Image Browser and Manipulator

By Mary Knapp, Prannay Budhraja

Abstract

This device allows a user to browse and transform images. To browse we have describes a filmstrip interface
that lets the user scroll left or right to view images. Once an image is selected, it can be scaled or rotated
according to the user’s needs.

Table of Contents

OVEIVIBW ..ttt ettt e e e st e e te e e s s b e et e e s s s b e e e ee e s s abbeeee e s s srbaeeeeas 4
DT ol 1 o1 o] o FS PSP PPPRRRPPN: 4
IMIOTUIES ..ottt ettt e sb et e s bt e s san e e e sabe e e s sara e s n b e e s ee e snree s 4
D11 o] - 1Y RSPt 5
SVGA (M. KNGPP) «rttrrttiiiiiiiieiieeeieeeeeeeieeeeeeeseeseeaseeeiesatsssstssassssaeaseaaaaaaaseeaaesaasasseesessssessassnsssssssssssssseses 8
Buffer Reader (IMl. KNAPP) ..cocee ittt it iteae e e e e ee e e e e eeeeeeeeeesesssesaaatasaesbrs s asansbssbasbesssaeseaaaaaaaaeaeeens 8
BUTfer WIiter (IM. KNAPP) c.oce ettt ettt e e e e e e e e e e e e ee e e s e e et abaabbreaeasssssbasbesseaeseaaaaaaaaeaeeens 8

ZBT DIV (M. KKNGPP) - tttturtitrierreteeeeeeeeee et eee e e et e e et e et eee e et ee e e ttarearraareeeeeeeeeesaeareersaesaesaeeeeeeesnesnansssnsans 8
DEDOUNCE (M. KNAPP) c1ettttieeeiiiiieeee e eecitteeee e e e e ettt e e e e eitbateeeeeesaatbaeaeeesanbteaeeseeeesssntaaeesessnnseaeeeeeensnsens 8
Delay (parameterized) (M. KNAPP) coeeeecouiieeeeeiecciiee e ettt e e esttee e e e e sire e e e e e st eanbaaee s e e entaeeaeeennnnens 8
L1815 (o T4 1o O T T O T PSPPSR P PRI PPPPRP 8
IMABE MaNIPUIGLION ...t e e e e e e s e e s st e e eeeee s eebeeseeeeeeeeaeaeeaseeeseesannsansnssnnnns 9
ROTATION IMOTUIE ..ottt ettt e s s e e e e e e e s bt e e e e e e s samreeeeeeesaanees 9
SCAIE IMOTUIE ...ttt 10

T T=] 11T o= TP 11

[T=] oYU = g TN 12
1T o] 1A V2] =1 1 12
ROTATION IMOTUIE ...ttt e s et e e e s s e e e e s ssmreeee e e s sreneeeessannes 13
L60o] o Tol [V 11 To o PP PP T P OP PR PPRPPPP 13
LV =T 1 Lo PPNt 14
MOTUIE ZBTAIIVET ..ttt sttt e s ebe e e s senee e e sre e e s sebeeesnreeesans 14

(g gToTo [U1 1=l 0 g F=Y 4T U 16
module im_wWrite (INPUL VCIOCK, ..oooeeeiieiiee e e e e rreeee e 18

(g aToTo [U1 1=l 1 o] F= 1V (U 19

(g gToTo (U1 1=l = Fo 1Y (VK (ol | o o 1V U 41
module buff_write (INPUL VCIOCK, ...ccceeeeeieeee e e reeaee s 42

(g gToTo (U1 Tl o] o) [=Tot fl =1 « NS USSP 44
(gaTeTo [V1 1ol o) =) LT ' To Lo ISP 52

[0 ToTe [81 LIy 1011 [N 55

MOAUIE COS0 ...ttt ettt ettt ettt ettt e eeeaaaeeaaaesaeeeaeeeseeasa s sansabebebbeneeeeeaeeeas 58
(gaTeTo [V1 1SR YoF 1 1Y ' o Yo ISP 61
MOAUIE PArAM_VAIUEBS ...t e e e e e e e e e e e s e e e e e e e aese e eeeeeeaeeeeenesenrnnnaneeeens 63

(gaTeTo [V1 1ol o} =) LT ' To Lo ISP 64

Overview

The purpose of this project is to create a hardware-only device for browsing and manipulating images.
Such a device would allow a user to view and interact with images without the overhead of an operating
system. The concept is something like digital photo frames, but allows the user to manipulate the
images rather than just look at them.

This system has three main functions: browse, rotate, and scale (or zoom). In order to deliver the
required functionality, the system will have several modes of operation. In browse mode, all available
images will be displayed in a filmstrip format. The user will be able to scroll through this film strip to see
all the images. The user can then select an image to manipulate. Once an image is selected, it jumps to
the center of the screen and all other images disappear. Then the user can scale or rotate the image as
desired.

This project can be broken up into a Ul display system and a graphics engine that performs the image
manipulations. Mary Knapp was responsible for the display portion and Prannay Budhraja was
responsible for the graphics engine.

Description

Modules

Block Diagram:

Usb Reager [maIE - ranstarmatians

Y N e

Swrbches

All modules take clock and reset signals. The reset signal is high either at system reset or when the
enter button is pressed. One 40MHz clock is used for the entire system.

Display

The display module is a master module that controls the location of images on the screen, their motion,
and mode selection. It contains a number of module instantiations within it. At the highest level, the
display module’s purpose is to produce appropriate pixels and pass them to the buffer writer. It also
handles the generation of the hsync, vsync, and blank signals.

This module also controls switching between display modes. At reset, the default mode is browse, in
which all of the images are visible. Images move when the location of the top left corner is changed.
Memory addresses for all four images are generated on every clock cycle, but they are only valid within
the “box” that the image occupies. Both the x-coordinate of the image’s top left corner and hcount are
signed numbers, which allows smooth scrolling both left and right. Pressing a button (buttonQ) changes
the mode to select. A pulse is generated on button depression which flips a bit in the display module to
signal a change of mode. The system enters select mode by checking which picture is near the center of
the screen and then moving that image to the center and hiding the others. Once in this mode, image
manipulation would kick in. Unfortunately, time constraints and integration problems prevented full
implementation of image manipulation within the display system. A second button press returns the
display to the original film strip. Table 1 shows the functions of various lab kit buttons and switches.

Table 1 - User input devices

Input device Function

Enter Button Reset

ButtonO Switch display modes (browse -> select -> browse)

Left Button Scroll left

Right Button Scroll right

Switch[3:2] Scroll speed

Switch[7:4] Select image (debugging only)

Switch[1:0] Switch display between color bars and real output
(debugging only)

Memory Considerations and Screen Resolution (M. Knapp)

In order to implement the design, it was necessary to store a number of images in memory. The 6.111
lab kit has limited memory resources (~4Mb ZBT RAM, ~4Megabits distributed). The most memory
intensive components of the project are the frame buffers. Each buffer must be able to store every pixel
on the screen. Since a double buffer video system requires two full buffers, the memory requirement
climbs sharply with screen resolution. This project incorporates rotation and scaling operations, so the
frame buffers must contain 24-bit RGB pixels that can be read by the monitor. Storing 8-bit values is not
sufficient even though our images are 256 color since interpolation between pixels can only be
performed properly on RGB values.

Initial calculations for a 1024x768 resolution (XVGA) showed that the frame buffers alone would
consume 4.3MB, which exceeded the resources of the lab kit. In order to leave room for storing the
images themselves, a resolution of 800x600 (SVGA) was selected. While the frame buffers should
ideally store 24-bit values, this leads to inefficient use of the ZBT RAM. The ZBTs are intended to store 4
bytes per address along with 4 parity bits, giving a total of 36 bits per line. Using 24-bit pixels wastes 12
bits per line. Much better storage can be achieved by storing two 18-bit pixels per line. In order to
meet the monitor’s 24-bit RGB pixel requirement, only the 6 most significant bits for each color are
stored. Two zeros are added as the LSBs of each color as the buffer is being read out. With this scheme,
each buffer takes up 1.08MB.

Image Selection and Preprocessing (M. Knapp)

Each image that will be displayed in the filmstrip is stored in a BRAM. Originally, these images were
going to be stored in ZBT along with the frame buffers. The ZBT RAMS are serial devices, so only one
memory address can be read on a clock cycle. Storing images in ZBT along with the frame buffers would
require reading image pixels form ZBT, then processing them and writing them back to the ZBT. This
requires extra time since the ZBT cannot read and write at the same time and would need to pause a
frame buffer write in order to read out an image pixel. Storing the images in BRAM separates the
memory sources and eliminates this problem.

Since storage space in BRAM is even more limited than in ZBT RAM, image size was strictly constrained
in two ways. First, the physical size of each image was constrained to 200x150 pixels. Though this is a
fairly small image, its size is reasonable given the reduced resolution. Second, images were limited to

256 colors. Each pixel is stored as an 8-bit value representing one of these 256 colors. This significantly
reduces memory consumption. Each image is 30kb.

