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1. Overview

On the receiver side of communication channel, decision feedback equalizer (DFE) has been
widely used to cancel inter-symbol interference (ISI). In most designs, the DFE training algorithm
assumes that the training-sequences are known or purely random. However, the generation mechanism
of training sequence is often biased; in particular, the standard SATA training algorithm generates more
zeros than ones. The training sequence heavily influences the steady state equalizer peformance.
Training on an unexpected, or otherwise biased patterns, couldcause unnecessary error. In the industry,
it is most cost effective to design a generic DFE for various applications. However, because of the
traditional standards set for these different applications, the nature of the training sequence may be
different.

In this project, we will program the FPGA to act as a DFE with mean squared error (MSE) cost
and added features to account for biased training-sequences. We want to design a blind DFE that can
hold simple compare-and-store data that will be able to adjust for things like: an unbalances number of
0’s to 1’s and other non-random behavior in the training sequence, and adjust for these such that our
DFE will be able to minimize bit error. Given some input image, distorted though an ISI channel, we
display the received data , with DFE or bypassing DFE, on a screen through VGA to demonstrate the
effectiveness of the designed DFE.

2. Background and Motivation

The DFE has long been a staple of receiver technology and have gone through many different
incarnations. Yan Huang became interested in receiver technology while interning this summer at
Marvell Semiconductors. As an intern in the testing team for the Central Analog Group, | tested various
chips which implemented different receiver architectures.

During data transmission, the signal is susceptible to intersymbol interference (ISI) resulting
from linear and nonlinear fiber effects. One method of dealing with this is to use a linear feed-forward
equalizer (FFE) combined with a decision-feedback equalizer (DFE). This process can be most clearly
views using an eye diagram. We can see that without equalization, the “eye” is almost closed. The DFE
has the function of expanding the eye. By calculating the effect of a symbol on subsequent symbols, the
DFE can widen the eye, so the data stream can be more easily quantized into zeros and ones. The DFE
can do this because intersymbol interference tends to cause subsequent symbols to skew toward earlier
symbols, e.g. the voltage of a 0 after a 1 is higher than a 0 after a 0. The DFE identifies how much
deviation there is and deducts that from the signal, restoring its level.

In this project I'd like to improve upon the traditional approach in several ways. Firstly, in my
experience as a tester, I've noticed that the same DFE can pass the bar on one transmission protocol and
fail on another. This is partly due to the strictness of the protocol, partly to do with the training
sequence A blind DFE assumes the training pattern is random. If the training pattern is not random, the
DFE can train incorrectly, and cause tap errors. This error is exacerbated when there are more taps. This
is the main problem we’d like to address.

Training patterns fall into several types. Firstly, the best is “purely random” sequences like
Pseudorandom bit sequences (PRBS). Blind DFEs are designed to train on such sequences. However
there are other training sequences, that are not unbiased. The SATA training sequence is generated in
such a way that 1’s and O’s are not produced with the same probability, there is a 51-49 split, rather
than 50-50. There are other sequences that overcompensate and create the same number of 0’s to 1’s,
so that after a 0, there is a much higher chance of getting a 1 than another 0. The construct of a




traditional blind DFE depends on there being a balanced number of 0’s to 1’s, and a balance number of
transitions to non-transitions. These effects are not noticeable with two taps, but become troublesome
with five or six taps. Because later DFE taps train according to earlier DFE taps, a mis-placed tap value
can cause -undesired effects down the line.

As new applications always demand higher transmission speeds and data bandwidth , ISI will
become a more serious problem, making additional taps necessary for detailed compensation. It could
be argued that once could specifically build different DFEs for different channels ad different protocols
(i.e. different traing sequences). However, that is an unviable industrial solution. Thus, we’d like design
a generic DFE that can adapt to various channels and protocols.

3. Technical Approach

Channel

We will use two different approaches to emulate channel distortion. The first approach is to
simulate the ISI by filtering. The second approach is to send the data out through a physical channel,
specifically a 4-feet ribbon cable, and receive the data back at the other end.

Input Interface
If we distort data through a physical channel, we need a high-speed analog-to-digital input

interface. The intended throughput of this decision-feedback equalizer is 10Mbps. The input signal to
the DFE is digital signals distorted by an ISI channel. Because we are doing the equalization digitally,
each distorted input sample from the ISI channel must be quantized. As the audio ADC onboard at tens
of kilohertz is too slow for the input interface, we propose to use a sigma-delta ADC. Running the FPGA
input interface at 80MHz, we could oversample the 10MHz input signal by 8X; with a 1-bit DAC and
second order of noise shaping, we could achieve 5.4 effective bits of quantization. The FPGA processing
core receives 5-bit input samples at 10MHz from the sigma-delta ADC interface, equalizes the samples,
and outputs 1-bit signal at 10MHz.

Table 1: Effective quantization bits determined by oversampling factor and order of noise shaping [1]

Oversampling factor M
Quantizer

order p 4 8 16 32 64
0 1.0 1.5 20 2.5 3.0
1 2.2 37 5.1 6.6 8.1
2 29 54 79 104 129
3 35 70 105 140 175
4 4.1 85 130 175 220
5 46 100 155 210 265

[1] A. Oppenheim, R. Schafer. Discrete-time Signal Processing. Prentice-Hall 2009

Processing
The FPGA will be used to design the DFE as pictured below:
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As the signal comes in, the DFE will calculate each tap in turn. Since traditionally a DFE is partly
analog and partly digital, our implementation will differ from tradition, since we are using all digital
components.

The DAC input is stored into a register. Tap 1, has the special functionality of also finding the
“center point,” the 50% point where half the signals evaluate as 1 and half evaluate as 0. This point is
stored in a special register than will continue adjusting as the training continues. Then we start to
calculate tap 1. This process is identical for all other taps, except they have a delay time of 1 from the
previous tap. If the ISl is causing the signal high, we push it down, if the ISl is causing the signal low, we
give it a boost.

At the same time, we are also accumulating data on the training sequence. We will be using this
data to determine adjustments to the taps, so when we are through with training, we can multiple tap
value and adjustment and sum to the signal. The output signal is a composite of the adjustments made
to each data point at each tap.

Output

The output interface sends the data to the video DAC. The FPGA processing core sends 1-bit
signal at 10MHz to the output interface. The core produces data at 10Mbps. This is enough for a 300
pixel by 200 pixel video refreshing at 60 frames per second and 3 bit color per pixel.

300 x 200 pixel x 3 bit /pixel x 60/sec = 10.8 Mbit/sec

We will display 6 different frames of 300x200 video on the same screen.
1. Video based on data equalized by our proposed DFE;



oukwnN

4. Work Plan

Quantization histogram of data equalized by our proposed DFE;
Video based on data equalized by a standard 2-tap DFE;
Quantization histogram of data equalized by a standard 2-tap DFE;
Video based on unequalized data;

Quantization histogram of unequalized data.

We are planning on first designing the tap module, then connecting it up for a simple two tap
classic DFE. We will then expand to five taps, and add additional training compensating circuitry. If time
permits we will add an module in the equalizer to compensate for non-liner fiber effect.

Table 1: Division of tasks

Yan Zhipeng
Tap Sigma-Delta ADC at input interface
Compensator Video module

Decision block




