
Wolfe Styke i 
 

Gesture Recognition Remote Control  

Abstract 
 The Gesture Recognition Remote Control system effectively replaces the functionality of 

the remote control for a Sony brand television.  The user interface for the system is a wand, 

which the user can wave in one of eight gestures to send a specific command to the television.  

A color NTSC video camera tracks the movement of the wand while the user is making a 

gesture, and hardware programmed on the Field Programmable Gate Arrays of a 6.111 Labkit 

analyzes the video to determine which gesture the wand is making and responds by sending the 

corresponding infrared signal to the television using the correct bit encoding.  The resulting 

behavior of this design turned out to be easy to use due to the simplistic nature of the gestures. 

  



[Type text] Wolfe Styke ii 
 

Table of Contents 
Abstract ............................................................................................................................................ i 

1. OVERVIEW ............................................................................................................................... 1 

2. DESCRIPTION ........................................................................................................................... 2 

2.1 Frame Storage and Retrieval ............................................................................................ 3 

2.2 Wand Filter Module ......................................................................................................... 3 

2.2.1 Pixel Filters ................................................................................................................ 4 

2.2.2 Finding Coordinates .................................................................................................. 5 

2.3 Gesture Generator Module .............................................................................................. 7 

2.3.1 The Start Button ........................................................................................................ 7 

2.3.2 The End Button ......................................................................................................... 7 

2.3.3 Testing ....................................................................................................................... 8 

2.4 Infrared Signal Generator Module ................................................................................... 8 

2.4.1 Gesture to Command ................................................................................................ 8 

2.4.2 Debugging the Infrared Signal .................................................................................. 9 

2.5 Infrared LED Circuit ........................................................................................................ 10 

3. CONCLUSION ......................................................................................................................... 10 

4. REFERENCES .......................................................................................................................... 12 

5. APPENDICES .......................................................................................................................... 13 

5.1 Wand Filter Module ............................................................................................................ 13 

5.2 Gesture Generator Module ................................................................................................ 17 

5.3 Infrared Signal Generator Module ...................................................................................... 19 

 

  



[Type text] Wolfe Styke iii 
 

LIST OF FIGURES 
 

FIGURE 1: ABOVE: ONLY RED FILTER APPLIED, NOISY VIDEO.  BELOW:  RED FILTER AND BAND-PASS INTENSITY FILTER 

REMOVES EXTRA NOISE. ................................................................................................................. 4 

FIGURE 2 : A MAP RELATING THE DIRECTION OF THE GESTURE MADE BY THE USER WITH THE WAND WITH ITS 

CORRESPONDING COMMAND. ......................................................................................................... 7 

FIGURE 3: SONY SIRC SIGNALS USE A PULSE-WIDTH ENCODING. .................................................................... 8 

FIGURE 4: THE ENTIRE SIGNAL, WITH ITS THREE PHASES. .............................................................................. 9 

FIGURE 5: THE INFRARED LED IN ITS CIRCUIT. .......................................................................................... 10 



[Type text] Wolfe Styke 1 
 

1. OVERVIEW  
 

Remote controls for televisions have become fairly similar in the past years.  The user 

presses a button on the remote which results in circuitry inside the remote changing the button 

press into a waveform which is fed to an infrared LED.  This signal propagates throughout the 

room and the television receives and decodes the infrared signal into a simple command.  My 

project aims to redesign the way television viewers interact with their TV sets, by changing the 

basic method of command generation from button pressing to gesturing with an LED wand 

device. 

The Gesture Recognition Remote Control functions like a cross between a Wiimote and 

a conventional remote control.  Its purpose is to combine both the functionality of a remote 

control and the movement recognition of the Wiimote into one device.  This combination 

allows the user to make gestures by waving a red LED wand in one of eight gestures to generate 

commands such as change volume or channel, mute or power on/off within the receiving 

device which are sent through the device’s infrared LED to the television.  The receiving device 

consists of a video camera to capture the red LED’s movements, a field-programmable gate 

array (FPGA) programmed to turn the video feed into a command waveform, and an infrared 

LED to turn this waveform into a signal that can be received by the TV.   For televisions with 

multiple potential users, this allows for those who prefer to use this device over a conventional 

remote to be able to use it without preventing others from being able to use a conventional 

remote. 

The design of the Gesture Recognition Remote Control system makes some assumptions 

about the space where it will be used.  The first and most important assumption is that the 

general area around which the user will be using the red LED wand will be free of other red 

colors of the same intensity as the LED.  This means that the red color generated by bright lights 

and the red of clothing will not be a problem.  However, other red lights that fall in a narrow 

intensity band within the intensity of a red LED may cause problems for the device in 

recognizing gestures being made.  Another assumption is that the receiving device is placed 

such that it has an unobstructed view of the television, or that at the very least, the infrared 

transmitting LED be able to have line of sight with the television. 

In considering different solutions to remotely controlling a television, other options 

seemed to have some promise.  One of these was the possibility of using a game controller, 

such as one from an Xbox 360, to create commands.  The benefit of this idea was that gamers 

would only need to find one item instead of two, only needing their game controller to play 

their game on a television.  The drawback of this design was that it targeted a limited market, 



[Type text] Wolfe Styke 2 
 

Xbox gamers.  A different design would have to be made for each of the different game 

consoles.  One of the strengths of the design I implemented was that it could be used by 

anyone, young or old, gamer or non-gamer. 

