Modular Synthesizer

Andrew Muth, Michael Miller, Tejasvi Vishwanadha

Abstract

Traditional modular synthesizers operate entinelthe analog realm, routing
independent components together through patch<abledules such as oscillators,
filters, mixers, and sequencers allow for myriadisgossibilities. Our modular
synthesizer functions entirely in the digital domaieplacing patch bays with an internal
ring buffer and analog controls with a serial ifdee.

Table of Contents

Y 011 = V! USRI i
Table Of CONTENTS ... e e e e e eeee e ii
LISt OF EX@MPIES ...t e e e e e e e e e e e e e e e e e e eeeaennee ii
LiSt Of EQUALIONS ... eeeeee et e e e e e e e e e e e e e e e aeeaeeeeeeeeeeneenrnnnnes \Y
LISE OF FIQUIES ..ttt e e e e e e e e e v
L. OVBIVIBW ..ttt ettt ettt e e e e e e e e e e e e s e e e e bbbttt s teeeeae s e e e s s annbbbbbbenne e e 1
1.2 SYSIEM OVEIVIEW ...ttt e e e e e et e et ae et e e seeee e e e e e e e e e e eaaaas 2
1.3 Audio Data CONSIAEIAIONS e eeeeeeeeeeee e e e e e e e e e e e e e e sseeeeee e e e e 3
2. AUAIO UNIES .ottt s e e s aeee e e e e e e e e e e e e aaeeeeeeennnnes 5
2.0.1 ArithmetiC SNAINGuueeiiiiee s e e e e e e e e e e e e e e e rnnneeeeennnne 5
P20 R O 1Yol | =1 (o] PP 5
2.1.1 Direct Digital SYNTNESISuuunimmmmmeeeeeeeeeeeeeee et ereeees e 6
2.1.2 Testing and DeBUGQINGuueeeiiiie e 6
2.2 BT e 7
2.2.2 Testing and DeBUGQINGuuiiiiiiee e ee e 8
Additionally, to test thé-ilter further, | created a brief Python script that gooeer the
outputted results from my simulated filter test j@gdpendix C - Code 1)...................
PG IR <To [T oo =] PSPPI 9
A ORI A 1 0 I T T I U | 9
2.5 SAMPIET ... e e e e e e e e e e e e e e et e e 10
P2 O |V =] RPN 11
A < - S 12
P2 I L1 o] - | PP 12
3. Command, Control, and Internal ROULING. ... eeevevrieiiiiiiiiiieeeeeeeeeeeeeeeeeieeeee 14
3.1 ROULING OVEIVIEWeiiiiieeeee e e e ee ettt ettt s s e e s e e e e e e e e e e eeeeeeeanaeeeeessnnnnes 14
3.2 AUAIO Data ROULINGuuuiieeeeeeee e e e e e e e e e et e eeeeeeataan s e s e e e eeneansaeeeeaeees 14
3.2.1 Theory Of OPeratiON.........couuiiiiiiueeee et e e e eee e e e 15
3.2.2 Output Drivers & RiNG CYCINGuvvviaemmeiiiiiee e 16
3.2.3 Input Receivers & Control REQISTEIS ... ieeeeieeiiiiiiiiiiiiiiee e 17
3.2.4 Testing and DebUGQINGooeeeiei i e e e e e e e e eeee e 18
3.3 Control SigNal ROULINGveeuuuu s e 19
ICTRC T8 M I =To T VAo @ o T=] = 11 o] o [19
3.3.2 Control Bus Implementation..............oooeiiiiiiiiiiiiiiiiii e eeeeeeeeeeee 19
3.3.3 RS-232 UART SYSIEIMeiiiiiiiiiiiees sttt eeeeteaeae e e e e e e e e e s s snnnees 20
3.3.4 Serial Command ParSer..............o oo ee ettt aaa e e e 20
v O o] o ol [13 o] o [P O PP PPTPPPPPPPPPPRPR 21
Y o] o 1= Lo [To = PP RSP 22
F Y o] o L= gl b q AN o [N = 14 0] o 22
AppeNndix B - EXAMPIESuueieiiiiiee s 23
Y o] o 1= T [G @ To [P 27

List of Examples

Example 1.
Example 2.
Example 3.
Example 4.
Example 5.