In order to produce 24-bit color, each image requires a set of three 256 entry look-up tables: one for
red, green and blue. In order the generate the best possible image quality with 256 colors, Photoshop
was used to convert full 16 million color images to 256 colors by choosing the “best” 256 colors for each
image. This means that the LUTs for each image are unique. The concatenation of the output of all
three LUTs is a full 24-bit RBG pixel. As stated above, only the 6 MSBs of each color are actually stored
in the frame buffer.

After each image is reduced to 256 colors in Photoshop, the image is processed into a set of 4 (one
image and 3 LUTs) COE files in MATLAB. These COE files are then preloaded into BROMS through Xilinx’s
CoreGen utility. With small modifications, the images could be loaded directly from a computer using a
USB cable and adapter. Unfortunately, there was not enough time to implement this function. Once
the BROMS are created, each one is instantiated inside the display module. Addresses for each image
ROM are generated at each clock cycle. Since the COE file for the image transposes each row of pixels to
a column and then stacks these columns (1* row of n length becomes 1*'n values in column), the
address formula is

Address = (hcount — x)+(vcount — y)*width

where (x,y) represents the top left corner of the image. The ROM and LUT reads are pipelined to take
into account the two clock cycle memory read delay.

Frame Buffers (M. Knapp)

Frame buffer graphics implementation allows for smooth video with no glitches since the buffer being
displayed is static — it is fully written before it is displayed and is not modified until the next buffer is
ready to be displayed. The video clock is selected to produce a refresh rate of 60Hz, so for SVGA the
clock runs at 40MHz. For complex rotation and scaling operations, the 60Hz refresh rate does not allow
enough clock cycles for calculation. The frame rate was reduced to 30Hz to provide extra time. This
does not lead to any reduction in video quality since the standard frame rate for film is 24Hz.

There are two banks of ZBT RAM on the lab kit and one frame buffer is stored on each. Two ZBT driver
modules are used to switch between the buffers. The two modules are identical except that one sends
all of its outputs to bankO and the other to bankl. Two write_enable signals are controlled by a
switching unit which uses hcount, vcount, and a 1-bit counter to invert both values every two frames
(two cycles of hcount and vcount). Each ZBT driver module also has a unique read_data line, which is
switched at the same rate to ensure that the buffer being written is not being read simultaneously.

To ensure clean video output, each frame buffer is completely rewritten every cycle. Pixels that are not
inside the “box” occupied by an image are painted a uniform background color (red in this case). One
line (2 pixels) is written every other clock cycle to achieve a write rate of 1 pixel/clock. When reading
directly from the BROMs, the frame buffer can be completely written between two vsync signals (at
60Hz).

SVGA (M. Knapp)

This module controls the video signals that are sent to the monitor. It generates hcount and vcount,
which are fed into almost all other modules in the system to provide synchronization. Hsync, vsync, and
blank are also generated by this module. These signals are then sent to the display module where they
are delayed by three clock cycles to account for memory read delays. The sync signals used by the
monitor are the output of the display module, not the SVGA module. Internal values in this module are
set to produce a resolution of 800x600 with the appropriate back porches and sync pulses. These values
are calculated using the chart in the lab kit documentation under the VGA Video Output section.

Buffer Reader (M. Knapp)

This module performs two functions: It parses incoming 36-bit data from the memory into two 18-bit
pixels, then adds two zeros as the LSBs for each color. Its output is a 24-bit pixel that is sent to the
monitor. Since the ZBT requires 3 clock cycles to output a memory location, this module receives
undelayed hcount and vcount values so that it is effectively three clock cycles ahead of the other
modules.

Buffer Writer (M. Knapp)

This module is responsible for concatenating two 18-bit pixels to produce one 36-bit word that is sent to
the frame buffer. It receives one pixel on every clock cycle. It stores the first pixel in a register, then
concatenates it with the second incoming pixel and assigns the result to output. The LSB of hcount is
used to determine whether to save the incoming pixel to a register (odd values) or assign it to output
(even values).

ZBT Driver (M. Knapp)
This module was borrowed from the Fall 2005 class website. It streamlines communication with the ZBT
memory includes pipelining for write mode to ensure efficient memory writes.

Debounce (M. Knapp)
The debounce module takes asynchronous inputs from buttons on the labkit and returns a clean,
synchronous signal. This module was used for all buttons used in the design.

Delay (parameterized) (M. Knapp)
This module delays a signal by some number of clock cycles. It was especially useful for solving timing
issues created by memory reads.

Transform

The image manipulation works in the select mode. Once an image is selected it can be rotated or scaled
by amounts specified by the user. This module does two operations on the image, first it rotated the
image and then it scales. This is because when a user wants to scale the image bigger, it leads to more
pixels than in the source, this would take the rotate module more time to process the entire image. Thus
it is optimal to rotate first and then scale the rotated image.

Image Manipulation

The image manipulation works in the select mode. Once an image is selected it can be rotated or scaled
by amounts specified by the user. This module does two operations on the image, first it rotated the
image and then it scales. This is because when a user wants to scale the image bigger, it leads to more
pixels than in the source, this would take the rotate module more time to process the entire image. Thus
it is optimal to rotate first, and scale the rotated image.

Rotation Module

The rotation module is responsible for spinning the image about its center by an amount specified by
the user. For the purpose of simplicity, this module only takes values between 0 and 359.

rotval . Pixel
pixr,pixg,pixb
height,width » addr

column,row
_

em————

rotval specifies the amount of rotation between 0-359
height,width are the height and width of the image
column and row is the position of the destination pixel

addr is the address generated by the module to get the value of a pixel. This goes to the memory
module which sends back the pix(rbg) values.

Pixel is the value of this (column,row) pixel after rotation
The Algorithm

In order to create this in hardware, | first implemented it in software to determine the constraints and
straighten out the algorithm for rotation.

1. Nearest Neighbor rotation: This is the basic rotation algorithm that determines the value of the
destination image pixel by counter rotation and rounding. If you give it the coordinates of the
pixel, it counter rotates these pixels about the center of the image and gives that pixel as
output.

X’ = x*cos(rotval) — y*sin(rotval);

Y’ = x*sin(rotval) + y*cos(rotval);

In order to do the rotation we require the sine and cosine of the angle specified. Although
verilog allows real floating point number, but it doesn’t allow you to do floating point
multiplications for values stored in registers. This could be solved by creating a floating point
multiplication module, but | chose lab4’s approach of storing 20 bit values instead. That is, sine
and cosine are implemented as lookup tables with each value multiplied by 2720. After
multiplication to get actual value we just perform a 20 signed bit shift right.

2. Sub-pixel Area Average: The issue with nearest neighbor is that pixels are square things and
when counter rotated the don’t exactly overlap with other pixels, and rounding of the value
produces image artifacts like jagged lines and fuzziness. To prevent this we need to average
subpixel area. Basically, we counter rotate a destination pixel and determine its color based on
the colors of the 4 pixels it overlaps. The resultant pixel color is the weighted average of those 4
pixels based on the area they cover of this pixel.

If the first pixel p1 covers a fraction w1 of the destination pixel, and so on, then:
Pixel = w1*pl + w2*p2 + w3*p3 + wi*p4

We see that algorithm required to fetch 4 pixels to determine the value of each pixel. Further it requires
multiple 32bit signed multiplications, right shifts and other averaging steps. All this cannot be done in
one clock cycle. Thus there was a need to pipeline the calculation. In order to determine the complexity
of the calculation and the algorithm, | wrote a java program that separated out each calculation and |
used a separate timing utility that determine the time it took for each pixel to be generated on my
computer, using that | was able to determine that | can do the calculation for each pixel in 13 clock
cycles. This includes fetching 4 pixels as well.

Scale Module

This module is responsible for doing scaling of the image. In order to enlarge the image we need to
interpolate it and to shrink it we need anti-aliasing. This module is different in the way that it doesn’t
produce pixels sequentially; instead it used a 2x2 block of pixels and produces a 2sx2s block, where s is
the scale factor.

In order to verify the algorithm, again | implemented it in software first and you can see that in the java
code. Due to integration difficulties with the display module | had to abandon the interpolation
implementation and only had a scale module that would stretch out an image without filling in the
empty pixels in between. But let’s take a look at the interpolation algorithm

Algorithm

| used bilinear interpolation to scale each 2x2 pixel block. This means that middle pixels are the 2D
average of the source pixels. In order to determine the color we compute the weighted sum of the 4

pixels in the source 2x2 block. The weights are the inverse 2D distances of the pixel from each of these 4

--- __ > (3P1+2P2+2P3+P4)/8

pixels.