The design of the Gesture Recognition Remote Control system will be examined in its 

entirety in the following section, focusing on the different modules which process the video 

feed input and produce the infrared signal output.  Problems encountered while designing 

particular modules of the system and their solutions will also be explained.  The problems 

encountered in the design often resulted with elegant solutions which required a minimum of 

adjustment by the user and his or her environment.  Tests on different parts of the design will 

also be explained where applicable. 

2. DESCRIPTION 
 

The Gesture Recognition Remote Control system was written in Verilog and 

programmed on to a Field Programmable Gate Array (FPGA).  Several modules of code 

transform the video feed input from the camera into a command waveform sent as output to a 

small circuit containing an infrared LED, which transmits the signal to a nearby television.  The 

device used to create the gestures is a simple red LED with a thin covering of tissue paper to 

diffuse the emitted light.  The video feed contains not only information about the presence of 

the red LED, but also contains a color image of the surrounding environment.  Therefore, the 

code which analyzes this image must first extract the red LED from its background, and then 

determine the gesture being made. 

Before describing each module of the code in depth, I will summarize each module and 

how the modules are connected.  The video feed from the video camera cannot be analyzed 

directly, so the first step is to buffer the video feed into a zero bus turnaround (ZBT) memory 

unit, which can be either written to or read from continuously.  Once the signal is buffered, it 

can be read from the memory, one pixel at a time.  The first module’s task is to recognize and 

black-out all pixels that are not part of the red LED wand.  The second task is to find the 

coordinates of the remaining pixels which compose the red LED’s image on the camera.  Once 

these coordinates are determined, they can be passed to a gesture generating module.  This 

module uses two buttons, one to indicate the start of a gesture, and one to indicate the end of 

a gesture.  The direction of movement between the presses of these two buttons, start and 

end, is used to create a gesture, which is passed to the infrared signal generator module.  This 

module creates a waveform which it sends to a small circuit containing an infrared LED.  The 

LED transmits this signal, and a television within line of sight receives and decodes the signal 

into a command such as (volume up/down, channel up/down, power on/off, mute, etc). 



[Type text] Wolfe Styke 3 
 

2.1 Frame Storage and Retrieval 

This module is responsible for the buffering of the analog video signal coming from the 

NTSC video camera in a zero-bus turnaround random access memory (ZBT RAM).  This is the 

only module in this system in which the majority of the code was copied from a previously 

written module.  This code was copied from the course website for the fall 2005 term of 6.111 

(Introduction to Digital Systems Laboratory), in which several modules are offered as help for 

starting a project in several different directions.  The code which was copied only recorded the 

intensity, and not the red and blue chrominance values associated with each pixel.  This meant 

that the memory returned black and white video.  The module was modified to store and 

retrieve the chrominance values for each pixel.  From these three values, the red, green, and 

blue (RGB) values for each pixel were also calculated, while putting the other signals involved in 

the video feed through an appropriate delay to account for the time required to calculate the 

RGB values of the pixel.  This module prepares all the necessary signals for the wand filter 

module to be able to filter out all but the red LED wand held by the user. 

 

2.2 Wand Filter Module 

  Taking in the six values about each pixel, along with the pixels coordinates and other 

signals relating to the video feed, this module attempts to filter out all pixels which aren’t part 

of the red LED wand in the video feed.  Once it has only the relevant pixels, it uses an efficient 

algorithm to find the coordinates of the red LED wand in the video.  The two pictures of the 

external monitor below show the image with only a red filter, and then the image again with 

both the red filter and a narrow band-pass intensity filter.  It makes it very clear that the red 

LED is lost amid the other red noise in the background due to the lights above and the 

reflection of the lights off the white table below.  The efficiency of the the band-pass filter in 

eliminating the noise should also be noted.  Lastly, the stability of the coordinates found by the 

wand filter module is shown quite clearly here over the exposure time of a digital camera’s 

picture. 

 



[Type text] Wolfe Styke 4 
 

 

 
Figure 1: Above: Only red filter applied, noisy video.  Below:  Red filter and band-pass intensity filter removes extra noise. 



[Type text] Wolfe Styke 5 
 

2.2.1 Pixel Filters 

The color video given to the wand filter module contains more than just the red LED 

wand.  The background and surrounding environment around the wand need to be removed 

such that a clear picture of the red LED is left.  While this could be done by physically 

manipulating the background to be black, requiring the user to wear a black glove and a black 

shirt while gesturing with the red LED.  This poses a large restriction on the user, and removes a 

lot of the freedom inherent in the original design.   

 To get around this issue, I used a combination of two filters to filter out everything 

except the red LED.  The first filter was a high-pass filter on the color red.  Only pixels containing 

a very high red pixel color were let through this filter.  This filter meant that most of the 

background and surrounding environment were removed from the picture, leaving the red LED 

untouched.  However, the red LED wand was not the only source of red in the room.  The lights 

put out a high intensity red color focused around the rim of the light fixtures.  This red light also 

reflects off white surfaces, such as the lab tables, to create more background noise.  On the 

other end of the spectrum, low intensity red colors, such as those on clothes, were also let 

through this filter.  This is where you could get rid of these sources of noise by using a black 

background cloth, but there is a better way. 