Oscillator IN SIMUIALION ... oo 23
High-Pass Filter in Simulation...............ccooeeiiiiiiiiie e 23
High-Pass Filter Reference ... 24
Low-Pass Filter in Simulationcoovviiiiiiiiiiieeeeeeeeeeeeeeeee, 25
LowW-Pass Filter REfEreNCe.....ccoumeeiiiiiiiiciii e 26

ii-

List of Equations

Equation 1. Biquad Transfer FUNCHON ... eereeeiiiiiiiaee e eeeeeeeeiivveeneneeeeeees 22
Equation 2. Biquad Recurrence Relation ... eeiiieieeeeecie e 22
Equation 3. Low-Pass Filter CoeffiCients ... 22

4v-

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Modular Synthesizer - Block Level Diara..........ccoooeeeiieiieiiiiiiiiiiiiiiiiieeees 3

Delay ROULINGccoeeeeeeeieie et s e e et s e e e e e e e e 12
Audio Router - Behavioral Goal........c..cooovvviiiiiiiiiiiiiiiieeeceeeeee 15
Ring Buffer - Ringing BENaViOrceiiiiiiiiiei e 15
Ring Buffer - QUPUL SYSIEMceiiiiiiiieeiee e 16
Ring Buffer - Output BENavior.....ccccc.oooo o, 16
Ring BUffer - INPUt SYSEM ... 17
Ring Buffer - INput BENAVIONcccooviiiiieeecir e eeeee e 18

1. Overview

A synthesizer is an electronic instrument that gates output tones by creating and combining sgynal
generated by user-controlled inputs. A modularisgsizer is a synthesizer that produces its final
output by routing independent synthesizer modulgsther. The modules, such as oscillators, filters,
delays, and sequencers allow for myriad sonic pdgis. Traditional modular synthesizers, most
famously produced by Moog, date back to the midos9& hese synthesizers worked entirely in the
analog domain. Our modular synthesizer will intégnfunction in the digital domain, mimicking the
components of the original synthesizers and adslomge that would not have been possible.

We were interested in making a modular synthe$aranultiple reasons. The highly modular scheme
lends itself well to Verilog. We believed that edrhe we completed a module, it could be added to
the synthesizer with relative ease and expandinak. \WWe also planned to focus on the user intexfac
believing that it would be an interesting and fualggem to tackle. Of course, the fact that our @coj
would generate cool music on the fly didn’t huther.

Like their analog brethren, digital synthesizeraplemented in hardware or software — lend
themselves well to a highly modular system topolagiy a simple data interface. In analog systems
this is accomplished by implementing a number sfikict audio processing units that run in parallel
while taking in and outputting a continuous non4tfizzed voltage waveform. Control of each
processing module is generally done by a variegwofches, knobs, and sliders which provide signals
to the analog circuitry within. Routing the audiata is accomplished by physical wires connecting
input to output on each module, allowing arbitraoynection patterns including feedback loops and
wide fan-in/out without needing any specializeddwaare or system controller. In the case of our
digital synthesizer the inherent division betweaanleaudio processing step worked well with the
modular design paradigm enforced by Verilog. Hogrethe twin issues of routing and audio
processor control required | create a unique teethsiolution where traditionally human input, irth
form of turning knobs or connecting cables, isrbem.

Routing digital audio signals within our FPGA pretesl a challenge because of the simple fact that we
would no longer be able to treat each audio prangssit (APU) as a distinct block which the

musician would manually connect to the next ; rathwery possible routing combination would have

to be achievable within the same synthesized desig¢ime user would be stuck editing and
reprogramming the synthesizer design each timewhslyed to change the connection layout between
APUs. Similarly, the digital interface of the FP@Antaining our synthesizer suggested we not
implement a large set of analog knobs and switbliegnstead use a single control interface common
to every APU. A single control module would thenrlesponsible for communicating with the

musician and providing the proper APU with its gohsignals based on the user’s input.

