
 

 
 
 
 
 
 
 
 

Modular Synthesizer 
Andrew Muth, Michael Miller, Tejasvi Vishwanadha 

 

 

 

 

 

 

 

Abstract 
 
Traditional modular synthesizers operate entirely in the analog realm, routing 
independent components together through patch cables.  Modules such as oscillators, 
filters, mixers, and sequencers allow for myriad sonic possibilities.  Our modular 
synthesizer functions entirely in the digital domain, replacing patch bays with an internal 
ring buffer and analog controls with a serial interface. 
 



-  - ii

Table of Contents 
 
Abstract ................................................................................................................................ i 

Table of Contents ................................................................................................................ ii 

List of Examples ................................................................................................................ iii 

List of Equations ................................................................................................................ iv 
List of Figures ..................................................................................................................... v 

1. Overview ......................................................................................................................... 1 

1.2 System Overview ...................................................................................................... 2 
1.3 Audio Data Considerations ....................................................................................... 3 

2. Audio Units ..................................................................................................................... 5 

2.0.1 Arithmetic Sharing ............................................................................................. 5 
2.1 Oscillator ................................................................................................................... 5 

2.1.1 Direct Digital Synthesis ..................................................................................... 6 
2.1.2 Testing and Debugging ...................................................................................... 6 

2.2 Filter .......................................................................................................................... 7 

2.2.2 Testing and Debugging ...................................................................................... 8 
Additionally, to test the Filter further, I created a brief Python script that pores over the 
outputted results from my simulated filter test bed (Appendix C - Code 1) ................... 8 

2.3 Sequencer .................................................................................................................. 9 
2.4 AC97 In and Out ....................................................................................................... 9 
2.5 Sampler ................................................................................................................... 10 
2.6 Mixer ....................................................................................................................... 11 

2.7 Delay ....................................................................................................................... 12 

2.8 Display .................................................................................................................... 12 
3. Command, Control, and Internal Routing..................................................................... 14 

3.1 Routing Overview ................................................................................................... 14 
3.2 Audio Data Routing ................................................................................................ 14 

3.2.1 Theory of Operation ......................................................................................... 15 
3.2.2 Output Drivers & Ring Cycling ....................................................................... 16 
3.2.3 Input Receivers & Control Registers ............................................................... 17 

3.2.4 Testing and Debugging .................................................................................... 18 
3.3 Control Signal Routing ........................................................................................... 19 

3.3.1 Theory of Operation ......................................................................................... 19 
3.3.2 Control Bus Implementation ............................................................................ 19 
3.3.3 RS-232 UART System ..................................................................................... 20 
3.3.4 Serial Command Parser.................................................................................... 20 

4. Conclusion .................................................................................................................... 21 

Appendices ........................................................................................................................ 22 

Appendix A - Equations................................................................................................ 22 
Appendix B - Examples ................................................................................................ 23 
Appendix C - Code ....................................................................................................... 27 

 



-  - iii  

List of Examples 
 
Example 1.  Oscillator in Simulation ................................................................................ 23 
Example 2.  High-Pass Filter in Simulation...................................................................... 23 
Example 3.  High-Pass Filter Reference ........................................................................... 24 
Example 4.  Low-Pass Filter in Simulation ...................................................................... 25 
Example 5.  Low-Pass Filter Reference ............................................................................ 26 
 



-  - iv

List of Equations 
 
Equation 1.  Biquad Transfer Function ............................................................................. 22 
Equation 2.  Biquad Recurrence Relation ......................................................................... 22 
Equation 3.  Low-Pass Filter Coefficients ........................................................................ 22 
 



-  - v

List of Figures 
 
Figure 1.  Modular Synthesizer - Block Level Diagram ..................................................... 3 

Figure 2.  Delay Routing ................................................................................................... 12 
Figure 3.  Audio Router - Behavioral Goal....................................................................... 15 
Figure 4.  Ring Buffer - Ringing Behavior ....................................................................... 15 
Figure 5.  Ring Buffer - Output System ............................................................................ 16 
Figure 6.  Ring Buffer - Output Behavior ......................................................................... 16 
Figure 7.  Ring Buffer - Input System .............................................................................. 17 
Figure 8.  Ring Buffer - Input Behavior ........................................................................... 18 
 



-  - 1

1. Overview 
 
A synthesizer is an electronic instrument that generates output tones by creating and combining signals 
generated by user-controlled inputs. A modular synthesizer is a synthesizer that produces its final 
output by routing independent synthesizer modules together. The modules, such as oscillators, filters, 
delays, and sequencers allow for myriad sonic possibilities. Traditional modular synthesizers, most 
famously produced by Moog, date back to the mid-1960s. These synthesizers worked entirely in the 
analog domain. Our modular synthesizer will internally function in the digital domain, mimicking the 
components of the original synthesizers and adding some that would not have been possible. 
 
We were interested in making a modular synthesizer for multiple reasons. The highly modular scheme 
lends itself well to Verilog. We believed that each time we completed a module, it could be added to 
the synthesizer with relative ease and expand our final. We also planned to focus on the user interface, 
believing that it would be an interesting and fun problem to tackle. Of course, the fact that our project 
would generate cool music on the fly didn’t hurt either. 
 
Like their analog brethren, digital synthesizers – implemented in hardware or software – lend 
themselves well to a highly modular system topology with a simple data interface.  In analog systems 
this is accomplished by implementing a number of distinct audio processing units that run in parallel 
while taking in and outputting a continuous non-quantized voltage waveform.  Control of each 
processing module is generally done by a variety of switches, knobs, and sliders which provide signals 
to the analog circuitry within.  Routing the audio data is accomplished by physical wires connecting 
input to output on each module, allowing arbitrary connection patterns including feedback loops and 
wide fan-in/out without needing any specialized hardware or system controller.  In the case of our 
digital synthesizer the inherent division between each audio processing step worked well with the 
modular design paradigm enforced by Verilog.  However, the twin issues of routing and audio 
processor control required I create a unique technical solution where traditionally human input, in the 
form of turning knobs or connecting cables, is the norm.   
 
Routing digital audio signals within our FPGA presented a challenge because of the simple fact that we 
would no longer be able to treat each audio processing unit (APU) as a distinct block which the 
musician would manually connect to the next ; rather every possible routing combination would have 
to be achievable within the same synthesized design or the user would be stuck editing and 
reprogramming the synthesizer design each time they wished to change the connection layout between 
APUs.  Similarly, the digital interface of the FPGA containing our synthesizer suggested we not 
implement a large set of analog knobs and switches but instead use a single control interface common 
to every APU.  A single control module would then be responsible for communicating with the 
musician and providing the proper APU with its control signals based on the user’s input.   
 
The following sections of this paper look at the design methodology, tradeoffs and current 
implementation spec for the digital Modular Synthesizer system we built for 6.111.  In particular they 
will focus on the Synthesizer at the system level as motivation for the audio data router and common 
control interface mentioned earlier, though we will also touch on the “multi-tier” abstraction concept 
we used to facilitate clean coding and efficient system integration.  We will also discuss in detail the 
design specifics that went into each of the audio signal processing cores.  Finally, we will look at how 
the engineering goals for this project changed over time from a output-oriented product to a systems 
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engineering-oriented synthesizer framework designed for scalability, modularity, and ease of 
implementation. 
 

1.2 System Overview 
 

As we mentioned earlier, the layout of the Modular Synthesizer we implemented relies heavily on a 
“tiered” paradigm that breaks up all of the necessary parts into distinct modules, those modules into 
sub-modules, and so on.  This is true at both the concept level, where the synthesizer is made up of a 
number of distinct APUs, and at the hardware level where an APU is defined to be a wrapper for the 
network interface, control interface, glue logic, and digital sound processing (DSP) core.  This 
abstraction was a useful design decision for two reasons: first, it took advantage of the inherent 
modularity present in Verilog HDL; and second, because it concentrated all of the actual digital design 
components into the outermost “leaves” of the Synthesizer’s design tree.   
 