 To isolate the red LED from all of the other sources of the color red in the video feed, a 

luminosity band-pass filter can be used.  By filtering out all but a very narrow range of 

intensities, the high-intensity red of the lights and the low-intensity red of clothing can be 

successfully filtered out.  This leaves only the pixels representing the wand, with the rest of the 

screen blacked out. 

 To monitor the progress of my code in filtering out all but the red LED, the pixels 

returning from the wand filter were passed to an external computer monitor.  By using buttons 

on the FPGA lab kit, I was able to adjust the values of the high-pass and band-pass filters to 

optimize the quality of the filtering.  The end result of these filters was a very distinct display of 

where the LED was with practically no extra noise from other sources of red light in the room. 

2.2.2 Finding Coordinates 

With just the pixels representing the wand remaining on the screen, it is now an easier 

task to find the coordinates of the wand on the screen.  There are several ways to find the 

coordinates of the wand on the screen.  One possible method would be to take the first pixel 

found, which would represent the top of a perfectly spherical wand representation on the 

screen.  This method would be highly influenced by any added noise however, as any pixel that 

passed through the filter above the wand would then be taken to be the new top of the wand.  

This method’s flaws make it easier to see the flaws in attempting to use a center of mass 



[Type text] Wolfe Styke 6 
 

algorithm on all of the pixels found.  While a center of mass algorithm would be less influenced 

by added noise, it would still jump around more than is necessary. 

 The question of how to find the coordinates of the red LED wand without being 

influenced by relatively smaller quantities of noise was answered by a two algorithms that 

searched for the largest grouping of dots.  These algorithms proved to be very efficient in not 

requiring massive calculations at any one time and were very immune to extra noise from the 

background. 

The first algorithm analyzed each row of the video frame.  A counter kept track of how 

many pixels passed through the filter in the row being counted, and at the end of the row, this 

value was compared with the last row.  The larger number of pixels was stored, along with the 

row it came from, for each row.  By the time the algorithm reached the last row, it had found 

the row with the largest number of pixels that passed though the two filters.  This value was 

saved as the y-coordinate of the wand to be displayed as a horizontal part of the crosshairs 

displayed on the screen during the next frame.   

To find the x-coordinate of the wand, the second algorithm examines the pixels on each 

row.  For a given row, the algorithm searches for the largest series of uninterrupted pixels let 

through the filter.  Every time the algorithm meets a pixel blocked by the filter, it waits for 

another pixel let through to begin a new count of a series of pixels.  For a given frame, the 

algorithm has two counters.  One counter keeps count of the number of pixels in the current 

series of pixels being counted as the frame is analyzed row by row, while the other records the 

hcount, or x-coordinate, of the end of the largest series of uninterrupted pixels found in its 

search of the current frame. 

To test the accuracy of these two algorithms, crosshairs marking the position of the 

wand were added to the video output to the external LCD monitor.  Although these two 

algorithms run independently of each other for each frame, they consistently and accurately 

pinpoint the location of the wand.  Because the filters remove practically all extra noise from 

the signal, the crosshairs marking the location of the wand do not jump around either when a 

gesture is being made, or when the wand is not being used.   



[Type text] Wolfe Styke 7 
 

 

Figure 2 : A map relating the direction of the gesture made by the user with the wand with its corresponding command. 

2.3 Gesture Generator Module 
   

 The purpose of this module is to determine when the user is making a gesture, and 

which gesture the wand is making while the user is making a gesture.  Two buttons are used to 

signal the start and end of a gesture.  These two buttons control the functionality of the gesture 

generator module, which outputs a gesture to the infrared signal generator module upon 

successful gesture recognition.  There are 8 gestures which can be made, moving the wand in 

one of 8 cardinal directions, and one default gesture “NONE” which represents the absence of a 

gesture being made.  The following figure shows the eight directions the user can move the 

wand while making a gesture.  Each direction is labeled with the corresponding command 

scheduled to be sent to the television for each gesture. 

2.3.1 The Start Button 

When the start button is pressed, this module records the position of the wand into two 

sets of registers, one set which stores the start coordinates of the gesture, and one set which 

stores the end coordinates of a gesture.  In this way, the algorithm that computes the gesture 

sees the start and end locations as the same, and outputs “NONE” as the gesture.  This behavior 

is desirable, because without refreshing the end location, a gesture would be created from the 

difference between the new start location to the old end location.   

2.3.2 The End Button 

The end button, while being pressed, performs two important tasks.  Like the start 

button, the end button places the location of the wand into the set of registers which store the 

end location of the wand.  The start location registers are untouched, which creates a 

difference between these two sets of registers, assuming the user actually moved the wand a 

little.  While the end button is held down, the output of this module is calculated through an 

algorithm that figures out approximately which of the 8 cardinal directions the wand traveled 



[Type text] Wolfe Styke 8 
 

from start to end locations.  This direction is then output as a gesture.  When the end button is 

released, the output gesture changes back to “NONE”, to signal the end of the gesture.  As 

added functionality, if a user wishes to make a gesture repeatedly, they can press the end 

button repeatedly, or hold it down, to send the same command to the television repeatedly. 

2.3.3 Testing  

Testing this module was fairly straightforward.  Two hex digits on the 16-hex display 

were used by this module for debugging.  One of the hex digits output the current gesture 

being made, which allowed for the checking that the gesture went from the performed gesture 

back to “NONE” after the end button was depressed.  The other hex digit displayed the last 

gesture which was made.  This was more useful during testing of earlier models of the code, 

which didn’t hold the gesture constant while the end button was being held down, causing the 

gesture to flicker too quickly to see on the other hex digit.  