The following sections of this paper look at thsiga methodology, tradeoffs and current
implementation spec for the digital Modular Synthessystem we built for 6.111. In particular they
will focus on the Synthesizer at the system leganativation for the audio data router and common
control interface mentioned earlier, though we aifio touch on the “multi-tier” abstraction concept
we used to facilitate clean coding and efficiergtegn integration. We will also discuss in detiad t
design specifics that went into each of the auijoad processing cores. Finally, we will look aih
the engineering goals for this project changed @ves from a output-oriented product to a systems

1-

engineering-oriented synthesizer framework desidgaedcalability, modularity, and ease of
implementation.

1.2 System Overview

As we mentioned earlier, the layout of the Mod@gnthesizer we implemented relies heavily on a
“tiered” paradigm that breaks up all of the necesgparts into distinct modules, those modules into
sub-modules, and so on. This is true at both dimeept level, where the synthesizer is made up of a
number of distinct APUs, and at the hardware |lewere an APU is defined to be a wrapper for the
network interface, control interface, glue logindaligital sound processing (DSP) core. This
abstraction was a useful design decision for tvesoas: first, it took advantage of the inherent
modularity present in Verilog HDL; and second, hesmit concentrated all of the actual digital desig
components into the outermost “leaves” of the Sgsitter’s design tree.

For example, the control module we will look aelabn is nothing more than a wrapper containing
interconnections between a UART, a parser for tta tfom the UART, and a link to the next-highest
level of the design. In the same manner the UARTue is really just a wrapper containing
interconnections between a serializer, de-seriglaa®d the next-highest level of design. It isyanl

the serializer and de-serializer modules that alidgtgic components can be found to actually
implement the standard RS-232 protocol.

At the top-most level of abstraction the Modulan®esizer design is based on four major component
types which connect to the labkit peripheral handwand each other:

1. Audio Modules (APUSs)

2. Control Module (user input)
3. Debug Display Module (LEDs & character VFD)
4, Support Systems (digital clock manager, reggtadigeneration)

It also contains the wire nets which link the sfie¢hput and output pin names defined for the @.11
Labkit to our modules’ output and provide bus iotemections between each of the module types
listed above. In every case these busses are/pasgises which do not change the signal timing spec
or provide storage. A block-level diagram illusing the system is displayed below.

r
i Modular
| Synthesizer o e
i —— ol) 4
| _ |~ -~

- I AC97 labkit bus : : Ac97 DSP i i Audio DSP i

D H | E (address 0x01) :H
':""""""""'E HE (address 0x00) | i S 4 i

UART IN

!
|

COMMAND ||
PARSING [*
FSM

& . |

n i | Pt Audio DSP i

H ety SN DISPLAY DSP o (address 0x02) 1
P —— i (address Ox1F) | i S ~ :
e T e e , L —— -—

rmn
| H i 1mn
m L (el

. Digital Clock E ©: i -'. |
| Manager ! = i !
. 1 !
| Reset
. Generation
| - RING BUFFER - DATA BUS (16 lines)

Debug Display RING BUFFER — ADDRESS BUS (5 lines
i- (LEDs & VFD)

Figurel. Modular Synthesizer - Block Level Diagram

This block diagram shows a representative instaotianf the Modular Synthesizer including t
APUs listed as “Audio DSP: address 0x01” and “Audi®P: address 0x0; however it should b
noted that the same framework arus architecture can be extended up to greateralmamdrec
distinct APUs -the only limiting factor is fitting all of the desgs into the FPGA without conflictir
arithmetic system requirementbloteworthy components include the audio datevo (hee shown
in gray), the common control interface (red) antspa(orange), and a number of DSP al
processing cores (purple). Each of these compengiiescribed in detail later in this pa

1.3 Audio Data Considerations

As we noted earlier, one tiie keys to achieving a truly modular digital syg#izer is to define
common audio data standard whose bandwidth andtaagkpace exceed that needed to creatt
sound. In this implementation both the sourcesnkl of the audio path is an LM4E AC97 codec
peripheral located on the 6.111 labkit. Accesthéochip is done using an edited version of the A
audio library interface provided in Lab 4 which piaes for 1-bit PCM audio data output samplec
48 kHz while being driven by a faste4.8 MHz system clock.

