DIGITAL DESIGN LABS

Super FPGA Bros

A Novel Approach to Classic Gaming

Douglas Albert & Kevin Marengo
12/10/2009

This project provides an intuitive full body gestural interface for the classic video game, Super Mario
Bros. The labkit processes a video feed of the player to determine the location of the arms and head,
and uses this information to control the character inside the video game. This creates a more immersive
and intuitive interface for the user, creating a brand new experience for a timeless classic.

Table of Contents

LIST OF TABIES ..ttt ettt sttt ettt e bt e b e sae e sat e st e e bt e b e e bt e beesbeeeateenteenreen iii
I o) B ST ={ U LSS iii
L. OVBIVIBW ittt ettt e s ettt e e ettt e e s s et e e s s s se e e s e s e et e s e nn et e e e s re e e e s nr et e e s nn e e e e e nrreeesannreeenan 1
1.1 2Tl =4 Lo T8 Vo B PSPPI 1
1.2 Description of FUNCLIONAIITYuviiiiiiie et e e e re e e e e atae e e e enreeas 1

D Y T Yo [0 1T B Ty ol o] A o o APPSR 2
2.1 Video Capture and Gesture Recognition MOdUIESccccuveeieiiieieeiiie e 2
211 OVEBIVIBW ...ttt ettt ettt e e ettt e sttt e s et e e e s sb e e e e s eabe e e e s aane e e e s e reneesaaseeeesaaneeeesareneessanen 2
2.1.2. (6 0 o 1=T - W - o1 U] =IO PTPTPTPTPRPTPPPPRTPRt 3
2.1.3 GESTUIE RECOGNITION «.eeeiiiiiiiiii ettt s e e e e s s s s saabea e e e e e e s s sanntaeeeeas 3
2,035 TUNOIWAIK ..ottt et ettt st st et e b e bt e s be e sbee st et s 5
2.1.4 VAo [T T DI T o1 - V2SS 6

2.2 (G- Ta Tl Mo = Toll 1V, Fo o L] L= TR 7
2.2.1 CE (o Lo =T o] o 1= SO PP PTPTPTPTPTPTPPPPRPPR 7
222 Frame BUFFEE ...ttt ettt e ettt e e s bt e e sabe e sabeesabeesabeeenns 8
223 LEVEI CrEatOr . ettt h e sttt sttt e b e s bt sbe e sae e et e e beenbeesheesane e 8
224 GAME FSM it 10
2.2.5 Y oL LT 2 AN |V Nt 11
2.2.6 Y o1 (=l CT=1 0 [=] ¢ 1 (] SO PP S P P USPPPPUPPPPPPPN 11
2.2.7 o N o 0o T 1 o] 11T SRS 12

3 INSItS @aNd ODSEIVATIONS ...ciiciiiei ittt e e e et e e e st te e e e sbeeeeesbeeeeesrtaeeesanraeeesne 13
3.1 TESTING & DEDUGZINGuviiieeiiiee ettt e et e e et e e et e e e e e tb e e e e e abeeeeenareeeeenbaeeeennseeeeensenas 13
3.11 Vo [=To T WY { ol 1V, FoTe [V] =TSSR 13
3.1.2 (G T g Tl oY= ol Y [Yo LU [P 15

4 CONCIUSION ettt sttt ettt e b e s b e sae e st e et e e e bt e s beesan e sab e e bt e bt e nneesreeeaneenreen 16
Yo7 o T=] o T [SR 17
AppendixX | —Zbt_ 6111 SAMPIE.V ..uiiiiiiiiiecciiee ettt e e e et e e e s bee s e et a e e e s ab e e e e enbaeeeennraeas 17

PaY o o1 oo [LI VA To =To T 1V, Vo Yo LU 1R SRPRRE 28
Appendix V—Game Wrapper MOAUIE ...ttt et e e e e e e et e e e e s e e e e ennrnnes 42

List of Tables

Table 1: Behavioral Pixel Values & Descriptions

List of Figures
Figure 1: Figure 1: Top Level Block Diagram
Figure 2: Camera Capture & Gesture Recognition Block Diagram
Figure 3: Photo of Center of Mass and Line Calculators at work
Figure 4: Game Logic block Diagram
Figure 5: Tiles Used in Game
Figure 6: Photo of game in action.

12

1. Overview

1.1 Background

The original Super Mario Bros was released by Nintendo in 1985 for the Nintendo
Entertainment System. This simple 2D side scroller held the title of best-selling video game of all time
until 2009, where it was outsold by Nintendo’s own Wii Sports. This project attempts to create a twist
on this Nintendo classic. Where the original game was controlled using a simple gamepad containing 4
directional and 2 action buttons, our game allows the player to control the on-screen character using
natural movement and gestures. The player’s actions in the real world are replicated by the character
onscreen, generating an extra level of immersion not found in the original game.

1.2 Description of Functionality

The planned project is divided into two major modules: the camera capture and gesture
recognition module, and the game logic module. The figure below gives us a very broad top level
overview of our system. By partitioning the design as such, we can work on each module independently
allowing both developers to work in parallel, hopefully speeding up the design & implementation
process.

Gesture
Information

Camera Capture &

" Game Logic
Gesture Recognition &

Game Events

Figure 1: Top Level Block Diagram

The Game Logic module contains circuitry and logic for creating an interactive game world to
display on screen, while the Camera Capture module performs the necessary signal processing to
convert raw pixel information from an external NTSC camera into something useable by our project. In
the game the player is able to navigate in the 2D plane. The player will be faced with many hazards to
navigate, both in the form of static environmental obstacles and dynamic enemies that can harm the
player and end the game. If the player can successfully navigate to the end of the level, the player can
touch a large flag pole to win the game and end the level. Rather than force the user to learn a set of
arcane gestures in order to play the game, the gesture modules look for natural movement in the
player’s body. In order to make the in game character jump, our player simply has to jump in the real

world. In order to make the in game character run forward, the player simply needs to make the motion
of running forward.

Operation of the game is a simple two stage process for the user. After the compiled version of
the program is loaded onto the labkit a simple calibration sets two thresholds relative to the player’s
head. If the player’s head crosses the upper threshold (as would occur if the player jumps) a jump signal
is sent to the game logic. If the player’s head crosses the lower threshold, a crouch signal is sent to the
game logic. After camera has been calibrated the player can stand in front of the background and
commence playing the game. If the game is stopped, as is the case when the player wins or loses the
game, pressing the ‘Enter’ button on the labkit resets the system and allows the user to play again.

2 Module Description

2.1 Video Capture and Gesture Recognition Modules

2.1.1 Overview

The purpose of the video capture and gesture recognition modules is to identify if the user is
performing an action like a crouch or jump and if the user is walking left or right or not moving at all.
These signals are then sent to the game logic module where they are used to make Mario perform the
same actions as the user.

To interact with the system, the player stands in front of the camera wearing a red hat similar to
Mario’s and a different color marker on the outside of each arm, the default choices being green and
yellow. To increase the accuracy of the system, the player stands in front of a black sheet and can wear
black clothing and gloves so that the only objects in the video frame with color are the hat and arm
markers. The center of mass for each color is calculated and tracked so that they can be used to
determine the user’s actions. This portion of the project was designed and implemented by Kevin

Marengo.
to
monitor
RGB [18]
YCrCh to RGB ZBT runorwalk movement [1]
conversion —> (arm — 0:no movement
movement) 1:walk
ycrch [30] pixel [18] l armx [11]
action[2]
Video Decoder RGB2HSV Center of Action 0: crouch
. ——»
—— Mass ——»| (jump/crouch) 1:stand
2:jump
H[9]
haty [10
from S,V [8] y [10]

camera

Figure 2: Camera Capture & Gesture Recognition Block Diagram

2.1.2. Camera Capture

2.1.2.1 ADV7185, NTSC Decoder

The ADV7185 module allows the camera to communicate with the FPGA so the data from the video can
be used by the other modules. This module was written by Nathan Ickes and was not modified. The
NTSC Decoder module takes the NTSC data from the camera as an input and outputs the YCrCb
luminance and chrominance values of each pixel as well as the F, V, and H scanning signals of the
camera. This module was also written by J. Castro and not modified.

2.1.2.2 YCrCb2RGB

The YCrCb2RGB module takes the 30-bit YCrCb luminance and chrominance values of the pixels
from the NTSC Decoder module and calculates the equivalent 24-bit RGB value with 8 bits for R, G, and B
separately. The conversion to RGB is necessary because the monitor requires the RGB values to display
the video stream from the camera in color. These RGB values will also be used to calculate the HSV
values of the pixels to be used in the gesture recognition modules. This conversion is done before the
pixel values are stored into the ZBT memory so the RGB values are what are stored. This module was
written by Xilinx.

2.1.2.3 NTSC to ZBT

The ntsc_to_zbt module was modified from the original by I. Chuang to use RGB pixel values
rather than black and white pixel values. The ZBT word size is 36 bits, so each 36-bit word is made up of
two 18-bit pixels, composed of the 6 most significant bits for the R, G, and B values of each full 24-bit
pixel. A full 36-bit word is therefore completed on every other clock cycle. This module also synchronizes
the 27MHz video clock with the 65MHz system clock, so the data can be used with the other modules
that run on the 65 MHz system clock.

2.1.3 Gesture Recognition

2.1.3.1 RGB2HSV

The first thing that occurs in the gesture recognition is the conversion of the RGB values to HSV (Hue,
Saturation, and Value) values. Since the functionality of the project requires the tracking of three colors
(red, green, and yellow) and the added functionality would require the tracking of 5 colors total, it was
suggested that the HSV values be used rather than the RGB values. To track the colors, the Hue
(absolute color) value for each color was calculated on the scale of 0-360. Focusing on this 0-360 scale
still allowed for a large difference in the values between each color used and was a much easier scale to
use when making thresholds for the different colors than the R, G, and B values separately.

Two instances of the RGB2HSV conversion would run at a time because the RGB values were taken from
the ZBT RAM 2 pixels at a time since there are two 18-bit pixel values stored at each address. In each
instance of the RGB2HSV module, the 8-bit R, G, and B values are used to calculate the 9-bit H value and
8-bit S and V values. The H value was 9 bits to keep the standard 0-360 range of the hue. The Sand V
values are usually from 0-1, but were scaled up to 0-255 to make full use of the 8 bits. Two pipelined
dividers, called divider_hsv, created by the Xilinx Coregen were used for the 16-bit division used in the
hue and saturation calculations. Some of the signals had to be delayed to match up with the correct

outputs because of the 18 clock cycles the 16-bit division takes. The NTSC address is delayed in the top-
most module so that it matches up with the correct HSV values.

2.1.3.2 Center of Mass

The center of mass module calculates the three centers of mass for the red hat, green arm
marker, and yellow arm marker. The module takes in the H, S, and V values of two pixels and the
delayed NTSC address corresponding to these two pixels. Both pixels are then checked to see if they are
both within the same color threshold for their H values. For example, the H value for both pixels must be
within the threshold range set for the same color in order to be counted towards a color’s center of
mass. Requiring both pixels to be the same color makes the center of mass more robust against noise
since noise usually only causes one pixel value to change, and it’s not likely to change two adjacent
pixels to the same color.

If both pixels fall within the set threshold for a color, then those pixels’ x and y coordinates are
added to that color’s running x and y coordinate sums and the pixel count for that color increase by two.
Since the screen refreshes at 60Hz, the new centers of mass are output 60 times a second. The red hat
center of mass is always output, but the module only outputs one arm center of mass. The module
checks which arm color has a higher pixel count to choose which color center of mass is output. | chose
to do this because in theory only one of the arm colors should be present. The arm markers are on the
outside of the arms only, so only one of those markers should be showing on the arm facing the camera.
Depending on which color arm marker is used, the module outputs a direction signal to designate the
direction the player is facing.

Figure 3: Photo of Center of Mass and Line Calculators at work

2.1.3.3 Line Calculator

The line calculator module is used to calculate where the jump line and crouch line thresholds
should be set. When the game is started, the player stands in front of the camera and someone presses
buttonO to set the jump and crouch lines. The module takes the center of mass of the hat and two
thresholds are set equidistant above and below this center of mass.

2.1.3.4 Action

In the action module, it is determined if the player is just standing, jumping, or crouching. The
module compares the hat center of mass to the jump and crouch line thresholds set using the line
calculator module. If the player jumps, the hat should go above the jump line threshold and a jump
signal is output. If the play crouches below the crouch line threshold, a crouch signals is output. When
the player is standing still or walking, the hat center of mass should be between the two lines and the
standing signal is output. The action signal for jump, stand, or crouch is used in the game logic.

2.1.3.5 Runorwalk
The purpose of the runorwalk module is to determine if the player is pumping their arm in order
to resemble walking movement. A circular buffer containing the current arm x coordinate and the

previous seven x coordinates is used to calculate an average of the values to use as a reference. Only the
x coordinate is used since we are looking for horizontal movement by the arm. If the arm position
changes by an amount greater than the threshold for bouncing due to noise, then it is accepted that the
player is probably swinging their arm. The direction that the arm is swinging can be tracked, so a count is
kept for how many screen refresh cycles the arm has been swinging in the same direction. At the end of
an arm swing, the signal “beat” is inverted and the number of screen refresh cycles is stored. If this
number of cycles is above a threshold value, then it means the player’s arm was probably swinging and
probably not noise causing the center of mass to jump around. In this case, the movement signal is
asserted meaning the play is walking.

2.1.4 Video Display

There are a few small modules that contribute to the video display. The ZBT RAM is used to
store the camera input. The zbt_6111 module writes the RGB data to the ZBT address on every odd
clock cycle when write enable is asserted. On every even clock cycle, the data is being read from the
ZBT. This module was written by I. Chuang. The XVGA module generates the important display signals
like hcount and vcount which are used to determine the pixel coordinates. The VRAM module was
modified for color to read from the ZBT every other clock cycle since each ZBT word contains two pixels
and on every clock cycle a pixel is output. These modules were written by |. Chuang as well. The video
displayed for the video capture and gesture recognition was the color RGB values of the incoming video
and some white crosshair lines used to track centers of mass.

2.2

2.2.1 Game Wrapper
For the sake of modularity, each of the major subsystems of our project are abstracted away

Game Logic Modules

from one another. The game logic is enclosed by one large game_wrapper module, which contains all of

the internal logic of the game’s operation. We can consider the game logic a black box that takes in the

relevant timing information from the FPGA and labkit as well as gesture information from the camera,

and outputs the relevant video data to be parsed by the VGA decoder. This portion of the project was

designed and implemented by Douglas Albert.

pixel{24)
player_xcoord(11)
player_ycoord(10

"

GAMELOGICMODULE

Frame Buffer

vclock, reset,
up, down,
left, right,
hsync, vsync,
blank,
hcount{11),
woounti 101

nixel statis

pixel status1

ry

Y

write_enable

player_x,
player_y,
(stickman)

sprite_row,

» Sprite Generator

sorite column
o tile_row,
tile_index .
tile_column,

write_enable,
sprite_ram_data,

pixel
status

h h J

current_bg

Player Character

sprite_ram_data

sprite_index
Tile ROM Storage Sprite RAM
[)
o tile_row, pixel_data o *r 4 2)
tile_index . sprite_index write_enable,
- tile_column, - -
¥
Level Creator new_item | Game FSM
-
i
sprite_loc

[
bg_image

level_row
¥ Y

level_column

Level ROM [Multiple)

Figure 4: Game Logic Block Diagram

As we can see in the above figure, the game logic takes in video control signals from the XVGA

module, as well as arbitrary inputs that control the action inside the game. These inputs were initially

wired to the pushbuttons on the labkit, allowing us to work on the game logic and control logic in

parallel. In the final version of the project, these signals were wired to the output of Kevin’s gesture

modules.

The entire Game Logic module is designed to be very modular, enabling us to add extra

functionality or sub modules while keeping the base functionality intact. There are four major sub

modules at work here: A frame buffer for storing and displaying images on the VGA output, a level

creator responsible for generating the background image and in-game world, a sprite subsystem for

creating and controlling the dynamic items and enemies the player can interact with, and the player

controller for relaying our input signals to the different logics in our system. All of this functionality is
abstracted away from the rest of the project, allowing Kevin to focus on implementation of his modules.

2.2.2 Frame Buffer

Although fairly simple in purpose, the frame buffer is perhaps the central module of the entire
game logic module. Because our game calls for dynamically updating multiple different images on the
screen, a frame buffer provides a more elegant solution as opposed to combinational logic. In addition,
once the information is stored in the frame buffer, other modules can poll it to perform their necessary
calculations. If this were to be attempted in combinational logic, other modules would be limited to
performing their calculations within 15 nanoseconds (corresponding to the 65 MHz clock that drives the
vcount and hcount XVGA signals).