For example, the control module we will look at later on is nothing more than a wrapper containing 
interconnections between a UART, a parser for the data from the UART, and a link to the next-highest 
level of the design.  In the same manner the UART module is really just a wrapper containing 
interconnections between a serializer, de-serializer, and the next-highest level of design.  It is only in 
the serializer and de-serializer modules that digital logic components can be found to actually 
implement the standard RS-232 protocol.   
 
At the top-most level of abstraction the Modular Synthesizer design is based on four major component 
types which connect to the labkit peripheral hardware and each other: 

1. Audio Modules (APUs) 
2. Control Module (user input) 
3. Debug Display Module (LEDs & character VFD) 
4. Support Systems (digital clock manager, reset signal generation) 

It also contains the wire nets which link the specific input and output pin names defined for the 6.111 
Labkit to our modules’ output and provide bus interconnections between each of the module types 
listed above.  In every case these busses are passive wires which do not change the signal timing specs 
or provide storage.  A block-level diagram illustrating the system is displayed below. 
 



Figure 1.  Modular Synt

This block diagram shows a representative instantiation of the Modular Synthesizer including two 
APUs listed as “Audio DSP: address 0x01” and “Audio DSP: address 0x02”
noted that the same framework and b
distinct APUs – the only limiting factor is fitting all of the devices into the FPGA without conflicting 
arithmetic system requirements.  Noteworthy components include the audio data network (her
in gray), the common control interface (red) and parser (orange), and a number of DSP audio 
processing cores (purple).  Each of these components is described in detail later in this paper.
 

1.3 Audio Data Considerations
 

As we noted earlier, one of the keys to achieving a truly modular digital synthesizer is to define a 
common audio data standard whose bandwidth and amplitude space exceed that needed to create any 
sound.  In this implementation both the source and sink of the audio path is an LM4550
peripheral located on the 6.111 labkit.  Access to the chip is done using an edited version of the AC97 
audio library interface provided in Lab 4 which provides for 16
48 kHz while being driven by a faster 6
 
The reasoning behind the choice to use the larger 16
nature of audio information itself.  To listen to sound, it must be put into a speaker which can take only 
a single time-varying data channel, typically a continuous analog voltage.  In the case of the AC97 
decoder used in this synthesizer, I take advantage of the fact that sound can be quantized into distinct 
intensity levels based on the audio capabilities of the human ear.  For th
implementation 16 bits of precision in the sound level, or 65,536 distinct states, were enough to 
reproduce almost any incoming audio stream without fidelity issues.  Similarly, the range of human 
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.  Modular Synthesizer - Block Level Diagram 
 

This block diagram shows a representative instantiation of the Modular Synthesizer including two 
APUs listed as “Audio DSP: address 0x01” and “Audio DSP: address 0x02”; however it should be 
noted that the same framework and bus architecture can be extended up to greater than a hundred 

the only limiting factor is fitting all of the devices into the FPGA without conflicting 
.  Noteworthy components include the audio data network (her

in gray), the common control interface (red) and parser (orange), and a number of DSP audio 
processing cores (purple).  Each of these components is described in detail later in this paper.

Audio Data Considerations 

the keys to achieving a truly modular digital synthesizer is to define a 
common audio data standard whose bandwidth and amplitude space exceed that needed to create any 
sound.  In this implementation both the source and sink of the audio path is an LM4550
peripheral located on the 6.111 labkit.  Access to the chip is done using an edited version of the AC97 
audio library interface provided in Lab 4 which provides for 16-bit PCM audio data output sampled at 
48 kHz while being driven by a faster 64.8 MHz system clock.   
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-  - 4

hearing is limited to a narrow frequency band of approximately 20 Hz to 22 kHz, meaning that the 
Nyquist rate necessary to completely reproduce any sound within human perception requires a 
quantized sampling period of 44 kHz.  The 48 kHz sampling frequency of the AC97 peripheral codec 
ensured that even in the worst case (very high input frequency and poor low-pass filter cutoff) one 
would not expect any high frequency components above the audible range to affect the reproduced 
sound.   
 
Given the onboard availability of this high-quality signal and the fact that many DSP operations can 
occur in parallel, I chose to use the full 16-bit PCM audio stream sampled at 48 kHz without 
downsampling for a net data rate of 768kbps.  This choice gives the synthesizer hardware an audio 
bitstream which is detailed enough to be downsampled to 12 or 8 bits per sample if necessary for long 
storage times in a sampler, yet does not require unmanageably large amounts of block RAM or ZBT 
implementation to work with. 
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2. Audio Units 
 
At the start of this project, Mike had significant experience working with traditional audio synthesizers 
and digital signal processing while Andrew’s area of interest was on designing a novel control 
interface using hardware components.  Given this we divided the project up into two major 
components – the interface/control section which Andrew would focus on, and the more complex DSP 
audio section which Mike would focus on.  Meanwhile, Teja would work with both of us when 
necessary while also attempting some of the simpler audio modules. 
 
In the end, Mike ended up implementing and demonstrating an oscillator, sequencer, and filter DSP 
core while also developing an arithmetic sharing system and floating fixed-point math standard that 
would form the base of the Synthesizer.  Teja ended up working on a variety of audio and video 
modules including a sampler, mixer, audio delay, and waveform display.  He also extended the AC97 
library from Lab 4 to provide 16-bit PCM data driven by a 64.8 MHz clock and completed wrapper 
files for DSP cores using the communication templates written by Andrew.  Andrew ended up having 
to develop the internal audio routing network and input/output register memory system used by the 
DSP cores to communicate.  He also designed the control bus architecture, found a workable serial port 
module, wrote the control parsing FSM which drives the control bus, and developed the wrapper 
coding paradigm used throughout the project. 
 

2.0.1 Arithmetic Sharing 

 
Since many of the modules require complex arithmetical expressions often involving multiple 
divisions, Mike created a scheme to share these expensive operations with every module.  This scheme 
was successfully implemented within the Oscillator and the Filter, who perform four divides each 
ready pulse using the same global instance, effectively conserving sparse resources in exchange for 
using more clock cycles. 
 
Within each module, most internal modules are executed sequentially.  Ready levels are created based 
upon the expected duration of a module, a parameter.  Modules sharing the divider agree to a sharing 
contract: as long as the ready signal remains high, that module may assert its divisor and dividend 
arguments.  Otherwise, it must pass zero.  The parent module then combines these signals into one 
using a bitwise or, and passes it to its dividend and divisor outputs which makes its way eventually to 
the divider itself.  A simple extension to this technique is to remove the duration element and make 
each module assert a done signal as soon as it is done using the divider.  By attaching the done signal 
of one module to the ready signal of another, each module can trigger the next to start as soon as it is 
finished. 
 

2.1 Oscillator 
 
The Oscillator module is a versatile signal generator that employs direct digital synthesis (DDS) to 
create a variety of periodic waveforms.  It can currently produce six different types of waves: pulse and 
square; ramp and saw; triangle; and sine.  The user simply specifies a frequency  and a wave type  
(as well as a pulse width in the case of the pulse wave).  The output has a fixed, default gain and the 
maximum amplitude is approximately the same across all signal types (-3 dB). 
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The Oscillator is written with generality in mind and is programmatically flexible.  Wire widths 
dependent on the width of the audio or control parameters are declared in terms of N, a globally 
defined variable currently set to 16. 
 
 

2.1.1 Direct Digital Synthesis 

 
A naïve approach to creating a sine wave using a lookup table would use a counter to increment over 
the table.  By doubling the increment on the counter, we double the frequency of the synthesized signal.  
However, if we want to decrease the frequency, we would need to decrease the increment below one. 
 