[y

Pipelining

Both modules need to be linked together and together they take (11+6) = 17 clock cycles. Both fetch 4
pixels each and, the scale module needs to start only after the rotate module had specified the first 2
rows as it requires a 2x2 pixel block to start. Here the pipelining structure proposed:

Rotors Scalers
Source Pxs - To
— [1 Framebuf
RN
| -

Color Table Buffer -

Rotation Scale

Value

Factor

However, due to integration issue faced, we didn’t get around to including the scaling module, so we
didn’t construct the scale pipeline or the buffer. In order to get the rotation module to work, | had to
make it a fsm that only did one calculation per clock cycle. This made the rotation module return one
pixel per 13 clock cycles. So we had to construct a 13 register pipeline that supplied the hcount and
vcount delayed by 13 to 13 different rotate modules in sequence. That is only moduleN receives a signal
on the Nth clock cycle. And N cycles from 0-12.

Debugging

Display System

The general approach to debugging in this project was to take small steps and solve problems as they
turned up in these small steps. The functionality of the display system was implemented in the
following order:

Process images in MATLAB

Write COE files to BRAM

Ensure proper operation of SVGA

Display image from BRAM

Move image stored in BRAM

Write to ZBT memory, display from ZBT memory
Write image from BRAM to ZBT

Display glitch-free image from ZBT

Display multiple images from ZBT

10. Move images using frame buffers

W NV REWNRE

11. Select image

The most common issue throughout the process was timing. Memory reads take time, and they must
be synchronized with the rest of the system. This first occurred when trying to display an image stored
in BRAM. A 2 clock cycle display was added within that segment of the display module to correct the
problem.

Working with the ZBTs was the most challenging part of the debugging process. Writing single colors or
color bar patterns to the ZBT was the first step. At first, nothing would write to the ZBT at all. That
problem was solved by changing incorrect assignments to the control pins of the RAM.

Once that problem was corrected, it was fairly straightforward to write images from BRAM to the ZBT.
Adding multiple images was also not difficult. Scrolling images to the right was also easy, but scrolling to
the left was a challenge. After a number of different approaches, the best one was to make x (top left
corner horizontal position) and hcount signed numbers so that they did not roll over when they became
less than 0.

To debug problems with alternating frame buffers, buttons and switches were used to manually read or
write a specific buffer. This allowed us to see what each frame buffer was displaying without having the
buffers switch at 60Hz. This turned up issues with the ZBT RAM clock.

To implement the mode switching functionality, switches were used initially to change between images.
Then, vertical bars were drawn on the screen (using the display module) to show the threshold values
for selecting an image (left side between hcount = 300 and hcount = 400 and right side between hcount
=400 and hcount = 500.

Rotation Module
To debug this module two approaches were used:

1. lused a 3x3 pixel matrix as source image and outputted the rotated image as well as 7 other
inner variables to the 16 hex display. The variables displayed were in successive sections of the
calculation so that | could see where the calculation would fail and hence correct it.

2. The second method used was a coe file with a 100x100 image that | rotated and printed to
another file. Then | compared this file to the image rotated by photoshop and converted to coe.

In order to debug the scale module | just used the COE file approach as the hex display does not have
enough values to show. Also the logic analyzer output would have been very difficult to visually verify

However, | did not save my project on another disk and successive versions overwrote the previous
ones. Which was a big mistake.

Conclusion

Both subsystems in this project were able to function independently. The display system was able to
scroll through images and change from browse to select modes. The graphics engine was able to rotate
a matrix of numbers correctly and scale a matrix as well (right? at some point?). Several features of the
project could not be implemented due to time constraints. First, capability to download images from
the computer directly into labkit memory was not added because there was not enough time to
integrate the USB adapter. To add that functionality, the ROMs that stored the images would have
needed to be changed to RAMs with no preloaded values. These RAMs would have been populated by
incoming data from the USB. There were no technical hurdles to implementing this function, just not
enough time.

Integrating the graphics engine with the display also fell victim to deadline constraints. Initial attempts
to incorporate rotation modules into the display module failed. The reason is not immediately clear, but
was likely either a timing issue or a simple coding error. Again, the problem was a scheduling one rather
than a technical one. With a bit more time for debugging, there is every reason to assume that these
modules could have worked together to generate the interactive environment that was envisioned at
the beginning of the project.

If these integration issues had been worked out, the addition of gesture recognition would have been
the next step. Gesture recognition has been used in several previous 6.111 projects, so it is likely that
this step also would not have posed any insurmountable technical challenges. Any continued work on
this system will smooth out the integration bugs and add this extra functionality to create a user-friendly

image viewer.

Verilog

Certain files are missing in the transformations part as | did not save them when | started integrating.
Rotate_mod1 is the most recent working version | had. However, we saw it was not compiling in Xilinx
due to the fatal error.

‘timescale 1ns / 1ps
s

// Ike's simple ZBT RAM driver for the MIT 6.111 labkit

//

// Data for writes can be presented and clocked in immediately; the actual

// writing to RAM will happen two cycles later.

/]

// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.

/]
// A clock enable signal is provided; it enables the RAM clock when high.

module ZBTdriver
(clk, cen, we, addr, write_data, read_data,
/*ram_clk,*/ ram_we_b, ram_address, ram_data, ram_cen_b);

input clk; // system clock

input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)

input [18:0] addr; // memory address

input [35:0] write_data; // data to write

output [35:0] read_data; // data read from memory
//output ram_clk; // physical line to ram clock
output ram_we_b; // physical line to ram we_b
output [18:0] ram_address; // physical line to ram address
inout [35:0] ram_data; // physical line to ram data

output ram_cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wire ram_cen_b = ~cen;

// create delayed ram_we signal: note the delay is by two cycles!

// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we_delay;

always @(posedge clk)
we_delay <= cen ? {we_delay[0],we} : we_delay;

// create two-stage pipeline for write data

reg [35:0] write_data_old1;
reg [35:0] write_data_old2;
always @(posedge clk)
if (cen)
{write_data_old2, write_data_old1} <= {write_data_old1, write_data};

// wire to ZBT RAM signals

assign ram_we_b ="~we;

//assign ram_clk =~clk; //RAM is not happy with our data hold
// times if its clk edges equal FPGA's
// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram_address = addr;

assign ram_data = we_delay[1] ? write_data_old2 : {36{1'bZ}};
assign read_data =ram_data;

endmodule // zbt_6111

/***

* This file is owned and controlled by Xilinx and must be used *

* solely for design, simulation, implementation and creation of *

* design files limited to Xilinx devices or technologies. Use *

* with non-Xilinx devices or technologies is expressly prohibited *

* and immediately terminates your license. *

* *

* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" *

* SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR *

* XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION *

* AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION *

* ORSTANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS *

* IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, *

* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE *
* FORYOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY *

* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE *

* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR *
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF *
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *
* FOR A PARTICULAR PURPOSE. *

% *

* Xilinx products are not intended for use in life support

* appliances, devices, or systems. Use in such applications are
* expressly prohibited. *

* (c) Copyright 1995-2006 Xilinx, Inc. *

* All rights reserved. *
***/
// The synopsys directives "translate_off/translate_on" specified below are

// supported by XST, FPGA Compiler Il, Mentor Graphics and Synplicity synthesis

// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file image.v when simulating

// the core, image. When compiling the wrapper file, be sure to

// reference the XilinxCorelLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Help".

‘timescale 1ns/1ps

module image(
addr,
clk,
dout);

input [16 : 0] addr;
input clk;
output [7 : 0] dout;

// synopsys translate_off

BLKMEMSP_V6_2 #(

inst (

17, // c_addr_width

"o", // c_default_data
120000, // c_depth

// c_enable_rlocs

// c_has_default_data

// c_has_din

// c_has_en

// c_has_limit_data_pitch
// c_has_nd

// c_has_rdy

// c_has_rfd

// c_has_sinit

// c_has_we

18, // c_limit_data_pitch
"image.mif", //c_mem_init_file
0, // c_pipe_stages

0, // c_reg_inputs

~ ~ ~

~

~ ~ ~ ~

O 000000 oo©o

~

"o", // c_sinit_value

8, // c_width

0, // c_write_mode

"0", //c_ybottom_addr

1, // c_yclk_is_rising

1, // c_yen_is_high
"hierarchyl", //c_yhierarchy
0, // c_ymake_bmm
"16kx1", // c_yprimitive_type
1, // c_ysinit_is_high
"1024", // c_ytop_addr

0, // c_yuse_single_primitive
1, // c_ywe_is_high

1) // c_yydisable_warnings

.ADDR(addr),
.CLK(clk),
.DOUT(dout),
.DIN(),

.ENY(),

.ND(),

.RFD(),

.RDY(),
SINIT(),
WE());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of image is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of image is "black_box"

endmodule

‘timescale 1ns / 1ps

module im_write (input vclock,
reset,
enable,
input [7:0] pixel, //Pixel from BRAM

output reg [31:0] pix4x, //4 pixels concatenated together (1st
is MSBs, 4th is LSBs)

output reg [18:0] addr); //Memory address, generated
sequentially

reg [1:0] pixnum = 0;
reg [7:0] pix1, pix2, pix3;
always @(posedge vclock) begin
if (reset) begin
pixnum <= 0;
addr <=0;
end
else if (enable) begin
pixnum <= pixnum+1;
case (pixnum)
2'b00: pix1 <= pixel;
2'b01: pix2 <= pixel;