Because we already used one of the ZBTs for the video capture module, we decided to
implement our frame buffer in BRAM. Normally the amount of available BRAM would limit us, especially
when trying to display a full XVGA image. However, we internally perform all graphical operations at the
native resolution used by the NES. This allows us to easily store 256x240 pixels worth of data in our
buffer. Each pixel stores not only 6 bits of color information, but also 7 bits of “pixel metadata” that are
used for calculations such as collisions detection. Using a BRAM also allows us to avoid having to deal
with the extra timing constraints imposed by the two clock delay in each ZBT access.

In order to take this low-resolution image and display an XVGA (1024x768) image, we scale each
pixel by updating at specific intervals as opposed to each increment of hcount and vcount. To maximize
use of screen real estate, each pixel is scaled up by 4 in the horizontal direction. In the vertical direction,
we can scale each pixel up by 3 without causing over scan. In effect, each low resolution pixel is
represented on screen by 4 x 3 physical pixels. To achieve this, we address our buffer by a bit shifted
hcount (every 4 pixels) and every three vcount.

Our frame buffer is currently accessed by both the sprite generator and level generator
modules. To avoid potential glitching of signals, our buffer is created as a dual port BRAM. Port A is
shared by both the Sprite Generator module as well as the hcount and vcount signals. To avoid glitching
we require vcount to be greater than 720 in order for the sprite generator to write to the buffer, as this
insures that the image has already been read out to the VGA output. Port B is utilized by the Level
Creator module for drawing the in-game world and background.

2.2.3 Level Creator

The level creator is responsible for generating the world the player interacts with, as well as
properly scrolling this world according to the player’s progress. This is one of the key portions of the
game engine. Key game mechanics are handled by these modules of the game engine, while specific
levels and tilesets can be swapped out by replacing the relevant level and tile ROMs. The game world is
comprised of 16x16 pixel graphical tiles (the details of which are described in the next section), and each
screen is comprised of 16x16 of these tiles. Specific combinations of tiles generate the world the player
interacts with. Using a tile based method simplifies the creation of levels for our game, as complicated

backgrounds can be created from individual tiles, as opposed to having to code our backgrounds pixel by
pixel. The level creator also contains logic to control the scrolling of the game world as the player
navigates it. While our level is composed of discreet 16x16 tiles, we need to be able to scroll by
increments smaller than 16 in order to maintain smooth video output and gameplay. Internally, we store
a 12 bit coordinate called left_edge, which contains the current coordinate of the pixels on the left edge
of the screen.

The basic operation of the level creator is as follows. Once the vcount is greater than 720 and
we know that the last frame has already been displayed on our video output, we can assert back _we
and write to the frame buffer. The level creator then generates a complete frame by polling both the
Level and Tile ROMs. The level ROM specifies which tile is to be at any given row or column coordinate,
and the Tile ROM then gives us further information about the pixel content of each tile.

Because the Level Creator accesses three different memories for each pixel, we had to pipeline
the circuitry in order to meet timing constraints. By adding registers to store previous outputs, we can
poll each of the memories simultaneously. At the cost of a little latency, we are now able to process a
pixel on every clock cycle, rather than waiting three clock cycles to retrieve information from our three
memories. Had we not implemented this, we would be unable to generate the entire background and
output to the frame buffer in between each screen refresh.

In addition to generating both background and foreground elements, our level creator must also
notify the sprite subsystem when a new sprite has entered the screen. Because sprites are dynamic
objects, they cannot be rendered using our static level creator. As such a new_sprite signal is sent to
the sprite generator, which will then handle the creation and control of the sprite. In such a case, the
background generator will specify a generic background tile in place of the sprite. This is necessary, as
our Level ROM can only specify one element per coordinate.

2.2.3.1 Tile Rom

To simplify our calculations and graphic generation, it is convenient to consider each image as a
distinct entity rather than the individual pixels that compose it. In the original Nintendo Entertainment
System, sprites could be one of two sizes, 16x16 or 16x32. In our 6.111 implementation, we went with
discreet tiles of 16x16 pixels. Each tile can be treated as a complete entity unto itself.

First, the tile Rom is implemented as a dual port BRAM that is 10 bits wide and 1024 addresses
deep. For each pixel in a tile, we have 10 bits of information. The first 6 bits correspond to the color
information of the pixel when it is displayed, two bits each for red green and blue. The next three bits
store information regarding the pixel’s attributes. Currently this information is used primarily for
collisions detection and enemy behaviors, but by expanding the number of data bits, we can easily
provide for more intricate behaviors and internal game events. Finally the last bit determines whether
or not the pixel should be treated as transparent. This allows us to draw more intricate sprites while still
retaining visibility of the background.

Figure 5: Tiles Used in Game

To create these tiles, a MATLAB script was used to convert the pixel information in the original
images to 6-bit RGB values. These were stored in a .coe file that the Xilinx Coregen application can use
to preload onto a BRAM.

2.2.3.2 Level Rom

The Level Rom is a 256 x 16 x 16 ROM that indexes all of the possible tiles that make up the
game world. Each screen in the world is composed of 16x16 tiles (with 16 tiles visible in the horizontal
direction, and 15 tiles in the vertical direction). This ROM is then addressed by a zero indexed row and
column starting in the top left corner of the screen. Because this ROM is only utilized by our level
creator, we implemented it as a single port block ram.

2.2.4 Game FSM

The Game FSM is responsible for performing necessary calculations in between frame refreshes.
Chief among them is the rudimentary gravity that affects all dynamic objects in the game. Between each
frame, all sprites (including the player) are lowered by one pixel. This creates a constant gravity inside
the game world. If this action causes a sprite to clip into the ground, the sprite generator will quickly
correct for this, as it operates at a much faster refresh rate (at the positive edge of each 65MHz clock
cycle).

The Game FSM is also responsible for controlling the independent behavior of all of the sprites.
Currently logic is only implemented for the basic mushroom enemy, or Goomba. Between each refresh,
the FSM will update the x and y coordinates of the sprite, its current state as well as the tile to use. By
changing the tile used by the sprite, we can implement simple animations. For example, the Goomba
enemy’s walking animation simply involves switching between two different sprites back and forth.

10

If the rest signal is asserted, the FSM enters into RESET, in which it cycles through three different
subtates in order to increment the sprite number and initialize all the values for each sprite in the sprite
RAM.

2.2.5 Sprite RAM

As sprites are dynamic entities, information about their last known location and state must be
stored in some central location. This allows the Sprite Generator module to draw sprites in the correct
location, as well as the Game FSM to accurately control the behavior of each sprite. Our Sprite RAM is
implemented as a 36 bit wide RAM that is 16 deep. As such we can handle up to 16 sprites onscreen at
any given moment. Given that the original Super Mario Bros had an 8 sprite limitation, we felt that 16
sprites provided ample capacity for our side scrolling game.

The Sprite RAM is another dual port BRAM, as information about each sprite is updated by both
the Sprite Generator and Game FSM modaules. As stated above, the information is stored in 36 bits. The
first 20 bits correspond to the x and y coordinates of sprite in the game. The remaining sprites are left to
store state information for each sprite. Five bits store the tile index number of the current sprite,
allowing us to animate each sprite by modifying this value. Sprites are held in the upper half of our tile
ROM, so we can create a proper tile index by adding a 1 to the front of this 5 bit tile index. The next 3
bits store information about the last collision the sprite had with the player. We have 4 bits that are
currently unused, allowing us to store extra information about sprites should we expand on the
functionality of the game. The final 4 bits are used to store directional information about the sprite’s
movement.

2.2.6 Sprite Generator

The Sprite Generator is responsible for updating the graphics of the dynamic sprites in the frame
buffer. To avoid glitching of the image stored in the frame buffer, we wait until vcount == 780. By this
time the Level Creator should have generated the background image for the next frame and we should
be able to then overlay our sprites. By writing to the buffer in this manner we can be sure that the
background is consistent and that our sprites are always visible, as the last written value to the buffer is
what is read by the video output logic for displaying an image.

Once vcount == 780, the sprite generator cycles through each sprite in RAM to obtain it’s tile
index. Using this tile index the sprite generator can read from the Tile ROM and get the necessary color
and behavior data for the current pixel being written. Once this information has been obtained, the
sprite generator must check the write location in order to avoid collisions or clipping of the sprites with
the game world or other dynamic entities. To perform this check, the Sprite Generator retrieves pixel
behavior data from the Frame Buffer and the Tile ROM simultaneously. By comparing the values of the
3 bit behavioral pixel data, we can determine the type of collision that has occurred at any given pixel.
The table below lists the currently implemented behavioral types.

Table 1: Behavioral Pixel Values & Descriptions

11

Pixel Value Description

000 No collision

001 Stops movement in the left direction

010 Stops movement in the right direction

011 Stops vertical movement

100 Hazard pixel, kills player

101 Weak pixel, player kills sprite

110 Event pixel, will modify player state (unimplemented)
111 Win pixel, player wins and game halts

2.2.7 Player Controller

The Player Controller module takes our video display signals from the XVGA module, as well as
the gestural input signals from the Camera Capture & Gesture Recognition module. These gestural input
signals currently correspond to the player’s movement in the game world, requests to move forward or
to jump. Provisions exist to allow backward movement and crouching, but these behaviors were not
implemented in the gesture module at time of demonstration. Based on the input signals received, the
player controller updates the x and y coordinates of the player.

Time permitting, the Player Controller would also provide additional functionality. The player x
and y coordinates are actually output to the top level project module. One proposed functionality was a
two player competitive mode, in which two players could race each other by playing on two different
labkits. In this scenario, the x and y coordinates on one labkit would be sent to the other labkit, allowing
the game to display the location of the opponent on the local screen, providing progress feedback and
extra incentive for the player to beat the game.

12

3 Insights and Observations

maor

Figure 6: Photo of game in action.

3.1 Testing & Debugging

3.1.1 Video Logic Module

The first simple test of the system was to see if | could display on the monitor the incoming
video stream. This was an important milestone early on in the project because it meant that | was
instantiating the video camera modules correctly, storing the correct RGB pixel data in the ZBT, reading
correctly from the ZBT, and getting correct RGB values for the pixels. With the foundation of the video
capture module now working, the RGB2HSV module had to be tested to see if it could correctly calculate
the Hue from the RGB values.

To test the RGB2HSV, | first programmed in two simple test cases in Verilog so that on the hex
display | could just see the answer | was getting from the module. | was able to hand calculate the
answer | should have received since | knew exactly what values for R, G, and B were being input into the
module, and my calculations matched those of the module. With the HSV conversion working, | needed
a way to determine the Hue value for the different markers and colors | was planning to use, so | created
the Crosshairs module and the HSV_Find module.

13

The Crosshairs module simply creates a large crosshair in the frame by drawing a white line in
both the x and y directions to mark where the current x and y coordinates of the crosshairs were with
the intersection of the two lines. The lines were drawn using the draw_line_x and draw_line_y modules
which output a pixel_enable signal that signals the display to make a white pixel if the hcount is equal to
the x coordinate of the crosshairs or if the vcount is equal to the y coordinate of the crosshairs. These
crosshairs were movable in all four directions by using the up, down, left, and right directional buttons
on the labkit. The HSV_Find module would take in the x and y coordinates of the crosshairs and output
the calculated HSV conversion of the RGB pixel at that coordinate. A circular buffer of the current value
and previous seven values was used to average the Hue value. The R, G, and B values would each be
output using two hex values on the left side of the hex display and the bottom 9 numbers on the hex
display were the binary values for each of the 9 bits in the Hue value. With these modules working
together, it was possible to scroll around the screen and see what the Hue value was for any pixel as
well the R, G, and B values for that same pixel. This became invaluable when it came to making
thresholds for the hat and arm markers.

One thing that | noticed right away was that the Hue values for the same object could vary by
over ten or so when measured under varying conditions of light, distance from the camera, different
orientations of the marker, etc. | first calculated my thresholds with the markers about a foot away from
the camera, but noticed that these thresholds would not work for the same markers when there was a
lot of light or glare or when the objects were moved further from the camera by even a foot. Every day it
was necessary to calculate new thresholds for the different colors because the conditions in the lab
would be slightly different. As part of the solution, | picked a spot where the player would be standing
on the floor near a wall by my workstation and picked a spot where the camera would be. The distance
between the markers and the camera was now set and the lighting did not vary in that spot since it was
lit only by the lab lights and not affected by any external light. After doing this, the Hue values seemed
to remain more consistent.

With the HSV conversion working and the thresholds set, | tested the Center of Mass module by
add 2 more pairs of crosshairs. One pair of crosshairs would identify the center of mass for the red hat
and the other the center of mass for the dominant arm marker present. The Center of Mass module did
not need any retooling besides changes in the threshold values once in a while.

The instantiation of the Center of Mass module revealed the biggest challenge. Despite getting
rid of the effect of noisy pixels in the Center of Mass module, it was revealed that the real world is very
noisy itself. For example, if | covered the camera lens with a black item or my hand, the centers of mass
would stop jumping around and become static, stuck at the last average center of mass. This showed
that the random noisy pixels due to the system itself were not affecting the centers of mass since you
could still see on the monitor many random red, green, and blue specs, but the centers of mass were
not changing with the static black background. However, upon removing the black item or your hand,
the two centers of mass jumped around very erratically due to real world noise. The best solution | could
think of to the problem was to put up a large black sheet on the wall used for testing, and a lot of black
clothing. To minimize any noise from the world, the background was black, my clothes were black,
everything was black save for the arm markers and the red hat. This was not an end all solution though

14

because there was still glare from the lights and things like that which would cause the centers of mass
to jump around in the absence of the hat or arm markers. However, when the red hat was introduced
into the environment, the hat center of mass was very accurate. | noticed that many lighter skin tones
would add to the center of mass, so | wore a black sweatshirt and gloves, leaving only my face showing.
My face added to the center of mass, but it made it more accurate and less jumpy. A new problem was
that the green and yellow markers did not work well. The yellow would come up as white (I was still
using the crosshairs and hex display on the labkit to check the Hue value) at that distance from the
camera which was mostly due to the light reflecting off of it. The green was just a bad color it seemed
since it was very hard for the green color to be recognized and used toward the arm center of mass.
Other options | tried were orange and purple, but orange was too close to red to be used and the purple
was too dark and close to black. In my search for two colors that would work for arm markers, | was only
able to find one replacement, a strip of light blue cardboard that | tore off of a box. The blue worked
very well actually and | was able to find this suitable replacement in time to test my action and
runorwalk modules.

With the centers of mass being detected, the final parts of the gesture detection module were
tested. The line calculator worked will with the default values in drawing a jump line and a crouch line
above and below the center of mass of the hat, and the action module was able to detect a jump, stand,
or crouch. The runorwalk module also worked since the movement signal would be asserted if the play
pumped their arm as if they were walking. The action and movement signals were displayed on the hex
display for the purposes of testing. The jumping and crouching worked very well. The runorwalk module
was a little more sensitive since the player angling their arm could change the Hue value enough for the
arm to be unrecognized. Increasing the threshold range was tried, but made the center of mass less
accurate. For the purpose of basic functionality, all of the modules worked, many of them very well,
after rigorous testing and debugging.

3.1.2 Game Logic Module

To debug the game module, we simply had to play the game and experiment with different test
cases and see how the game reacted. Before compilation, | ran into many issues regarding
redeclarations and other simple code mistakes. Because of the design of the Game Subsystem, it had to
be tested as a whole, as opposed to being able to test individual components separately. While
debugging the game, | output the x and y coordinates to the built in fluorescent display on the labkit.
This was invaluable during the early stages of the design implementation, as | was unable to draw a
player sprite on screen. Even when the graphics for the player were not working, using the coordinate
data | was able to somewhat navigate the game levels and determine whether or not the game was
behaving as expected.

Luckily, by virtue of performing all of our calculations using the low-resolution image, we were
able to save on chip utilization. In consulting with the instructors, we learned that high levels of chip
utilization and the fact that the compilation of the code is nondeterministic lead to various weird

15

glitches and errors. For the most part we were able to avoid these sorts of errors throughout the testing
process.

4 Conclusion

Completed, our project demonstrated a motion capture based gesture recognition system
combined with a classic 2D side scrolling platform game. Our video capture system processed the
incoming video stream to provide center of mass and coordinate data for our colored markers. By
determining the speed of the swinging of the arms, or if the player’s head crossed calibrated thresholds,
we were able to interpret the player’s physical actions of walking and jumping and send appropriate
control signals. These control signals were then hooked up to the game logic module, which generated
the visual representation of the game world and provided feedback for the player’s actions. As the
player moved in the real world, he could see his correspondingly move in the game world.