The reasoning behind the choice to use the larg-bit audio data source follows directly from 1
nature of audio information itself. To listen wwusd, it must be put into a speaker which can taitg
a single time-varyingata channel, typically a continuous analog voltalgethe case of the AC¢
decoder used in this synthesizer, | take advardhge fact that sound can be quantized into dis
intensity levels based on the audio capabilitiehethuman ear. Fore purposes of thi
implementation 16 bits of precision in the soungeleor 65,536 distinct states, were enoug
reproduce almost any incoming audio stream witlfidetity issues. Similarly, the range of humr

-3-

hearing is limited to a narrow frequency band gdragimately 20 Hz to 22 kHz, meaning that the
Nyquist rate necessary to completely reproducesaond within human perception requires a
guantized sampling period of 44 kHz. The 48 kHnling frequency of the AC97 peripheral codec
ensured that even in the worst case (very hightifipguency and poor low-pass filter cutoff) one
would not expect any high frequency components alblog audible range to affect the reproduced
sound.

Given the onboard availability of this high-qualdignal and the fact that many DSP operations can
occur in parallel, | chose to use the full 16-02N? audio stream sampled at 48 kHz without
downsampling for a net data rate of 768kbps. Thace gives the synthesizer hardware an audio
bitstream which is detailed enough to be downsadhael2 or 8 bits per sample if necessary for long
storage times in a sampler, yet does not requineamageably large amounts of block RAM or ZBT
implementation to work with.

2. Audio Units

At the start of this project, Mike had significaxperience working with traditional audio synthessz
and digital signal processing while Andrew’s aréaterest was on designing a novel control
interface using hardware components. Given thisiweed the project up into two major
components — the interface/control section whickir&w would focus on, and the more complex DSP
audio section which Mike would focus on. Meanwhileja would work with both of us when
necessary while also attempting some of the singaldio modules.

In the end, Mike ended up implementing and dematisty an oscillator, sequencer, and filter DSP
core while also developing an arithmetic sharingfesy and floating fixed-point math standard that
would form the base of the Synthesizer. Teja engedorking on a variety of audio and video
modules including a sampler, mixer, audio delay, waveform display. He also extended the AC97
library from Lab 4 to provide 16-bit PCM data dnivby a 64.8 MHz clock and completed wrapper
files for DSP cores using the communication tengslatritten by Andrew. Andrew ended up having
to develop the internal audio routing network amgkit/output register memory system used by the
DSP cores to communicate. He also designed thieotdaus architecture, found a workable serial port
module, wrote the control parsing FSM which drittes control bus, and developed the wrapper
coding paradigm used throughout the project.

2.0.1 Arithmetic Sharing

Since many of the modules require complex arithcaégxpressions often involving multiple

divisions, Mike created a scheme to share theseresxe operations with every module. This scheme
was successfully implemented within t@ecillator and theFilter, who perform four divides each

ready pulse using the same global instance, effdgtconserving sparse resources in exchange for
using more clock cycles.

Within each module, most internal modules are etegtsequentially. Ready levels are created based
upon the expected duration of a module, a paramé&iedules sharing the divider agree to a sharing
contract: as long as the ready signal remains tinglh, nodule may assert its divisor and dividend
arguments. Otherwise, it must pass zero. Thenparedule then combines these signals into one
using a bitwise or, and passes it to its dividemd dvisor outputs which makes its way eventually t
the divider itself. A simple extension to thishe@ue is to remove the duration element and make
each module assert a done signal as soon asohésusbing the divider. By attaching the done digna
of one module to the ready signal of another, eactiule can trigger the next to start as soonias it
finished.