2'b10: pix3 <= pixel;
2'b11: begin
addr <= addr+1;
//Increment address
pix4x <= {pix1, pix2, pix3, pixel}; //Concatenate pixels

end
endcase
end
end
endmodule
‘timescale 1ns / 1ps
//Image display module
module display (
input vclock, // 40MHz clock
input reset, // 1 toinitialize module
input left, // 1 when image should move left

input right, // 1 when image should move right

input mode, //Either scroll mode (0) or edit mode (1)
input [3:0] sel, //Select image for rotation/scaling

input [8:0] scalval,

input [8:0] rotval,

input [1:0] speed, // scroll rate (how many pixels the image moves per frame)
input [10:0] hcount_unsigned, // horizontal index of current pixel (0..799)
input [9:0] vcount, // vertical index of current pixel (0..599)

input [10:0] hc13_unsigned, // horizontal index of current pixel (0..799)
input [9:0] vc13_unsigned, // vertical index of current pixel (0..599)

input hsync, // XVGA horizontal sync signal (active low)
input vsync, // XVGA vertical sync signal (active low)
input blank, // XVGA blanking (1 means output black pixel)

//output write, //Enables write to ZBT (high is enabled)
output reg disp_mode, //0 for browsing, 1 for select
output reg [1:0] im_sel, //Selected image
output reg phsync, //horizontal sync

output reg pvsync, //vertical sync

output reg pblank, // blanking

output [17:0] pixel); // 24-bit RGB pixel truncated to 18);

wire signed [11:0] hcount = hcount_unsigned;
wire signed [11:0] hc13 = hc13_unsigned;
wire signed [10:0] vc13 = vcl3_unsigned;
//wire signed [11:0] hcount = hcount_undel - 3;
//Registers to hold address and pixel values
//Image 1
reg [19:0] addri;
wire [7:0] pix1;
wire [7:0] pix_red1;
wire [7:0] pix_greenl;
wire [7:0] pix_bluel;
//Image 2
reg [19:0] addr2;
wire [7:0] pix2;
wire [7:0] pix_red2;
wire [7:0] pix_green2;
wire [7:0] pix_blue2;
//Image 3
reg [19:0] addr3;
wire [7:0] pix3;
wire [7:0] pix_red3;
wire [7:0] pix_green3;
wire [7:0] pix_blue3;
//Image 4
reg [19:0] addr4;
wire [7:0] pix4;
wire [7:0] pix_red4;
wire [7:0] pix_greend;
wire [7:0] pix_blue4;
wire [23:0] pix24;

//Registers to hold location of top left corner of image
reg signed [11:0] x1;// = 25;

reg signed [10:0] y1;// = 250;

reg [10:0] width1 = 200;

reg [9:0] heightl = 150;

reg signed [11:0] x2;// = 250;

reg signed [10:0] y2;// = 250;

reg [10:0] width2 = 200;

reg [9:0] height2 = 150;
reg signed [11:0] x3;// = 475;
reg signed [10:0] y3;// = 250;
reg [10:0] width3 = 200;
reg [9:0] height3 = 150;
reg signed [11:0] x4;// = 700;
reg signed [10:0] y4;// = 250;
reg [10:0] width4 = 200;
reg [9:0] height4 = 150;

reg [1:0] im_disp;
reg repaint;

reg mode_del;

always @(posedge vclock) begin
mode_del <= mode;

end

wire mode_pulse;
assign mode_pulse = mode_del && ~“mode;

//Generates a pulse which changes on button press, so that pressing the button once

//will put the system in "select" mode and a second button press returns it to scroll (browse)
mode.

reg switch = 0;
always @(posedge vclock) begin

if (mode == 1 && mode_del == 0) switch <= ~switch;
end

//parameter space = 8'd250;
always @(posedge vclock) begin
if(reset | | repaint)begin
repaint <=0;
x1<=0;
y1l <=250;
x2 <= 250; //x1 + space;
y2 <= 250;
x3 <=500; //x1 + space + space;
y3 <= 250;
x4 <= 750; //x1 + space + space + space;

y4 <= 250;
end

else if (~switch) begin

if (mode_pulse) repaint <=1;

else repaint <= 0;

if (hcount == 1055 && vcount == 600) begin

if (left) begin
if (x4 >=300) begin

x1 <=x1 - speed;
X2 <= X2 - speed;
X3 <= X3 - speed;
x4 <= x4 - speed;

end
else begin
//4x1, x2, x3, x4} <= {x1, x2, x3, x4};
x1 <=x1;
X2 <=Xx2;
X3 <=x3;
x4 <= x4;
end

end
else if (right) begin
if (x1 <= 300) begin
x1 <= x1 + speed;
X2 <= X2 + speed;
X3 <= X3 + speed;
x4 <= x4 + speed;
end
else begin
x1 <=x1;
X2 <=Xx2;
X3 <= x3;
x4 <= x4;
end
end
else begin
x1 <=x1;
X2 <=X2;
X3 <= X3;

x4 <= x4;
end
end
end

//Here we change mode to "select" so that only one image is displayed in the center of
the screen

else if (switch) begin

repaint <=0;

if (x1 >=300 && x1 <=400) || (x1+200 >= 400 && x1+200 <= 500)) begin
im_disp <= 2'b00;
x1 <= 300;

end

else if ((x2 >= 300 && x2 <=400) || (x2+200 >= 400 && x2+200 <= 500)) begin
im_disp <= 2'b01;
x2 <= 300;

end

else if ((x3 >= 300 && x3 <=400) | | (x3+200 >= 400 && x3+200 <= 500)) begin
im_disp <= 2'b10;
x3 <=300;

end

else if (x4 >= 300 && x4 <=400) | | (x4+200 >= 400 && x4+200 <= 500)) begin
im_disp <= 2'b11;
x4 <= 300;

end

end
end

//BRAM that stores image of the adorable panda
panda cute_panda (.addr(addrl),.clk(vclock),.dout(pix1));

//Red LUT for panda
panda_red red1panda (.addr(pix1),.clk(vclock),.dout(pix_red1));

//Green LUT for panda
panda_green greenlpanda (.addr(pix1),.clk(vclock),.dout(pix_greenl));

//Blue LUT for panda
panda_blue bluelpanda (.addr(pix1),.clk(vclock),.dout(pix_bluel));

//BRAM that stores image of the delicious chocolate cake

//

cake nom (.addr(addr2),.clk(vclock),.dout(pix2));

//Red LUT for cake
cake_red redlcake (.addr(pix2),.clk(vclock),.dout(pix_red2));

//Green LUT for cake
cake_green greenlcake (.addr(pix2),.clk(vclock),.dout(pix_green2));

//Blue LUT for cake
cake_blue bluelcake (.addr(pix2),.clk(vclock),.dout(pix_blue2));

//BRAM that stores image of the cute kitteh
kitten cute_kitten (.addr(addr3),.clk(vclock),.dout(pix3));

//Red LUT for kitten
kitten_red red1kitten (.addr(pix3),.clk(vclock),.dout(pix_red3));

//Green LUT for kitten
kitten_green greenlkitten (.addr(pix3),.clk(vclock),.dout(pix_green3));

//Blue LUT for kitten
kitten_blue bluelkitten (.addr(pix3),.clk(vclock),.dout(pix_blue3));

//BRAM that stores image of the beautiful sunset
sunset sunsetl (.addr(addr4),.clk(vclock),.dout(pix4));

//Red LUT for sunset
sunset_red red1sunset (.addr(pix4),.clk(vclock),.dout(pix_red4));

//Green LUT for sunset
sunset_green greenlsunset (.addr(pix4),.clk(vclock),.dout(pix_green4));

//Blue LUT for sunset
sunset_blue bluelsunset (.addr(pix4),.clk(vclock),.dout(pix_blued));

reg show1,show2,show3,show4,show5,show6,show7,show8,ph,pv,pb;
reg hsyncl, vsyncl, blankl, hsync2, vsync2, blank2;
always @(posedge vclock) begin
show1 <= ~reset && (hcount >= x && vcount >=y) && (hcount < x+width && vcount <

y+height);

show1 <= ~reset && (hcount >= x1 && vcount >=y1) && (hcount < x1+widthl &&
veount < yl+heightl); //&& (~switch || (im_disp == 2'b00));

show2 <= showl;

show3 <= ~reset && (hcount >= x2 && vcount >=y2) && (hcount < x2+width2 &&
veount < y2+height2); //&& (~switch || (im_disp == 2'b01));

show4 <= shows3;

show5 <= ~reset && (hcount >= x3 && vcount >=y3) && (hcount < x3+width3 &&
vcount < y3+height3); //&& (~switch || (im_disp == 2'b10));

show6 <= shows5;

show7 <= ~reset && (hcount >= x4 && vcount >=y4) && (hcount < x4+width4 &&
vcount < y4+height4); //&& (~switch || (im_disp == 2'b11));

show8 <= show?7;

disp_mode <= switch;

im_sel <=im_disp;

