between the measured
change and the ideal 1 LSB change between any two adjacent
codes. A specified differential nonlinearity of £1 LSB max over
the operating temperature range ensures monotonicity.

DIGITAL FEEDTHROUGH

Digital Feedthrough is the glitch impulse transferred to the out-
put due to a change in the digital input code. It is specified in
nV secs and is measured at Vgegr = 0 V.

FULL-SCALE ERROR
Full-Scale Error is defined as:
Measured Value — Zero Code Error - Ideal Value

CIRCUIT INFORMATION

D/A SECTION

The AD7224 contains an 8-bit voltage-mode digital-to-analog
converter. The output voltage from the converter has the same
polarity as the reference voltage, allowing single supply opera-
tion. A novel DAC switch pair arrangement on the AD7224 al-
lows a reference voltage range from +2 V to +12.5 V.

The DAC consists of a highly stable, thin-film, R-2R ladder and
eight high speed NMOS single pole, double-throw switches.
The simplified circuit diagram for this DAC is shown in

Figure 1.

—oVour

DBO
T SHOWN FOR ALL 1's ON DAC

AGND ©- —¢ * *

Figure 1. D/A Simplified Circuit Diagram

The input impedance at the Vgee pin is code dependent and can
vary from 8 kQ minimum to infinity. The lowest input imped-
ance occurs when the DAC is loaded with the digital code
01010101. Therefore, it is important that the reference presents
a low output impedance under changing load conditions. The
nodal capacitance at the reference terminals is also code depen-
dent and typically varies from 25 pF to 50 pF.

The Vour pin can be considered as a digitally programmable
voltage source with an output voltage of:

REV. B

Vour =D * Vger

where D is a fractional representation of the digital input code
and can vary from 0 to 255/256.

OP-AMP SECTION

The voltage-mode D/A converter output is buffered by a unity
gain noninverting CMOS amplifier. This buffer amplifier is
capable of developing +10 V across a 2 kQ load and can drive
capacitive loads of 3300 pF.

The AD7224 can be operated single or dual supply resulting in
different performance in some parameters from the output am-
plifier. In single supply operation (Vss = 0 V = AGND) the sink
capability of the amplifier, which is normally 400 pA, is reduced
as the output voltage nears AGND. The full sink capability of
400 pA is maintained over the full output voltage range by tying
Vss to =5 V. This is indicated in Figure 2.

500 |
/vss =-5v
400
< 300
i vy =0V Vop = +15V
£ T, =25°C
£ 200
100
0
0 2 4 6 8 10
Vouyr — Volts

Figure 2. Variation of Is; with Voyr

Settling-time for negative-going output signals approaching
AGND is similarly affected by Vss. Negative-going settling-time
for single supply operation is longer than for dual supply opera-
tion. Positive-going settling-time is not affected by Vss.

Additionally, the negative Vss gives more headroom to the out-
put amplifier which results in better zero code performance and
improved slew-rate at the output, than can be obtained in the
single supply mode.

DIGITAL SECTION

The AD7224 digital inputs are compatible with either TTL or
5V CMOS levels. All logic inputs are static-protected MOS
gates with typical input currents of less than 1 nA. Internal in-
put protection is achieved by an on-chip distributed diode be-
tween DGND and each MOS gate. To minimize power supply
currents, it is recommended that the digital input voltages be
driven as close to the supply rails (Vpp and DGND) as practi-
cally possible.

INTERFACE LOGIC INFORMATION

Table I shows the truth table for AD7224 operation. The part
contains two registers, an input register and a DAC register. CS
and WR control the loading of the input register while LDAC
and WR control the transfer of information from the input regis-
ter to the DAC register. Only the data held in the DAC register
will determine the analog output of the converter.

All control signals are level-triggered and therefore either or
both registers may be made transparent; the input register by
keeping CS and WR “LOW?”, the DAC register by keeping
LDAC @\W_R “LOW?”. Input data is latched on the rising
edge of WR.

—5—

AD7224

Table I. AD7224 Truth Table

Function

2
!
-
=
o
»>
@]

Both Registers are Transparent
Both Registers are Latched

Both Registers are Latched

Input Register Transparent

Input Register Latched

DAC Register Transparent

DAC Register Latched

Both Registers Loaded

With All Zeros

Both Register Latched With All Zeros
and Output Remains at Zero

Both Registers are Transparent and
Output Follows Input Data

XTI ITIIXTnr
XIIrrIXr g‘

I

S % T IIIIIIT ﬁ
I

mr I XWX I g‘
=

-

H = High State, L = Low State, X = Don’t Care.