2.1 Oscillator

TheOscillator module is a versatile signal generator that engptbgect digital synthesis (DDS) to
create a variety of periodic waveforms. It carrently produce six different types of waves: pudse
square; ramp and saw; triangle; and sine. Thegsisgly specifies fequency and a waveype
(as well as a pulse width in the case of the pwkpee). The output has a fixed, default gain amrd th
maximum amplitude is approximately the same acatissgnal types (-3 dB).

-5-

TheOscillator is written with generality in mind and is programuically flexible. Wire widths
dependent on the width of the audio or control petars are declared in termsh\yfa globally
defined variable currently set to 16.

2.1.1 Direct Digital Synthesis

A naive approach to creating a sine wave usin@lulo table would use a counter to increment over
the table. By doubling the increment on the coynte double the frequency of the synthesized signa
However, if we want to decrease the frequency, weldvneed to decrease the increment below one.

Instead of a simple counter, direct digital synthesplicates a dataset at a desired frequencyhigthn
resolution using a fixed-poipthase_accumulator . This process keeps fractional bits of precision
so that we can decrease the signal below the freguepresented in the lookup table. If we wanted
to simply recreate the table from before as withdimple counter, the increment would be one
represented in the same fixed-point scale as thsgpaccumulator.

In the final version of th©scillator module, | use two generizDS modules routed to different
datasets. OnBDSreferences a 512x16-bit sine lookup table to gearex sine wave. The table
exploits sine’s two points of symmetry around tleetical @/2— = is symmetric with 6+n/2) and the
horizontal § —2r mirrors G-n), effectively creating a 2048x16-bit table.

The secondDS s used to generate a ramp. In this case, a BtBxInemory is wholly unnecessary.
Instead, the module mimics the table @S module expects but represents its data using simpl
addition based on the lookup address.

The abstraction between tb®S module and its data source leads to interestingdipossibilities. It
allows for the creation of a limitless number ofipdic waveforms by simply changing the dataset.
One could conceivably store a large number of cemghatasets in memory and selectively call up
these more interesting tones. As well, | am cugialout the results of combining direct digital
synthesis with sampling, with the samples staréing stopping at zero-crossings to hopefully smooth
the looping. By generalizing the direct digitah#fyesis concept into an abstract dataset and srathe
module, experimenting with these new possibililesonvenient and straightforward.

Some wave types do not need to be generated, bunsi®ad be realized from an already-created
signal such as a sine wave or ramp. The puls@regsaw, and triangle waves are created in this
manner. For instance, the high-order bit of tine svave represents a square wave with the correct
frequency (although not the right amplitude). Tlse wave is created by simply setting the square
wave low oncevidth ready cycles have passed. The saw wave is sitng@lgegative of the ramp
wave. The triangle wave takes the absolute vaitieeoramp and shifts and scales it into place.

2.1.2 Testing and Debugging

| tested the accuracy of tiascillator’s output in three ways: by simulation in ModelSigExample 1);
by viewing the analog output on the logic analyzerd by ear. For both Modelsim and the logic
analyzer, | successfully measured and verifiedrégguency of the output signal. | cross-referenced

-6-

the signals with each other and the reference 75Bteztone provided in Lab 4 using all three method
My sine output proved to be essentially identieal] all the other wavefortygpe s similarly matched
in frequency, though as was expected, their toditeps differed wildly.

Once | verified myOscillator’s outputs, | continued to use it for testing otherydules. | tested the
Sequencer eventually by using it to drive @seillator’s frequency input, and it was during that
test that | heard poor performance in the uppeukeacies. This led me to redesign the oscillattr i
its final version.