{hsync1,ph} <= {ph,hsync};

{vsyncl,pv} <= {pv,vsync};

{blank1,pb} <= {pb,blank};

{hsync2,ph} <= {ph,hsync1}

{vsync2,pv} <= {pv,vsyncl};

{blank2,pb} <= {pb,blank1};

{phsync,ph} <= {ph,hsync2};

{pvsync,pv} <= {pv,vsync2};

{pblank,pb} <= {pb,blank2}

end
// module scale_mod #(parameter NPIX=9,
// parameter WIDTH=3,
// parameter HEIGHT=3)
// (input reset, clock,
// input [8:0] scaleval,
// input [5:0] pix_r,
// input [5:0] pix_g,
// input [5:0] pix_b,
// input [12:0] c,r,
// input [12:0] hcount,vcount,
// output [19:0] addr,
// output [17:0] pixel);

//addr = (hcount-c)+(vcount-r)*WIDTH;
//pixel <= {pix_r,pix_g,pix_b};
reg [3:0] pipecount=0;
reg [11:0] hin0,hin1,hin2,hin3,hin4,hin5,hin6,hin7,hin8,hin9,hin10,hin11,hin12;

reg [10:0] vinO,vin1,vin2,vin3,vin4,vin5,vin6,vin7,vin8,vin9,vin10,vin11,vin12;
always @(posedge vclock) begin
pipecount <= (pipecount == 12)?0:pipecount + 1;
case(pipecount)
0: begin
hin0 <= hc13;
vin0 <= vcl3;
end
1: begin
hinl <= hc13;
vinl <=vcl3;
end
2: begin
hin2 <= hc13;
vin2 <=vcl3;
end
3: begin
hin3 <= hc13;
vin3 <=vcl3;
end
4: begin
hin4 <= hc13;
vind <=vcl3;
end
5: begin
hin5 <= hc13;
vin5 <= vcl3;
end
6: begin
hin6 <= hc13;
vinG <= vcl3;
end
7: begin
hin7 <= hc13;
vin7 <=vcl3;
end
8: begin
hin8 <= hc13;
vin8 <=vcl3;
end
9: begin

hin9 <= hc13;
vin9 <=vcl3;

end
10: begin
hin10 <= hc13;
vin10 <= vcl3;
end
11: begin
hin11 <= hc13;
vinll <=vcl3;
end
12: begin
hin12 <= hc13;
vinl2 <=vcl3;
end
endcase

end

reg [11:0] x;

reg [9:0] y;

reg [5:0] pix_r, pix_g, pix_b;

reg [19:0] addr;

wire [19:0]
addr_0,addr_1,addr_2,addr_3,addr_4,addr_5,addr_6,addr_7,addr_8,addr_9,addr_10,addr_11,addr_12;

wire [17:0] pix_out0, pix_outl, pix_out2, pix_out3, pix_out4, pix_out5, pix_out6, pix_out7,
pix_out8, pix_out9, pix_outl0, pix_outll, pix_outl2;

always @(posedge vclock) begin
if (switch) begin
case (im_disp)

2'b00: begin
x <=x1;
y<=yl;
pix_r <= pix_red1[7:2];
pix_g <= pix_greenl[7:2];
pix_b <= pix_bluel[7:2];
addrl <= addr;

end

2'b01: begin
X <=X2;

y<=y2;

pix_r <= pix_red2[7:2];
pix_g <= pix_green2[7:2];
pix_b <= pix_blue2[7:2];
addr2 <= addr;

end
2'b10: begin
X <=X3;
y<=y3;
pix_r <= pix_red3[7:2];
pix_g <= pix_green3[7:2];
pix_b <= pix_blue3[7:2];
addr3 <= addr;
end
2'b11: begin
X <= x4;
y<=v4;
pix_r <= pix_red4[7:2];
pix_g <= pix_green4d([7:2];
pix_b <= pix_blue4[7:2];
addr4 <= addr;
end
endcase
end
else begin
addrl <= (hcount-x1)+(vcount-y1)*width1;
addr2 <= (hcount-x2)+(vcount-y2)*width2;
addr3 <= (hcount-x3)+(vcount-y3)*width3;
addr4 <= (hcount-x4)+(vcount-y4)*width4;
end
end
wire di;

rotate_mod rotl (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

c(x),

r(y),

.hcount(hin0),

.vcount(vin0),

.addr(addr_0),

.pixel(pix_out0));

rotate_mod rot2 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin1),

.vcount(vinl),

.addr(addr_1),

.pixel(pix_out1));

rotate_mod rot3 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin2),

.vcount(vin2),

.addr(addr_2),

.pixel(pix_out2));

rotate_mod rot4 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin3),

.vcount(vin3),

.addr(addr_3),

.pixel(pix_out3));

rotate_mod rot5 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin4),

.vcount(vin4),

.addr(addr_4),

.pixel(pix_out4));

rotate_mod rot6 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

c(x),

r(y),

.hcount(hin5),

.vcount(vin5),

.addr(addr_5),

.pixel(pix_out5));

rotate_mod rot7 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin6),

.vcount(vine),

.addr(addr_6),

.pixel(pix_out6));

rotate_mod rot8 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

.(x),

r(y),

.hcount(hin7),

.vcount(vin7),

.addr(addr_7),

.pixel(pix_out7));

rotate_mod rot9 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

.(x),

r(y),

.hcount(hin8),

.vcount(vin8),

.addr(addr_8),

.pixel(pix_out8));

rotate_mod rot10 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin9),

.vcount(vin9),

.addr(addr_9),

.pixel(pix_out9));

rotate_mod rotl11 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

c(x),

r(y),

.hcount(hin10),

.vcount(vin10),

.addr(addr_10),

.pixel(pix_out10));

rotate_mod rot12 (.reset(reset),

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

-c(x),

r(y),

.hcount(hin11),

.vcount(vin1l),

.addr(addr_11),

.pixel(pix_out11));

rotate_mod rot13 (.reset(reset)

.clock(vclock),

.rotval(rotval),

.pix_r(pix_r),

.pix_g(pix_g),

.pix_b(pix_b),

.(x),

r(y),

.hcount(hin12),

.vcount(vin12),

.addr(addr_12),

.pixel(pix_out12));

// assign addrl = (hcount-x1)+(vcount-y1)*width1;
// assign addr2 = (hcount-x2)+(vcount-y2)*width2;
// assign addr3 = (hcount-x3)+(vcount-y3)*width3;
// assign addr4 = (hcount-x4)+(vcount-y4)*width4;
//Memory output is displayed if within box, black otherwise

// assign pixel = show2 ? 24'b1111_0000_0000_0000_0000_0000 :
24'b1111_1111 1111 1111 1111 1111;

//

//

//{pix_red[7:2],2'b00,pix_green[7:2],2'b00,pix_blue[7:2],2'b00} :

// //24'b1111_0000_0000_0000_0000_0000;

reg [17:0] pix;
always @(posedge vclock) begin
if (~switch) begin
if (show2) pix <= {pix_red1[7:2],pix_greenl[7:2],pix_bluel[7:2]};
else if (show4) pix <= {pix_red2[7:2],pix_green2[7:2],pix_blue2[7:2]};
else if (show6) pix <= {pix_red3[7:2],pix_green3[7:2],pix_blue3[7:2]};
else if (show8) pix <= {pix_red4[7:2],pix_greend[7:2],pix_blued[7:2]};
else if (hcount == 300 | | hcount == 500) pix <=
18'b111 111 111 111 111 111;

else pix <= 18'b011_000_000_000_000_000;
end
else begin
case(pipecount)
0: begin
pix <= pix_out0;
addr <= addr_0;
end
1: begin
pix <= pix_outl;
addr <= addr_1;

end

2: begin
pix <= pix_out2;
addr <= addr_2;

end
3: begin
pix <= pix_out3;
addr <= addr_3;
end
4: begin
pix <= pix_out4;
addr <= addr_4;
end
5: begin
pix <= pix_out5;
addr <= addr_5;
end
6: begin
pix <= pix_out6;
addr <= addr_6;
end
7: begin
pix <= pix_out7;
addr <= addr_7;
end
8: begin
pix <= pix_out8§;
addr <= addr_8;
end
9: begin
pix <= pix_out9;
addr <= addr_9;
end
10: begin
pix <= pix_out10;
addr <= addr_10;
end
11: begin

pix <= pix_outll;
addr <= addr_11;
end

12: begin
pix <= pix_out12;
addr <= addr_12;
end
endcase
end
end

assign pixel = pix;