Holistically, the project presented an interesting challenge as well as an invaluable learning
experience. We were able to meet the majority of the goals we set for ourselves, with the remaining
functionality only limited by the amount of time we were able to spend in lab. As things got more
complex, the increased compile time limited how quickly we could experiment with different
implementations or functionality. Similarly, although our base functionality was met, we could have
presented a lot more polish and calibration provided more time. Both modules were being worked on
up until the 11" hour, and by some stroke of luck they worked seamlessly together after a single
compile.

Ultimately the project working on the project was an intense but fulfilling experience. Late
nights in lab staring at hundreds of lines of verilog were apt to cause heightened emotions at times, but
it was well worth the payoff of seeing your compiled code running on actual hardware.

16

Appendix

Appendix I - zbt_6111_sample.v

//

// File: zbt_6111_sample.v

// Date: 26-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

// memories for video display. Video input from the NTSC digitizer is

// displayed within an XGA 1024x768 window. One ZBT memory (ram@) is used
// as the video frame buffer, with 8 bits used per pixel (black & white).
//

// Since the ZBT is read once for every four pixels, this frees up time for
// data to be stored to the ZBT during other pixel times. The NTSC decoder
// runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize

// signals between the two (see ntsc2zbt.v) and let the NTSC data be

// stored to ZBT memory whenever it is available, during cycles when

// pixel reads are not being performed.

//

// We use a very simple ZBT interface, which does not involve any clock

// generation or hiding of the pipelining. See zbt_6111.v for more info.
//

// switch[7] selects between display of NTSC video and test bars

// switch[6] is used for testing the NTSC decoder

// switch[1] selects between test bar periods; these are stored to ZBT

// during blanking periods

// switch[@] selects vertical test bars (hardwired; not stored in ZBT)

//" include "display_l6hex.v"
//" include "debounce.v"
//" include "video_decoder.v"
// include "zbt_6111.v"
// include "ntsc2zbt.v"

I1717177717777717777777777777777777777777777777777177777777711771717111177171177
//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//
I17117177717177171771111771717177
//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

// "tv_out_i2c_clock".

// 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash_ce_b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse_data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
// 4-bit rami#_bwe_b bus.

// 4) Removed the "systemace_clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//
IIIIITIITIITTITT7707 000770771700 170771717777777777171171771777717117117111111117

17

//
// Complete change history (including bug fixes)

//

// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",

// "disp_data_out", "analyzer[2-3]_clock" and

// "analyzer[2-3]_data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to
// 256Mb devices, with 25 address lines.)

//

// 2004-0Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to
// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to
// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

II1777777777771777777777070777777777777777777777717177777777777771111111171777717177
module zbt_6111_sample(beep, audio_reset_b,
ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,
vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,
tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1l,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

ram@_data, ram@_address, ram@_adv_ld, ram@_clk, ram@_cen_b,
ram@_ce_b, ram@_oe_b, ram@_we_b, ram@_bwe_b,

raml_data, raml_address, raml_adv_1ld, raml_clk, raml_cen_b,
raml_ce_b, raml_oe_b, raml_we_b, raml_bwe_b,

clock_feedback_out, clock_feedback_in,

flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
flash_reset_b, flash_sts, flash_byte_b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock_27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,

button®@, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

userl, user2, user3, user4,
daughtercard,

systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

analyzerl_data, analyzerl_clock,

analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,

18

analyzer4_data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] rame@_data;

output [18:0] ram@_address;

output ram@_adv_1d, ram@_clk, ram@_cen_b, ram@_ce_b, ram@_oe_b, ram@_we_b;
output [3:0] ram@_bwe_b;

inout [35:0] raml_data;

output [18:0] raml_address;

output raml_adv_ld, raml_clk, raml_cen_b, raml_ce_b, raml_oe_b, raml_we_b;
output [3:0] raml_bwe_b;

input clock_feedback_in;
output clock_feedback_out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;
input clock_27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input buttone, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzerl_data, analyzer2_data, analyzer3_data,
analyzer4_data;
output analyzerl_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

IITILTIITIITII T II 01071770107 77777777777777171171771717711117117111117117
//

// 1/0 Assignments
//
I111117771777117111177777117711111177777771111117777777111111111177711171117

// Audio Input and Output
assign beep= 1'b0;

assign audio_reset_b = 1'bo;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;

19

/*
// ac97_sdata_in is an input

// Video Output
assign tv_out_ycrcb = 10'ho;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'be

assign tv_out_i2c_clock =
assign tv_out_i2c_data =1
assign tv_out_pal_ntsc = 1'
assign tv_out_hsync_b = 1'b
assign tv_out_vsync_b = 1'b
assign tv_out_blank_b = 1'b
assign tv_out_subcar_reset

// Video Input

//assign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b1;

assign tv_in_fifo_clock = 1'b@;

assign tv_in_iso = 1'b1;

//assign tv_in_reset_b = 1'b0;

assign tv_in_clock = clock_27mhz;//1'b@;

//assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs
/* change lines below to enable ZBT RAM banko */

/*

assign ram@_data = 36'hZ;

assign ram@_address = 19'ho;

assign ram@_clk = 1'bo;

assign ram@_we_b = 1'bl;

assign ram@_cen_b = 1'b@;// clock enable
*/

/* enable RAM pins */

assign ram@_ce_b = 1'b0O;
assign ram@_oe_b = 1'b0;
assign ram@_adv_ld = 1'b0;

assign ram@_bwe_b = 4'he;

JFRFHR A A KKK)

assign raml_data = 36'hZ;
assign raml_address = 19'ho;

assign raml_adv_ld = 1'b0;
assign raml_clk = 1'be;
assign raml_cen_b = 1'b1;

assign raml_ce_b = 1'bl;
assign raml_oe_b = 1'bl;
assign raml_we_b = 1'bl;
assign raml_bwe_b = 4'hF;

assign clock_feedback_out = 1'b0;
// clock_feedback_in is an input

// Flash ROM

assign flash_data = 16'hzZ;
assign flash_address = 24'he;
assign flash_ce_b = 1'b1;
assign flash_oe_b = 1'b1;
assign flash_we_b = 1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte_b = 1'b1;
// flash_sts is an input

// RS-232 Interface

assign rs232_txd = 1'bl;

assign rs232_rts = 1'bl;

// rs232_rxd and rs232_cts are inputs

// PS/2 Ports
// mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

20

// LED Displays

assign disp_blank = 1'b1;
assign disp_clock = 1'be;
assign disp_rs = 1'bo;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;

// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//1lab3 assign led = 8'hFF;

// buttone, buttonl, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

// User I/0s

assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign userd4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'ho;

assign systemace_ce_b = 1'bl;

assign systemace_we_b = 1'bl;

assign systemace_oe_b = 1'bl;

// systemace_irq and systemace_mpbrdy are inputs

// Logic Analyzer

assign analyzerl_data = 16'he;
assign analyzerl_clock = 1'b1;
assign analyzer2_data = 16'ho;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'ho;
assign analyzer3_clock = 1'b1;
assign analyzer4_data = 16'he;
assign analyzer4_clock = 1'b1;

I17171777777777177777777777777777777777717777177777777771777171771171771177717
// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz), .CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclkl is 1@

// synthesis attribute CLKFX_MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN_PERIOD of vclkl is 37

BUFG vclk2(.0(clock_65mhz),.I(clock_65mhz_unbuf));

wire clk = clock_65mhz;

// power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0@), .CLK(clk), .Q(power_on_reset),
.A@(1'bl), .A1(1'bl), .A2(1'bl), .A3(1'bl));

defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user_reset;

debounce dbl(power_on_reset, clk, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

//debounce buttons
wire clean_button_left, clean_button_right, clean_button_up, clean_button_down, clean_buttono;
wire clean_buttonl, clean_button2, clean_button3;

debounce debouncel(reset, clk, ~button_left, clean_button_left);
debounce debounce2(reset, clk, ~button_right, clean_button_right);
debounce debounce3(reset, clk, ~button_down, clean_button_down);
debounce debounce4(reset, clk, ~button_up, clean_button_up);
debounce debounce5(reset, clk, ~button@, clean_button®);

debounce debounce6(reset, clk, ~buttonl, clean_buttonl);

21

//
//
//
//
//
//
//
//
//
//
//
//

//
//

debounce debounce7(reset, clk, ~button2, clean_button2);
debounce debounce8(reset, clk, ~button3, clean_button3);

// display module for debugging

reg [63:0] dispdata;
display_l6hex hexdispl(reset, clk, dispdata,

disp_blank, disp_clock, disp_rs, disp_ce_b,

disp_reset_b, disp_data_out);

// generate basic XVGA video signals

wire
wire
wire
xvga

[10:0] hcount;

[9:0] vcount;

hsync,vsync,blank;
xvgal(clk,hcount,vcount,hsync,vsync,blank);

// wire up to ZBT ram

wire
wire
wire
wire

[35:0] vram_write_data;

[35:0] vram_read_data;

[18:0] vram_addr;
vram_we;

zbt_6111 zbtl(clk, 1'bl, vram_we, vram_addr,

vram_write_data, vram_read_data,

ram@_clk, ram@_we_b, ram@_address, ram@_data, ram@_cen_b);

// generate pixel value from reading ZBT memory

wire
wire

[17:0] vr_pixel;
[18:0] vram_addrl;

vram_display vdl(reset,clk,hcount,vcount,vr_pixel,

vram_addrl,vram_read_data);

// ADV7185 NTSC decoder interface code
// adv7185 initialization module
adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),

wire
wire
wire

.source(1'b@), .tv_in_reset_b(tv_in_reset_b),

.tv_in_i2c_clock(tv_in_i2c_clock),
.tv_in_i2c_data(tv_in_i2c_data));

[29:0] ycrcb; // video data (luminance, chrominance)
[2:0] fvh; // sync for field, vertical, horizontal
dv; // data valid

ntsc_decode decode (.clk(tv_in_line_clockl), .reset(reset),

.tv_in_ycrcb(tv_in_ycrcb[19:10]),
.ycrcb(ycrcb), .f(fvh[2]),
.v(fvh[1]), .h(fvh[@]), .data_valid(dv));

// code to write NTSC data to video memory

wire
wire
wire

ntsc_

[18:0] ntsc_addr;
[35:0] ntsc_data;
ntsc_we;

wire [7:0] R,G,B;

YCrCb2RGB ycrcb2rgb(R, G, B, clk, reset, ycrcb[29:20], ycrcb[19:10], ycrcb[9:0]);

ntsc_addr, ntsc_data, ntsc_we, 1'b0);

reg [10:0] crosshairs_x_in;
reg [9:0] crosshairs_y_in;

wire [10:0] new_crosshairs_x;
wire [9:0] new_crosshairs_y;

always @(posedge clk) begin
if (reset) begin
crosshairs_x_in <= 11'd400;
crosshairs_y_in <= 10'd400;

end
else begin
crosshairs_x_in <= new_crosshairs_x;
crosshairs_y_in <= new_crosshairs_y;
end

22

to_zbt n2z (clk, tv_in_line_clockl, fvh, dv, {R[7:2], G[7:2], B[7:2]},

//
//
//
//
//
//
reset,
//

//

//
//

//
//
//
//
//

end
// instantiation of the crosshairs which can be moved by pressing up,down,left,right

Crosshairs crosshairs(hcount, vcount, crosshairs_x_in, crosshairs_y_in, clean_button_up, clean_button_down,
clean_button_left, clean_button_right, clk,

new_crosshairs_x, new_crosshairs_y);

wire pixel_enable[7:0];

draw_line_y crosshair_y(crosshairs_y_in, vcount, pixel_enable®);
draw_line_x crosshair_x(crosshairs_x_in, hcount, pixel_enablel);
wire [7:0] R_out, G_out, B_out;

RGB_Find rgb(crosshair_x_in, crosshair_y_in, hcount, vcount, R, G, B,
clk, reset, R_out, G_out, B_out);

// test if the HSV conversion works

//wire [8:0] H_test;
//wire [7:0] S_test, V_test;

1/

//wire [7:0] R_test, G_test, B_test;

//

//assign R_test =
//assign G_test =
//assign B_test =

//RGB2HSV rgb2hsv(R_test, G_test, B_test, clk, rst, H_test, S_test,

8'd255;
8'd100;
8'de;

V_test);

// answer should be 23 and it is

// test to find the H S V values of colors to set color thresholds

1/
1/
//
//
//
//
/7

//
//

wire [8:0] H_out;
wire [7:0] S_out, V_out;
wire [7:0] R_out, G_out, B_out;

HSV_Find hsv(crosshairs_x_in, crosshairs_y_in, hcount, vcount, {vr_pixel[17:12], 2'be@},
{vr_pixel[11:6], 2'b@}, {vr_pixel[5:0], 2'be},
clk, reset, R_out, G_out, B_out, H_out, S_out, V_out);

conversion to HSV to be used in center of mass calculations

wire [8:0] H1, H2;
wire [7:0] S1, S2, V1, V2;

RGB2HSV RGB2HSV1({ntsc_data[35:30],2'b00}, {ntsc_data[29:24],2'b00}, {ntsc_data[23:18],2'bo0},
clk, reset, H1, S1, V1);

RGB2HSV RGB2HSV2({ntsc_data[17:12],2'b00}, {ntsc_data[11:6],2'b00}, {ntsc_data[5:0],2'bo0},
clk, reset, H2, S2, V2);

// need to delay the ntsc_addr since the center of mass needs the correct address
// with the HSV values to determine position. the RGB2HSV has a delay 20 cycles

reg [18:0] ntsc_addr_delay[20:0];

always @(posedge clk) begin

ntsc_addr_delay[@] <= ntsc_addr;

ntsc_addr_delay[1] <= ntsc_addr_delay[@0];
ntsc_addr_delay[2] <= ntsc_addr_delay[1];
ntsc_addr_delay[3] <= ntsc_addr_delay[2];
ntsc_addr_delay[4] <= ntsc_addr_delay[3];
ntsc_addr_delay[5] <= ntsc_addr_delay[4];
ntsc_addr_delay[6] <= ntsc_addr_delay[5];
ntsc_addr_delay[7] <= ntsc_addr_delay[6];
ntsc_addr_delay[8] <= ntsc_addr_delay[7];
ntsc_addr_delay[9] <= ntsc_addr_delay[8];

ntsc_addr_delay[10]
ntsc_addr_delay[11]
ntsc_addr_delay[12]
ntsc_addr_delay[13]
ntsc_addr_delay[14]
ntsc_addr_delay[15]

= ntsc_addr_delay[9];

ntsc_addr_delay[10];
ntsc_addr_delay[11];
ntsc_addr_delay[12];
ntsc_addr_delay[13];
ntsc_addr_delay[14];

23

end

ntsc_addr_delay[16] <= ntsc_addr_delay[15];
ntsc_addr_delay[17] <= ntsc_addr_delay[16];
ntsc_addr_delay[18] <= ntsc_addr_delay[17];
ntsc_addr_delay[19] <= ntsc_addr_delay[18];
ntsc_addr_delay[20] <= ntsc_addr_delay[19];

wire [8:0]hi_hat_threshold, low_hat_threshold, hi_left_arm_threshold, low_left_arm_threshold,

assign
assign

assign
assign

assign
assign

hi_right_arm_threshold, low_right_arm_threshold;

hi_hat_threshold = 9'b101100111; // red 359
low_hat_threshold = 9'b101100011; // red 355

hi_left_arm_threshold = 9'b001110011; // green 115
low_left_arm_threshold = 9'b001101110; // green 110

hi_right_arm_threshold = 9'b010111100; // blue 188
low_right_arm_threshold = 9'b010111000; // blue 184

wire [10:0] hatx, armx;
wire [9:0] haty, army;
wire comvalid;

Center_of_Mass com(ntsc_addr_delay[20], ntsc_we, H1, S1, V1, H2, S2, V2, hi_hat_threshold,

low_hat_threshold, hi_left_arm_threshold,

low_left_arm_threshold,

reset,

hi_right_arm_threshold, low_right_arm_threshold,

hatx, haty, armx, army, comvalid);

draw_line_y haty_line(haty, vcount, pixel_enable[2]);
draw_line_x hatx_line(hatx, hcount, pixel_enable[3]);

draw_line_y army_line(army, vcount, pixel_enable[4]);
draw_line_x armx_line(armx, hcount, pixel_enable[5]);

wire [9:0] jumpliney, crouchliney;

line_calculator lines(clk, reset, comvalid, clean_button@, haty, jumpliney, crouchliney);

draw_line_y jump_line(jumpliney, vcount, pixel_enable[6]);
draw_line_y crouch_line(crouchliney, vcount, pixel_enable[7]);

reg [1:0] action;
wire [1:0] action_value;
wire [1:0] movement;

always

end

action

@(posedge clk) begin
if (reset) action <= 2'be1l;
else action <= action_value;

actions(jumpliney, crouchliney, haty, clk, reset, action_value);

runorwalk walk(hcount, vcount, armx, comvalid, clk, reset, movement);
I11777777777711777777770777777777777777777777777771777777777777717177717777771777711117171717177
// Hooking up the game_wrapper module to Kevin's top level labkit.