All control inputs are level triggered.

The contents of both registers are reset by a low level on the
RESET line. With both registers transparent, the RESET line
functions like a zero override with the output brought to 0 V for
the duration of the RESET pulse. If both registers are latched, a
“LOW?” pulse on RESET will latch all Os into the registers and
the output remains at 0 V after the RESET line has returned
“HIGH”. The RESET line can be used to ensure power-up to
0V on the AD7224 output and is also useful, when used as a
zero override, in system calibration cycles. Figure 3 shows the
input control logic for the AD7224.

LDAC 5 DAC
. o REGISTER
WR 49 ©

— > INPUT
cs Lo REGISTER
RESET
INPUT DATA

Figure 3. Input Control Logic

e
T
R <ty

t — P t
N 3P 4
LDAC tl
lg
» ("l [
DATA DATA
IN VALID

NOTES:
1. ALL INPUT SIGNAL RISE AND FALL TIMES MEASURED FROM 10% TO 90% OF V.
t, =t; = 20ns OVER Vp, RANGE

2. TIMING MEASUREMENT REFERENCE LEVEL IS

e t, >

Ving + Vine
Figure 4. Write Cycle Timing Diagram

SPECIFICATION RANGES

For the DAC to maintain specified accuracy, the reference volt-
age must be at least 4 V below the Vpp power supply voltage.
This voltage differential is required for correct generation of bias
voltages for the DAC switches.

With dual supply operation, the AD7224 has an extended Vpp
range from +12 V + 5% to +15 V £ 10% (i.e., from +11.4 V to
+16.5 V). Operation is also specified for a single Vpp power
supply of +15 V £ 5%.

Performance is specified over a wide range of reference voltages
from 2 V to (Vpp — 4 V) with dual supplies. This allows a range
of standard reference generators to be used such as the AD580,

a +2.5 V bandgap reference and the AD584, a precision +10 V

reference. Note that in order to achieve an output voltage range
of 0 V to +10 V, a nominal +15 V + 5% power supply voltage is
required by the AD7224.

GROUND MANAGEMENT

AC or transient voltages between AGND and DGND can cause
noise at the analog output. This is especially true in micropro-
cessor systems where digital noise is prevalent. The simplest
method of ensuring that voltages at AGND and DGND are
equal is to tie AGND and DGND together at the AD7224. In
more complex systems where the AGND and DGND intertie is
on the backplane, it is recommended that two diodes be con-
nected in inverse parallel between the AD7224 AGND and
DGND pins (IN914 or equivalent).

Applying the AD7224

UNIPOLAR OUTPUT OPERATION

This is the basic mode of operation for the AD7224, with the
output voltage having the same positive polarity as Vgeg. The
AD7224 can be operated single supply (Vss = AGND) or with
positive/negative supplies (see op-amp section which outlines
the advantages of having negative Vss). Connections for the uni-
polar output operation are shown in Figure 5. The voltage at
Vrer Must never be negative with respect to DGND. Failure to
observe this precaution may cause parasitic transistor action and
possible device destruction. The code table for unipolar output
operation is shown in Table II.

VREF VDD
0] O
DB7 o T -
DATA
(8 BIT) =
= DAC) Vour
WR
LDAC AD7224
RESET

e N
\J
Veg AGNDY_@E\JD

Figure 5. Unipolar Output Circuit

Table I11. Unipolar Code Table

DAC Register Contents
MSB LSB Analog Output
55
1111 1111 +VREF%§
29
1000 0001 +VREF%§§
1280_ VvV
1000 0000 WV rer Coelt o
27
0111 1111 +VREF@§Q
1
0000 0001 +VREF@Q§Q
0000 0000 oV

Note: 1 LSB =(VREF)(278)=VREF %Q

REV. B

AD7224

BIPOLAR OUTPUT OPERATION

The AD7224 can be configured to provide bipolar output op-

eration using one external amplifier and two resistors. Figure 6
shows a circuit used to implement offset binary coding. In this

case
Vo = Q"‘% '(D VREF)‘@%Q'(VREF)
With R1 = R2
Vo=(2D-1)*Vger

where D is a fractional representation of the digital word in
the DAC register.