Instead of a simple counter, direct digital synthesis replicates a dataset at a desired frequency with high 
resolution using a fixed-point phase_accumulator .  This process keeps fractional bits of precision 
so that we can decrease the signal below the frequency represented in the lookup table.  If we wanted 
to simply recreate the table from before as with the simple counter, the increment would be one 
represented in the same fixed-point scale as the phase accumulator. 
 
In the final version of the Oscillator module, I use two generic DDS modules routed to different 
datasets.  One DDS references a 512x16-bit sine lookup table to generate a sine wave.  The table 
exploits sine’s two points of symmetry around the vertical (π/2→ π is symmetric with 0→π/2) and the 
horizontal (π →2π mirrors 0→π), effectively creating a 2048x16-bit table. 
 
The second DDS is used to generate a ramp.  In this case, a 512x16-bit memory is wholly unnecessary.  
Instead, the module mimics the table the DDS module expects but represents its data using simple 
addition based on the lookup address. 
 
The abstraction between the DDS module and its data source leads to interesting future possibilities.  It 
allows for the creation of a limitless number of periodic waveforms by simply changing the dataset.  
One could conceivably store a large number of complex datasets in memory and selectively call up 
these more interesting tones.  As well, I am curious about the results of combining direct digital 
synthesis with sampling, with the samples starting and stopping at zero-crossings to hopefully smooth 
the looping.  By generalizing the direct digital synthesis concept into an abstract dataset and synthesis 
module, experimenting with these new possibilities is convenient and straightforward. 
 
Some wave types do not need to be generated, but can instead be realized from an already-created 
signal such as a sine wave or ramp.  The pulse, square, saw, and triangle waves are created in this 
manner.  For instance, the high-order bit of the sine wave represents a square wave with the correct 
frequency (although not the right amplitude).  The pulse wave is created by simply setting the square 
wave low once width  ready cycles have passed.  The saw wave is simply the negative of the ramp 
wave.  The triangle wave takes the absolute value of the ramp and shifts and scales it into place.  

2.1.2 Testing and Debugging 

 
I tested the accuracy of the Oscillator’s output in three ways: by simulation in ModelSim (Example 1); 
by viewing the analog output on the logic analyzer; and by ear.  For both Modelsim and the logic 
analyzer, I successfully measured and verified the frequency of the output signal.  I cross-referenced 
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the signals with each other and the reference 750hz sine tone provided in Lab 4 using all three methods.  
My sine output proved to be essentially identical, and all the other waveform type s similarly matched 
in frequency, though as was expected, their tone qualities differed wildly. 
 
Once I verified my Oscillator’s outputs, I continued to use it for testing other modules.  I tested the 
Sequencer eventually by using it to drive the Oscillator’s frequency  input, and it was during that 
test that I heard poor performance in the upper frequencies.  This led me to redesign the oscillator into 
its final version. 
 
My original implementation used DDS to generate only the sine wave.  The pulse and ramp were both 
generated on the ready  signal, using half the wave’s period as a guide for when to flip in the case of 
the square wave, or as the first part of calculating the step size for the ramp.  This method resulted in 
“pure” waveforms whose periods were an integer multiple of 48khz clock cycles.  This previous 
method which generated the values on the 48khz cycles rather than through sampling led to poor 
performance, particularly in the high frequencies.  As the desired frequency grew, tones with similarly 
high frequencies would quantize to the same exact signal. 
 
DDS, however generates signals that are sampled from an underlying representation.  The DDS sine 
wave, for instance, is not exactly a sine for most frequencies, although the representation is perfectly 
sinusoidal.  To achieve successful digital playback at varying frequencies, the wave takes on a longer 
and more complex overall periodicity as the sampling point cycles over the representation.  This allows 
us to approximate waves that are not integer multiples of the 48khz clock cycles, and hence avoid two 
waves with different frequencies generating the same quantized signal. 
 
I ran into an issue involving noise as frequency  got higher.  While I was unable to fix the problem 
because of time constraints, it likely had something to do with the precision of the phase accumulator 
in the DDS module. 
 

2.2 Filter 
 
The Filter module is intended to act as single-pole audio equalizer unit.  It implements a coefficient 
generator and a second-order biquad-based infinite impulse response (IIR) filter.  IIR filters like the 
Butterworth filter are particularly suited for audio processing tasks, as they closely mimic their analog 
predecessors and counterparts.  Butterworth filters in particular are good for audio because they have 
maximal flatness in the pass-band region. 
 
Unlike finite impulse response (FIR) filters which require the generation of many constants that define 
an impulse for convolution, a biquad (Equation 1, Equation 2) requires only six constants.  As well, 
while biquads are only second-order filters, they can be cascaded together in series to create higher 
order systems with a greater degree of numeric stability than a higher order transfer function.  This 
property particularly lends itself to our modular framework for the synthesizer, allowing the user to 
string together Filters to create a many-pole equalizer from this basic building block. 
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The Filter uses fixed-point arithmetic to provide an accurate rendering of the coefficients and the sum-
of-products filter output (Equation 2).  By converting the signed input signal to Q15.21 and outputting 
18-bit signed coefficients formatted as Q1.15, I used the 18-bit built-in multipliers to get good 
performance coupled with good accuracy. 
 
The Filter Coefficients sub-module generates the six coefficients for the biquad.  These coefficients 
vary depending on the type of filter desired.  Currently, low-pass, high-pass, band-pass, and notch 
filtering are implemented but the design is intentionally extensible.  The math to generate the constants 
is straightforward, with the exception of a single divide used to generate the angular frequency ω0.  
The coefficients themselves are generated using sine and cosine table lookups and simple arithmetic 
(Equation 3). 
 
Once the filter coefficients are available, the Filter Scale module divides each coefficient by a0 .  
While every other divide in the synthesizer is routed to a single, global division module, the Filter 
Scale module uses its own divide more suited to its needs.  I generated this divide specifically to do the 
18-bit divisions.  As well, it is fully pipelined to make the four divisions in this module efficient. 
 
With the scaled coefficients in hand, the Filter Accumulator performs a sum-of-products with five 
terms.  These terms are a product of the coefficients with the previous three samples of input or 
feedback of the last two samples of output (Equation 2).  The module uses a single 18-bit by 18-bit 
built-in signed multiplier to sequentially multiply each of the five coefficient-data pairs and add them 
to the accumulator. 
 

2.2.2 Testing and Debugging 

 
While I ran out of time to sufficiently debug the Filter on the Labkit, the simulation results in 
ModelSim were quite promising.  By comparing my results on various signals from the oscillator with 
a known result, I was able to confirm some details of my implementation’s functionality.  In particular, 
Paul Falstad’s Digital Filters Java Applet proved invaluable in this endeavor2.  Examples Example 2, 
Example 3, Example 4, and Example 5 illustrate these comparisons and show what appears to be a 
very functional low-pass and high-pass filter. 
 
I had a lot of difficulty in particular with the fixed-point mathematics which was new to me.  Addition 
and subtraction made intuitive sense, but division in particular, once abstracted even further through 
the CoreGen divider module, became very difficult for me to follow and comprehend.  Ample testing 
was and is a necessity with complicated fixed-point arithmetic. 
 

Additionally, to test the Filter further, I created a brief Python script that 
pores over the outputted results from my simulated filter test bed 
(Appendix C - Code 
 

                                                 
1 This is notation I found useful for describing fixed-point arithmetic (http://en.wikipedia.org/wiki/Fixed-point_arithmetic): 
Q(#integer bits).(#floating bits).  The signed bit is implied if present, and not counted. 
2 http://www.falstad.com/dfilter/index.html 
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Code 1 1) 
 
The script checks the data for consistency by comparing its calculations to the calculations performed 
by my computer, my standard of correctness.  While my filter has yet to past this rigorous test, it 
revealed many bugs and would surely have led me to a correct solution given more time. 
 