wire up, down, left, right;

assign
assign
assign
assign

up = (clean_button_up | (action == 2));
down = (clean_button_down | (action == @));
right = (clean_button_right | movement);
left = clean_button_left;

// Game module instantiation
wire game_over;
wire [23:0] pixel_game;
wire [10:0] player_xcoord;
wire [9:0] player_ycoord;
game_engine gm(.vclock(clock_65mhz),

.reset(reset),
.up(up),
.down(down),
.left(left),
.right(right),
.hsync(hsync),
.vsync(vsync),
.blank(blank),

24

clk,

.hcount(hcount),
.vcount(vcount),

.pixel(pixel_game),
.player_xcoord(player_xcoord),
.player_ycoord(player_ycoord),
.game_over(game_over));

// Are we looking at the player sprite

wire mario_calc;
assign mario_calc =

(player_ycoord+48))));

(((hcount >= player_xcoord-32) && (hcount < (player_xcoord + 32)))
&& ((vcount >= player_ycoord) &% (vcount <

wire [23:0] pixel_mario;
blob cheap_mario(.x(player_xcoord),

// End of Douglas's interconnects
IITIT17770 0077777777 777070771777717777771777771117177777

//
//
1/

/1
/7

//
//
/1
/1
/1
//
//
//
//
//
//
//
//
//

pixel_enable[6] | pixel_enable[7]) ? 24'b1111_1111_1111_1111_1111_ 1111 :
vr

//
//
//
//
//
//
//

// code to write pattern to ZBT memory

reg [31:0] count;

always @(posedge clk) count <= reset ? @ : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];

wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'bO}}

: {4{count[3+4:4],4'b0}});

.y(player_ycoord),
.hcount(hcount),
.vcount(vcount),

.pixel(pixel_mario));

// mux selecting read/write to memory based on which write-enable is chosen

wire sw_ntsc = ~switch[7];
wire my_we = sw_ntsc ? (hcount[@]== 1) : blank;

Tomy_we;

wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;

wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;
wire write_enable = sw_ntsc ? (my_we & ntsc_we)
assign vram_addr = write_enable ? write_addr : vram_addri;
assign vram_we = write_enable;

assign vram_addr = my_we ? write_addr : vram_addril;

assign vram_we = my_we;

assign vram_write_data = write_data;

// select output pixel data
reg [23:0] pixel;

reg b,hs,vs;
reg [23:0] pixel;
wire b,hs,vs;

delayN dnl(clk,hsync,hs);// delay by 3 cycles to sync with ZBT read

delayN dn2(clk,vsync,vs);
delayN dn3(clk,blank,b);

// select output pixel data

always @(posedge clock_65mhz) begin
if (switch[1:0] == 2'b01) begin
// 1 pixel outline of visible area (white)

pixel[5:0], 2'b0};
end else begin

hs <= hsync;
Vs <= Vsync;
b <= blank;

pixel <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ? 7 : ©;
end else if (switch[1:0] == 2'b1@) begin

// color bars
hs <= hsync;
VS <= VSync;
b <= blank;

pixel <= (pixel_enable[2] | pixel_enable[3] |

// default: Mario

hs <= hsync;

VS <= Vsync;

b <= blank;

// pixel <= pixel_game;

pixel <= mario_calc ? pixel_mario :

25

pixel_game ;

pixel_enable[4] | pixel_enable[5] |

{vr_pixel[17:12], 2'b@, vr_pixel[11:6], 2'be,

// end
// end

always @(posedge clk)
begin

pixel <= switch[@] ? {hcount[8:6],5'b0,hcount[8:6],5'b0,hcount[8:6],5'b0} :
(//pixel_enable@ | pixel_enablel |
pixel_enable[2] | pixel_enable[3] |
pixel_enable[4] | pixel_enable[5] |
pixel_enable[6] | pixel_enable[7]) ? 24'b1111 1111 1111 1111 1111 1111 :

switch[3] ? (mario_calc ? pixel_mario :

pixel_game):

{vr_pixel[17:12], 2'b0O, vr_pixel[11:6], 2'bO, vr_pixel[5:0], 2'b0e};

end

// VGA Output.
// AD7125, we send it ~clock_65mhz.

assign vga_out_red = pixel[23:16];

assign vga_out_green = pixel[15:8];

assign vga_out_blue = pixel[7:0];

assign vga_out_sync_b = 1'b1; // not used
assign vga_out_pixel_clock = ~clock_65mhz;
assign vga_out_blank_b = ~b;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

// debugging
assign led = ~{vram_addr[18:13],reset,switch[0]};

always @(posedge clk)
// dispdata <= {vram_read_data,9'b@,vram_addr};

In order to meet the setup and hold times of the

// dispdata <= {2'de, R_out[7:6], 2'de, R_out[5:4], 2'd0, R_out[3:2], 2'd9, R_out[1l:@0],

//

//
G_out[1:0],

//

//
B_out[1:0]};
// dispdata <= {28'de, 3'de, H_out[8],
//
//
// dispdata <= {R_out, G_out, B_out,
//
//
//
//

dispdata <= {32'be,

endmodule

8'do,
2'de, G_out[7:6], 2'de, G_out[5:4], 2'de, G_out[3:2], 2'de,

8'de,
2'de, B_out[7:6], 2'do, B_out[5:4], 2'de, B_out[3:2], 2'de,

3'de,
3'de,

H_out[7], 3'de, H_out[6], 3'de,

4'bo,
3'de,
3'de,
3'de,

H_out[8],
H_out[7], 3'd
H_out[3], 3'd

]

, H_out[6], 3'de,
, H_out[2], 3'de,

]

2'b@, movement,
24'bo,
2'b@, action};

[171777771777771777777777777777777777777777771777717777777777717117717111177171777
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output vsync;

output hsync;

output blank;

reg hsync,vsync,hblank,vblank,blank;

reg [10:0] hcount; // pixel number on current line

reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line

wire hsyncon, hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023); //1023
assign hsyncon = (hcount == 1047);

assign hsyncoff = (hcount == 1183);

assign hreset = (hcount == 1343);

// vertical: 806 lines total

//1047
//1183
//1343

26

H_out[5], 3'de, H_out[4],
H_out[3], 3'de, H_out[2], 3'd0, H_out[1], 3'de, H_out[0]};

H_out[5], 3'de, H_out[4],
H_out[1], 3'de, H_out[@]};

// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;

assign vblankon = hreset & (vcount == 767); //767

assign vsyncon = hreset & (vcount == 776); /1776

assign vsyncoff = hreset & (vcount == 782); //782

assign vreset = hreset & (vcount == 805); //805

// sync and blanking
wire next_hblank,next_vblank;
assign next_hblank = hreset ? © : hblankon ? 1 : hblank;
assign next_vblank = vreset ? © : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? @ : hcount + 1;

hblank <= next_hblank;

hsync <= hsyncon ? @ : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? © : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? @ : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule

II1777777777711777777777777777777777777777777777711777777777771111111117771177
// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency

//

// We take care of that by latching the data at an appropriate time.

//

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram_read_data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;
output [17:0] vr_pixel;
output [18:0] vram_addr;
input [35:0] vram_read_data;

wire [18:0] vram_addr = {vcount, hcount[9:1]};
wire hc2 = hcount[0@];

reg [17:0] vr_pixel;

reg [35:0] vr_data_latched;

reg [35:0] last_vr_data;

always @(posedge clk)
last_vr_data <= (hc2) ? vr_data_latched : last_vr_data;

always @(posedge clk)
vr_data_latched <= (!hc2) ? vram_read_data : vr_data_latched;

always @* // each 36-bit word from RAM is decoded to 4 bytes
case (hc2)
1'bl: vr_pixel = last_vr_data[17:0];
1'b@: vr_pixel = last_vr_data[35:18];
endcase

endmodule // vram_display

I117777777777117717777770777777777777777777777771711777777777771111171717177771717
// parameterized delay line

module delayN(clk,in,out);
input clk;
input in;
output out;
parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

27

endmodule // delayN
III117777707777 777 77777707077777777777777777777777777777777777777711111717111777117
//

// Cheap Mario Overlay
//
IIIITT7700 0070777777 77770707777777777777777777777777777777777777771111111777771177
module blob (input [10:0] x,hcount,
input [9:0] y,vcount,
output reg [23:0] pixel);

always @ (x or y or hcount or vcount) begin
if ((hcount >= (x-32) && hcount < (x+32)) &&
(vcount >= (y) && vcount < (y+48)))
pixel = 24'b11111111 ;
else pixel = 0;
end
endmodule

Appendix II - Video Module

“timescale 1ns / 1ps

II711177707 777077777 77777777777777777777777777777777777717777177117777111771117117
// Company:

// Engineer:

//

// Create Date: 20:34:51 12/07/2009

// Design Name:

// Module Name: draw_line_x

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//
I1711177777777777777777777777777777177717777777777777777177777771177771171771117717

module draw_line_x(line_x, hcount, pixel);

input [10:0] line_x, hcount;
output reg pixel;

always @* begin
if ((hcount >= (line_x - 2)) & (hcount <= (line_x + 2)))
pixel <= 1;
else pixel <= 0;
end

endmodule

“timescale 1ns / 1ps

II711177707 7777777777 7717771777717117717
// Company:

// Engineer:

//

// Create Date: 20:24:45 12/07/2009

// Design Name:

// Module Name: draw_line_y

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//
II111777777777777777777777777717771777777711777177777777117117711777717711117711177
module draw_line_y(line_y, vcount, pixel);

28

input [9:0] line_y, vcount;
output reg pixel;

always @* begin
if ((vcount >= (line_y - 2)) & (vcount <= (line_y + 2)))
pixel <= 1;
else pixel <= 9;
end

endmodule

“timescale 1ns / 1ps

II117777777777 777 77777070777777777777777777777777771777777777777117771177777171177117

// Company:

// Engineer:

//

// Create Date: 18:25:10 12/07/2009

// Design Name:

// Module Name: Crosshairs

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

II17777777770770771777770777777777777777777777717771177777777777111171777777171111117

module Crosshairs(hcount, vcount, x_in, y_in, button_up, button_down, button_left, button_right,
clk, reset, x_out, y_out);

input [10:0] x_in, hcount;
input [9:0] y_in, vcount;
input button_up, button_down, button_left, button_right, clk, reset;

output reg [10:0] x_out;
output reg [9:0] y_out;

always @(posedge clk) begin
if (reset) begin
x_out <= 11'd400;
y_out <= 10'd400;
end
if ((hcount == 1023) & (vcount ==765)) begin
if (button_up & (y_in >= @)) y _out <= y_in - 1;
else if (button_down & (y_in <= 765)) y_out <=y in + 1;
else if (button_left & (x_in >= 0)) x_out <= x_in - 1;
else if (button_right & (x_in <= 1023)) x_out <= x_in + 1;
end
end

endmodule

“timescale 1ns / 1ps

I171117777777777777777777777777777717777777777777777777717777777117777111771177717

// Company:

// Engineer:

//

// Create Date: 18:49:48 12/07/2009

// Design Name:

// Module Name: HSV_Find

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

II11177777771777777777777717777777777777771177717777777711711771177777771117711177

module HSV_Find(crosshair_x, crosshair_y, hcount, vcount, R_in, G_in, B_in, clk, reset,
R_out, G_out, B_out, H, S, V);

29

input [10:0] crosshair_x, hcount;
input [9:0] crosshair_y, vcount;
input [7:0] R_in, G_in, B_in;
input clk, reset;

output reg [7:0] R_out, G_out, B_out;

output reg [8:0] H;
output reg [7:0] S, V;

reg [7:0] R[7:0], G[7:0], B[7:0];
reg [10:0] sum_R, sum_G, sum_B;

reg [7:0] R_average, G_average, B_average;

wire [8:0] H1;
wire [7:0] S1, Vi;

RGB2HSV RGB2HSV1(R_average, G_average, B_average, clk, reset, H1, S1, V1);

always @(posedge clk) begin
if (reset) begin

H <= 9'do;

S <= 8'de;

V <= 8'de;

R[@] <= 8'de;
R[1] <= 8'de;
R[2] <= 8'de;
R[3] <= 8'de;
R[4] <= 8'de;
R[5] <= 8'de;
R[6] <= 8'de;
R[7] <= 8'de;
G[@] <= 8'de;
G[1] <= 8'de;
G[2] <= 8'de;
G[3] <= 8'de;
G[4] <= 8'de;
G[5] <= 8'de;
G[6] <= 8'de;
G[7] <= 8'de;
B[@] <= 8'de;
B[1] <= 8'de;
B[2] <= 8'de;
B[3] <= 8'de;
B[4] <= 8'de;
B[5] <= 8'de;
B[6] <= 8'de;
B[7] <= 8'de;

end
else if ((hcount == crosshair_x) & (vcount == crosshair_y)) begin

R[@] <= R_in;
R[1] <= R[0];
R[2] <= R[1];
R[3] <= R[2];
R[4] <= R[3];
R[5] <= R[4];
R[6] <= R[5];
R[7] <= R[6];

G[@] <= G_in;
G[1] <= G[@];
G[2] <= G[1];
G[3] <= G[2];
G[4] <= G[3];
G[5] <= G[4];
G[6] <= G[5];
G[7] <= G[6];

B[@] <= B_in;
B[1] <= B[@];
B[2] <= B[1];
B[3] <= B[2];
B[4] <= B[3];
B[5] <= B[4];
B[6] <= B[5];
B[7] <= B[6];

30

sum R <= (R[@] + R[1] + R[2] + R[3] + R[4] + R[5] + R[6] + R[7]) & 11'b111 1111 1111;
sum_G <= (G[@®] + G[1] + G[2] + G[3] + G[4] + G[5] + G[6] + G[7]) & 11'b111 1111 1111;
sum_B <= (B[@] + B[1] + B[2] + B[3] + B[4] + B[5] + B[6] + B[7]) & 11'b111_1111 1111;

R_average <= sum_R[10:3];
G_average <= sum_G[10:3];
B_average <= sum_B[10:3];

R_out <= R_in;
G_out <= G_in;
B_out <= B_in;

H <= H1;
S <= S1;
V <= V1;
end
end
endmodule

Appendix III - RGB Converter

“timescale 1ns / 1ps

II711177707 777777777 77777777777777777777777777777777777717777777717777111771117117

// Company:

// Engineer:

//

// Create Date: 14:48:21 12/01/2009

// Design Name:

// Module Name: RGB2HSV

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

I171117777777777777777777777777777717771777777777777777717777777117777111771117717
I111117777777777777777771777771777777777177777777771777777771777111777111777
//
// RGB to HSV conversion

//
I171117777777777777777771777771777717777177777777771777777771777111177111777
module RGB2HSV(R, G, B, clk, rst, H, S, V);
input clk, rst;
input [7:0] R, G, B;
output reg [7:0] S, V; // @ to 255
output reg [8:0] H; // © to 360

reg [7:0] max, min, range;

reg [15:0] huedividend, satdividend;
wire [15:0] huequotient, satquotient;

wire [7:0] hueremainder, satremainder;
wire satrfd, huerfd;

reg [7:0] R_delay[19:0], G_delay[19:0], B_delay[19:0];
reg [7:0] min_delay[18:0], max_delay[18:0];

divider_hsv huedivider(clk, huedividend, range, huequotient, hueremainder, huerfd);
divider_hsv satdivider(clk, satdividend, max, satquotient, satremainder, satrfd);

always @(posedge clk)

begin
if ((R >= G) & (R >= B))
begin
max <= R;
if (G <= B)
begin

min <= G;

31

end

end
else if (B <= G)
begin

end

else if ((G >= R) & (G >= B))

begin

end

max <= G;

if (R <= B)
begin
end

else if (B <= R)
begin
end

else if ((B >= R) & (B >= G))

end

begin

end

always @(posedge clk) begin

R_delay[@]
R_delay[1]
R_delay[2]
R_delay[3]
R_delay[4]
R_delay[5]
R_delay[6]
R_delay[7]
R_delay[8]
R_delay[9]
R_delay[10]
R_delay[11]
R_delay[12]
R_delay[13]
R_delay[14]
R_delay[15]
R_delay[16]
R_delay[17]
R_delay[18]
R_delay[19]

G_delay[@]
G_delay[1]
G_delay[2]
G_delay[3]
G_delay[4]
G_delay[5]
G_delay[6]

<= R;