My original implementation usedDSto generate only the sine wave. The pulse ang raere both
generated on theeady signal, using half the wave’s period as a guidenfioen to flip in the case of
the square wave, or as the first part of calcugtire step size for the ramp. This method resutted
“pure” waveforms whose periods were an integer ipleliof 48khz clock cycles. This previous
method which generated the values on the 48khzsyeltther than through sampling led to poor
performance, particularly in the high frequenciés the desired frequency grew, tones with simjlarl
high frequencies would quantize to the same exguoabk

DDS, however generates signals that are sampled froomderlying representation. TB®Ssine
wave, for instance, is not exactly a sine for niegjuencies, although the representation is péyfect
sinusoidal. To achieve successful digital playbatckarying frequencies, the wave takes on a longer
and more complex overall periodicity as the sangpjinint cycles over the representation. This alow
us to approximate waves that are not integer me#ipf the 48khz clock cycles, and hence avoid two
waves with different frequencies generating theesgoantized signal.

| ran into an issue involving noise fisquency got higher. While | was unable to fix the problem
because of time constraints, it likely had someghiondo with the precision of the phase accumulator
in theDDS module.

2.2 Filter

TheFilter module is intended to act as single-pole audi@kzgr unit. It implements a coefficient
generator and a second-order biquad-based infmpelse response (lIR) filter. IIR filters likeeh
Butterworth filter are particularly suited for anddirocessing tasks, as they closely mimic theifcgna
predecessors and counterparts. Butterworth filkepgrticular are good for audio because they have
maximal flatness in the pass-band region.

Unlike finite impulse response (FIR) filters whigduire the generation of many constants that defin
an impulse for convolution, a biquad (Equation qu&iion 2) requires only six constants. As well,
while biquads are only second-order filters, thay be cascaded together in series to create higher
order systems with a greater degree of numeriglisgyaban a higher order transfer function. This
property particularly lends itself to our modulearhework for the synthesizer, allowing the user to
string togetheFilters to create a many-pole equalizer from this basgilcling block.

TheFilter uses fixed-point arithmetic to provide an accuratedering of the coefficients and the sum-
of-products filter output (Equation 2). By conveg the signed input signal to Q152hd outputting
18-bit signed coefficients formatted as Q1.15,dduthe 18-bit built-in multipliers to get good
performance coupled with good accuracy.

TheFilter Coefficients sub-module generates the six coefficients fobiqaead. These coefficients
vary depending on the type of filter desired. @ntly, low-pass, high-pass, band-pass, and notch
filtering are implemented but the design is intendlly extensible. The math to generate the catsta
is straightforward, with the exception of a sindleide used to generate the angular frequestcy

The coefficients themselves are generated usiregasid cosine table lookups and simple arithmetic
(Equation 3).

Once the filter coefficients are available, titer Scale module divides each coefficient bB.

While every other divide in the synthesizer is salto a single, global division module, thidter

Scale module uses its own divide more suited to its seddyenerated this divide specifically to do the
18-bit divisions. As well, it is fully pipelinedtmake the four divisions in this module efficient.

With the scaled coefficients in hand, thiéter Accumulator performs a sum-of-products with five
terms. These terms are a product of the coeffisieith the previous three samples of input or
feedback of the last two samples of output (Equa®jo The module uses a single 18-bit by 18-bit
built-in signed multiplier to sequentially multipgach of the five coefficient-data pairs and adhth
to the accumulator.

2.2.2 Testing and Debugging

While | ran out of time to sufficiently debug tRéter on the Labkit, the simulation results in
ModelSim were quite promising. By comparing myutesson various signals from the oscillator with
a known result, | was able to confirm some detilsy implementation’s functionality. In particula
Paul Falstad’s Digital Filters Java Applet provedaluable in this endeavorExamples Example 2,
Example 3, Example 4, and Example 5 illustrateglessnparisons and show what appears to be a
very functional low-pass and high-pass filter.

| had a lot of difficulty in particular with theXed-point mathematics which was new to me. Additio
and subtraction made intuitive sense, but divigigparticular, once abstracted even further through
the CoreGen divider module, became very difficattrhe to follow and comprehend. Ample testing
was and is a necessity with complicated fixed-paithmetic.