//assign pixel = show2 ? {pix_red[7:2],pix_green[7:2],pix_blue[7:2]}:
18'b011_000_000_000_000_000;
Endmodule

‘timescale 1ns/ 1ps

T T
// Company:

// Engineer:

//

// Create Date: 21:09:37 11/30/2009

// Design Name:

// Module Name: delayN

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//
T

module delayN(clk,in,out);
input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

‘timescale 1ns / 1ps

module buff write (input vclock,

reset,

//enable,

input [10:0] hcount,

input [9:0] vcount,

input [17:0] pixel, //Pixel from BRAM

output reg [35:0] pix2x, //2 pixels concatenated together (1st
is MSBs, 2nd is LSBs)

output reg [18:0] addr); //Memory address, generated
sequentially

reg [17:0] pix1;
always @(posedge vclock) begin
if (reset || (hcount == 1055 && vcount == 627)) begin
addr <=0;
end
else if ((hcount >= 0 && hcount <= 799 && vcount >= 0 && vcount <= 599)) begin
if (hcount[0]== 0) begin
pix1 <= pixel; //{hcount[10:5],hcount[10:5],hcount[10:5]};
//Store 1st incoming pixel in register, wait for next

end
else begin //When two pixels are
available, generate address and output
addr <= addr+1; //Increment address

pix2x <= {pix1, pixel}; //hcount[10:5],hcount[10:5],hcount[10:5]};
//36'b111_111_000_000_000 000 111 111 000_000_000_000; //{pix1, pixel}; //Concatenate pixels

end
end

end

endmodule

T T
//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//
T
//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

// "tv_out_i2c_clock".

//) Reversed disp_data_in and disp_data_out signals, so that "out" is an
// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash_ce_b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse_data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
// 4-bit ram# _bwe_b bus.

// 4) Removed the "systemace_clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//

T T
//
// Complete change history (including bug fixes)

//

// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",

// "disp_data_out", "analyzer[2-3]_clock" and

// "analyzer[2-3]_data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to

// 256Mb devices, with 25 address lines.)

//

// 2004-Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to

// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to

// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

T T T

//this file is to test rotate and scale modules

module project_lab

(beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

// vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
// vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
// vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

ram0_data, ram0_address, ram0_adv_Ild, ramO_clk, ram0_cen_b,
ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

raml_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
raml_ce_b, raml_oe_b, raml_we_b, raml_bwe_b,

clock_feedback_out, clock_feedback_in,

flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
flash_reset_b, flash_sts, flash_byte_b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

mouse_clock, mouse_data, keyboard_clock, keyboard_data,

clock_27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,

buttonO, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

userl, user2, user3, user4,

daughtercard,

systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

analyzerl_data, analyzerl_clock,
analyzer2_data, analyzer2_clock,

analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4 clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

// output [7:0] vga_out_red, vga_out_green, vga_out_blue;
// outputvga_out_sync_b, vga_out_blank b, vga_out_pixel_clock,
// vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ram0_data;

output [18:0] ramO_address;

output ram0_adv_Id, ramO_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
output [3:0] ram0_bwe_b;

inout [35:0] ram1_data;

output [18:0] ram1_address;

output ram1_adv_Id, ram1_clk, ram1_cen_b, ram1l_ce_b, raml_oe_b, raml_we_b;
output [3:0] ram1_bwe_b;

input clock_feedback_in;
output clock_feedback_out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte b;
input flash_sts;

output rs232_txd, rs232_rts;

input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

input clock_27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input buttonO, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;

inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzerl_data, analyzer2_data, analyzer3_data,
analyzer4_data;
output analyzerl_clock, analyzer2_clock, analyzer3_clock, analyzerd_clock;

T 11T
//

// 1/0 Assignments

//

T 11T

// Audio Input and Output
assign beep=1'b0;

assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;
// ac97_sdata_in is an input

// Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b =1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b=1'b1;
assign tv_out_vsync_b =1'b1;
assign tv_out_blank_b =1'b1;
assign tv_out_subcar_reset = 1'b0;

// Video Input

assign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b0;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b0;

assign tv_in_reset_b =1'b0;

assign tv_in_clock = 1'b0;

assign tv_in_i2c_data = 1'bz;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs

assign ram0_data = 36'hz;
assign ram0_address = 19'h0;
assign ram0_adv_Id = 1'b0;
assign ram0_clk = 1'b0;
assign ram0_cen_b =1'b1;
assign ram0_ce_b =1'bl;
assign ram0_oe_b =1'b1;
assign ram0_we_b =1'b1;
assign ram0_bwe_b = 4'hF;
assign ram1_data = 36'hz;
assign ram1_address = 19'h0;
assign ram1_adv_Id = 1'b0;
assign ram1_clk = 1'b0;
assign raml_cen_b =1'bl;
assignraml_ce_b=1'bl;
assign raml_oe_b =1'bl;
assign raml_we_b =1'bl;

assign raml_bwe_b = 4'hF;
assign clock_feedback_out = 1'b0;
// clock_feedback_in is an input

// Flash ROM

assign flash_data = 16'hz;
assign flash_address = 24'h0;
assign flash_ce_b=1'b1;
assign flash_oe_b =1'b1;
assign flash_we_b =1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte b =1'b1;
// flash_sts is an input

// RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

// rs232_rxd and rs232_cts are inputs

// PS/2 Ports
// mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

// LED Displays

// assign disp_blank = 1'b1;

// assign disp_clock = 1'b0;

// assign disp_rs = 1'b0;

// assign disp_ce_b=1'bl;

// assign disp_reset_b = 1'b0;

// assign disp_data_out = 1'b0;
// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//1ab3 assign led = 8'hFF;

// button0, button1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

// User 1/Os

assign userl = 32'hz;
assign user2 = 32'hz;
assign user3 = 32'hz;
assign user4 = 32'hz;

// Daughtercard Connectors
assign daughtercard = 44'hz;

// SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'h0;

assign systemace_ce_b =1'b1;

assign systemace_we_b =1'b1;

assign systemace_oe_b =1'bl;

// systemace_irg and systemace_mpbrdy are inputs

// Logic Analyzer

assign analyzerl_data = 16'h0;
assign analyzerl_clock = 1'b1;
assign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;
assign analyzer4_data = 16'h0;
assign analyzer4_clock = 1'b1;

T 11T
//

// 1ab5 : a simple pong game

//

T 1111111111

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclkl is 10

// synthesis attribute CLKFX_MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclk1 is NONE

// synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.0(clock_65mhz),.I(clock_65mhz_unbuf));

// power-on reset generation
wire power_on_reset; //remain high for first 16 clocks
SRL16 reset_sr (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),

A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset
wire reset,user_reset;
debounce dbl(.reset(power_on_reset),.clock(clock_65mhz),.noisy(~button_enter),.clean(user_reset));

assign reset = user_reset | power_on_reset;

wire up,down, left,right,mode;

debounce db6(.reset(reset), .clock(clock_65mhz), .noisy(~button_right), .clean(right));

debounce db2(.reset(reset), .clock(clock_65mhz), .noisy(~button_left), .clean(left));

debounce db3(.reset(reset), .clock(clock_65mhz), .noisy(~button_down), .clean(down));

debounce db4(.reset(reset), .clock(clock_65mhz), .noisy(~button_up), .clean(up));

debounce #(.DELAY(650000)) db5(.reset(reset), .clock(clock_65mhz), .noisy(~button0), .clean(mode));

wire [7:0] s; //syncd switches

synchronize syncO(.clk(clock_27mhz),.in(switch[0]), .out(s[0]));
synchronize syncl(.clk(clock_27mhz),.in(switch[1]), .out(s[1]));
synchronize sync2(.clk(clock_27mhz),.in(switch[2]), .out(s[2]));
synchronize sync3(.clk(clock_27mhz),.in(switch[3]), .out(s[3]));
//synchronize sync4(.clk(clock_27mhz),.in(switch[4]), .out(s[4]));
//synchronize sync5(.clk(clock_27mhz),.in(switch[5]), .out(s[5]));
//synchronize sync6(.clk(clock_27mhz),.in(switch[6]), .out(s[6]));
//synchronize sync7(.clk(clock_27mhz),.in(switch[7]), .out(s[7]));

//rotation value in degrees, scale value in percentage
wire [8:0] rotval, scaleval;
param_values #(.NCLOCKS(10000000)) pval(.reset(reset), .clock(clock_65mhz), .up(up), .down(down),
Jeft(left), .right(right),
.rotate(rotval), .scale(scaleval));

wire [19:0] addr;
wire [17:0] pix;
wire done;
wire [35:0] debug;
rotate_mod rotimpl
(.reset(reset), .clock(clock_65mhz),
.rotval(rotval),
.pix_r(1),
-pix_g(1),
.pix_b(1),

.height(3),.width(3),
.c({s[1],s[01}),-r({s[31,s[21}),
.addr(addr),

.pixel(pix),
.calc_done(done),
.debug(debug));

display_16hex hex_disp(.reset(reset), .clock_27mhz(clock_65mhz), .data(debug),

.disp_blank(disp_blank), .disp_clock(disp_clock), .disp_rs(disp_rs),

.disp_ce_b(disp_ce_b),

.disp_reset_b(disp_reset_b), .disp_data_out(disp_data_out));

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock_65mhz.