<= R_delay[@];
<= R_delay[1];
<= R_delay[2];
<= R_delay[3];
<= R_delay[4];
<= R_delay[5];
<= R_delay[6];
<= R_delay[7];
<= R_delay[8];
<= R_delay[9];
<= R_delay[10];
<= R_delay[11];
<= R_delay[12];
<= R_delay[13];
<= R_delay[14];
<= R_delay[15];
<= R_delay[16];
<= R_delay[17];
<= R_delay[18];

<= G;

<= G_delay[@];
<= G_delay[1];
<= G_delay[2];
<= G_delay[3];
<= G_delay[4];
<= G_delay[5];

max <= B;

if (R <= G)
begin
end

else if (G <= R)
begin
end

huedividend <= (16'd60 * (B - G)) & 16'b1111_1111_1111_1111;
range <= R - G;
satdividend <= (16'd255 * (R - G)) & 16'b1111_ 1111 1111 1111;

min <= B;

huedividend <= (16'd60 * (G - B)) & 16'b1111_1111_1111_1111;
range <= R - B;

satdividend <= (16'd255 * (R - B)) & 16'b1111 1111 1111 1111;

min <= R;

huedividend <= (16'd6@ * (B - R)) & 16'b1111_1111_ 1111 1111;
range <= G - R;

satdividend <= (16'd255 * (G - R)) & 16'b1111_1111_1111_1111;

min <= B;

huedividend <= (16'd60 * (R - B)) & 16'b1111_1111_1111_1111;
range <= G - B;

satdividend <= (16'd255 * (G - B)) & 16'b1111_1111_1111_1111;

min <= R;

huedividend <= (16'd6@ * (G - R)) & 16'b1111 1111 1111 1111;
range <= B - R;

satdividend <= (16'd255 * (B - R)) & 16'b1111_1111 1111 1111;

min <= G;

huedividend <= (16'd6@ * (R - G)) & 16'b1111 1111 1111 1111;
range <= B - G;

satdividend <= (16'd255 * (B - G)) & 16'b1111_1111_1111_1111;

32

G_delay[7] <= G_delay[6];

G_delay[8] <= G_delay[7];

G_delay[9] <= G_delay[8];

G_delay[10] <= G_delay[9];
G_delay[11] <= G_delay[10];
G_delay[12] <= G_delay[11];
G_delay[13] <= G_delay[12];
G_delay[14] <= G_delay[13];
G_delay[15] <= G_delay[14];
G_delay[16] <= G_delay[15];
G_delay[17] <= G_delay[16];
G_delay[18] <= G_delay[17];
G_delay[19] <= G_delay[18];

B_delay[@] <= B;

B_delay[1] <= B_delay[®];
B_delay[2] <= B_delay[1];
B_delay[3] <= B_delay[2];
B_delay[4] <= B_delay[3];
B_delay[5] <= B_delay[4];
B_delay[6] <= B_delay[5];
B_delay[7] <= B_delay[6];
B_delay[8] <= B_delay[7];
B_delay[9] <= B_delay[8];
B_delay[10] <= B_delay[9];
B_delay[11] <= B_delay[10];
B_delay[12] <= B_delay[11];
B_delay[13] <= B_delay[12];
B_delay[14] <= B_delay[13];
B_delay[15] <= B_delay[14];
B_delay[16] <= B_delay[15];
B_delay[17] <= B_delay[16];
B_delay[18] B_delay[17];
B_delay[19] B_delay[18];
min_delay[@] <= min;
min_delay[1] <= min_delay[@];
min_delay[2] <= min_delay[1];
min_delay[3] <= min_delay[2];
min_delay[4] <= min_delay[3];
min_delay[5] <= min_delay[4];
min_delay[6] <= min_delay[5];
min_delay[7] <= min_delay[6];
min_delay[8] <= min_delay[7];
min_delay[9] <= min_delay[8];
min_delay[10] <= min_delay[9];
min_delay[11] <= min_delay[10];
min_delay[12] <= min_delay[11];
min_delay[13] <= min_delay[12];
min_delay[14] <= min_delay[13];
min_delay[15] <= min_delay[14];
min_delay[16] <= min_delay[15];
min_delay[17] <= min_delay[16];
min_delay[18] <= min_delay[17];

max_delay[@] <= max;
max_delay[1] <= max_delay[@];
max_delay[2] <= max_delay[1];
max_delay[3] <= max_delay[2];
max_delay[4] <= max_delay[3];
max_delay[5] <= max_delay[4];
max_delay[6] <= max_delay[5];
max_delay[7] <= max_delay[6];
max_delay[8] <= max_delay[7];
max_delay[9] <= max_delay[8];
max_delay[10] <= max_delay[9];
max_delay[11] <= max_delay[10];
max_delay[12] <= max_delay[11];
max_delay[13] <= max_delay[12];
max_delay[14] <= max_delay[13];
max_delay[15] <= max_delay[14];
max_delay[16] <= max_delay[15];
max_delay[17] <= max_delay[16];
max_delay[18] <= max_delay[17];
end

always @(posedge clk)
begin
V <= max_delay[18];

if (max_delay[18] == 8'b0@) S <= 8'bO;

else S <= satquotient;

if (max_delay[18] == min_delay[18]) H <= 9'b0;
else if (max_delay[18] == R_delay[19])

begin
if (G_delay[19] <= B_delay[19]) H <= (9'd360 - huequotient) & 9'b111_111_111;
else if (B_delay[19] <= G_delay[19]) H <= huequotient & 9'b111_111_111;
end
else if (max_delay[18] == G_delay[19])
begin
if (R_delay[19] <= B_delay[19]) H <= (huequotient + 9'd120) & 9'b111_111_111;
else if (B_delay[19] <= R_delay[19]) H <= (9'd120 - huequotient) & 9'b111_111 111;
end
else if (max_delay[18] == B_delay[19])
begin
if (R_delay[19] <= G_delay[19]) H <= (9'd240 - huequotient) & 9'b111_111_ 111;
else if (G_delay[19] <= R_delay[19]) H <= (huequotient + 9'd240) & 9'b111_111 111;
end
end
endmodule

/***

This file is owned and controlled by Xilinx and must be used
solely for design, simulation, implementation and creation of
design files limited to Xilinx devices or technologies. Use
with non-Xilinx devices or technologies is expressly prohibited
and immediately terminates your license.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION
AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION

OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Xilinx products are not intended for use in life support
appliances, devices, or systems. Use in such applications are
expressly prohibited.

(c) Copyright 1995-2006 Xilinx, Inc.

All rights reserved.
***/

LN R N U O R U R R R O
KoK ¥ K X X ¥

// The synopsys directives "translate_off/translate_on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file divider_hsv.v when simulating

// the core, divider_hsv. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Help".

“timescale 1ns/1ps

module divider_hsv(
clk,
dividend,
divisor,
quotient,
remainder,
rfd);

input clk;

input [15 : @] dividend;
input [7 : @] divisor;
output [15 : @] quotient;
output [7 : @] remainder;
output rfd;

// synopsys translate_off

34

DIV_GEN_V1_@ #(

=
-

// algorithm_type
// bias

// c_has_aclr

// c_has_ce

// c_has_sclr

// c_sync_enable
// divclk_sel

// dividend_width
// divisor_width
// exponent_width
// fractional_b
// fractional_width
// latency

// mantissa_width
// signed_b

gt

-

RS

OO0 R 0OV RFRPOOOOO®
o~
-

~

inst (
.CLK(clk),
.DIVIDEND(dividend),
.DIVISOR(divisor),
.QUOTIENT(quotient),
.REMAINDER(remainder),
.RFD(rfd),
-CEQ),
.ACLR(),
.SCLR(),
.DIVIDEND_MANTISSA(),
.DIVIDEND_SIGN(),
.DIVIDEND_EXPONENT(),
.DIVISOR_MANTISSA(),
.DIVISOR_SIGN(),
.DIVISOR_EXPONENT(),
.QUOTIENT MANTISSA(),
.QUOTIENT_SIGN(),
.QUOTIENT_EXPONENT(),
.OVERFLOW(),
.UNDERFLOW());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of divider_hsv is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of divider_hsv is "black_box"

endmodule

“timescale 1ns / 1ps
II711177777777077717777177117777111771117717
// Company:

// Engineer:

//

// Create Date: 14:50:09 12/01/2009
// Design Name:

// Module Name: YCrCb2RGB

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created
// Additional Comments:

//
II1117777777777777777777771777177777777777117771777777771171117117777717171117711177

II7111771777171777117717111717
//
// ycrcb to RGB conversion

//
IITIITIITIITII T 7101071070100 10777777777777777771771717777117117111111117

module YCrCb2RGB (R, G, B, clk, rst, Y, Cr, Cb);

35

output [7:0] R, G, B;

input clk,rst;

input[9:0] Y, Cr, Cb;

wire [7:0] R,G,B;

reg [20:0] R_int,G_int,B_int,X_int,A_int,B1_int,B2_int,C_int;
reg [9:0] constl,const2,const3,const4,const5;

reg[9:0] Y_reg, Cr_reg, Cb_reg;

//registering constants

always @ (posedge clk)

begin
constl = 10'b 0100101010; //1.164 = 01.00101010
const2 = 10'b 0110011000; //1.596 = 01.10011000
const3 = 10'b 0011010000; //0.813 = 00.11010000
const4 = 10'b 0001100100; //0.392 = 00.01100100
const5 = 10'b 1000000100; //2.017 = 10.00000100
end

always @ (posedge clk or posedge rst)

if (rst)
begin
Y_reg <= 0; Cr_reg <= 0; Cb_reg <= 0;
end
else
begin
Y_reg <= Y; Cr_reg <= Cr; Cb_reg <= Cb;
end

always @ (posedge clk or posedge rst)

if (rst)
begin
A_int <= @; Bl_int <= 0; B2_int <= @; C_int <= 0; X_int <= 0;
end
else
begin

X_int <= (constl * (Y_reg - 'd64)) ;
A_int <= (const2 * (Cr_reg - 'd512));
Bl_int <= (const3 * (Cr_reg - 'd512));
B2_int <= (const4 * (Cb_reg - 'd512));
C_int <= (const5 * (Cb_reg - 'd512));
end

always @ (posedge clk or posedge rst)

if (rst)
begin
R_int <= @; G_int <= @; B_int <= 0;
end
else
begin

R_int <= X_int + A_int;

G_int <= X_int - Bl_int - B2_int;
B_int <= X_int + C_int;

end

assign R = (R_int[20]) ? @ : (R_int[19:18] == 2'b@) ? R_int[17:10] :
8'b11111111;

assign G = (G_int[20]) ? @ : (G_int[19:18] == 2'b@) ? G_int[17:10] :
8'b11111111;

assign B = (B_int[20]) ? @ : (B_int[19:18] == 2'b@) ? B_int[17:10]
8'b11111111;

endmodule

Appendix IV - Gesture Recognition
“timescale 1ns / 1ps
II11177777771777777777777717771777177777771177717777777711711177117777717111711177
// Company:

// Engineer:

//

// Create Date: 15:16:27 12/01/2009
// Design Name:

// Module Name: Center_of_Mass

// Project Name:

// Target Devices:

// Tool versions:

36

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

II71177707 777777777 777177717777711771177777

I1711177777777717777777777177777777777777717777777771777711177111771117717
//

// Center of Mass Calculator

//
[1711177717777117777777777177777777777771777777777717777177771177117777177

module Center_of_Mass(ntsc_addr, ntsc_we, H1, S1, V1, H2, S2, V2, hi_hat_threshold,
low_hat_threshold, hi_left_arm_threshold,
low_left_arm_threshold,
hi_right_arm_threshold,
low_right_arm_threshold, clk, reset,
hatx, haty, armx, army, direction, comvalid);

input [18:0] ntsc_addr;

input ntsc_we;

input [8:0] H1, H2;

input [7:0] S1, S2, Vi1, V2;

input [8:0] hi_hat_threshold, low_hat_threshold, hi_left_arm_threshold,

low_left_arm_threshold, hi_right_arm_threshold,

low_right_arm_threshold;

input clk, reset;

output reg [10:0] hatx, armx;

output reg [9:0] haty, army;

output reg comvalid;

output reg direction;

reg [18:0] last_ntsc_addr;
reg [10:0] x1, x2;
reg [9:0] y1, y2;

wire [10:0] quotient_x1, quotient_x2;

wire [9:0] quotient_yl, quotient_y2;

reg [18:0] countl, count2, countgreen, countyellow;

reg [29:0] sumx1l, sumyl, sumx2, sumy2, sumgreenx, sumyellowx, sumgreeny, sumyellowy;

always @(posedge clk) begin
if (reset) begin
last_ntsc_addr <= 19'de;
x1 <= 11'de;
x2 <= 11'de;
yl <= 11'de;
y2 <= 11'de;
countl <= 19'de;
count2 <= 19'de;
countgreen <= 19'do;
countyellow <= 19'de;
sumx1l <= 30'de;
sumx2 <= 30'de;
sumyl <= 30'do;
sumy2 <= 30'do;
sumyellowx <= 30'de;
sumgreenx <= 30'do;
sumyellowy <= 30'de;
sumgreeny <= 30'd0;
hatx <= 11'do;
army <= 11'de;
haty <= 10'de;
army <= 10'de;
direction <= 1;
comvalid <= 0;
end
else if (ntsc_we) begin
last_ntsc_addr <= ntsc_addr;
if (ntsc_addr != last_ntsc_addr) begin
x1 <= {ntsc_addr[8:0], 1'b0};
yl <= ntsc_addr[18:9];
x2 <= {ntsc_addr[8:0], 1'b0};
y2 <= ntsc_addr[18:9];

37

if ((x1 == 11'd100) & (yl == 10'd100)) begin

if (countl > 19'd1@) begin
hatx <= quotient_x1[10:0];
haty <= quotient_y1[9:0];
armx <= quotient_x2[10:0];
army <= quotient_y2[9:0];

end

countl <= 19'de;

count2 <= 19'de;

countgreen <= 19'do;

countyellow <= 19'de;

sumx1l <= 30'de;

sumx2 <= 30'do;

sumyl <= 30'do;

sumy2 <= 30'do;

sumyellowx <= 30'de;

sumgreenx <= 30'do;

sumyellowy <= 30'de;

sumgreeny <= 30'do;

comvalid <= 1;
end
else begin
comvalid <= ©;
if ((H1 <= hi_hat_threshold) & (H1 >= low_hat_threshold) &
(H2 <= hi_hat_threshold) & (H2 >= low_hat_threshold))
begin
sumxl <= sumxl + x1 + x2;
sumyl <= sumyl + yl + y2;
countl <= countl + 2;
end
else if ((H1 <= hi_left_arm_threshold) & (Hl1 >=
low_left_arm_threshold) &
(H2 <= hi_left_arm_threshold) & (H2
>= low_left_arm_threshold)) begin
sumgreenx <= sumgreenx + x1 + X2;
sumgreeny <= sumgreeny + yl + y2;
countgreen <= countgreen + 2;
end
else if ((H1 <= hi_right_arm_threshold) & (H1 >=
low_right_arm_threshold) &
(H2 <= hi_right_arm_threshold) & (H2
>= low_right_arm_threshold)) begin
sumyellowx <= sumyellowx + x1 + Xx2;
sumyellowy <= sumyellowy + yl + y2;
countyellow <= countyellow + 2;
end
end
if (countgreen > countyellow) begin
sumx2 <= sumgreenx;
sumy2 <= sumgreeny;
count2 <= countgreen;
direction <= 1; // going right (forward)
end
else if (countyellow > countgreen) begin
sumx2 <= sumyellowx;
sumy2 <= sumyellowy;
count2 <= countyellow;
direction <= @; //going left (backward)
end
end
end
else comvalid <= 0;
end

divider_com average_x1(.clk(clk), .dividend(sumxl), .divisor(countl), .quotient(quotient_x1),
.remainder(), .rfd());

divider_com average_y1(.clk(clk), .dividend(sumyl), .divisor(countl), .quotient(quotient_y1),
.remainder(), .rfd());

divider_com average_x2(.clk(clk), .dividend(sumx2), .divisor(count2), .quotient(quotient_x2),
.remainder(), .rfd());

divider_com average_y2(.clk(clk), .dividend(sumy2), .divisor(count2), .quotient(quotient_y2),
.remainder(), .rfd());

endmodule

/***

* This file is owned and controlled by Xilinx and must be used *
* solely for design, simulation, implementation and creation of *

38

design files limited to Xilinx devices or technologies. Use

and immediately terminates your license.

SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION
OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE

FOR A PARTICULAR PURPOSE.
Xilinx products are not intended for use in life support
expressly prohibited.

(c) Copyright 1995-2006 Xilinx, Inc.
All rights reserved.