2.3 Sequencer 
 
The Sequencer produces a sequence of user-programmable numerical values by iteration.  It acts as a 
sort of sequential-read random-write memory, outputting new values every ready  pulse and writing 
new values whenever its write pin goes high.  Internally, the Sequencer uses an array of N-bit wide 
registers to store values. 
 
For added flexibility, the Sequencer includes a notion of end behavior that controls how to continue 
once it has output the last stored value.  Current options include simply stopping, looping, or reversing.  
The user can also control the speed at which new values are created.  The number of the values in the 
sequencer is parameterized.  As such, the user can specify an upper-bound on the size of any sequencer 
instance at compile time to conserve resources. 
 
As well, I created a file of predefined pitches ranging (in scientific pitch notation) from A3 all the way 
up to A6.  Further pitches could be created by simply shifting an available value to raise or lower it an 
octave. 
 
The design and mechanics of the sequencer are rather simple, and as a result, testing was 
straightforward.  I simply verified that the value was latching to the correct numerical output every 
ready  pulse.  Unlike the filter whose low-passed saw wave might be slightly off yet look fine, there is 
no subjectivity involved in the correctness of the sequencer. 
 
The Sequencer, once implemented, became very useful as a test tool.  It allowed me to send the 
Oscillator a variety of frequencies in a repeatable test-worthy fashion much as I might write into a 
ModelSim test. 
 
I found many times that while I could create a large number of tests, it was only useful when I could 
verify the answer with some knowledge on my part.  It is hard to visualize a sine wave as it changes 
frequency for correctness, but it is easy to do so aurally.  With my include file that mapped pitches to 
frequencies, I was able to create tests such that I knew what it should sound like.  The combination of 
the Sequencer and the Oscillator became invaluable test tools for testing the Filter as well. 
 
 
 

2.4 AC97 In and Out 
 
The AC97InOut module is perhaps the simplest of the modules I created. It is essentially identical to 
the Lab4audio module used in Lab 4, but the input and output audio data have been widened to 16 bits 
to match CD quality audio. 
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2.5 Sampler 
 

This module was actually inspired by watching a few videos by two-time UK Beatboxing champion, 
Beardyman. Beardyman uses two KORG KP3 KAOSS pads on stage to sample his own voice and play 
each back with different audio effects. My goal with the Sampler was to create module that stored a 
small sample of input data and played it back when the user told it to. The main difference in 
functionality between Lab 4 and the sampler is that the latter has 3 states – recording, playback, and 
silence – while the former only toggled between the first two states. 

While functionally similar to Lab 4, two fundamental design decisions made creating the Sampler 
significantly more difficult. In lab4, we used 8-bit audio and down sampled from 48kHz to 6kHz. By 
storing this information in a 64Kx8 memory, we managed to store about 10 seconds of audio data. 

Since we were using 16 bit data, I would need to store at least twice as much information. In addition, I 
didn’t want to downsample because I didn’t want to lose information. Therefore, maintaining the 
length of the sample would take eight times as much space. Unfortunately, since a 64Kx8 memory uses 
approximately 20% of the BRAM on the lab kit, recording a full 10 seconds of 16bit audio at 48kHz 
would take 320% of the available BRAM. 

The first version of the sampler, which eventually became the Big Sampler, only sacrificed sample 
length to fit on the lab kit. The first iteration used a 128Kx16 memory, the largest size I could fully 
address with a 16-bit width, and using 80% of BRAM on the lab kit. The sample length was a little 
over 2 seconds. I decided to cut the memory down to 64K rows – halving the BRAM consumption at 
the expense of one second of audio data – in the final version of Big Sampler. 

While 40% consumption was significantly better, I wanted to find a better way to store samples. I 
considered two routes – storing less audio data or storing the audio data on ZBTs. The latter was my 
initial choice. Each ZBT can store about 7 times as much data as all the BRAM on the lab kit. The 
ZBTs are each 36 bits wide, so the simplest way to maintain an easy addressing scheme is storing two 
audio samples per row and leaving 4 bits empty. Coincidentally, accessing the ZBT takes two clock 
cycles, so I’d have two samples ready every time I wanted to write a row. After doing a bit of math, I 
determined could store a single 16 second sample on a single ZBT. 

While this seems wonderful at first, I realized that most of the samples I’d want to store would be 
considerably smaller – probably topping out at five seconds. Those could be broken up into smaller 
bits that are even smaller by isolating sounds. While 2 samplers with huge samples would be better 
than no samplers, I felt they would be wasting space. The only option seemed to be horizontally 
partitioning the ZBTs into 3 or 4 smaller chunks. At that point, however, each sampler on the kit would 
have to be aware of all other sampler and use time sharing to access all the necessary bits. The system 
didn’t seem to scale well and broke out wrapper abstraction so I concluded that puzzling it out would 
be more trouble that its worth. 

I decided instead to explore what I could do to cut down the size of the internal memory but still 
maintain audio quality. After a few quick experiments, I realized that the top 8 bits of audio data 
sampled at 48kHz sounded surprisingly good during play back. I also took advantage of the realization 
that specific instrument samples could be under a second long. The final result was Small Sampler, 
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which samples only the top 8 bits of incoming audio data for about half a second. It uses a 32Kx8 
memory, one quarter the size of the larger version. 

If I were to extend the sampler further, I would add the ability to add a delay for playback. The delay 
would be relatively trivial to implement. A simple counter that increments with each ready pulse would 
keep track of the number of cycles to delay before returning to the beginning of the memory and 
playing the data back. 

Such a delay would save valuable memory from being wasted on silence. For example, the user could 
create three small samples for a snare drum, base drum, and hi-hat and space them out to create the 
“standard 4/4 rock beat” instead of sampling 2 full beats worth (at least 2 seconds of audio data). In 
fact, by using the sequencer to alternate delay values the user could alternate seamlessly between the 
standard beat and “double time”.  
 

2.6 Mixer 
 
The Mixer module we originally proposed was to be a parameterized N-to-1 mixer module. However, 
since each input would be accompanied by a level value, the arithmetic for supporting N-to-1 soon got 
very tricky. Therefore, I focused instead on a 2-to-1 mixer that could be chained together for N-to-1 
mixing. 

Besides the standard clock, ready, and reset, the Mixer module takes four standard inputs and one 
parameterized input. It has only one output, the mixed signal. The in1  and in2  inputs are audio 
inputs while level1  and level2  tell the mixer how to combine the two streams. The decimal  
parameter tells how many bits of the incoming level values are fractional. If decimal  is 0, the levels 
are whole numbers (essentially gain). If decimal  is 15, the level is a fraction less than one. In order 
to average the signals, both levels  and the decimal  value are 1, indicating the output value would 
be the sum of half of each incoming signal . 

The original version of the Mixer (before it became a 2-to-1 mixer) assumed that incoming level  
values were unsigned whole numbers. The module would then require summing the product of an 
unknown number of signals. In order to make sure the module did not use too many resources, the 
module did a single signal by level product each clock cycle and added it to the sum stored 40-bit 
register. I chose 40 bits because I assumed that multiplication of two 16-bit values provided a 32-bit 
product and that there would be at most 8 signals being mixed at one time. 

When I decided to make a 2-to-1 mixer, I shrunk the register down to 34-bits. Signed multiplication of 
two 16-bit values could create a 33-bit value. Since there were only two signals, I knew I 34 bits was 
enough to contain the sum.  I also retained the single-product per clock system so that Mike’s modules 
would hopefully not contend with mine for resources. 

