
6.111 DIGITAL DESIGN
SUPER FPGA BROS

Douglas Albert

Kevin Marengo

Overview

 Project Description

Objective

 Descriptive Overview

 Technical Description

 Project Timeline

 Q & A

Project Description

 Overview

 Input is provided by user gestures, initially upper body

to be later expanded to legs as well

Game world is provided by predefined levels and

include obstacles and environmental hazards

 Potential Additions

 Scoring & Time Tracking

 2 player competitive “ghost” mode

 Dynamic representation of player character

High Level Block Diagram

Camera Capture &

Gesture Recognition
Game Logic

Audio

Output

Video

Output

Gesture

Information

Game Events

Video Capture & Gesture Recognition

Video Decoder

from

camera YCrCb to RGB
conversion

ZBT RGB to HSV
decoder

to
monitor

Averager Jump/Crouch
Left/Right

Logic

Velocity

Calculator

walk/run/

no movement

stand/jump/crouch
left/right

Video Input

Output to Game Logic

 Camera captures the player’s
movements and they are stored in
the ZBT

 Each color’s position is averaged to
find the center of mass

 Position used to determine direction
and action

 Velocity of arm patch used to determine
walk vs. run

 The actions are output to the Game
Logic

Gesture Recognition

Line Threshold
Calculator

Init,
Video
Input

Y-position

Lines

Game Cartridge/ Main Logic

 Implement a 2D Game “engine” in hardware

 Abstract away controls and audio output

 Camera capture and gesture module passes input

signals here

 Event signals triggered in the engine can trigger audio

outputs

Game Cartridge/ Main Logic

Game Engine

 Level Creator

 Writes current level layout to Frame Buffer

 Tile ROM

 16x16 tiles to create graphics with

 Level ROM

 15 x 256 x

 Levels are made up of tiles

 Blob RAM

 Holds information about actors on screen: enemies, items, etc.

 FSM & Processor

 Collision detection & enemy movement behavior

In-Game UI Mockup

Fra
m

e

Graphics

 Base entity is 16x16

Mario is 16x16

 Big Mario 16x32

 Store sprites in 16x16

chunks

 Use a framebuffer for

glitchless output

Audio Output

Super Mario
Theme

FLASH Memory

Action Sounds

BRAM

Mixer
AC97

music and
sound

Audio Output

start,
stop

game

events

Inputs to Audio

 The theme music is loaded into the FPGA FLASH memory

 Song loops, starting when the game starts and ending when the
player dies or completes a level

 Action sounds like jumping are stored in a BRAM

 Game events from the Video Output and Game Logic Output
trigger these action sounds

 Theme music and action sounds are combined in the mixer
and output as sound via the AC97

Project Timeline & Milestones

 Planning is complete, now to implement

 Major Milestones

 Rudimentary Game Logic & Functionality

Graphical Overhaul and Gesture Control

 Audio Overhaul and Scoring Functionality

 If we have time

 2 player competitive race

 Additional levels & Items

November 2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

Design Presentations

Implement Basic Game Logic

Video Output

Camera Capture

Gesture Recognition

Sprite Generation Audio Output

Initial Debugging

December 2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Project Checkoff

Implement Additional Functionality
Initial Debugging

Questions and Discussion