¥ K K K K K K K K X K K X K X K K X K K X X ¥ ¥

with non-Xilinx devices or technologies is expressly prohibited

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"

XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE

IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

appliances, devices, or systems. Use in such applications are

KK K K K K K K K K K K K K Xk K K X K K ¥ X X ¥

***/

// The synopsys directives "translate_off/translate_on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis

// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file divider_com.v when simulating

// the core, divider_com. When compiling the wrapper file, be sure to
// reference the XilinxCorelLib Verilog simulation library. For detailed

// instructions, please refer to the "CORE Generator Help".
“timescale 1ns/1ps

module divider_com(
clk,
dividend,
divisor,
quotient,
remainder,
rfd);

input clk;

input [29 : @] dividend;
input [18 : @] divisor;
output [29 : @] quotient;
output [18 : @] remainder;
output rfd;

// synopsys translate_off

DIV_GEN_V1_0 #(

1, // algorithm_type
0, // bias
0, // c_has_aclr
0, // c_has_ce
0, // c_has_sclr
0, // c_sync_enable
1, // divclk_sel
30, // dividend_width
19, // divisor_width
8, // exponent_width
0, // fractional_b
19, // fractional_width
1, // latency
8, // mantissa_width
Q) // signed_b

inst (
.CLK(clk),
.DIVIDEND(dividend),
.DIVISOR(divisor),
.QUOTIENT(quotient),
.REMAINDER(remainder),
.RFD(rfd),
-CEQ),
.ACLR(),

39

.SCLR(),
.DIVIDEND_MANTISSA(),
.DIVIDEND_SIGN(),
.DIVIDEND_EXPONENT(),
.DIVISOR_MANTISSA(),
.DIVISOR_SIGN(),
.DIVISOR_EXPONENT(),
.QUOTIENT_MANTISSA(),
.QUOTIENT_SIGN(),
.QUOTIENT_EXPONENT(),
.OVERFLOW(),
.UNDERFLOW());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of divider_com is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of divider_com is "black_box"

endmodule

“timescale 1ns / 1ps

IIIITT1007 0077777177 7770777777777777777777777777771777777777777111711117777171177777
// Company:

// Engineer:

//

// Create Date: 17:37:09 12/01/2009

// Design Name:

// Module Name: line_calculator

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

IIII77777 70777707177 7707777777777777777777777777777777777777771171111117771717177777
module line_calculator(clk, reset, comvalid, button®, haty, jumpliney, crouchliney);

input clk, reset, button®, comvalid;
input [9:0] haty;

output reg [9:0] jumpliney, crouchliney;

always @(posedge clk) begin
if (reset) begin
jumpliney <= 9'b000_000_000;
crouchliney <= 9'b000_000_000;
end
else if (button@® & comvalid) begin
jumpliney <= haty - 9'bol10_000_000;
crouchliney <= haty + 9'b010_000_000;
end
end

endmodule

“timescale 1ns / 1ps
II711177777777777777777777777777777777717777777777777777717777777717777171771111717
// Company:

// Engineer:

//

// Create Date: 17:34:49 12/01/2009
// Design Name:

// Module Name: action

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

40

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created
// Additional Comments:

//
II711177707 777777777 7771777177777117711177117
I1711777771777177777777777777777777777771777777777717777177771177117171177
//
// Stand, Jump, Crouch
//
I1711777707777077777777777177777777777777777777777771777777777777111771771177

module action(jumpliney, crouchliney, haty, clk, reset, action);

input clk, reset;
input [9:0] haty, jumpliney, crouchliney;

output reg [1:0] action;

always @(posedge clk)

begin
if (reset) action <= 2'b01;
else if (haty <= jumpliney) action <= 2'b1@; // 2 for jump
else if ((haty > jumpliney) & (haty < crouchliney)) action <= 2'b@1l; // 1 for stand
else if (haty >= crouchliney) action <= 2'b@@; // @ for crouch
else action <= 2'b01l;

end

endmodule

“timescale 1ns / 1ps

IIIITP1077 7077777177 7770777777777777777777777777777177777777777111111117777711177777
// Company:

// Engineer:

//

// Create Date: 17:35:23 12/01/2009
// Design Name:

// Module Name: runorwalk

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//
II1117777777177777777777771777177777777777117771777777771171177717777717111771177

II71117770777707777777777717777777777777777771777777177777177717771117711717
//

// Arm Swing Period Calculator (Run or Walk)

//
II711777777777077777777777777777777777777777777777717777177771177117177177

module runorwalk(hcount, vcount, armx, comvalid, clk, reset, movement);

input clk, reset, comvalid;
input [10:0] armx, hcount;
input [9:0] vcount;

output reg [1:0] movement;

reg beat, last_beat;

reg [10:0] x[7:0], x_average;
reg [29:0] count, period;

reg [13:0]sumx;

always @(posedge clk) begin
if (reset) begin
movement <= 2'b@0; // no movement
beat <= 9;
last_beat <= 1;
x[0] <= 0;

41

x[1] <=
x[2] <=
x[3] <=
x[4] <=
x[5] <=
x[6] <=
x[7] <= ©;
count <= 0;
sumx <= 0;

[ygved

o

o

..

OO0
. o

end
else if ((hcount == 11'd100) & (vcount == 10'd100)) begin
last_beat <= beat;
x[@] <= armx;
x[1] <= x[0];
x[2] <= x[1];
x[3] <= x[2];
x[4] <= x[3];
x[5] <= x[4];
x[6] <= x[5];
x[7] <= x[6];
sumx <= (x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7]);
x_average <= sumx[13:3];
if (beat != last_beat) begin // changed direction
count <= 0;
period <= count;

end
else begin
if ((armx > (x[@] + 15)) & (armx > x_average)) begin // still moving right
count <= count + 1;
end
else if ((armx > (x[@] + 15)) & (armx < x_average)) begin // changed direction to right
beat <= ~beat;
end
else if ((armx < (x[@] - 15)) & (armx > x_average)) begin // changed direction to left
beat <= ~ beat;
end
else if ((armx < (x[@] - 15)) & (armx < x_average)) begin // still moving left
count <= count + 1;
end
else begin
movement <= 2'b00;
end
end

if (period > 5) begin
movement <= 2'b01l;

end
else begin
movement <= 2'b00;
end
end
end
endmodule

Appendix V - Game Wrapper Module

“default_nettype none

I117777777777717717777777777771177777777777771711177777777717111117111777717

//

// GAME WRAPPER AND SUPERVISOR MODULE

//

// Should have multiple sub modules

// COLOR_LUT, BACKGROUND_GEN, BACKROUND_MEMORY, TILE_MEMORY,

// FRAME_BUFFER, BLOB_GENERATOR, BLOB_RAM, PLAYER_FSM,

// SPRITE_FSM,

//

// The way these modules interface are detailed in the block diagram

// Eventually introduce a "EVENT_BUS" output

// Information about game win/loss/death/ gets output through this

// Information to be sent to the AUDIO_OUTPUT to create sound

// effects based on the events happening on screen

IITTITLTTITI0T T2 1077 717777 777777777777777171777177771117711177111111117
module game_engine(input vclock, reset, up, down, left, right, hsync, vsync, blank,

input [10:0] hcount,

42

input [9:0] vcount,

output [23:0] pixel,

output [10:0] player_xcoord,

output [9:0] player_ycoord,
output game_over);

// Wire up interconnects
wire [8:0] back_data;
wire [12:0] sprite_data;
wire [7:0] back_row, back_column, sprite_row, sprite_column;
wire back_we, sprite_we, new_sprite;
wire [7:0] world_column;
wire [3:0] world_row;
wire [5:0] background_tile;
wire [5:0] back_tile_pixel,sprite_tile_pixel;
wire [2:0] back_pixel_type;
wire [2:0] sprite_pixel_type;
wire back_pixel_transparent, sprite_pixel_transparent;
wire [5:0] back_tile_index,sprite_tile_index;
wire [3:0] back_tile_row,sprite_tile_row;
wire [3:0] back_tile_column,sprite_tile_column;
wire [2:0] o_pixel_data;
wire [5:0] pixel_i;
wire [11:0] sg_xcoord_i,sg_xcoord_o,fsm_xcoord_i,fsm_xcoord_o;
wire [7:0] sg_ycoord_i,sg_ycoord_o,fsm_ycoord_i,fsm_ycoord_o;
wire [10:0] sg_sstate_i,sg sstate_o,fsm_sstate_i,fsm_sstate_o;

wire [4:0] sg_sprite_tile_i,sg sprite_tile_o,fsm_sprite_tile_i,fsm_sprite_tile_o;

wire [3:0] sg_sprite_number;
wire [3:0] fsm_sprite_number;
wire sg_ram_we,fsm_ram_we;
wire [63:0] display_bus;
wire vertical_collision;
game object
wire [3:0] state;
wire player_collision;
wire [11:0] player_collision_xcoord;
wire [9:0] player_collision_ycoord;
// wire background_vertical_collision;
// wire background_horizontal_collision;
wire win_game;
game signal
wire player_fell;
map
wire player_size;
Little Mario. Addt'l functionality future proofing
// Movement gesture information
wire forward;
wire backward;
wire jump;
wire crouch;
wire still;
wire [11:0] left_edge;
onscreen no scrolling back
wire [2:0] collision_type;
pixel metadata
wire [4:0] new_sprite_tile;
created?
wire [4:0] new_sprite_row;
being created?
wire [3:0] num_sprites_on_screen;
wire [3:0] fb_sprite_number;
wire [3:0] collision_sprite_number;
wire [3:0] player_collision_type;
wire [3:0] new_sstate;

wire mario_calc;
reg transparent_high;

// Movement commands

assign jump = up;

assign crouch = down;

assign backward = left;

assign forward = right;

assign still = ~(|{left,right});

// We only use two bits for each color

// So we repeat color information in each channel
// To send required number of bits to XVGA
wire [5:0] pixela;

assign pixela = pixel_i;

43

// Vertical movement stopped by in

//

//

// Win
// Fall off the

// Big Mario vs

// Leftmost pixel
// What collison, based on
// Which new sprite is being

// Where is this sprite

Sprite identification number

// identifies colliding sprites
// Collision using metadata

assign pixel = {pixela[5], pixela[4], pixela[5], pixela[4], pixela[5], pixela[4], pixela[5],
pixela[4],
pixela[3], pixela[2], pixela[3], pixela[2], pixela[3], pixela[2],
pixela[3], pixela[2],
pixela[1], pixela[@], pixela[1], pixela[@], pixela[1], pixela[@],
pixela[1l], pixela[@]};

// all of our display data

assign display_bus = { 24'hoee,
3'b000, player_collision,
collision_sprite_number,
num_sprites_on_screen,
3'b000, sprite_pixel_transparent,

3'b000,0_pixel_data[2],3'bo00,0_pixel_data[1],3'bo00,0_pixel_data[e],
3'b000, transparent_high,

3'b000,fsm_sstate_i[10],3'b000O, fsm_sstate_i[9],3'b000O,fsm_sstate_i[8]

,3'b000, fsm_sstate_i[3],3'bo00,fsm_sstate_i[0]};

// Are we looking at the player sprite

assign mario_calc = (((hcount > player_xcoord) && (hcount < (player_xcoord + 16))) &% ((vcount > player_ycoord)
&& (vcount < (player_ycoord + 16))));

// Module instantiation

level_rom cart(
.vclock(vclock),

.world_column(world_column),

.world_row(world_row),

.background_tile(background_tile)

level_creator smb(i

.vclock(vclock),
.reset(reset),
.vcount(vcount),

.left_edge(left_edge),

.background_tile(background_tile),

.world_column(world_column),

.world_row(world_row),

.back_tile_pixel(back_tile_pixel),

.back_pixel_type(back_pixel_type),

.back_pixel_transparent(back_pixel_transparent),

.back_tile_index(back_tile_index),

.back_tile_row(back_tile_row),

.back_tile_column(back_tile_column),
.back_we(back_we),

.back_data(back_data),
.back_row(back_row),
.back_column(back_column),
.new_sprite(new_sprite),
.new_sprite_tile(new_sprite_tile),
.new_sprite_row(new_sprite_row)
)s
tile_memory tm(

.vclock(vclock),
.reset(reset),

44

.back_tile_index(back_tile_index),
.back_tile_row(back_tile_row),
.back_tile_column(back_tile_column),
.sprite_tile_index(sprite_tile_index),
.sprite_tile_row(sprite_tile_row),
.sprite_tile_column(sprite_tile_column),
.back_tile_pixel(back_tile_pixel),
.back_pixel_type(back_pixel_type),
.sprite_tile_pixel(sprite_tile_pixel),
.sprite_pixel_type(sprite_pixel_type),
.back_pixel_transparent(back_pixel_transparent),
.sprite_pixel_transparent(sprite_pixel_transparent)

frame_buffer

.back_row(back_row),
.back_column(back_column),

.back_data(back_data),

.sprite_row(sprite_row),
.sprite_column(sprite_column),
.sprite_data(sprite_data),
.sprite_we(sprite_we),
.0_pixel_color(pixel_i),
.0_pixel_data(o_pixel_data),
.0_sprite_number(fb_sprite_number),
.bottom_color_on(1'beo)

sprite_generator sg(

.left_edge(left_edge),

.xcoord_i(sg_xcoord_1i),

.ycoord_i(sg_ycoord_1i),

.sstate_i(sg_sstate_i),
.sprite_tile_i(sg_sprite_tile_i),
.sprite_tile_pixel(sprite_tile_pixel),
.sprite_pixel_type(sprite_pixel_type),
.sprite_pixel_transparent(sprite_pixel_transparent),
.fb_pixel_data(o_pixel_data),

.player_xcoord(player_xcoord),

45

by

)s

.vclock(vclock),
.reset(reset),

.hcount(hcount),
.vcount(vcount),

.back_we(back_we),

)5

.vclock(vclock),
.vcount(vcount),
.hcount(hcount),
.reset(reset),

.player_ycoord(player_ycoord),
.player_collision_sprite_number(collision_sprite_number),
.player_collision_i(player_collision),
.player_collision_type(player_collision_type),
.xcoord_o(sg_xcoord_o),
.ycoord_o(sg_ycoord_o),
.sstate_o(sg_sstate_o),
.sprite_tile_o(sg_sprite_tile_o),
.sprite_number_o(sg_sprite_number),
.ram_we(sg_ram_we),
.sprite_tile_index(sprite_tile_index),
.sprite_tile_row(sprite_tile_row),
.sprite_tile_column(sprite_tile_column),
.sprite_row(sprite_row),
.sprite_column(sprite_column),
.sprite_data(sprite_data),
.sprite_we(sprite_we),
.other_sprite_collision(vertical_collision),
.sprite_state(state),

.new_sstate(new_sstate),

.fb_sprite_number(fb_sprite_number)

sprite_ram sr(

.sg_address(sg_sprite_number),

.fsm_address(fsm_sprite_number),
.sg_data_i({sg_xcoord_o,sg_ycoord_o,sg_sprite_tile_o,sg_sstate_o}),
.fsm_data_i({fsm_xcoord_o,fsm_ycoord_o,fsm_sprite_tile_o,fsm_sstate_o}),
.sg_data_o({sg_xcoord_i,sg_ycoord_i,sg_sprite_tile_i,sg_sstate_i}),

.fsm_data_o({fsm_xcoord_i,fsm_ycoord_i,fsm_sprite_tile_i,fsm_sstate_i}),

.fsm_we(fsm_ram_we)

player_controller pc(

.left_edge(left_edge),
.0_pixel_data(o_pixel_data),
.collision_sprite_number(collision_sprite_number),
.player_collision(player_collision),
.player_collision_type(player_collision_type),

.win_game(win_game),

46

)s

.vclock(vclock),

.sg_we(sg_ram_we),

)5

.vclock(vclock),
.reset(reset),

.vcount(vcount),
.hcount(hcount),

endmodule

IIIIITIITIITII TP 1 01071070107 17777777777777071771771777777117117111111117

//

.player_pixel_on(mario_calc),
.player_xcoord(player_xcoord),

.player_ycoord(player_ycoord),

.backward(backward),

.player_size(player_size),
.player_fell(player_fell),
.fb_sprite_number(fb_sprite_number),

.game_over(game_over)

game_fsm

.new_sprite(new_sprite),
.new_sprite_tile(new_sprite_tile),
.new_sprite_row(new_sprite_row),
.xcoord_i(fsm_xcoord_1i),
.ycoord_i(fsm_ycoord_i),
.player_xcoord(player_xcoord),
.player_ycoord(player_ycoord),
.sstate_i(fsm_sstate_1i),
.sprite_tile_i(fsm_sprite_tile_i),
.ram_we(fsm_ram_we),
.win_game(win_game),
.player_fell(player_fell),
.left_edge(left_edge),
.xcoord_out(fsm_xcoord_o),
.ycoord_out(fsm_ycoord_o),
.sstate_out(fsm_sstate_o),
.sprite_tile_out(fsm_sprite_tile_o),
.sprite_number(fsm_sprite_number),
.player_size(player_size),
.num_sprites_on_screen(num_sprites_on_screen),