 

2.4 Infrared Signal Generator Module 

The purpose of the Infrared Signal Generator module is to take as input a gesture from 

the Gesture Generator module and return as output to a small circuit containing an infrared 

LED a waveform which encodes command and address bits as part of a message.  This message 

is encoded using the Sony Infrared Control (SIRC) encoding scheme, such that a Sony television 

will respond appropriately to the infrared signal being sent. 

2.4.1 Gesture to Command 

One aspect of the encoding for the SIRC signal requires the commands being sent to be 

spaced such that there is 45ms time between the start of a signal and the start of the following 

signal.  To ensure this, the code incorporates a counter that goes becomes non-zero one clock 

cycle every 45ms.   By using a temporary register that is continually updated with the command 

bits to be sent via the infrared LED, when the 45ms counter goes high, the current command is 

loaded into a register that is only changed in this manner.  This means that the command being 

sent over the infrared LED won’t suddenly change if a new gesture is given partway through the 

sending of one message through the infrared LED. 

 

Figure 3: Sony SIRC signals use a pulse-width encoding. 



[Type text] Wolfe Styke 9 
 

 

 

Figure 4: The entire signal, with its three phases. 

 The SIRC encoding is formatted such that there is always a high pulse followed by a low 

signal for each bit in the signal.  The duration of the high pulse indicates whether the high-low 

pair represents a one or a zero.  A duration of the high pulse of 1.2ms encodes a high pulse, 

while 0.6ms encodes a zero.  The low pulse is always 0.6ms in duration.  The entire signal is 

divided into three parts: the start, the command, and the address phases of the message.  The 

start phase is always the same, and consists of a 2.4ms high signal followed by a 0.6ms low 

signal.  The command signal, encoding which command (change volume, channel, etc) is sent 

following the start signal, with the least significant bit being sent first.  Following this 7-bit 

command signal is the 5-bit address signal.  This signal denotes which type of Sony machine the 

command is intended for (1 for TV, 2 for VCR, etc).  Furthermore, the high signals sent to the 

infrared LED are not constant high signals, but are pulsed on and off at 40 kHz.  This is achieved 

by using the logical AND on the signal and on a clock that alternates value between 1 and 0 with 

a frequency of 40 kHz.  While the gesture is “NONE”, the output is held low and the infrared 

LED does not send any signals. 

2.4.2 Debugging the Infrared Signal 

The first version of this module was debugged using ModelSim’s simulation of the 

output given a gesture input.  After successfully changing the module to produce the right 

output in ModelSim, I tried connecting the circuit containing the infrared LED to the output 

waveform of this module, which looked correct in ModelSim.  What was found while examining 

the waveform with a digital oscilloscope was that only the start and the first bit of the signal 

encoding were making it to the circuit.  After several changes, the digital oscilloscope showed 

the desired results, of a start bit followed by 12 bits representing the command and address 

phases of the message. 



[Type text] Wolfe Styke 10 
 

 

Figure 5: The infrared LED in its circuit. 

2.5 Infrared LED Circuit 

The circuit containing the infrared LED consists of a 5.0 volt power supply, the infrared 

LED, a bipolar junction transistor, and the signal output from the Infrared Signal Generator 

module through the 6.111 labkit.  The reason for using the bipolar junction transistor in the 

circuit was an uncertainty over the current supplied by the output pins on the labkit.  The circuit 

made it possible for the digital output of the labkit to allow current to either halt or pass 

through the infrared LED, turning it on and off following the signal supplied by the labkit which 

enters the above diagram through the path labeled Signal_In. 

3. CONCLUSION 
The Gesture Recognition Remote Control system turns a user’s movement of a red LED 

wand into an infrared signal encoding the command associated with the gesture made by the 

user.  The movement of the red LED wand is recorded by a NTSC video camera.  The video 

camera has its analog signal converted into a digital signal which is stored in a zero-bus 

turnaround (ZBT) memory buffer.  The information about each frame of the video camera feed 

is retrieved from the memory buffer one pixel at a time.  These pixels are analyzed by the Wand 

Filter module, which filters out pixels not associated with the LED wand and finds the 

coordinates of the remaining pixels which represent the location of the wand.  This location is 

passed to the Gesture Generator module, which uses button presses to signal the start and end 

of a gesture.  At the end of a gesture, the module calculates which of eight gestures was made 

by the user.  The gesture being made, or gesture “NONE” if the user is not making a gesture, is 

passed to the IR Signal Generator module.  This module takes in the gesture information, and 

sends a signal encoded with the SIRC encoding scheme to an infrared LED.  The infrared LED 

broadcasts the signal, and a nearby Sony television responds to one of the eight commands 

that it is given. 

Testing was conducted for each module to ensure the proper functioning of each part of 

each module.  The wand filter module had two main tests.  The first allowed for the tester to 

change the cut-off values on the high-pass color and band-pass intensity filters.  The results of 

these changes were seen in real time on an external monitor, so the optimal filter values could 



[Type text] Wolfe Styke 11 
 

be found efficiently without the need to recompile the code for each new set of filter values.  