//
//
/1
/1
//
//
/1
/1

assign vga_out_red = {8{rgb[2]}};

assign vga_out_green = {8{rgb[1]}};

assign vga_out_blue = {8{rgb[0]}};

assign vga_out_sync_b =1'b1; //notused
assign vga_out_blank b =~b;

assign vga_out_pixel_clock = ~clock_65mhz;
assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

assign led = ~{2'b00,reset,done,up,down, left,right};

endmodule

module rotate_mod

(input reset, clock,
input [8:0] rotval,
input [5:0] pix_r,
input [5:0] pix_g,
input [5:0] pix_b,
input [10:0] height,width,
input [10:0] c,r,

output reg [19:0] addr,
output reg [17:0] pixel,
output reg calc_done,
output reg [35:0] debug);

reg signed [9:0] p,q;
reg [3:0] sourcepix, destpix;
reg signed[10:0] x0,y0,x1,y1;

reg signed [9:0] center_x;
reg signed [9:0] center_y;

wire signed[32:0] cosval,sinval;
sine90 sinimpl(.angle(rotval), .sval(sinval));
c0s90 cosimpl(.angle(rotval), .cval(cosval));

//temporary regs used to pipeline
reg signed[43:0] t1,t11,t2,t21,t3,t4;

reg [6:0] calc_count;

reg [8:0] prev_rotval;
reg [10:0] prev_c,prev_r;
reg pix_exists;

reg [3:0] ctr;
assign count = ctr;
always @(posedge clock) begin
prev_rotval <= rotval;
prev_r<=r;
prev_c <=c;
if (reset) begin
calc_done <=0;
calc_count <=0;
end
else begin
if((rotval!=prev_rotval)| | (r!=prev_r)| | (c!=prev_c)) begin
calc_done <=0;
calc_count <=0;
end

//1st clk cycle

x0 <= c- width/2;

y0 <= r- height/2;
debug[7:0] <= {c[3:0],r[3:0]};

//2st clk cycle

t1 <= (x0*cosval);
t2 <= (yO*sinval);
x1 <= x0;
yl<=y0;

//3nd clk

t3 <= (x1*sinval);

t4 <= (y1*cosval);

t11 <=11;

121 <=12;

debug[15:8] <= {sinval[19:16],cosval[19:16]};

//4nd clk
p <= (t11-t21)>>>20;
g <= (t3 + t4)>>>20;

//5rd clk
p <= p + width/2;
q <= q + height/2;

//6th clock

//ensure p,q is withing picture

if(p<0 | | p>=width || g<0 | | g>=height)
pix_exists <= 0;

else begin
addr <= g*width + p;
pix_exists <=1;

end

debug[23:16] <= {p[3:0],9[3:0]};

//7th clock
if(pix_exists)
pixel <= {pix_r,pix_g,pix_b};

else
pixel <= 18'b000000_111111_000000; //send green for bgcolor

calc_count <= calc_count + 1;

calc_done <= (calc_count>=6);

debug[27:24] <= {3'b000, calc_count};
end

end
endmodule

‘timescale 1ns / 1ps
//20bit sin table, that is 2220 * sin(val)

module sine90
(input wire [8:0] angle, output reg signed[32:0] sval);
reg [8:0] temp1l,temp2;
reg sign;
reg signed[32:0] val;
always @ (angle) begin
sigh =0;
if(angle > 180) begin
templ = angle - 9'd180;
sign=1;
end
else templ = angle;
if(temp1 > 90) begin
temp2 =9'd180 - templ;
end
else
temp2 =templ;
case (temp2)
9'd0: val=32'd0;
9'd1: val=32'd18300;
9'd2: val=32'd36595;
9'd3: val=32'd54878;
9'd4: val=32'd73145;
9'd5: val=32'd91389;

9'd6: val=32'd109606;
9'd7: val=32'd127789;
9'd8: val=32'd145934;
9'd9: val=32'd164033;

9'd10:
9'd11:
9'd12:
9'd13:
9'd14:
9'd15:
9'd16:
9'd17:
9'd1s:
9'd19:
9'd20:
9'd21:
9'd22:
9'd23:
9'd24:
9'd25:
9'd26:
9'd27:
9'd28:
9'd29:
9'd30:
9'd31:
9'd32:
9'd33:
9'd34:
9'd35:
9'd36:
9'd37:
9'd38:
9'd39:
9'd40:
9'd41:
9'd42:
9'd43:
9'd44:
9'd45:
9'd46:

val=32'd182083;
val=32'd200078;
val=32'd218011;
val=32'd235878;
val=32'd253673;
val=32'd271391;
val=32'd289027;
val=32'd306574;
val=32'd324028;
val=32'd341383;
val=32'd358634;
val=32'd375776;
val=32'd392803;
val=32'd409711;
val=32'd426494;
val=32'd443147;
val=32'd459665;
val=32'd476044;
val=32'd492277;
val=32'd508360;
val=32'd524288;
val=32'd540057;
val=32'd555661;
val=32'd571095;
val=32'd586356;
val=32'd601438;
val=32'd616338;
val=32'd631049;
val=32'd645568;
val=32'd659890;
val=32'd674012;
val=32'd687928;
val=32'd701634;
val=32'd715127;
val=32'd728402;
val=32'd741455;
val=32'd754282;

9'd47:
9'd48:
9'd49:
9'd50:
9'd51:
9'd52:
9'd53:
9'd54:
9'd55:
9'd56:
9'd57:
9'd58:
9'd59:
9'd60:
9'd61l:
9'd62:
9'd63:
9'd64:
9'd65:
9'd66:
9'd67:
9'd6s:
9'd69:
9'd70:
9'd71:
9'd72:
9'd73:
9'd74:
9'd75:
9'd76:
9'd77:
9'd78:
9'd79:
9'd80:
9'd81:
9'd82:
9'd83:
9'd84:
9'd85:
9'd86:
9'd87:

val=32'd766880;
val=32'd779244;
val=32'd791370;
val=32'd803256;
val=32'd814897;
val=32'd826289;
val=32'd837430;
val=32'd848316;
val=32'd858943;
val=32'd869309;
val=32'd879410;
val=32'd889243;
val=32'd898805;
val=32'd908093;
val=32'd917105;
val=32'd925838;
val=32'd93428s;
val=32'd942454;
val=32'd950333;
val=32'd957922;
val=32'd965219;
val=32'd972223;
val=32'd978930;
val=32'd985339;
val=32'd99144s;
val=32'd997255;
val=32'd1002758;
val=32'd1007956;
val=32'd1012847;
val=32'd1017429;
val=32'd1021701;
val=32'd1025662;
val=32'd1029311;
val=32'd1032646;
val=32'd1035666;
val=32'd1038371;
val=32'd1040760;
val=32'd1042832;
val=32'd1044586;
val=32'd1046022;
val=32'd1047139;

9'd88: val=32'd1047937;
9'd89: val=32'd1048416;
9'd90: val=32'd1048576;
default: val = 0;

endcase

sval = val * (sign?-1:1);

end
endmodule

‘timescale 1ns / 1ps
//20 bit cosine table

module cos90
(input wire [8:0] angle, output reg signed[32:0] cval);
reg [8:0] temp1l,temp2;
reg sign;
reg signed[32:0] val;
always @ (angle) begin
sign = 0;
if(angle > 180) begin
templ = angle - 9'd180;
sign=1;
end
else templ = angle;
if(temp1 > 90) begin
temp2 =9'd180 - templ;
sign = ~sign;
end
else
temp2 =templ;
case (temp2)
9'd0: val=32'd1048576;
9'd1: val=32'd1048416;
9'd2: val=32'd1047937;
9'd3: val=32'd1047139;
9'd4: val=32'd1046022;
9'd5: val=32'd1044586;
9'd6: val=32'd1042832;
9'd7: val=32'd1040760;
9'd8: val=32'd1038371;

9'd9: val=32'd1035666;