.game_over(game_over)

// Level Creator

// This module is responsible for holding each of the level "cartridges"

// And will determine the proper level display based on the current player position on screen
// The frame buffer should be filled up by this and the blob/actor generator

// Need to be careful of timing considerations, and making sure everything is filled up

// Before the next redraw of the screen.

gf(

.forward(forward),

.still(still),
.crouch(crouch),
-Jump(jump),

)s

.vclock(vclock),
.reset(reset),

.vcount(vcount),
.hcount(hcount),

)s

//
[IT100777T 1177700077777 7777 77777777777771177777777777111711771177771111177

module level_creator(input vclock, reset,
input [9:0] vcount,
input [11:0] left_edge,
input [5:0] background_tile,
input [5:0] back_tile_pixel,
input [2:0] back_pixel_type,
input back_pixel_transparent,
output [7:0] world_column,
output [3:0] world_row,
output [5:0] back_tile_index,
output [3:0] back_tile_row,
output [3:0] back_tile_column,
output back_we,
output [8:0] back_data,
output [7:0] back_row,
output [7:0] back_column,
output new_sprite,
output [4:0] new_sprite_tile,
output [4:0] new_sprite_row);

reg [7:0] last_updated_column; // holds the last world column checked for new
sprites
wire [11:0] world_hcount_display;

// Registers for pipelining

reg [7:0] back_column_d1,back_column_d2,back_column_do;

reg [7:0] back_row_d1,back_row_d2,back_row_de;

reg [3:0] back_tile_row_d1,back_tile_column_d1,back_tile_column_d2;
reg [11:0] world_hcount_display_d1,world_hcount_display_d2;

reg [7:0] world_column_dl,world_column_d2;

//to tile memory

assign back_tile_index = background_tile[5] ? 6'b000000 : background_tile; // if the object is a
sprite, display blue background

assign back_tile_row = back_row_dl [3:0];

// bottom 4 bits are the row of the tile

assign back_tile_column = world_hcount_display_d1[3:0]; // bottom 4 bits
are the column of the tile

// to frame buffer

assign back_data = back_pixel_transparent ? 9'b000111000 : {back_tile_pixel,back_pixel_type};

assign back_we = ((vcount > 720) && (vcount <= 775)); // 55
lines to store the next screen

assign back_column = back_column_d2;

assign back_row = back_row_d2;

// to background memory

assign world_column = world_hcount_display[11:4];

assign world_row = back_row_do >> 4;

assign world_hcount_display = (left_edge + back_column_de);

always @ (posedge vclock) begin
//pipeline delays
back_column_dl <= back_column_de;
back_row_d1 <= back_row_de;
back_column_d2 <= back_column_d1;
back_row_d2 <= back_row_di;
back_tile_row_d1l <= back_tile_row;
back_tile_column_d1 <= back_tile_column;
world_hcount_display_dl <= world_hcount_display;
world_hcount_display_d2 <= world_hcount_display_d1;
world_column_dl <= world_column;
world_column_d2 <= world_column_d1;
if (reset) begin
back_column_de <= 0;
back_row_de <= 0;
end
else if ((vcount >= 720) && (vcount < 780)) begin // if vcount is
off of the low-res screen
back_column_d@ <= back_column_do + 1;
// increment the back_column every clock cycle
if (back_column == 8'b11111111)
// if hcount is at the end of the low-res screen
back_row_d@ <= back_row_de + 1;
if ((back_row_d2 == 239) && (back_column_d2 == 255))

48

last_updated_column <= world_column_d2; //is
updated at the end of every write cycle
end

end // always @ vclock

assign new_sprite = ((back_column_d2 == 8'b11111111) && (background_tile[5] == 1) &&(back_tile_row_d1 ==
4'b0000) &&(back_tile_column_d2 == 4'b0000) &&~(last_updated_column == world_column_d2)); // only add a new sprite when
the top left corner of it just touches the screen

assign new_sprite_tile = background_tile[4:0];

assign new_sprite_row = world_row;
endmodule

[ITT107777TTT1777 0077777711 777777777777777117771777777771711111717711777
//

// Level ROM
// Attempt to debug memory issues by dynamically generating maps in logic
II117771111177777777171111117

module level_rom(input vclock,
input [7:0] world_column,
input [3:0] world_row,
output [5:0] background_tile);
backrom br(.addr({world_column[7:4],world_row,world_column[3:0]}),
.clk(vclock),
.dout(background_tile)
)s

endmodule

II1110777777717777777777771171177777777777117771777777711111177711777717111177
//

// Frame Buffer
// This allows us to make a much nicer looking display,
// and avoids the wonderful issue of muxing all of the potential sprites
// In original NES implementation, there was a 256x240 frame buffer.
// Determine timing such that the frame buffer is only written to after a certain amount of time.
// Avoid writing to the buffer during a current draw operation.
// If scaled up with a 4:3 pixel ratio, wait until vcount >720 to draw.
// Alternatively, with only 2x2 scaling and static background frame,
// Give yourself more time to redraw the screen.
//
// 256x240 resolution.
//
//
// Changelog:
// 12/1/2009 : To avoid timing issues caused by reading and writing to a single ZBT
// the frame buffer is instead implemented in a BRAM. There is ample space
available
// on the FPGA to hold all of the buffers and memories we desire
I1177777777771177177777777777777777777777777717717117777777771111111117771177
module frame_buffer(input vclock,
input reset,
input [10:0] hcount,
input [9:0] vcount,
input [7:0] back_row,
input [7:0] back_column,
input [8:0] back_data,
input back_we,
input [7:0] sprite_row,
input [7:0] sprite_column,
input [12:0] sprite_data,
input sprite_we,
input bottom_color_on,

output [5:0] o_pixel_color, // output pixel color data;
output [2:0] o_pixel_data, // pixel characteristics
output [3:0] o_sprite_number); //which sprite in the sprite ram is
this? (for collision detection)
wire [12:0] o_data;
wire [15:0] sprite_output_choose; // will be the hcount,vcount address if
outputting to screen, otherwise will write sprite data in
wire choose_we; // choose what to use for

write enable for wea
wire [12:0] internal_output_data;

reg [7:0] vcount_by_three; // running count of hcount divided by three
reg [1:0] count;

always @ (posedge vclock) begin
// We can change scaling factors by changing the parameters here

49

// We just change how long we spend drawing each pixel
if (vcount == @) begin
vcount_by_three <= 8'b00000000;
count <= 2'b0o;
end
else if (hcount == 1340) begin
count <= count + 1;

end

else begin
vcount_by_three <= vcount_by_three;
count <= count;

end

if(count == 3) begin
vcount_by_three <= vcount_by_three + 1;
count <= 2'beo;
end
end

// To avoid glitching, make sure we are either reading or writing to the frame buffer

// never both

assign sprite_output_choose = (vcount > 720) ? {sprite_row,sprite_column} : {vcount_by_three,hcount[9:2]};
assign choose_we = (vcount > 720) ? sprite_we : 0;

// The output data stream

// The frame buffer contains information relevant not only to the display,

// But also to internal game logic

assign o_data = internal_output_data;

assign o_pixel_color = (vcount <= 720) ? o_data[8:3] : bottom_color_on ? 9'b100010001 : 0;

assign o_pixel_data = o_data[2:0]; // data always stays on
assign o_sprite_number = o_data[12:9]; // so does the sprite number

// instantiating the 256x240x9 frame buffer memory
buffermem framebuf(.addra(sprite_output_choose),

.addrb({back_row,back_column}),
.clka(vclock),
.clkb(vclock),
.dina(sprite_data),
.dinb({4'beo00,back_data}),

.douta(internal_output_data),
.wea(choose_we),
.web(back_we));
endmodule

[IT1107777T 117770 00777777777777777777777711777177777777117711171177711111177

// SPRITE_FSM

// This module is the brains of the entire game. Enemy and item logic is

// determined here. Simple "gravity" and collision detection is based on events.
// Eventually items, scoring, timing, and win conditions are implemented here.
//

// Remember, we use a coordinate system that is zero indexed

// With increasing values from the top left to the bottom right
I1177777777771177177777777777777777777777777717717177777777771111111117771177

module game_fsm(input vclock,
input reset,
input [9:0] vcount,
input [10:0] hcount,
input new_sprite,
input [4:0] new_sprite_tile, //which
sprite is new on the board
input [4:0] new_sprite_row, //how
high does the sprite start off? comes from the world row output
input [11:0] xcoord_i,
//sprite x coordinates
input [7:0] ycoord_i,
//sprite y coordinates
input [10:0] sstate_i,
//sprite state
input [4:0] sprite_tile_i,
//which tile is the sprite?
input win_game,
//did the player just win the game?

50

input player_fell,
//did the player just fall down a hole?
input wire [11:0] left_edge,
//leftmost border of the screen, after this clear memory
input [10:0] player_xcoord, // Draw
Player Sprite
input [9:0] player_ycoord, // At the
correct coordinates
//sprite ram
output [11:0] xcoord_out,
output [7:0] ycoord_out,
output [10:0] sstate_out,
output [4:0] sprite_tile_out,
output reg [3:0] sprite_number,
output wire ram_we,
// Player information
output reg player_size,
//1 means big
output reg [3:0] num_sprites_on_screen, // will we have room to
add another sprite?
output game_over);
//sprite ram data
reg [11:0] xcoord_o;
reg[7:0] ycoord_o;
reg [10:0] sstate_o;
reg [4:0] sprite_tile_o;
//player data
reg [3:0] state;
reg [7:0] ycoord_hold;
reg [11:0] xcoord_hold;
reg [10:0] sstate_hold;
reg [4:0] sprite_tile_hold;

wire lose_game;

reg new_player_size;

reg [5:0] new_sprite_tile_hold;

reg [4:0] new_sprite_row_hold;

reg lose_game_i;

reg [2:0] game_clock; // We could map this to switches to change speed, like Lab5

I17171771777717777777771777777717771777117771177
// State transitions

parameter s_start = 0;

parameter s_1 = 1;

parameter

s_2 2;
parameter s_3 = 3;
parameter s_4 = 4;
parameter s_5 = 5;
parameter s_6 = 6;
parameter s_7 7;
parameter s_8 = 8;
parameter s_lose = 9;
parameter s_reset = 10;
parameter s_reset_1 = 11;
parameter s_reset_2 = 12;

always @ (posedge vclock) begin // state transitions

if (reset) begin
state <= s_reset;
sprite_number <= 0;
player_size <= 0;
num_sprites_on_screen <= 0;
game_clock <= 0;

end

else case (state)
s_start : state <= ((vcount == @) & (hcount == 9)) ? s_1 : new_sprite ? s_5 : state;
s_1 : state <= s_2; //wait state
s_2 : state <= (win_game) ? s_lose : (sprite_tile_ i ==0) ? s_4 : s_3; //win or
lose, just pause the game send audio signals
3 : state <= (lose_game) ? s_lose : s_4;
4 : state <= (sprite_number == 15) ? s_start : s_1;
5 : state <= s_6;
6 : state <= (sprite_tile_i ==0) ? s_7 : s_8;
7 : state <= s_start;
8 : state <= (sprite_number == 15) ? s_start : s_5;
_lose : state <= state;

51

s_reset : state <= s_reset_1;

s_reset_1 : state <= s_reset_2;

s_reset_2 : state <= (sprite_number == 15) ? s_start : s_reset;
default : state <= s_start;

endcase

if (state == s_4) sprite_number <= sprite_number + 1;
// we just updated a sprite

if (state == s_8) sprite_number <= sprite_number + 1;
// we just made a new sprite

if (state == s_reset_2) sprite_number <= sprite_number + 1;
// Initialize all the sprites

if (state == s_start) sprite_number <= 0;

// Sprite RAM should be empty/ we can overwrite

// latching

if (state == s_2) begin
ycoord_hold <= ycoord_i;
xcoord_hold <= xcoord_i;
sprite_tile_hold <= sprite_tile_i;
sstate_hold <= sstate_i;

end

// if a new sprite is sent
if ((state == s_start) && new_sprite) begin
// will only be sent while FSM is in s_start
new_sprite_tile_hold <= new_sprite_tile;
// put coordinates in registers
new_sprite_row_hold <= new_sprite_row;
end

//test signal, how many sprites are we displaying?
if (state == s_3) num_sprites_on_screen <= sprite_number;

// player size
if (state == s_3) player_size <= new_player_size;
if ((hcount == @) && (vcount == 9))
game_clock <= game_clock + 1;
end // state transitions

//// combinational logic

assign game_over = (state == s_lose);
// halt because we've lost
assign ram_we = ((state == s_3) || (state == s_7) || (state == s_reset_1));

// Information to be stored in RAM

assign xcoord_out = (state == s_7) ? left_edge + 256 : (state == s_reset_1) ? © : xcoord_o;

assign ycoord_out = (state == s_7) ? ({new_sprite_row_hold,4'boeee}): (state == s_reset_1) ? @ : ycoord_o;
assign sstate_out = (state == s_7) ? 11'b0000000010 : (state == s_reset_1) ? @ : sstate_o;

assign sprite_tile_out = (state == s_7) ? new_sprite_tile_hold : (state == s_reset_1) ? @ : sprite_tile_o;
assign lose_game = (lose_game_i || player_fell); //two ways to lose

always @ (xcoord_hold,ycoord_hold,sprite_tile_hold,sstate_hold,player_size,left_edge,game_clock) begin

//player size and lose game

if(sstate_hold[4] && (sstate_hold[10:8] == 3'b100) &% player_size) begin // if player is
big
new_player_size = 0;
lose_game_i = 0;
end
else if(sstate_hold[4] && (sstate_hold[10:8] == 3'b100) && ~player_size) begin // if player is
little
new_player_size = 0;
lose_game_i = 1;
end
else begin
new_player_size = player_size;
lose_game_i = 0;
end

// Enemy Logic for Goomba

if (sprite_tile_hold == 5'd@) //default tile ? do nothing

{xcoord_o,ycoord_o,sprite_tile_o,sstate_o} =
{xcoord_hold, ycoord_hold,sprite_tile_hold,sstate_hold};

else if ((sprite_tile_hold == 5'b@@@01) || (sprite_tile_hold == 5'b@@010)) begin // Goomba Enemy Logic

if (game_clock[1:0] == @) begin
if (sstate_hold[1] && sstate_hold[2]) //moving right
xcoord_o = xcoord_hold + 1;

52

else if (sstate_hold[1] && ~sstate_hold[2]) //moving left

xcoord_o = xcoord_hold - 1;

else xcoord_o = xcoord_hold; //otherwise stay stationary

end
else xcoord_o = xcoord_hold;
//y coordinates

ycoord_o = ycoord_hold + 1; //gravity

//next sprite tile

if (((xcoord_hold + 16) <= left_edge) || (ycoord_hold >= 240) || (xcoord_hold >= (left_edge + 260)))

// if the tile is off the screen

sprite_tile_o = @; // remove the sprite

else if (sstate_hold[4] && (sstate_hold[10:8] == 3'bl1@1l)) // if the player killed the sprite

sprite_tile_o = @; // remove the sprite

else if (xcoord_hold[2])
sprite_tile_o = 5'booe0o1;

else sprite_tile_o = 5'b00010; //otherwise keep the old tile

//sstate

sstate_o = sstate_hold; //do nothing to the state

end // Goomba Enemy Logic
//otherwise do nothing to the sprite

else {xcoord_o,ycoord_o,sprite_tile_o,sstate_o} = {xcoord_hold,ycoord_hold,sprite_tile_hold,sstate_hold};

end //enemy logic
endmodule

IITTLLTTTTTTTITT0 000777777777 77777707777771177777777777117711777777777711777177771711117

//
// player_controller

// Description: controls all the player's movements. It also detects collisions, and sets

// the appropriate flags high.
//

// player control was originally abstracted away from the game logic
// such that additional functionality could be added to this module

// e.g. A stickman dynamic representation of the player would take the x and y coordinates

// of the player's arms and mimic the player's configuration.