The second test was the displaying of crosshairs marking the location of the wand as found by 

the module.  This test easily showed that earlier algorithms attempting to find the coordinates 

of the wand had trouble without the intensity filter, with the crosshairs often jumping around 

the screen.  This prompted the need for better filtering, which led to the band-pass intensity 

filter.  Testing for the Gesture Generator module was more straightforward, in that it involved 

printing the current and last gesture seen to two hex digits on the 16-digit hex display on the 

6.111 labkit.  This allowed for the checking of whether the code accurately discovered which 

gesture the user was making with the wand.  The Infrared Signal Generator module was more 

complicated to debug.  ModelSim was utilized to perfect small imperfections in the waveform, 

but when the signal looked perfect in ModelSim, the signal failed when given to the LED wand.  

A digital oscilloscope revealed the problem, and a second version of the module was able to 

produce the correct output on the digital oscilloscope, at which point the infrared LED was able 

to successfully send commands to the television. 

 The Gesture Recognition Remote Control succeeded in its goal of allowing a user to 

make gestures with a LED wand which could be changed into infrared signals sent to a 

television.  One shortcoming was the need for button presses to indicate the start and end of a 

gesture being made.  An improvement for the future of this system would be to detect a jump 

in the number of pixels meeting the filter requirements, and thus detecting the turning on and 

off of the wand in its starting and ending of a gesture. 

  



[Type text] Wolfe Styke 12 
 

4. REFERENCES 
 

Bergmans, San. “Sony SIRC Protocol. ”Knowledge Base. 23 Apr 2008. 25 Jan 2009 
http://www.sbprojects.com/knowledge/ir/sirc.htm 
 
Terman, Chris. “zbt_6111_sample.zip” 6.111 Fall 2005. 
<http://web.mit.edu/6.111/www/f2005/index.html> 

 

  

http://www.sbprojects.com/knowledge/ir/sirc.htm


[Type text] Wolfe Styke 13 
 

5. APPENDICES 
The appendices contain the three modules in which the majority of the code written 

was my own.  Other modules which were either copied entirely from the course website listed 

in references or copied and modified slightly. 

5.1 Wand Filter Module 
  
`timescale 1ns / 1ps 
 
module WandFilter(clk, reset, dButton_L, dButton_R, dButton_U, dButton_D, switchC, 
pixel_Y_curr, pixel_Cr_curr, pixel_Cb_curr,  
pixel_R, pixel_G, pixel_B,  
hcount, vcount, hsync, vsync, 
pixel_RGB, x, y, Y_Val_Crosshairs, Y_Val_T, R_Val_T, Y_Val_Max, 
Wand_X, Wand_Y); 
    input clk; 
    input reset; 
  input dButton_L; 
  input dButton_R; 
  input dButton_U; 
  input dButton_D; 
  input switchC; 
    input [7:0] pixel_Y_curr; 
    input [7:0] pixel_Cr_curr; 
    input [7:0] pixel_Cb_curr; 
    input [7:0] pixel_R; 
    input [7:0] pixel_G; 
    input [7:0] pixel_B; 
    input [10:0] hcount; 
    input [9:0] vcount; 
    input hsync; 
  input vsync; 
  output [23:0] pixel_RGB; 
  output [10:0] x; 
  output [9:0] y; 
  output [7:0] Y_Val_Crosshairs; 
  output [7:0] Y_Val_T; 
  output [7:0] R_Val_T; 
  output [7:0] Y_Val_Max; 
  output reg [10:0] Wand_X; 
  output reg [10:0] Wand_Y; 
  
 reg [23:0] reg_pixel_RGB; 
 assign pixel_RGB = reg_pixel_RGB; 
 
 reg [10:0] reg_x = 0; 
 reg [9:0] reg_y = 0; 



[Type text] Wolfe Styke 14 
 

 reg [7:0] Y_Val_Crosshairs = 8'b0; 
  
 reg [7:0] R_Val_T = 8'b0; 
 reg [7:0] Y_Val_T = 8'h02;  // was 8'h9E, new usage 
 reg [7:0] Y_Val_Max = 8'h90; // was A0, dont use notecard covering on LED 
  
 reg [10:0] Last_Hcount = 0; 
 reg [9:0] Last_Vcount = 0; 
  
  
 reg [10:0] X_Red_Most;  // x coord of most pixels illuminated up to current vcount 
 reg [10:0] X_Red_Draw;  // x coordinate of last frame's position of wand 
 reg [10:0] Red_Pixels_InRow; 
 reg [20:0] Running_Max_In_Rows; 
 reg [9:0] Row_Red_Most; 
 reg [9:0] Draw_Row_Wand; 
  
 reg [10:0] First_Pixels_In_Row[2:0]; 
 reg [2:0] First_RowPixels_Found = 0; 
 reg [10:0] Last_Pixels_In_Row[2:0]; 
 reg [2:0] Last_RowPixels_Found = 0; 
  
 reg [24:0] Sum_Xcoord_Row = 0; 
 reg [10:0] Draw_Col_Wand = 0; 
  
 reg Hsync_Low_Delay = 0; 
  
 reg [12:0] Running_Sum_Row_Pixels = 0; 
 reg [12:0] Old_Running_Sum_Row_Pixels = 0; 
 reg [10:0] Running_Sum_Row_A = 0; 
 reg [10:0] Running_Sum_Row_B = 0; 
 reg [10:0] Running_Sum_Row_C = 0; 
  
 reg Found_Red_Pixel; 
 reg [10:0] Pixels_Red_This_Bunch; 
 reg [10:0] Pixels_Red_Last_Bunch; 
 reg [10:0] This_Bunch_Hcount; 
 reg [10:0] Last_Bunch_Hcount; 
   
 always @(hcount) begin 
  if (!hsync) begin 
   Hsync_Low_Delay <= 1; // enter waiting phase, eval new Row_Red_Most 
    