The trickiest part was adding support for signed fractional values. Without fractions, I’d always check 
the top 16 bits of the product sum for non-zero value. If the value wasn’t zero, I knew that signal had 
clipped the upper limit and the module output the highest 16-bit value. If the value of the upper bits 
were zero, I would know the signal did not clip and the module output the bottom 16 bits of the sum. 
By adding fractional values, I had to account for the signed bit and fractional bits, meaning I had to 
check a different set of bits for clipping. 



If I represent an n-bit signed decimal value as A(a,b), where b bits correspond to fractional bits and 
a+b = n-1, the product A(a1,b1) * A(a2,b2) 
is zero, since the audio data is a whole number, so t
the parameter decimal , so I knew
next 16 bits were valid audio data, and any higher bits were either sign information or excess 
indicating clipping. I tested the Mixer
decided to assume that if the “higher
extensions and thus the audio values 
decided the bits were probably excess values and thus provided a clipped maximum signal.
 

2.7 Delay 
 
The true purpose of adding decimal support to the 
Delay module. The Delay module basically stores a certain amount of and input stream in memory and 
then mixes this buffered value with the input stream. The module also supports feedback, mixing the 
output of the previous mixer with the incoming value before storage.

The delay  input determines how many cycles of input data the module should store. This value was 
also the number of ready cycles to hold input data for before mixing it back in with the current input 
data. 

The wetdry , gain , and feedback
Delay. A wet signal would just be the delayed signal while a dry signal would just be the current input. 
I assumed the wetdry  signal to be a fully fractional signed value between 
signal is dry and when the absolute value is 1 the signal is completely wet.

The product of the audio data and the 
determine the output of the module.
product, and the inverse of the gain

 

 
 
The other Mixer handles feedback, mixing the input and the output of the modul
output is feedback  while the input has a

I did not finish developing the Delay
implementation is pretty close to working. I am not sure that I am using the correct address for the 
memory I created, and would probably conve
allowing me to select different addresses for reading
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bit signed decimal value as A(a,b), where b bits correspond to fractional bits and 
1, the product A(a1,b1) * A(a2,b2) can  be represented as A(a1+a2+1, b1+b2). I know that b2 

is zero, since the audio data is a whole number, so the final result is A(a1+a2+1,b1). The value of b1 is 
, so I knew how many bits to drop from the bottom of the product sum. The 

next 16 bits were valid audio data, and any higher bits were either sign information or excess 
ixer extensively in ModelSim while adding decimal

higher” bits were all the same (either all 0 or all 1) they were sign 
audio values in the lower bits were valid. If the bits were not the same, I 

decided the bits were probably excess values and thus provided a clipped maximum signal.

The true purpose of adding decimal support to the Mixer module came from my using it twice in a 
basically stores a certain amount of and input stream in memory and 

then mixes this buffered value with the input stream. The module also supports feedback, mixing the 
output of the previous mixer with the incoming value before storage. 

termines how many cycles of input data the module should store. This value was 
also the number of ready cycles to hold input data for before mixing it back in with the current input 

feedback  inputs were basically level  values for the two 
A wet signal would just be the delayed signal while a dry signal would just be the current input. 

signal to be a fully fractional signed value between -1 and 1. When zero, the 
absolute value is 1 the signal is completely wet. 

The product of the audio data and the wetdry  input is mixed with the output of the 2
determine the output of the module. The levels for this Mixer are the gain  input, applied to the 

gain , applied to the other Mixer’s output. 

 
Figure 2.  Delay Routing 

handles feedback, mixing the input and the output of the module. The level for the 
while the input has a level of 1-feedback . 

Delay module for this project, but believe that my current 
implementation is pretty close to working. I am not sure that I am using the correct address for the 
memory I created, and would probably convert the logic to make use of a 16-bit wide register array, 
allowing me to select different addresses for reading and writing each ready signal. 

bit signed decimal value as A(a,b), where b bits correspond to fractional bits and 
A(a1+a2+1, b1+b2). I know that b2 

he final result is A(a1+a2+1,b1). The value of b1 is 
how many bits to drop from the bottom of the product sum. The 

next 16 bits were valid audio data, and any higher bits were either sign information or excess 
decimal  support and 

bits were all the same (either all 0 or all 1) they were sign 
he bits were not the same, I 

decided the bits were probably excess values and thus provided a clipped maximum signal. 

module came from my using it twice in a 
basically stores a certain amount of and input stream in memory and 

then mixes this buffered value with the input stream. The module also supports feedback, mixing the 

termines how many cycles of input data the module should store. This value was 
also the number of ready cycles to hold input data for before mixing it back in with the current input 

r the two Mixers used in 
A wet signal would just be the delayed signal while a dry signal would just be the current input. 

1 and 1. When zero, the 

input is mixed with the output of the 2nd mixer to 
input, applied to the 

e. The level for the 

module for this project, but believe that my current 
implementation is pretty close to working. I am not sure that I am using the correct address for the 

bit wide register array, 
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2.8 Display 
 

The original purpose of the Display module was to provide a visual component to the project. We had 
wanted a way to display the waveforms from any module—both for our own debugging purposes and 
for users to know what they are doing. Over time, however, the debugging purpose became less useful, 
allowing me have a bit more fun playing with the visualization aspect. 

We decided early on that we wanted to turn the display counter-clockwise 90 degrees. In this 
configuration, we have 1024 pixels worth of vertical space, which would allow us to display signed 
values between positive and negative 512. Turning clockwise also ensures that the monitor’s vertical 
scan progresses from right to left. 

While the module receives 16 bits of input, only the top 10 bits are ever used. Values are sampled from 
the input data every 32 ready pulses, and added to a 10x768 array of values. When pixels are drawn to 
the screen, the pixels on each row of the screen check against the value in the corresponding row of the 
array. The value of the row is shifted upward by 512 to fit between 0 and 1024. For each row, pixels 
whose horizontal coordinate lies between 512 and shifted array value are colored. 

The coloring scheme is also determined from the 10 bits stored in the array. Display was meant to be 
run on Andrew’s Nexsys II kit. His kit uses only expects 8 bits of color information, with 3 for red, 3 
for green, and 2 for blue. As a result, I chose to make the output pixel  8 bits wide. The 6.111 Lab Kit 
uses 8 bits per color. I decided to break up the pixel  into the 3-3-2 format for different red, green, 
and blue values and then repeat each value until it was 8 bits long. In this way, the color of each row 
also corresponds to the value of the incoming data. 

If I were to improve the module, I would like to have found a way to sync the screen and updates so 
the waveform would have a smooth continuous motion across the screen. In addition, downsampling 
makes the output image rather jagged and the output values could have used filtering (much like Lab 
4).  
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3. Command, Control, and Internal Routing 
 

3.1 Routing Overview 
 
As was mentioned in the System Overview, there are two signal requirements a digital Modular 
Synthesizer will require which need a different implementation than one would find in an analog 
synth: control and audio data.  While seemingly straightforward to create, the little complexities of 
both of these data routing problems ended up costing myself and the project in general several weeks 
of planning, coding, and debugging.  However, once the bus architectures I designed were fully 
functional they allowed Mike and Teja’s DSP components to be simply “dropped” into a wrapper 
template I wrote to encapsulate the audio processing and network components into a single audio 
module (APU). 
 

3.2 Audio Data Routing 
 
The Audio Data Routing system needed by the Modular Synthesizer had two major hurdles to 
overcome before it could be deployed, namely flexibility and scale.  The need for flexibility 
represented the desire for a user to be able to change the pathway taken by audio data between the 
source (i.e., the AC97 input, tone generator, or sampler memory) through a variety of audio modules 
towards the AC97 output.   
 