Mismatch between R1 and R2 causes gain and offset errors;
therefore, these resistors must match and track over tempera-
ture. Once again, the AD7224 can be operated in single supply
or from positive/negative supplies. Table 111 shows the digital
code versus output voltage relationship for the circuit of Figure
6 with R1 = R2.

+15V

M)
N\
Vour
DAC)
Vour
+15V

AD7224

I I
9,
Vs AGND DGND

Figure 6. Bipolar Output Circuit

R1, R2 = 10kQ +0.1%

Table I11. Bipolar (Offset Binary) Code Table

DAC Register Contents

MSB LSB Analog Output
1111 1111 +VREF%§
1000 0001 +VREF§1%§
1000 0000 Y
0111 1111 —VREF%Q
0000 0001 —VREF%@
0000 0000 —VREF%QLVREF
AGND BIAS

The AD7224 AGND pin can be biased above system GND
(AD7224 DGND) to provide an offset “zero” analog output
voltage level. Figure 7 shows a circuit configuration to achieve
this. The output voltage, Vour, is expressed as:

Vour = Vaias + D+ (Vin)
where D is a fractional representation of the digital word in
DAC register and can vary from 0 to 255/256.

For a given V|, increasing AGND above system GND will re-
duce the effective Vpp—Vree Which must be at least 4 V to en-
sure specified operation. Note that Vpp and Vss for the AD7224
must be referenced to DGND.

REV. B

\
A a— N

T 9,
AGND Vour
Vi) DAC >—o0
Veins AD7224
O O
Vs~ N’ DGND o

Figure 7. AGND Bias Circuit
MICROPROCESSOR INTERFACE

A15 S
8 ADDRESS BUS
8085A ADDRESS PP s
5088 DECODE [LDAC
o AD7224*
WR P WR
LATCH
ALE N DB7
ry DBO
AD?
ADDRESS DATA BUS S

*LINEAR CIRCUITRY OMITTED FOR CLARITY

Figure 8. AD7224 to 8085A/8088 Interface

A15
ADDRESS BUS S
A0 10
6809 _
6502 ADDRESS [o—®|cs
DECODE
_ _
R o = o—| Loac
AD7224*

EOR @ —|>o—> WR
DB7
™ DBO

D7

o DATA BUS S

*LINEAR CIRCUITRY OMITTED FOR CLARITY

Figure 9. AD7224 to 6809/6502 Interface

A5
ADDRESS BUS S
A0 1T
p—»|cs
280 ADDRESS —
DECODE ~ [P——|LDAC
AD7224*
WR > WR
—N DB7
™ DBO
o7
DATA BUS S
Do

*LINEAR CIRCUITRY OMITTED FOR CLARITY

Figure 10. AD7224 to Z-80 Interface

A23
ADDRESS BUS S
Al J I,
68008 ADDRESS > cs
DECODE | | e
RIW] »| WR
BTACK _G:' AD7224*
—N os7
DBO
D7 [
o DATA BUS S

*LINEAR CIRCUITRY OMITTED FOR CLARITY

Figure 11. AD7224 to 68008 Interface

—7-

AD7224

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

18-Pin Plastic (Suffix N)

IAVAVAVAVAYAYAVAWAY

0.26 (6.61)

0.24 (6.10)