9'd10:
9'd11:
9'd12:
9'd13:
9'd14:
9'd15:
9'd16:
9'd17:
9'd1s:
9'd19:
9'd20:
9'd21:
9'd22:
9'd23:
9'd24:
9'd25:
9'd26:
9'd27:
9'd28:
9'd29:
9'd30:
9'd31:
9'd32:
9'd33:
9'd34:
9'd35:
9'd36:
9'd37:
9'd38:
9'd39:
9'd40:
9'd41:
9'd42:
9'd43:
9'd44:
9'd45:
9'd46:
9'd47:
9'd48:
9'd49:

val=32'd1032646;
val=32'd1029311;
val=32'd1025662;
val=32'd1021701;
val=32'd1017429;
val=32'd1012847;
val=32'd1007956;
val=32'd1002758;
val=32'd997255;
val=32'd99144s;
val=32'd985339;
val=32'd978930;
val=32'd972223;
val=32'd965219;
val=32'd957922;
val=32'd950333;
val=32'd942454;
val=32'd934288;
val=32'd925838;
val=32'd917105;
val=32'd908093;
val=32'd898805;
val=32'd889243;
val=32'd879410;
val=32'd869309;
val=32'd858943;
val=32'd848316;
val=32'd837430;
val=32'd826289;
val=32'd814897;
val=32'd803256;
val=32'd791370;
val=32'd779244;
val=32'd766880;
val=32'd754282;
val=32'd741455;
val=32'd728402;
val=32'd715127;
val=32'd701634;
val=32'd687928;

9'd50:
9'd51:
9'd52:
9'd53:
9'd54:
9'd55:
9'd56:
9'd57:
9'd58:
9'd59:
9'd60:
9'del:
9'd62:
9'd63:
9'd64:
9'd65:
9'd66:
9'd67:
9'd6s:
9'd69:
9'd70:
9'd71:
9'd72:
9'd73:
9'd74:
9'd75:
9'd76:
9'd77:
9'd78:
9'd79:
9'd80:
9'd81:
9'd82:
9'd83:
9'd84:
9'd85:
9'd86:
9'd87:
9'd8s:
9'd89:
9'd90:

val=32'd674012;
val=32'd659890;
val=32'd645568;
val=32'd631049;
val=32'd616338;
val=32'd601438;
val=32'd586356;
val=32'd571095;
val=32'd555661;
val=32'd540057;
val=32'd524288;
val=32'd508360;
val=32'd492277;
val=32'd476044;
val=32'd459665;
val=32'd443147;
val=32'd426494;
val=32'd409711;
val=32'd392803;
val=32'd375776;
val=32'd358634;
val=32'd341383;
val=32'd324028;
val=32'd306574;
val=32'd289027;
val=32'd271391;
val=32'd253673;
val=32'd235878;
val=32'd218011;
val=32'd200078;
val=32'd182083;
val=32'd164033;
val=32'd145934;
val=32'd127789;
val=32'd109606;
val=32'd91389;
val=32'd73145;
val=32'd54878;
val=32'd36595;
val=32'd18300;
val=32'd0;

default: val=0;
endcase
cval = val * (sign?-1:1);
end
endmodule

module scale_ mod

#(parameter NPIX=9,
parameter WIDTH=3,
parameter HEIGHT=3)
(input reset, clock,
input [8:0] scaleval,
input [5:0] pix_r,
input [5:0] pix_g,
input [5:0] pix_b,
input [10:0] c,r,
output [19:0] addr,
output [19:0] dest_addr,
output [17:0] pixel);

reg signed[11:0] x1,x2,y1,y2;
reg signed[11:0] c_x,c_y;

reg [17:0] pix1,pix2,pix3,pix4;

c_x=WIDTH/2;
c_y = HEIGHT/2;

reg done;
always @(posedge clock) begin
prev_scaleval <= scaleval;
if (reset || (scalevall=prev_scaleval)) begin
calc_done <=0;
calc_count <=0;
done <=0;
end
else if(done) begin

//pipeline calculations for real numbers
calc_count <= calc_count+1;

done <= (calc_count==7);

if (calc_count==0) begin
x1<= ((scaleval)*(c-c_x))+c_x;
yl<= ((scaleval)*(r-c_y))+c_y;
x2<= ((scaleval)*(c+1-c_x))+c_x;
y2<= ((scaleval)*(r+1-c_1))+c_y;
end

if (calc_count==1) begin
addr <= (WIDTH*r)+c;
end

if (calc_count==2) begin
pix1 <= {pix_r,pix_g,pix_b};
addr <= (WIDTH*r)+c+1;
end

if (calc_count==3) begin
pix2 <= {pix_r,pix_g,pix_b};
addr <= (WIDTH*r+1)+c;
end

if (calc_count==4) begin
pix3 <= {pix_r,pix_g,pix_b};
addr <= (WIDTH*r+1)+c+1;
end

if (calc_count==5) begin

pix4 <= {pix_r,pix_g,pix_b};
end

if(calc_count==6) begin
dest_addr <= (y1*WIDTH)+x1;
pixel <= pix1;
end
end
end
endmodule

//generates rotation and scale values

module param_values
#(parameter NCLOCKS=50000000) // .01 sec with a 65Mhz clock
(input reset, clock, up, down, left, right,
output reg [8:0] rotate,
output reg [8:0] scale);

reg [26:0] count;
always @(posedge clock)

if (reset) begin
rotate <= 90;

scale <= 100;
count<=0;
end

//when count reaches spec # of clock cycles
else if (count >= NCLOCKS) begin

//make rotation value between 0,359
//use left, right to change in 1 degree steps
//if rot=360, set rot=0
//if rot goes negative cycle back to 359
if(rotate == 359)
rotate <= left? O: (right? 358: rotate);
else if(rotate == 0)
rotate <= left? 1: (right? 359: rotate);
else
rotate <= left? (rotate+1): (right? (rotate-1):rotate);

//make scale value between 10% and 300%
//use up/down to change in 10% steps
if(scale == 300)
scale <= up? 300: (down? 290: scale);
else if(scale == 10)
scale <= up? 20: (down? 10: scale);
else
scale <= up? (scale+10): (down? (scale-10):scale);

//set count back to zero to restart counting
count<=0;

end
else
count <= count+1;

endmodule

module rotate_mod

#(parameter NPIX=9,
parameter WIDTH=3,
parameter HEIGHT=3)
(input reset, clock,
input [8:0] rotval,
input [35:0] image,
output reg [35:0] outimage,
output alldone);

reg fetched;

reg [3:0] pix1,pix2,pix3,pix4;
reg signed [9:0] r,c,p,q;

reg [3:0] sourcepix, destpix;
reg signed[32:0] x,y;

reg signed [9:0] center_x = WIDTH/2;
reg signed [9:0] center_y = HEIGHT/2;

reg signed[32:0] cosval,sinval;
sin sinimpl(.angle(rotval), .val(sinv));
cos cosimpl(.angle(rotval), .val(cosv));

//temporary regs used to pipeline
reg signed[32:0] t1,t2;

reg calc_done,done;
reg [3:0] calc_count;
reg [8:0] prev_rotval;
assign alldone = done;

always @(posedge clock) begin
prev_rotval <= rotval;

if (reset || rotvall=prev_rotval) begin
r<=0;
c<=0;
X <= -center_x;
y <= -center_y;
calc_done <=0;
calc_count <=0;
outimage <= {36{1'b1}};
done <=0;
end
else if(!done)
if(calc_done) begin
outimage[7:4] <= calc_count;
calc_done <=0;
calc_count <=0;
if(c==WIDTH-1) begin
c<=0;
X <= -center_x;
if(r == HEIGHT-1)
done<=1;
else begin
r<=r+l;
y <=r+1 - center_y;
end
end
else begin
c<=c+l;
x <=c+1 - center_x;
end
end
//pipeline calculations for real numbers
else case(calc_count)
4'd0: begin
t1 <= (x*cosval);
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd1: begin
12 <= (y*sinval);
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;

end
4'd2: begin
if((t1-t2)==0)
p<=0;
else
p <= (t1 - t2)>>>20;
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd3: begin
11 <= (x*sinval);
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd4: begin
12 <= (y*cosval);
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd5: begin
if((t1+t2)==0)
q<=0;
else
g <= (t1 + t2)>>>20;
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd6: begin
p <= p + center_x;
g <=(q + center_y;
destpix <= Sunsigned(r*WIDTH + c);
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd7: begin
if(p<0 | | p>=WIDTH || g<0 || g>=HEIGHT) begin
calc_done <= 1; //skip further calculation
end
else begin
sourcepix <= Sunsigned(q*WIDTH + p);
calc_count <= calc_count + 1;

end
outimage[7:4] <= calc_count;
end
4'd8: begin
if(sourcepix<NPIX && destpix<NPIX) begin
outimage[3:0]<= sourcepix;
end
calc_count <= calc_count + 1;
outimage[7:4] <= calc_count;
end
4'd9: begin
calc_done <=1;
outimage[7:4] <= calc_count;
//outimage <= outimage << 1;
end
default: calc_done <=1,
endcase
end
endmodule

