
Final Project Proposal Prannay Budhraja and Mary Knapp

Image Browser and Editor

Introduction
We propose to create a system that allows a user to display and manipulate digital images stored in a

portable FLASH memory device. The actual image data will be read and preprocessed by a computer

and then made available to the FPGA via a USB cable. These images will be displayed on XGA monitor as

a “film strip” that the user can scroll left or right to find a specific image. The user will then be able to

select that image for scaling and/or rotation. The user will interact with the system via the buttons and

switches on the labkit. If this baseline functionality is achieved, gesture recognition capability may be

added through the use of a video camera.

Block Diagram

The draft block diagram below illustrates the flow of information between the modules that will be used

to implement this interface.

Hardware

This project requires a USB adapter to read serial data from a computer. If time permits the addition of

gesture recognition capability, a video camera will also be required. The additional memory and

processing requirements of gesture recognition may require the use of a second labkit as well.

Image Display

USB Reader Image Decoder

RAM

Display FSM

Two States: browse, transform

XVGA

Frame

Buffer0
Monitor

Buttons,

Switches

Transformer

Frame

Buffer1

Preprocessing

To successfully read and store images on the labkit, the images must be sufficiently small to fit on the

labkit’s memory and in a format that can be sent to the monitor (RGB). The FPGA has 5MB(40mbit) of

available memory, and we need to store at least images in RAM at a time. To meet these requirements,

we are converting all images to .bmp format in 256 colors. These images will then be processed into

RGB values using a MATLAB script (credit: Gim Hom). The output of the script is a list of RGB values that

can be sent to the FPGA via a USB cable and USB adapter. The XGA display requires 24 bits of RGB, so

the image will be processed onboard the FPGA to convert it from 8-bit RGB (256 color) to 24-bit RGB

using a set of LUTs generated by the MATLAB script. So the largest image size (1024x768 @ 8bit/pixel)

requires 6.29mb for pixels and (256*24) bits for the LUT. Four of those will take approximately

25.2mbits which can fit in the available BRAM on the FPGA.

Modules
We propose a modular design, separating key indivisible functions into separate modules. The following

is a description of each module.

USB Reader

The USB adapter has a connector for a USB cable and plugs into the labkit breadboard. The adapter has

24 pins with 8 for data. Data from the adapter will be sent to the in/out user pins on the labkit. From

there, the data will go through a processing module before being stored in the labkit’s BRAM. The

incoming data will likely need to be sent through a synchronization module before it can be read into

memory.

Image Decoder/Processor

This module will determine where in memory to write incoming data from the USB adapter. It will take

the 8-bit input from the USB adapter, determine the appropriate memory address and then output the

data to RAM. Each image will actually consist of 4 parts: an array of 8-bit pixels and three (RGB) look-up

tables which will be used to convert the 8-bit pixel color to a 24-bit RGB value that can be displayed by

the monitor. Choosing the location for each image and its associated LUTs is important for the browse

function (described below) since slices of each image will be called and displayed sequentially. To test

this module, image files and LUT files from MATLAB will be loaded directly into ISE (bypassing transfer

through USB cable/adapter). The data in these files will then be run through the logic which converts the

image back to 24-bit RGB and sent to the monitor. These tests may use the BRAM module for simplicity.

In order to test our ability to write to and read from the ZBT memory, we will attempt to write color bar

patterns into memory and then read them out to the display.

Display FSM

The way in which images will be displayed and modified will be determined by this module. It will have

two states: browse and transform. Since this is the central module for this system, both members of the

team will contribute to its design. Mary will be responsible for output to the monitor for all states as

well as browsing and selection functionality. Prannay will be responsible for the implementation of

scaling and rotation in the modify state.

This module will take input from the labkit input devices, the memories (BRAM), and the xvga module.

Its output will be a pixel value per clock cycle that will be written to the current frame buffer.

User input will determine the state of this module. In browse mode, the user will be able to scroll

through a “filmstrip” of images. As the user scrolls, images will appear from one side of the screen,

move across the screen until the entire image is visible, then disappear at the other side of the screen.

Pieces of several images will be visible at any given time. The images will be called from RAM and

copied to the frame buffer. In transform mode, only the selected image will be visible and will fill the

majority of the screen. A selected image is ready to be scaled or rotated. User input from the switches

will determine which action is performed.

Frame Buffers

Two frame buffers will be used to display images on the monitor. One will contain the frame currently

being displayed on the monitor and the other will contain the next frame, which will be in the process of

being created. This allows 1/60
th

 of a second for each frame to be generated. Since we will be using the

65MHz video clock (as in Lab 5), there will be over one million clock cycles between each frame for

calculations.

Transformer

This module receives an array of pixels for the image and two parameters for scaling and rotation. The

scaling parameter is signed to represent zoom-in or zoom-out actions, whereas the rotation parameter

is the unsigned angle in radians specifying the desired rotation about the image center. The module

outputs the visible region of transformed image.

Scaling will be done through a bilinear anti-aliasing and interpolation. Rotation will have a flexible

implementation that can be increased in complexity depending on performance characteristics. Three

hierarchical algorithms are proposed.

1. Simple Rotation: This algorithm determines the output pixel by calculating all the input pixels

with that rotation destination and picking the nearest one.

2. Bilinear Interpolation: This builds on top the simple rotation by interpolating those input pixels

to get the output pixel.

3. Area Mapped Interpolation: This assigns weights to each pixel contributing to the interpolation

based on the fraction of area of the output pixel it covers using sub-pixel area calculation.

Possible optimizations include pipelining the three separate R G B channels to compute in parallel and

merging in the end. This decreases the size of each operand and increases throughput. To test this

module sample input data will be used with preset parameters and the output will be compared against

output generated by a MATLAB script for that input data. This allows testing of this module

independently from the rest of the system.

The algorithms themselves can be first tested on a computer in Matlab and then implemented in

Verilog. The user interface for the browse and transform modes will need to be directly tested on the

FPGA using a monitor, the logic analyzer and the hex display.