At first glance the simple solution to this problem is to simply connect each module to all of the others 
using individual data busses.  With that in place and a set of multiplexers used as selectors, it would be 
possible to connect any arbitrary data pathway at runtime.  However, this concept suffers from the 
second hurdle: scale.  If each APU instantiated within the system can talk to each of the others, the 
number of wires grows with order n!, where n is the number of APUs built.  If the unidirectionality of 
Verilog nets is taken into account and modules can talk to themselves, this growth order rises to nn.  
The implication of this is that unless the number of instantiated modules is very low, the total number 
of direct interconnects quickly grows outside the bounds an FPGA can handle. 
 
The next iteration of my Audio Data Routing system was to have each APU output and input a 
standard 16-bit serial signal updated at 48 kHz synchronous with the new sample sync  signal.  These 
serial I/O pins would then be connected to hardware pins located on the 6.111 labkit, allowing the 
human user to simply plug wires between the appropriate inputs and outputs to form connections. 
 
While this approach may seem feasible (after all, it is only a digitized version of the analog patch panel 
used on other synthesizers), it was suggested to me by Professor Terman et al. to look into an internal 
“virtual patch panel” based on a continuously-looping network with a ring topology.  This approach, 
which I would later implement as the Audio Ring Buffer, would avoid all of the noise and potentially 
intermittent errors associated with using hardware connections to drive high-bandwidth digital 
connections. 
 

 

 



3.2.1 Theory of Operation 

 
In a nutshell, the Audio Ring Buffer is designed to give each APU access to an addressed version of 
every other APU’s data.  It also has to meet this requirement quickly in comparison to the 48 kHz 
sync  signal provided by the AC97, since this signal is essentially our synthesizer’s metronome.  
 
The following diagram illustrates the behavioral goal I had in place for a single module while 
designing the Audio Ring Buffer.  The key realization I had while working this timing specifi
out was the fundamental truth that any audio DSP operation would take a non
cycles between the time that its new input is available on its input and its output has the proper result.  
Given that the system clock CLK is many time
ensure that its output is valid by the time the next SYNC signal comes along this only forces a 1
latency from audio input to output (illustrated by the red arrows).  
 

Figure 
 
From here I realized that if all of the APUs were connected linearly in a circular fashion and assigned a 
unique address, it would be possible to “rotate” their data value around the bus by inserting clocked 
registers between each audio module.  If clocked on the system clock, these registers would effectively 
pipeline the bus and cause the data to loop around the ring bus once every 
the bus.  Combined with an address bus also clocked on th
following functional spec: 
 

Figure 
 
Figure 4 also illustrates (on the red clock cycle) the fact that data will have to be injected onto the bus 
in order for it to be useful.  As we saw in figure 3, if we require each DSP core to produce a valid 
answer by the rising edge of the next 
we know is valid at the rising edge of 
do this at once on a common SYNC 
entire Ring Buffer bus on very SYNC
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Audio Ring Buffer is designed to give each APU access to an addressed version of 
every other APU’s data.  It also has to meet this requirement quickly in comparison to the 48 kHz 

7, since this signal is essentially our synthesizer’s metronome.  

The following diagram illustrates the behavioral goal I had in place for a single module while 
designing the Audio Ring Buffer.  The key realization I had while working this timing specifi
out was the fundamental truth that any audio DSP operation would take a non-zero number of clock 
cycles between the time that its new input is available on its input and its output has the proper result.  

is many times faster than the SYNC signal, as long as the DSP can 
ensure that its output is valid by the time the next SYNC signal comes along this only forces a 1
latency from audio input to output (illustrated by the red arrows).   

Figure 3.  Audio Router - Behavioral Goal 

From here I realized that if all of the APUs were connected linearly in a circular fashion and assigned a 
unique address, it would be possible to “rotate” their data value around the bus by inserting clocked 

ers between each audio module.  If clocked on the system clock, these registers would effectively 
pipeline the bus and cause the data to loop around the ring bus once every n cycles for 
the bus.  Combined with an address bus also clocked on the system clock, this idea yielded the 

Figure 4.  Ring Buffer - Ringing Behavior 

Figure 4 also illustrates (on the red clock cycle) the fact that data will have to be injected onto the bus 
it to be useful.  As we saw in figure 3, if we require each DSP core to produce a valid 

answer by the rising edge of the next SYNC signal, we could use this pipelined ring buffer to copy data 
we know is valid at the rising edge of SYNC onto the bus at that time.  If all of the modules on the bus 

 and rotate on a common CLK, it is possible to essentially reset the 
SYNC to contain only fresh values from the previous audio frame.  

Audio Ring Buffer is designed to give each APU access to an addressed version of 
every other APU’s data.  It also has to meet this requirement quickly in comparison to the 48 kHz 

7, since this signal is essentially our synthesizer’s metronome.   

The following diagram illustrates the behavioral goal I had in place for a single module while 
designing the Audio Ring Buffer.  The key realization I had while working this timing specification 

zero number of clock 
cycles between the time that its new input is available on its input and its output has the proper result.  

signal, as long as the DSP can 
ensure that its output is valid by the time the next SYNC signal comes along this only forces a 1-SYNC 

 

From here I realized that if all of the APUs were connected linearly in a circular fashion and assigned a 
unique address, it would be possible to “rotate” their data value around the bus by inserting clocked 

ers between each audio module.  If clocked on the system clock, these registers would effectively 
cycles for n modules on 

e system clock, this idea yielded the 

 

Figure 4 also illustrates (on the red clock cycle) the fact that data will have to be injected onto the bus 
it to be useful.  As we saw in figure 3, if we require each DSP core to produce a valid 

signal, we could use this pipelined ring buffer to copy data 
t time.  If all of the modules on the bus 

it is possible to essentially reset the 
to contain only fresh values from the previous audio frame.   



3.2.2 Output Drivers & Ring Cycling

 
The net result of the bus design theory mentioned above is shown in Figure 5, which depicts the 
hardware necessary to create a constantly “ringing” Ring Buffer which 
SYNC.  As is evidenced in the image, it 
module address programmed onto the address component of the ring buffer is a parameter set at 
compile time. 
 

Figure 
 
Figure 6 expands on the ringing behavioral spec seen in figure 4 to include a variety of signals located 
within each audio module.  As is shown with the uppermost set of red arrows, the value located on the 
DSP unit’s output is loaded onto the data bus.  At the same time,
loaded onto the address bus.  Both will then rotate continuously until the next 
will load the bus with new data.  This functionality is actually coded in 
 

Figure 
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rivers & Ring Cycling 

The net result of the bus design theory mentioned above is shown in Figure 5, which depicts the 
hardware necessary to create a constantly “ringing” Ring Buffer which snaps to a new state every 

.  As is evidenced in the image, it is a very small design using only 2 muxes and 2 registers.  The 
module address programmed onto the address component of the ring buffer is a parameter set at 

 
Figure 5.  Ring Buffer - Output System 

on the ringing behavioral spec seen in figure 4 to include a variety of signals located 
within each audio module.  As is shown with the uppermost set of red arrows, the value located on the 

s output is loaded onto the data bus.  At the same time, the associated module’s address is 
onto the address bus.  Both will then rotate continuously until the next SYNC

This functionality is actually coded in network_flow_controller.

Figure 6.  Ring Buffer - Output Behavior 

The net result of the bus design theory mentioned above is shown in Figure 5, which depicts the 
snaps to a new state every 

is a very small design using only 2 muxes and 2 registers.  The 
module address programmed onto the address component of the ring buffer is a parameter set at 

on the ringing behavioral spec seen in figure 4 to include a variety of signals located 
within each audio module.  As is shown with the uppermost set of red arrows, the value located on the 

the associated module’s address is 
SYNC rising edge, which 

network_flow_controller. 

