AMBISONICS Flexible surround sound system

AMBISONICS

- Method of encoding mono audio and 3D location information.
- Completely arbitrary speaker configuration and layout.
- Encoded audio plays back on all systems so that virtual sources retain their location and movement given multiple speaker configurations.
- Applications in live theater, consumer home-electronics, amusement parks, digital-cinema, and car audio.

MY WORK

Tuesday, November 17, 2009

MY WORK

Tuesday, November 17, 2009

MYWORK

Tuesday, November 17, 2009

USEFULTERMS

- Virtual Sources: Mono audio that will be spatialized.
- **Physical Sources:** Physical speakers in the venue whose output contributes to the ambisonic sound field.
- Encoded stream: An audio stream which contains location data for one or more virtual sources.

SIMPLE AMBISONIC SYSTEM

ENCODING & DECODING

- **Encoding:** Take incoming audio sample, make 16 copies of the sample and multiply each by a different coefficient calculated using location coordinates.
- Encoded stream is represented by 16 channels resulting from each sample's multiplication by coefficients which change over time. Encoded streams may be summed together.
- **Decoding:** To decode the stream for a particular physical source, multiply each channel in the encoded stream by a corresponding coefficient calculated using physical source coordinates and sum them together.

ENCODING & DECODING

Order	Name	Coefficient
Oth	W	√2/2
1st	Х	$\cos(\theta) \cos(\delta)$
	Y	$sin(\theta) cos(\delta)$
	Z	sin(δ)
2nd	R	$1.5 \sin^2(\delta) - 0.5$
	S	$\cos(\theta) \sin(2\delta)$
	Т	$sin(\theta) sin(2\delta)$
	U	$\cos(2\theta)\cos^2(\delta)$
	V	$\sin(2\theta)\cos^2(\delta)$
3rd	K	$sin(\delta) (5.0 sin^2 (\delta) - 3) 0.5$
	L	$\cos(\theta) \cos(\delta) (5 \sin^2(\delta) - 1)$
	М	$\sin(\theta) \cos(\delta) (5 \sin^2(\delta) - 1)$
	N	$\cos(2\theta) \sin(\delta) \cos^2(\delta)$
	0	$sin(2\theta) sin(\delta) cos^{2}(\delta)$
	Р	$\cos(3\theta)\cos^3(\delta)$
	Q	$\sin(3\theta)\cos^3(\delta)$
Table 1. The coefficients for encoding/decoding into third		

order Ambisonics

 Spherical Harmonic Coefficients

 Really slow to calculate in hardware

6.111 FINAL PROJECT!

- Create an ambisonic encoder and decoder that works in realtime.
- Stream virtual sources from the computer to the labkit via USB.
- Output via 8 channel Texas Instruments PCMI681 DAC.
- Control via buttons using preset locations and speed lock on interpolation.

BLOCK DIAGRAM

TIMING

- System Cycles (27Mhz): 562.5 system cycles for each audio cycle (48Khz Audio)
- USB_Reader: 8 system cycles per byte, 8 bytes for each 4 channel sample.
- ZBT Memory: 2 memory cycles per read, 128 cycles for 64 coefficients (can be run at higher clock speed)
- Multipliers: 4 cycle latency (64-bit by 16-bit CoreGen)
- Audio Timing: TI PCM-1681 uses a 128x fs clock speed (~6Mhz)

ALTERNATE DESIGNS

- First tests using AC97 output (could be used in final project across two lab kits)
- One channel of USB input direct to AC97
- Full Ambisonic panning across stereo outputs using AC97
- One channel of new DAC, using input from USB
- Alternative timing options (BRAM to store presets only)
- Interpolation system for coefficient lookup (more resolution)

QUESTIONS

TIMELINE

- Nov. 19: Finish USB to AC97 system
- Nov. 22: Finish 2 channel AC97 Ambisonic System
- Nov. 24: Finish Coordinate UI/Display System
- Nov. 25: Finish USB direct to PCM-1681
- Nov. 29: Finish 8-channel
- Dec 7: Debugging and Report Complete