// xcoord and ycoord would tell this drawing module where to insert this dynamic representation
// dynamic representation could be performed as an overlay on top of the frame buffer image
II177177777777007777777707777777777777777777777777717777777777771177777777777177111111771777

module player_controller(
input vclock,

clock

input reset,

input [9:0] vcount,

input [10:0] hcount,

// frame buffer

input [2:0] o_pixel_data,
death

input [3:0] fb_sprite_number,
dealing with
// Input control signals.
// hold a one while each "action" is
input forward,
input backward,
input still,
input crouch,
input jump,
// from sprite_fsm
input player_pixel_on,
player sprite
input player_size,
input game_over,
stop movement
// to sprite_fsm
output reg win_game,
tell audio to play song
output reg player_fell,
game
// to various
output reg [11:0] left_edge,
// to sprite generator
output reg [10:0] player_xcoord,
output reg [9:0] player_ycoord,
output reg [4:0] sprite_tile_out,
output reg [3:0] sprite_number,
output wire ram_we,
RAM
//to sprite_generator

being performed

//system

// pixel metadata for collisions /

which of our 16 sprites are we

// are we dealing with the
// big/little mario
// game has ended,
// game has won,

// player has lost, halt

// what is our leftmost pixel?

// where is the player

// where is the player
// draw one of these sprites

// which sprite from RAM

// write to the

output reg [3:0] collision_sprite_number, // which sprite did we collide with

53

output reg player_collision,
output reg [2:0] player_collision_type);

// potentially simplify this logic

// Currently written for a jump gesture that could be held
// Allowing for finer control of jump length and height
wire jump_hold;

reg [5:0] jump_length;

reg [2:0] jump_state;

wire new_jump;

reg in_the_air;

assign jump_hold = |jump_length;

assign new_jump = (jump_state == 2'b01);

always @ (posedge vclock) begin
if (reset) begin
// initialize the game
collision_sprite_number <= 0;
player_collision <= 0;
win_game <= 0;
player_xcoord <= 128;
player_ycoord <= 114;
jump_length <= 0;
player_fell <= 0;
left_edge <= 0;
jump_state <= 0;
end
else if (game_over) begin
move, the game halts
player_xcoord <= player_xcoord;
player_ycoord <= player_ycoord;
end
else if ((vcount == 1) & (hcount == 1)) begin
vcount = 1 and hcount =1
collision_sprite_number <= 0;
player_collision <= 0;
player_collision_type <= 0;
end
else if (player_pixel_on) begin
// game events
if ((o_pixel_data == 3'blee) ||
begin
collision_sprite_number <= fb_sprite_number;
player hit?
player_collision <= 1;
player_collision_type <= o_pixel_data;

end
else if (o_pixel_data == 3'b010 && forward) begin
something
player_xcoord <= player_xcoord - 2;
end
else if (o_pixel _data == 3'b@@l && backward)
something

player_xcoord <= player_xcoord + 2;
else if (o_pixel_data == 3'b011 && jump_hold) begin
player_ycoord <= player_ycoord + 5;
jump_length <= @;
end
else if (o_pixel_data == 3'b@11) begin
landed on the ground
player_ycoord <= player_ycoord - 1;
// popped back up
in_the_air <= 0;
// the player is back on solid ground again
end
else if (player_ycoord < 4)
// gravitational pull
player_ycoord <= player_ycoord + 1;
else if (player_xcoord > 512) begin
player_xcoord <= player_xcoord - 4;
left_edge <= left_edge + 1;
// move the screen over
end
else if (o_pixel_data == 3'bl11l)
// grab the flag at the end of the game
win_game <= 1;
else if (vcount == 750)
player_fell <= 1;
// if the player falls off the bottom of the screen

54

(o_pixel_data ==

// has the player collided

// does the player live or die?

// is the player still jumping?

// general game logic

// player does not

//restart at

3'b101) || (o_pixel_data == 3'b110))

//what is the last thing the

//if going foward and hit

//if going backward and hit

//if jumping and hit something

// if

// if the player is more than half way

end // game events
// change the player's state every frame
else if((vcount == 720) &% (hcount == 1)) begin

case(jump_state)
2'b00 : jump_state <= jump ? 2'bO1 : jump_state;
2'b01 : jump_state <= jump ? 2'bll : 2'b00;
2'b11l : jump_state <= jump ? 2'bll : 2'b00;
default : jump_state <= 2'b00;

endcase

if(~jump_hold)
// if the player is not jumping
player_ycoord <= player_ycoord + 4; // gravity
if(jump_hold) begin
// if the player is jumping
player_ycoord <= player_ycoord - 4;
jump_length <= jump_length - 1;
in_the_air <= 1;

end
if(new_jump && ~in_the_air) begin // if the player has
requested a jump
jump_length <= 6'b111000;
player_ycoord <= player_ycoord - 1; //get the player started off the
ground
end
if(forward)

// if the player has requested to go foward
player_xcoord <= player_xcoord + 4;
if(backward && ~(player_xcoord < 4)) // if the player requests to go backward and
is not at the edge of the screen
player_xcoord <= player_xcoord - 4;
end // player controls
end //always
endmodule

I117777777777777717777777777777177777777777717111117777711771717

/

// sprite_generator

// description: draws the sprites from the sprite RAM, determines
// collisions, and updates the collision state

//
[1I11107777777177717777777771777777117777771111711177777111111177

module sprite_generator(

input vclock, //65mhz clock
input [9:0] vcount, //vertical count

input [10:0] hcount, //horizontal count

input reset, //global reset

input [11:0] left_edge,
//sprite RAM

input [11:0] xcoord_i, // changing the x coordinate of the sprite
input [7:0] ycoord_i, // changing the y coordinate of the sprite
input [10:0] sstate_i, // changing the sprite's state

input [4:0] sprite_tile_i, // 32 different sprite tiles
//tile memory

input [5:0] sprite_tile_pixel, // RGB value of the pixel requested
input [2:0] sprite_pixel_type, // character type of pixel requested
input sprite_pixel_transparent, // high if the pixel is transparent
//Frame Buffer

input [2:0] fb_pixel_data, // pixel characteristics

input [3:0] fb_sprite_number,
//player collision detection

input [10:0] player_xcoord, // Draw Player Sprite

input [9:0] player_ycoord, // At the correct coordinates

input [3:0] player_collision_sprite_number,

input player_collision_i, //high if the player collided with a sprite

input [2:0] player_collision_type,
//sprite RAM

output [11:0] xcoord_o,

output [7:0] ycoord_o,

output [10:0] sstate_o,

output [4:0] sprite_tile_o,

output [3:0] sprite_number_o,
output reg ram_we,

//tile memory

output [5:0] sprite_tile_index,

55

output reg [3:0] sprite_tile_row,
output reg [3:0] sprite_tile_column,
//Frame Buffer

output [7:0] sprite_row, // horizontal row to write sprite data (©-255)
output [7:0] sprite_column, // verticle column to write sprite data(©-239)

output [12:0] sprite_data, // sprite pixel data to be saved to the memory

output sprite_we, // sprite write enable

output other_sprite_collision,
output reg [3:0] sprite_state,
output [2:0] new_sstate);

reg [3:0] sprite_number;

//internal signals

wire [11:0] sprite_column_i;

wire next_horizontal_direction; // which way the current sprite should go next
wire next_move_vertical; // high if moving vertical
wire vertical_collision;

reg [7:0] ycoord_hold;

reg [11:0] xcoord_hold;

reg [10:0] sstate_hold;

reg [2:0] pixel_data_hold;

reg [2:0] sprite_pixel_type_hold;

reg [4:0] sprite_tile_hold;

wire hor_dir;

reg [3:0] fb_sprite_number_hold;

reg [11:0] colliding_sprite_xcoord;

reg [7:0] colliding_ sprite_ycoord;

reg [10:0] colliding_sprite_sstate;

reg [4:0] colliding_sprite_tile;

reg [5:0] sprite_tile_pixel_hold;

reg sprite_collision_hold;

wire player_collision;

// parameters for the state machine
parameter s_start = 0;

parameter s_1 = 1; // Query sprite info

parameter s_2 = 2; // Info obtained

parameter s_3 = 3; // Write Information to the RAM

parameter s_4 = 4; // Increment the counter

parameter s_5 = 5; // New Sprite is created

parameter s_6 = 6; // Information about sprite held

parameter s_7 = 7; // Write this info to RAM

parameter s_8 = 8; // If we have no RAM space, return to start
parameter s_9 = 9; // Collision Calculations

parameter s_10 = 10;

parameter 5:11 = 11;
// output logic

// Event signals based on pixel metadata

// detect if collided with an object

assign hor_dir = sstate_hold[2];

// detect if collided with another sprite

assign other_sprite_collision = (~sprite_pixel_transparent &% ((pixel_data_hold == 3'b101) || (pixel_data_hold
== 3'b100)) && ~(sprite_number == fb_sprite_number_hold));

// detect if collided with an object

assign next_horizontal_direction = sprite_collision_hold ? ~hor_dir :(~sprite_pixel_transparent &&
(pixel_data_hold == 3'b@1@)) ? @ : (~sprite_pixel_transparent && (pixel_data_hold == 3'b@@1l)) ? 1 : hor_dir;

// change direction if the sprite hits something

assign vertical_collision = (~(sprite_pixel_transparent) && ((pixel_data_hold == 3'be11) ||

((pixel_data_hold == 3'b101) && ~(fb_sprite_number == sprite_number))));

//which way do we move next?

assign next_move_vertical = vertical_collision ? @ : sstate_hold[0];

//determine the pixel type of the sprite pixel that hit the player last

assign new_sstate = player_collision ? player_collision_type : sstate_hold[10:8];

// has the player collided with this sprite?

assign player_collision = (player_collision_i && (player_collision_sprite_number == sprite_number));

// output to frame_buffer

assign sprite_column_i = (xcoord_hold - left_edge + sprite_tile_column); //* normalize to the screen

assign sprite_column = sprite_column_i[7:0];

//add in the tile column

assign sprite_row = ycoord_hold + sprite_tile_row;

assign sprite_data = {sprite_number,sprite_tile_pixel_hold,sprite_pixel_type_hold}; //will only change the frame
buffer when not transparent (taken care of in the FSM)

assign sprite_we = (sprite_column_i > 256) ? © : (sprite_state == s_4);

// output to tile_memory

56

assign sprite_tile_index = {1'bl,sprite_tile_hold};
//append a 1, sprites are only in the top half of the tile memory

// output to sprite_RAM

// if in state 9, use the data for the sprite we are colliding with, otherwise use the data
// for the sprite we are currently working with

assign sstate_o = (sprite_state == s_9) ?

{colliding_sprite_sstate[10:3],~colliding_sprite_sstate[2],colliding_sprite_sstate[1:0]} :

{new_sstate,sstate_hold[7:5],player_collision,sstate_hold[3],next_horizontal_direction,
sstate_hold[1],next_move_vertical};
assign xcoord_o = ((sprite_state == s_9) &% (colliding_sprite_sstate[2])) ? (colliding_sprite_xcoord - 1) :
((sprite_state == s_9) && ~(colliding_sprite_sstate[2])) ?
(colliding_sprite_xcoord + 1) :
(sprite_collision_hold && next_horizontal_direction) ?
(xcoord_hold + 1) :
(sprite_collision_hold && next_horizontal_direction) ?
(xcoord_hold - 1) :
xcoord_hold;
assign ycoord_o = (sprite_state == s_9) ? colliding_sprite_ycoord :
(vertical_collision && sstate_hold[3]) ? (ycoord_hold + 1) :
// if hit something going up, move down
(vertical_collision && ~sstate_hold[3]) ? (ycoord_hold - 1) :
// if hit the bottom, move up
ycoord_hold;
// don't chnge
assign sprite_tile_o = (sprite_state == s_9) ? colliding_sprite_tile :
(xcoord_hold > (272 + left_edge)) ? 0 :
sprite_tile_hold;
assign sprite_number_o = ((sprite_state == s_9) ||(sprite_state == s_7) || (sprite_state == s_8))
? fb_sprite_number_hold : sprite_number;

// next state logic
always @ (posedge vclock) begin
if (reset) begin

sprite_state <= s_start;

{sprite_number,sprite_tile_row,sprite_tile_column} <= 0;

ycoord_hold <= 0;

pixel_data_hold <= ©0;

ram_we <= 0;

sprite_collision_hold <= 0;

colliding_sprite_xcoord <= 0;

colliding_sprite_ycoord <= 0;

colliding_sprite_sstate <= ©;

colliding_sprite_tile <= 0;

end
else case (sprite_state)

s_start : sprite_state <= ((vcount == 780) && (hcount == 1)) ? s_1 : sprite_state;

s_1 : sprite_state <= s_6; //fetch data

s_6 : sprite_state <= s_10;

s_10 : sprite_state <= 2;

s_2 : sprite_state <= other_sprite_collision ? s_7 : (~(fb_pixel_data == 3'b000) &&
~(sprite_pixel_transparent)) ? s_3 : ((fb_pixel_data == 3'b000) && ~(sprite_pixel_transparent)) ? s_4
: (sprite_pixel_transparent) ? s_5 : sprite_state;

s_7 : sprite_state <= s_8;

8 : sprite_state <= s_9; //reading colliding sprite data

9 : sprite_state <= s_3; //writing colliding sprite data

3 : sprite_state <= (~sprite_pixel_transparent) ? s_4 : sprite_state; // write data

4 : sprite_state <= s_5; //gives time to write to the frame buffer
5
.F

_5 : sprite_state <= (&{sprite_number,sprite_tile_row,sprite_tile_column}) ? s_start : s_1;
efault : sprite_state <= s_start;
endcase

if (sprite_state == s_5) begin

{sprite_number,sprite_tile_row,sprite_tile_column} <=
{sprite_number,sprite_tile_row,sprite_tile_column} + 1;

end

// registering a lot of wires for comparison

if (sprite_state == s_8) begin
colliding_sprite_xcoord <= xcoord_i;
colliding_sprite_ycoord <= ycoord_i;
colliding_sprite_sstate <= sstate_i;
colliding_sprite_tile <= sprite_tile_i;
ram_we <= 1;

end

if (sprite_state == s_6) begin
ycoord_hold <= ycoord_i;

57

xcoord_hold <= xcoord_

i;

sprite_tile_hold <= sprite_tile_i;

sstate_hold <= sstate_.

end
if (sprite_state == s_2) begin
if(~(fb_pixel_data ==
ram_we <= 1;

i;

3'b000) && ~(sprite_pixel_transparent) && ~other_sprite_collision)

pixel_data_hold <= fb_pixel_data; //from frame
buffer

fb_sprite_number_hold <= fb_sprite_number; //from frame buffer

sprite_pixel_type_hold <= sprite_pixel_type; //from tile mem

sprite_tile_pixel_hold <= sprite_tile_pixel; //from tile mem

sprite_collision_hold <= other_sprite_collision; //uses fb_pixel_data and

fb_sprite_number
end
if (sprite_state == s_3) begin
ram_we <= 0;
end
end //always
endmodule

II110077777117777177777771111117111777117
/

// sprite_ram

// instantiate the BRAM

//
II117777777777777717770777777777111111777777
module sprite_ram(input vclock,

input [3:0] sg_address,
input [35:0] fsm_address,
input [35:0] sg_data_i,
input [35:0] fsm_data_i,
output [35:0] sg_data_o,
output [35:0] fsm_data_o,
input sg_we,fsm_we);

spriteram SRAM(.addra(sg_address),
.addrb(fsm_address),
.clka(vclock),
.clkb(vclock),
.dina(sg_data_i),
.dinb(fsm_data_i),
.douta(sg_data_o),
.doutb(fsm_data_o),
.wea(sg_we),
.web(fsm_we)
)s

endmodule

II111077777771777177777777711171177711777777111771117777711117

//

// tile_memory

// description: This module stores 64 tiles of 16
// pixels, it has two ports, one for the

// background module, and one for the sprite

// module

//

x 16

// Module works. We can grab arbitrary tiles from ROM

// And display them on the screen.

II110077777717777770777777177117771777711711171117771711117

module tile_memory(input vclock, // 65 MHz clock
input reset, // global reset
input [5:0] back_tile_index,
input [3:0] back_tile_row,
input [3:0] back_tile_column,
input [5:0] sprite_tile_index,
input [3:0] sprite_tile_row,
input [3:0] sprite_tile_column,
output [5:0] back_tile_pixel,
output [2:0] back_pixel_type,
output back_pixel_transparent,
output [5:0] sprite_tile_pixel,
output [2:0] sprite_pixel_type,
output sprite_pixel_transparent);

// initializing the BRAM
tile_rom tilemem(

.addra({back_tile_index,back_tile_row,back_tile_column}),

58

.addrb({sprite_tile_index,sprite_tile_row,sprite_tile_column}),
.clka(vclock),
.clkb(vclock),

.douta({back_tile_pixel,back_pixel_type,back_pixel_transparent}),
.doutb({sprite_tile_pixel,sprite_pixel_type,sprite_pixel_transparent})

)s

endmodule

59