 



3.2.3 Input Receivers & Control Registers

 
While the implementation developed so far provides the ability to write values to a ring buffer, this 
information would effectively be getting lost unless anothe
addresses and data values on the bus.  The implementation of this system is shown below.

Figure 
 
As the figure shows, each control_register
single-bit signal input_valid .  Internally, 
which can be programmed over the control bus (
(nominally 16-bit) registers which store a value programmed by the user and a value received from the 
ring bus. 
 
Additionally, there is a smaller register which can be programmed by the user and contains the audio 
module’s address which control_ register
asserted, control_register’s INPUT_VALID
the ring buffer’s address value equal the value stored in the small register.  When it sees that value, the 
control logic stores it into one of the 16
whether or not that value will be passed along to DSP core.
bit register, INPUT_SELECTOR. 
 
More information on the control bus architecture and now a 
programmed is available in §3.3, “Control Signal Routing
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3.2.3 Input Receivers & Control Registers 

While the implementation developed so far provides the ability to write values to a ring buffer, this 
information would effectively be getting lost unless another module has the ability to read the 
addresses and data values on the bus.  The implementation of this system is shown below.

Figure 7.  Ring Buffer - Input System 

register is designed to output a (nominally 16-bit) value and a 
.  Internally, control_register contains 4 globally-accessible registers 

which can be programmed over the control bus (mentioned in §3.3).  Two of these modules are 
which store a value programmed by the user and a value received from the 

Additionally, there is a smaller register which can be programmed by the user and contains the audio 
control_ register will read in on every SYNC pulse.  Once 

INPUT_VALID  pin will drop to indicate that it is currently waiting to see 
the ring buffer’s address value equal the value stored in the small register.  When it sees that value, the 

nto one of the 16-bit registers.  This process occurs on every 
whether or not that value will be passed along to DSP core.  That is controlled by the value of a single

More information on the control bus architecture and now a control_register instance can be 
Control Signal Routing”. 

While the implementation developed so far provides the ability to write values to a ring buffer, this 
r module has the ability to read the 

addresses and data values on the bus.  The implementation of this system is shown below. 

 

bit) value and a 
accessible registers 

mentioned in §3.3).  Two of these modules are 
which store a value programmed by the user and a value received from the 

Additionally, there is a smaller register which can be programmed by the user and contains the audio 
SYNC has been 

pin will drop to indicate that it is currently waiting to see 
the ring buffer’s address value equal the value stored in the small register.  When it sees that value, the 

.  This process occurs on every SYNC regardless of 
That is controlled by the value of a single-

instance can be 



3.2.4 Testing and Debugging 

 
By themselves, both network_flow_controller
external control inputs beyond CLK, 
Moreover, the ring buffer implementation I designed is fault t
output stages into two distinct, independent 
directly.  This greatly enhanced my ability to test and debu
meant I had to provide a much simple
 
The block diagram shown below as 
in the ring buffer implementation as individual low
are solely wrappers and interconnects.  In the image below, t
module are 3 instances of control_register
else is simply wires. 

Figure 
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network_flow_controller and control_register function without needing any 
, SYNC, and (in the case of control_register) a CONTROL_BUS

ffer implementation I designed is fault tolerant because it separates 
output stages into two distinct, independent modules which do not communicate with one another 

This greatly enhanced my ability to test and debug the network control modules because it 
meant I had to provide a much simpler testbed without worrying about concurrency or timing issues.  

The block diagram shown below as figure 8 demonstrates how keeping each of the logical components 
as individual low-level modules yields audio modules designs which 

are solely wrappers and interconnects.  In the image below, the only components needed in the audio 
control_register, 1 DSP_Core, and 1 network_flow_controller.

Figure 8.  Ring Buffer - Input Behavior 

function without needing any 
CONTROL_BUS.  

olerant because it separates the input and 
ate with one another 

g the network control modules because it 
about concurrency or timing issues.   

each of the logical components 
level modules yields audio modules designs which 

he only components needed in the audio 
k_flow_controller.  Everything 
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3.3 Control Signal Routing 
As I mentioned earlier, the control system used by the Modular Synthesizer relies on a common 
command and control interface shared among all of the audio modules to set the parameters of each 
module’s behavior.  In essence it is like a virtual bank of knobs or sliders which can be commanded to 
communicate with instantiated control_register, although in its current form it is much more like 
having a virtual keyboard that can communicate with every module. 

3.3.1 Theory of Operation 

 
As was noted earlier, each control_register instance requires a connection to a common control bus 
which provides the setup information it needs to function.  The required information falls into three 
categories which correspond to the register where each of them is stored: 

1. External (User-Provided) Data Value 
2. Valid_Address 
3. Input Selector 

Between these three values (and Internal Data Value, read from the bus at location Valid_Address) 
each control_register would know when to properly read from the ring buffer and what data to output.  
Therefore, I designed a 31-bit wide data bus that connects every control register in the Synthesizer to a 
single master controller, which takes in user input from a serial port and commands a specific register 
to a certain state.   

3.3.2 Control Bus Implementation 

The control bus I implemented which is connected to every control_register is 31-bits wide.  However, 
these bits are broken down into four distinct ranges which each control a certain component of the 
system.  These parts are: 

1. Control Bus Data (CTRL_BUS_DATA) 
2. Control Bus – Module Address (CTRL_MOD_ADDR) 
3. Control Bus – Register Address (CTRL_REG_ADDR) 
4. Control Bus – Location Selector (CTRL_LOC_SEL) 

Each control_register then implements a simple conditional logic tree to determine if it is the module 
which is being commanded to a new state: 

 If (control bus module address == MY_MODULE_ADDRESS) { 

  If (control bus register address == MY_REGISTER_ADDRESS) { 

   If (control bus location selector == 0) 

    External_data_value � control_bus_data[15:0]; 

   If (control bus location selector == 1) 

    Valid_Address_value � control_bus_data[4:0]; 

If (control bus location selector == 2) 

     Location_Selector� control_bus_data[1:0]; 

If (control bus location selector == 3) 

    Do nothing since there aren’t 4 registers to set 



The following figure demonstrates the behavior of a 
responding to a bunch of user input over the control bus.

 

3.3.3 RS-232 UART System 

As it quickly became apparent within the first week of starting the Modular Synthesizer project 
developing a custom LCD touchscreen terminal for user input would be too complex to be possible, I 
decided to fall back to a simpler serial interface wherein the user would enter an 8
hexadecimal values (0-9,A-F) which maps to the 
implemented a simple state machine which ensures that the user only press
not enter the value to the bus until all 8 bytes have been received.
 
Regarding the actual serializer and de
Verilog files provided for public use at 
UART protocol transceiver would be fun, the UART was only being used as a means to g
into the synthesizer.  Therefore, I chose to simply use premade modules and instead focus on helping 
integrate the system as well as work on a complex finite state machine which could parse human
readable text into control bus values.

3.3.4 Serial Command Parser 

The serial parser consisted of a very simple FSM focused around an counter which ranged from 8 (no 
characters entered on the serial port) to 0 (every character entered, so load value onto the c
As this was a very simple implementation of the control interface, it worked without incident at 9600 
bps 8N1. 
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The following figure demonstrates the behavior of a control_register with an initial setup as list
responding to a bunch of user input over the control bus. 

As it quickly became apparent within the first week of starting the Modular Synthesizer project 
developing a custom LCD touchscreen terminal for user input would be too complex to be possible, I 

simpler serial interface wherein the user would enter an 8-digit value in 
F) which maps to the associated 31-bit value present on the control bus.  I 

implemented a simple state machine which ensures that the user only presses valid hex keys and does 
ue to the bus until all 8 bytes have been received. 