   Running_Sum_Row_A <= Red_Pixels_InRow; 
   Running_Sum_Row_B <= Running_Sum_Row_A; 
   Running_Sum_Row_C <= Running_Sum_Row_B; 
   Old_Running_Sum_Row_Pixels <= Running_Sum_Row_Pixels; 



[Type text] Wolfe Styke 15 
 

   Running_Sum_Row_Pixels <= (Red_Pixels_InRow + Running_Sum_Row_A + 
Running_Sum_Row_B); 
 
   if (Running_Sum_Row_Pixels > Old_Running_Sum_Row_Pixels) begin 
    Row_Red_Most <= vcount;  // stores vcount of row with 
most pixels illuminated 
    Running_Max_In_Rows <= Red_Pixels_InRow; 
   end 
  end 
  else if (Hsync_Low_Delay) begin // lose one pixel's data, OK because we don't use first 
50 columns 
   Red_Pixels_InRow <= 0;// new row: reset # red pixels found in row 
   Hsync_Low_Delay <= 0; // exit waiting phase during low hsync, reset 
Red_Pixels_InRow 
  end 
 
  else if ((hcount > 50) && (hcount < 750) && (vcount > 90) && (vcount < 560)) begin 
   if ((pixel_Y_curr >= (Y_Val_Max - Y_Val_T)) && (pixel_R >= 8'b1111_1110) && 
(pixel_Y_curr <= Y_Val_Max)) begin 
    Red_Pixels_InRow <= Red_Pixels_InRow + 1; 
     
    // Find largest bunch or grouping of pixels in a row 
    if (!Found_Red_Pixel) begin  // start "bunch" 
     Found_Red_Pixel <= 1; 
    end 
    else begin 
     This_Bunch_Hcount <= hcount; 
     Pixels_Red_This_Bunch <= Pixels_Red_This_Bunch + 1; 
    end 
   end 
   else begin // end bunch, compare size with last largest bunch, record if this 
bunch is larger 
    Found_Red_Pixel <= 0; 
    Pixels_Red_This_Bunch <= 0; 
    Pixels_Red_Last_Bunch <= (Pixels_Red_This_Bunch > 
Pixels_Red_Last_Bunch)  
            ? 
Pixels_Red_This_Bunch : Pixels_Red_Last_Bunch; 
    Last_Bunch_Hcount <= (Pixels_Red_This_Bunch > 
Pixels_Red_Last_Bunch)  
            ? 
This_Bunch_Hcount : Last_Bunch_Hcount; 
   end 
  end 
 end 
   
   
 always @(negedge vsync) begin   // 60 times a second 



[Type text] Wolfe Styke 16 
 

  Draw_Row_Wand <= Row_Red_Most;   // store last frame's y-coord for red 
wand, to draw this frame 
  Draw_Col_Wand <= Last_Bunch_Hcount; // same with x-coord 
   
   
   
  if (switchC) // Change coordinates of crosshairs 
   begin 
    if (dButton_L) 
     reg_x <= reg_x - 1; 
    else if (dButton_R) 
     reg_x <= reg_x + 1; 
    if (dButton_U) 
     reg_y <= reg_y - 1; 
    else if (dButton_D) 
     reg_y <= reg_y + 1; 
   end 
  else // Change Luminance Threshold (D/U) or L Max (L/R) 
   begin 
    if (dButton_L) 
     Y_Val_Max <= (Y_Val_Max > 0) ?  Y_Val_Max - 1 : Y_Val_Max; 
    else if (dButton_R) 
     Y_Val_Max <= (Y_Val_Max < 8'b1111_1111) ?  Y_Val_Max + 1 : 
Y_Val_Max; 
    if (dButton_U) 
     Y_Val_T <= (Y_Val_T < 8'b1111_1111) ?  Y_Val_T + 1 : Y_Val_T; 
    else if (dButton_D) 
     Y_Val_T <= (Y_Val_T > 0) ?  Y_Val_T - 1 : Y_Val_T; 
   end 
    
 end 
 
  
 always @(posedge clk) begin  
  if ((hcount == reg_x) && (vcount == reg_y)) begin // give luminance at center of 
crosshairs 
   reg_pixel_RGB <= {8'b1111_1111, 8'b0, 8'b0}; 
   Y_Val_Crosshairs <= pixel_Y_curr; 
   end 
  // Draw Crosshairs 
  else if ((hcount == reg_x) || (vcount == reg_y) || (vcount == Draw_Row_Wand) || 
(hcount == Draw_Col_Wand)) 
   reg_pixel_RGB <= {8'b1111_1111, 8'b0, 8'b0}; 
  // Draw red dot if pixel is detected as part of LED 
  else if ((pixel_Y_curr >= (Y_Val_Max - Y_Val_T)) && (pixel_R >= 8'b1111_1110) && 
(pixel_Y_curr <= Y_Val_Max)) 
   reg_pixel_RGB <= {pixel_R, pixel_G, pixel_B};  // pass through red 
pixels above threshold & under max luminance 



