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Project Description

 Overview

 Input is provided by user gestures, initially upper body 

to be later expanded to legs as well

Game world is provided by predefined levels and 

include obstacles and environmental hazards

 Potential Additions

 Scoring & Time Tracking

 2 player competitive “ghost” mode

 Dynamic representation of player character
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Video Capture & Gesture Recognition
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 Camera captures the player’s 
movements and they are stored in 
the ZBT

 Each color’s position is averaged to 
find the center of mass

 Position used to determine direction 
and action

 Velocity of arm patch used to determine 
walk vs. run

 The actions are output to the Game 
Logic
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Game Cartridge/ Main Logic

 Implement a 2D Game “engine” in hardware

 Abstract away controls and audio output

 Camera capture and gesture module passes input 

signals here

 Event signals triggered in the engine can trigger audio 

outputs



Game Cartridge/ Main Logic



Game Engine 

 Level Creator

 Writes current level layout to Frame Buffer

 Tile ROM

 16x16 tiles to create graphics with

 Level ROM

 15 x 256 x

 Levels are made up of tiles

 Blob RAM

 Holds information about actors on screen: enemies, items, etc.

 FSM & Processor

 Collision detection & enemy movement behavior



In-Game UI Mockup
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Graphics

 Base entity is 16x16

Mario is 16x16

 Big Mario 16x32

 Store sprites in 16x16 

chunks

 Use a framebuffer for 

glitchless output



Audio Output
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 The theme music is loaded into the FPGA FLASH memory

 Song loops, starting when the game starts and ending when the 
player dies or completes a level

 Action sounds like jumping are stored in a BRAM

 Game events from the Video Output and Game Logic Output 
trigger these action sounds

 Theme music and action sounds are combined in the mixer 
and output as sound via the AC97



Project Timeline & Milestones

 Planning is complete, now to implement

 Major Milestones

 Rudimentary Game Logic & Functionality

Graphical Overhaul and Gesture Control

 Audio Overhaul and Scoring Functionality

 If we have time

 2 player competitive race

 Additional levels & Items



November  2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

Design Presentations

Implement Basic Game Logic

Video Output

Camera Capture

Gesture Recognition

Sprite Generation Audio Output

Initial Debugging



December  2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Project Checkoff

Implement Additional Functionality
Initial Debugging



Questions and Discussion