Regarding the actual serializer and de-serializer components themselves, I chose to use the TX and RX 
ided for public use at www.fpga4fun.com.  I felt that while writing my own copy of a 

be fun, the UART was only being used as a means to g
into the synthesizer.  Therefore, I chose to simply use premade modules and instead focus on helping 

work on a complex finite state machine which could parse human
readable text into control bus values. 

The serial parser consisted of a very simple FSM focused around an counter which ranged from 8 (no 
ial port) to 0 (every character entered, so load value onto the c

simple implementation of the control interface, it worked without incident at 9600 

with an initial setup as listed 

 

As it quickly became apparent within the first week of starting the Modular Synthesizer project that 
developing a custom LCD touchscreen terminal for user input would be too complex to be possible, I 

digit value in 
bit value present on the control bus.  I 

es valid hex keys and does 

s themselves, I chose to use the TX and RX 
I felt that while writing my own copy of a 

be fun, the UART was only being used as a means to get my data 
into the synthesizer.  Therefore, I chose to simply use premade modules and instead focus on helping 

work on a complex finite state machine which could parse human-

The serial parser consisted of a very simple FSM focused around an counter which ranged from 8 (no 
ial port) to 0 (every character entered, so load value onto the control bus).  

simple implementation of the control interface, it worked without incident at 9600 
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4. Conclusion 
 

The focus of our project shifted quite a bit from our original goal. We had originally had a product-
oriented project in mind – with emphasis on the audio and user interface. Our actual final project was 
much more of a framework. We had originally believed that the audio routing problem was solved for 
us – we could just serialize audio data in and out of our modules via the user pins on the lab kit. Much 
of our UI design time was sacrificed as we implemented the ring network and did all of the routing 
within the hardware. 
 
We also underestimated the time it would take to complete the audio modules. We had believed that 
while some modules were complicated we would have the time to implement quite a few of the audio 
modules. As we found out, it is very difficult to implement complicated fixed-point or floating-point 
arithmetic. We did not expect to run into hardware limitations while doing our calculations. 
 
That said, the end result was much more of a framework that we or any other person could build on in 
the future. Had we had the audio routing network we have now before we started, we could have 
focused on the end product interface much more. In addition, the knowledge we gained while 
implementing the more difficult audio modules would help us finish off the easier ones we had planned 
much more quickly. 
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Appendices 
 

Appendix A - Equations 
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Equation 1.  Biquad Transfer Function 

A generic biquad transfer function. 
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Equation 2.  Biquad Recurrence Relation 

The generic biquad expressed as a recurrence relation between the input signal x and the filter output y. 
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Equation 3.  Low-Pass Filter Coefficients 
Coefficients for a low-pass biquad filter. 
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Appendix B - Examples 

 
Example 1.  Oscillator in Simulation 
The Oscillator module’s different waveforms generated for 440hz. 
 

 
Example 2.  High-Pass Filter in Simulation 
The output of a high-pass filter with cutoff frequency 4800hz acting on a 440hz square wave. 
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Example 3.  High-Pass Filter Reference 
Paul Falstad’s Java applet displaying a 441hz square wave with a high-pass filter at 4806hz.  Note the similarity of the 
waveform to Example 2. 
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Example 4.  Low-Pass Filter in Simulation 
The output of a low-pass filter with a cutoff frequency of 4800hz on a 440hz square wave. 
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Example 5.  Low-Pass Filter Reference 
Paul Falstad’s Java applet generating low-pass filtering a 441hz square wave with cutoff frequency 4806hz.  Note the 
similarity to Example 4. 
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Appendix C - Code 
 
Code 1.  Python script for verifying the correctness of the filter test bed. 
 
import re 
import math 
 
""" converts x, an unsigned decimal representation of 
    a fixed-point binary number to a signed decimal  
 interpretting x as Qinteger.fraction for unsigned 
 or Q(integer-1).fraction for signed """ 
def fixed_point(x, integer, fraction, signed=True):  
 i = 0 
 ans = 0 
 i = integer 
 str = int2bin(x, integer+fraction) 
 for k in str: 
  i -= 1 
  if (k == '1'): 
   if (signed and i == integer-1): 
    ans -= 2**(i) 
   else: 
    ans += 2**(i) 
   
 return ans 
 
""" returns the binary of integer n, using count nu mber of digits """ 
def int2bin(n, count=16): 
 return "".join([str((n >> y) & 1) for y in range(c ount-1, -1, -1)]) 
 
""" check to see if two numbers are equal to within  a 
    tolerance value of one another. """ 
def approximatelyEqual(x, y, debug=True, tol=0.01):  
 b = abs(x-y) < tol 
  
 if (not b): 
  raise Exception("Values "+repr(x)+" and "+repr(y) +" do not match.") 
 else: 
  if (debug): 
   print ":: ", x, "~=", y 
 
f=open("output.dat") 
 
lines = f.readlines() 
 
data = [0 for i in range(0, len(lines)-2)] 
 
# tokenize the numbers 
for i in range(0, len(lines)): 
 if (i >= 2): 
  d = re.split("[^a-zA-z0-9-]+", lines[i]) 
  data[i-2] = [] 
  for v in d: 
   if v != "" and v != "x": 
    data[i-2].append(int(v)) 
 
w0 = 2*math.pi*4800.0/48000.0 
c = math.cos(w0) 
s = math.sin(w0) 
alpha = s/4 
actual_b0 = (1 - c)/2 
actual_b1 = (1- c) 
actual_b2 = actual_b0 
actual_a0 = 1 + alpha 
actual_a1 = -2*c 
actual_a2 = 1 - alpha 
 
a0 = 75133 
a1 = -106228 #155916 
a2 = 55939 
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b0 = 6211 
b1 = 12422 
b2 = 6211 
 
print "a0:", 
approximatelyEqual(actual_a0, fixed_point(a0, 2, 16 )) 
print "a1:", 
approximatelyEqual(actual_a1, fixed_point(a1, 2, 16 )) 
print "a2:", 
approximatelyEqual(actual_a2, fixed_point(a2, 2, 16 )) 
print "b0:",  
approximatelyEqual(actual_b0, fixed_point(b0, 2, 16 )) 
print "b1:",  
approximatelyEqual(actual_b1, fixed_point(b1, 2, 16 )) 
print "b2:",  
approximatelyEqual(actual_b2, fixed_point(b2, 2, 16 )) 
 
# in, x[0], x[1], x[2], y[0], y[1], y[2], accumulat or 
i = 0 
x_actual = [0,0,0] 
y_actual = [0,0,0] 
actual_accumulator = 0 
 
for d in data: 
 input = d[0] 
 x0 = d[1] 
 x1 = d[2] 
 x2 = d[3] 
 y0 = d[4] 
 y1 = d[5] 
 y2 = d[6] 
 accumulator = d[7] 
  
 print "(",i,"):", ("input",input), ("x0",x0), ("x1 ",x1), ("x2",x2), ("y0",y0), ("y1",y1), 
("y2",y2), ("accum",accumulator) 
 print "accumulator:", 
 approximatelyEqual(b0*x0 + b1*x1 + b2*x2 - a1*y1 -  a2*y2, accumulator) 
 approximatelyEqual(actual_accumulator, fixed_point (accumulator, 18, 18), tol=50) 
 approximatelyEqual(y_actual[0], fixed_point(y0, 16 , 2), tol=50) 
 i += 1 
  
 x_actual[2] = x_actual[1] 
 x_actual[1] = x_actual[0] 
 x_actual[0] = input 
  
 y_actual[2] = y_actual[1] 
 y_actual[1] = y_actual[0] 
  
 actual_accumulator = actual_b0*x_actual[0] + actua l_b1*x_actual[1] + actual_b2*x_actual[2] - 
actual_a1*y_actual[1] - actual_a2*y_actual[2] 
 y_actual[0] = actual_accumulator / actual_a0 
 


