

Realistic 3D Gaming

Daniel Whitlow and Ranbel Sun

Nov. 12, 2008
Mentor: Alex Valys

Overview

 3D Ray Tracing renderer
 Shadows
 Shading
 2 Light sources
 Camera
 Primitive shapes

 Game inspired by Nintendo's Starfox

Block Diagram

Game Logic

• “Ship” represented by
rectangular prism

• Goal: avoid obstacles in path
using directional controls

• Scene advances with time
along z-axis; objects that get
too close vanish from scene

• Game ends when ship collides
and is restarted with reset
button

Screenshot from SNES Starfox
www.racketboy.com

Object representations

 Output from game logic
 Objects: type (2 bits), location (27 bits), size (27

bits), color (9 bits) = 65 bits / polygon. Up to 32
objects.

 Lights: location (27 bits), color (3 bits) = 30 bits /
light. Up to 2 lights.

 Camera: location (27 bits), angle (18 bits) = 45 bits.
 Stored in BRAM

 Will be piped to Ray Tracer serially, or maintained
in a buffer similar to the frame buffer

 ~ 3kbits per buffer

Ray Tracing Algorithm

1. Accept display pixel (P_x, P_y) to be calculated

2. Calculate angle of ray (theta, phi) from (P_x, P_y)

3. Calculate r(t) = (x, y, z) + (cos(theta), sin(theta),
sin(phi)/sqrt(2)) [normalized]

4. Perform ray-object intersection tests (runtime
increases linearly with number of polygons). 3-4
types of objects: plane, sphere, axis-aligned box,
possibly polygon

5. Shadow/reflectivity ray traces (runtime increases
linearly with number of lights and levels of reflectivity)

Pipelined Ray Tracing

 Attempt to obtain throughput of 1 pixel/cycle with 65
Mhz clock

 1,024x768 pixels = 786,432 clock cycles/frame
 786,432 clock cycles / 65Mhz = 0.012 seconds per

frame (ignoring latency)
 Assuming 18x18 multiplier completes in 1 clock cycle,

divider in 20, trig LUTs in 5, latency will be
approximately 900 clock cycles w/ 32 polygons on
screen (1800 extra to do lighting)

Ray Tracing Progress

• Finished:
– Ray calculation equations

– Ray-object intersection equations

• To do:
– Add shading (and possibly reflectivity) into

pipeline

– Determine exact parameters and interfacing for
all CoreGen modules used

Background Image

 Stored in Flash ROM
 (1024 x 768) pixels * 18-bit color

– → Using Byte-wide words, image will use
approx. 2500k x 8 bits of memory

 Displayed when no intersection detected by Ray
Tracer Unit

 25 ns (2-cycle) read time

Frame buffer

• 2 Frames buffered in ZBT SRAMs

– 1 write frame, 1 read frame

– Each frame uses approx. 400k x 36 of memory

– Starts Raytracer Unit and Input Sequencer when
switching frames

• RGB pixel data output to D/A converter

• 1024 x 768 VGA output

Projected Timeline

 11/17 – Input sequencer
 11/24 – Frame buffer, Background image
 12/1 – Ray Tracing Unit, Game logic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