[Type text] Wolfe Styke 17 
 

  else 
   reg_pixel_RGB <= 24'b0; // black out all pixels that don't meet threshold 
 end 
  
 assign x = reg_x;  // crosshair coords 
 assign y = reg_y; 
  
 always @(posedge clk) begin  // LED coords, passed to GesGenB 
  Wand_X <= Draw_Col_Wand; 
  Wand_Y <= {1'b0, Draw_Row_Wand[9:0]}; 
 end 
  
endmodule 

 

5.2 Gesture Generator Module 

 

`timescale 1ns / 1ps 

 

module GesGenB(clk, reset, vsync, ButtonA, ButtonB, ButtonC, ButtonD, Wand_X, 

Wand_Y, Gesture, First_Gesture, Pos_X, Pos_Y); 

    input clk; 

    input reset; 

  input vsync; 

  input ButtonA; 

  input ButtonB; 

  input ButtonC; 

  input ButtonD; 

    input [10:0] Wand_X; 

    input [10:0] Wand_Y; 

    output [3:0] Gesture; 

    output reg [3:0] First_Gesture; 

  output reg [10:0] Pos_X; 

  output reg [10:0] Pos_Y; 

 

 // gestures 

 parameter UP = 0; 

 parameter UP_RIGHT = 1; 

 parameter RIGHT = 2; 

 parameter DOWN_RIGHT = 3; 

 parameter DOWN = 4; 

 parameter DOWN_LEFT = 5; 

 parameter LEFT = 6; 

 parameter UP_LEFT = 7; 

 parameter STILL = 8; 

 parameter NONE = 9; 

  

  

 reg [3:0] Gesture = NONE; 

  

 reg [10:0] Start_X; 

 reg [10:0] Start_Y; 



[Type text] Wolfe Styke 18 
 

 reg [10:0] End_X; 

 reg [10:0] End_Y; 

 //reg [10:0] Third_X; 

 //reg [10:0] Third_Y; 

 

 reg Waiting = 1; 

  

 reg [26:0] Half_Sec = 0; 

 

 

 /*  

  Records start and end of gesture, 

  Show last location stored (Pos_X, Pos_Y) on hex display 

 */ 

 always @(posedge clk) begin 

  Start_X <= (ButtonA) ? Wand_X : Start_X; 

  Start_Y <= (ButtonA) ? Wand_Y : Start_Y; 

  End_X <= (ButtonA) ? Wand_X : ((ButtonB) ? Wand_X : End_X); 

  End_Y <= (ButtonA) ? Wand_Y : ((ButtonB) ? Wand_Y : End_Y); 

  //Third_X <= (ButtonA) ? Wand_X : ((ButtonB) ? Wand_X : 

((ButtonC) ?  Wand_X : Third_X)); 

  //Third_Y <= (ButtonA) ? Wand_Y : ((ButtonB) ? Wand_Y : 

((ButtonC) ?  Wand_Y : Third_Y)); 

  //Pos_X <= (ButtonA) ? Start_X : ((ButtonB) ? End_X : ((ButtonC) 

? Third_X : Pos_X)); 

  //Pos_Y <= (ButtonA) ? Start_Y : ((ButtonB) ? End_Y : ((ButtonC) 

? Third_Y : Pos_Y)); 

  Pos_X <= (ButtonA) ? Start_X : ((ButtonB) ? End_X : Pos_X); 

  Pos_Y <= (ButtonA) ? Start_Y : ((ButtonB) ? End_Y : Pos_Y); 

 end 

 /* 

  If a gesture is being made, calculate which gesture it is and 

send gesture to irSigGen. 

  Record last gesture entered in First_Gesture. 

 */ 

 always @(*) begin           //(*) 

  Waiting = (ButtonB) ? 0 : 1; 

   

  if (Waiting)  begin 

   Gesture = NONE; 

  end 

   // debugging 

  else if (ButtonD) begin 

   Gesture = UP_RIGHT; 

   First_Gesture = UP_RIGHT; 

  end  

  //end debugging 

  else if (End_Y < Start_Y - 50) begin //--UP-- 

   if (End_X < Start_X - 50) begin  // LEFT 

    Gesture = UP_LEFT; 

    First_Gesture = UP_LEFT; 

    Waiting = 1; 

   end 

   else if (End_X > Start_X + 50) begin // RIGHT 

    Gesture = UP_RIGHT; 

    First_Gesture = UP_RIGHT; 

    Waiting = 1; 



[Type text] Wolfe Styke 19 
 

   end 

   else begin 

    Gesture = UP; 

    First_Gesture = UP; 

    Waiting = 1; 

   end 

  end 

  else if (End_Y > Start_Y + 50) begin // --DOWN-- 

   if (End_X < Start_X - 50) begin  // LEFT 

    Gesture = DOWN_LEFT; 

    First_Gesture = DOWN_LEFT;  

    Waiting = 1; 

   end 

   else if (End_X > Start_X + 50) begin // RIGHT 

    Gesture = DOWN_RIGHT; 

    First_Gesture = DOWN_RIGHT; 

    Waiting = 1; 

   end 

   else begin 

    Gesture = DOWN; 

    First_Gesture = DOWN; 

    Waiting = 1; 

   end 

  end 

  else begin // no UP/DOWN 

   if (End_X < Start_X - 50) begin  // LEFT 

    Gesture = LEFT; 