VVVVVVVVV

0.91 (21 12) 0.306 (7.78)
i e zzen sn '1 0294 7.47) 1
T 014 (356)
018 (4581 oAz 3051
0.175 (4 A5)
o 02081 (z 051 - %
0.12 {0.305)
0.065 11.66) 0. nz (o 508) o 105 (2. 67) 0.008 (0.203)
0.045 (1. '5) 0.015 {0.381) 0.095 (2.42)
”OT(S
. LEAD NO. 1 lDEN“FIEB IV DOT OR NOTCH.
2 CERAMIC Dil LL BE EITHER GOLD OR TIN PLATED IN
ACCOHDANCE W"H MI.»M -38510 REQUIREMENTS.
18-Pin Ceramic (Suffix D)
0.3 (7.62)
0.28 (7.12)
-
e =
091 (23.12) 0.12 (3.08)
0.89 (22.61) 0.06 {1.53)
—
0.17 (4.32)
MAX)
I 2.175 (4451 0.012 (0.305)
0.125 (3.18) 0.008 (0.203)
0.06 (1.53) 0.02 (0.508) 0.105 (2.67) 0.306 (7.78}
0.045 {1.15) 0.015 (0.381) 0.095 (2.42) 0.294 (7.47)
NOTES:
1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH.
2. CERAMIC DIP LEADS WILL BE EITHER GOLD OR TIN PLATED IN
ACCORDANCE WITH MiL-M-38510 REQUIREMENTS.
PLCC Package
0.048 (1.21) 0.180 (4.57)
0.165 (4.19
0.042 (1.07) 0.056 (L.42) o (4.19)
- 0.042 (1.07) _>| 0025 (0.63)
¥ — 0.015 (0.38)
0.048 (1.21) N s e s s
s 3 o 19
0.042 (1.07) TI: . NI M j_ 0.021 (0.53)
IDENTIFIER l— T 0013033
0 0 0.330 (8.38)
0.050 i[TOP VIEW N 0.290 (7.37)
@an 0 5 I— _t 0.032 (0.81)
BSC T 0.026 (0.66)
|~ _F
Os 14 (] |
o 13 i}
0.020 l S =) 0.040 (1.01)
0.50 Tt}
(050) 0 0356(0.04) > |<— 3075 0.69)
0350 8.89) °

-

0.395 (10.02)
0385 (9.78) OO

0.110 (2.79)
0.085 (2.16)

LCCC Package

0.200 (5.08)
BSC
0.100 0.015 (0.38)
—>‘ (2.54) MIN
BSC A

Yoo (0.71)
T 0.022 (0.56)

E-20A
0075
0100 (2.54) Qe
0.064 (1 53) P
0.095 (2.41)
0.358 (9.09) T TR0
0342 (8.69)
sQ ?93:)28) 0.011 (0.28)
MAX 0,007 (0.18)
SO RTYP
0075
L8 wsp § X
= RE RINININ
0088 (2.24) 0.055(1.40)
0.054 (1.37) 0.045 (1.14)

18-Pin Cerdip (Suffix Q)

FATATATETATATATAY

I——n.sso (24.13) MA)(——'

thea

0.320 (8.128)
0.290 (7.366}

0.060 (1.524)
0.015 {0380 0.180 (4.572)
0140 (3.556)
0.015 (0.381)
B $.008 (0.203)
o] e sono () 0490 010,160 -
0.330 (8.
0.110 (2.794 0.23 (0.584) 18.382)
0.090 (2.285) 2.015 (0.381)
NOTES:
1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH.
2. CERAMIC DIP LEADS WILL BE EITHI OLD OR TIN PLATED IN

ER G
ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.

18-Lead SOIC

(R-18)

AAAAAAAAR

1

9

. B

IR

0.1043 (2.65)

0.4625 (11.75)

0.4469 (11.35)

\

0.2992 (7.60)
0.2914 (7.40)

0.0926 (2.35)

0.4193 (10.65)
0.3937 (10.00)

0.0291 (0.74)

o
0.0098 (0.25) * *°

0.0118 (0.30)
0.0040 (0.10)

- e -

0.0500 0.0192 (0.49)
(1.27) 50138 (035,
z20 0.0138 (0.35)

\
A]
;H_f {:{ o 0.0500 (1.27) .1

0.0125 (0.32)
0.0091 (0.23)

20-Lead SOIC

PIN 1

=

0 0.0157 (0.40)

(R-20)
20 11 T
0.2992 (7.60)
02914 (7.40)
)
0.4193 (10.65)
03937 (10.00)
1 10
o
0.1043 (2.65)
05118 (13.00) 0.0926 (2.35) 0.0291 (0.74
0.4961 (12.60) 0‘0093 20'25; 4
VOO oo oom L L_———J
|<- ->H<') T 00500<127)_>| |<_
0.0118 (0.30) 0.0500 0.0192 (0.49) 0.0125 (0. 32) 0.0197 (0400
0.0040 (0.10) (égé) 0.0138 (0.35) 0.0091 (0.23)

REV. B

C836a-10-10/84

PRINTED IN U.S.A.