    First_Gesture = LEFT; 

    Waiting = 1; 

   end 

   else if (End_X > Start_X + 50) begin // RIGHT 

    Gesture = RIGHT; 

    First_Gesture = RIGHT; 

    Waiting = 1; 

   end 

  end 

 end 

  

endmodule 

 

5.3 Infrared Signal Generator Module 

 

`timescale 1ns / 1ps 

 

module irSigGen(clk, reset, ButtonC, ButtonD, Gesture, Signal_OutW, Cmd_Out); 

    input clk; 

    input reset; 

    input ButtonC; 

    input ButtonD; 

    input [3:0] Gesture; 

    output Signal_OutW; 

    output [6:0] Cmd_Out; 

   

  parameter NONE = 9;  // gesture NONE = 9 



[Type text] Wolfe Styke 20 
 

   

  reg [32:0] tv_cmd; 

  reg Signal_Out;  // irLED signal output 

   

  reg [18:0] Shift; // 39000 clock for each bit change 

  reg [18:0] Shift_Pulse_Clock; 

  reg Reset_Shift; 

   

  reg [22:0] Repeat_Counter; 

  reg Reset_Repeat; 

   

  reg [10:0] Carrier_Signal;  //40khz carrier signal 0 to 1624 repeating 

  reg Carrier_Clock = 0;    //carrier envelope 

  

  reg [32:0] Signal_Sent = 33'b0;  // Stored signal to be sent 

   

  reg [32:0] Power = 33'b11110_110_10_110_10_110_10_10__110_10_10_10_10  

; 

  reg [32:0] Chan_Up = 

33'b11110_10_10_10_10_110_10_10__110_10_10_10_10___00; 

  reg [32:0] Chan_Dn = 

33'b11110_110_10_10_10_110_10_10__110_10_10_10_10___0; 

  reg [32:0] Vol_Up = 

 33'b11110_10_110_10_10_110_10_10__110_10_10_10_10___0; 

  reg [32:0] Vol_Dn = 

 33'b11110_110_110_10_10_110_10_10__110_10_10_10_10; 

  reg [32:0] Mute = 

 33'b11110_10_10_110_10_110_10_10__110_10_10_10_10___0; 

  reg [32:0] Zero = 

 33'b11110_110_10_10_110_10_10_10__110_10_10_10_10___0; 

  reg [32:0] Three = 

 33'b11110_10_110_10_10_10_10_10__110_10_10_10_10___00; 

   

  //Command  #  bits 

  //zero   9  0001001 

  //three  2  0000010 

  //chan+  16 0010000 

  //chan-  17 0010001 

  //vol+   18 0010010 

  //vol-   19 0010011 

  //mute   20 0010100 

   

  /* 

   Shift Clock shifts bits in command being processed at 

appropriate time (600us). 

   Carrier Clock provides a 40khz carrier envelope  

   for the signal being transmitted to the irLED. 

  */ 

  always @(posedge clk) begin 

   // pulse clock 

   Shift <= ((Shift == 39_000) || Reset_Shift) ? 0 : Shift + 

1; 

   Shift_Pulse_Clock <= (Shift == 39_000); 

   Repeat_Counter = ((Repeat_Counter == 2_925_000) || 

Reset_Repeat) ? 0 : Repeat_Counter + 1; 

   // 40khz carrier 



[Type text] Wolfe Styke 21 
 

   Carrier_Signal = (Carrier_Signal == 1624) ? 0 : 

Carrier_Signal + 1; 

   Carrier_Clock = (Carrier_Signal == 1624) ? ~Carrier_Clock : 

Carrier_Clock; 

  end 

   

 /* 

  Continually update tv_cmd with the gesture being given to 

irSigGen. 

 */ 

 always @(*) begin      // (*) 

  case (Gesture) 

   0: tv_cmd = Chan_Up;    // up   

  // 

   1: tv_cmd = Three;    // up-right  

 //chan up   //five 

   2: tv_cmd = Vol_Up;    // right  

  //  

   3: tv_cmd = Zero;     // down-right 

 // chan down 

   4: tv_cmd = Chan_Dn;    // down  

  //  

   5: tv_cmd = Mute;     // down-left 

 // vol down 

   6: tv_cmd = Vol_Dn;    // left  

  //  

   7: tv_cmd = Power;    // up-left  

 // vol up 

   8: tv_cmd = 33'b0;      

 // still //not used 

   9: tv_cmd = 33'b0;      

 // NONE -- low output 

  endcase 

 end 

  

 /* 

  If time to deliver a new command through irLED, store tv_cmd in 

Signal_Sent,  

  and hold that constant for the duuration of sending the signal. 

  While sending signal, shift bit being sent every shift clock 

pulse, 

  while using 40khz carrier envelope for the signal being sent. 

 */ 

 always @(posedge clk) begin 

  Signal_Out <= (Carrier_Clock && Signal_Sent[32]); 

  if (Shift_Pulse_Clock) begin 

   Signal_Sent <= {Signal_Sent[31:0], 1'b0}; 

  end 

  else if (Repeat_Counter == 2_925_000) begin 

   Signal_Sent <= tv_cmd; 

  end 

 end 

 

 assign Cmd_Out = 7'b0; 

 assign Signal_OutW = Signal_Out; 

  

endmodule 



[Type text] Wolfe Styke 22 
 

 

 

 

 