Additionally, to test the Filter further, | created a brief Python script that
pores over the outputted results from my simulated filter test bed
(Appendix C - Code

! This is notation | found useful for describingeikpoint arithmetic (http:/en.wikipedia.org/wikiked-point_arithmetic):
Q(#integer bits).(#floating bits). The signedibitmplied if present, and not counted.
2 http://www.falstad.com/dfilter/index.html

-8-

Code 11)

The script checks the data for consistency by comgdts calculations to the calculations performed
by my computer, my standard of correctness. Whiydilter has yet to past this rigorous test, it
revealed many bugs and would surely have led naectwrrect solution given more time.

2.3 Sequencer

The Sequencer produces a sequence of user-programmable numealtads by iteration. It acts as a
sort of sequential-read random-write memory, odipginew values evemeady pulse and writing
new values whenever itgrite pin goes high. Internally, theequencer uses an array M-bit wide
registers to store values.

For added flexibility, thésequencer includes a notion of end behavior that control& b continue

once it has output the last stored value. Cumptibns include simply stopping, looping, or revegs

The user can also control the speed at which néwesare created. The number of the values in the
sequencer is parameterized. As such, the usespeanify an upper-bound on the size of any sequencer
instance at compile time to conserve resources.

As well, | created a file of predefined pitchesgimg (in scientific pitch notation) from A3 all tiveay
up to A6. Further pitches could be created by §irapifting an available value to raise or loweait
octave.

The design and mechanics of the sequencer are satgle, and as a result, testing was
straightforward. | simply verified that the valwas latching to the correct numerical output every
ready pulse. Unlike the filter whose low-passed saw evanght be slightly off yet look fine, there is
no subjectivity involved in the correctness of seguencer.

The Sequencer, once implemented, became very useful as a telst lballowed me to send the
Oscillator a variety of frequencies in a repeatable testhwyoidshion much as | might write into a
ModelSim test.

| found many times that while | could create a éangmber of tests, it was only useful when | could
verify the answer with some knowledge on my p#rts hard to visualize a sine wave as it changes
frequency for correctness, but it is easy to dawally. With my include file that mapped pitcties
frequencies, | was able to create tests such #ragw what it should sound like. The combinatiébn o
the Sequencer and theOscillator became invaluable test tools for testing the Fatewell.

2.4 AC97 In and Out

The AC97InOut module is perhaps the simplest of the modulesdted. It is essentially identical to
the Lab4audio module used in Lab 4, but the input and outputaddta have been widened to 16 bits
to match CD quality audio.

2.5 Sampler

This module was actually inspired by watching a fegeos by two-time UK Beatboxing champion,
Beardyman. Beardyman uses two KORG KP3 KAOSS padtame to sample his own voice and play
each back with different audio effects. My goalwtiheSampler was to create module that stored a
small sample of input data and played it back wiheruser told it to. The main difference in
functionality between Lab 4 and the sampler is thatlatter has 3 states — recording, playback, and
silence — while the former only toggled betweenftist two states.

While functionally similar to Lab 4, two fundamehtiesign decisions made creating Saenpler
significantly more difficult. In lab4, we used 8tlaiudio and down sampled from 48kHz to 6kHz. By
storing this information in a 64Kx8 memory, we mged to store about 10 seconds of audio data.

Since we were using 16 bit data, | would needdoesat least twice as much information. In addition
didn’t want to downsample because | didn’t wantoe information. Therefore, maintaining the

length of the sample would take eight times as napete. Unfortunately, since a 64Kx8 memory uses
approximately 20% of the BRAM on the lab kit, rediog a full 10 seconds of 16bit audio at 48kHz
would take 320% of the available BRAM.

The first version of the sampler, which eventuadcame th&ig Sampler, only sacrificed sample
length to fit on the lab kit. The first iteratiosed a 128Kx16 memory, the largest size | coulg full
address with a 16-bit width, and using 80% of BRAMthe lab kit. The sample length was a little
over 2 seconds. | decided to cut the memory dowsdkorows — halving the BRAM consumption at
the expense of one second of audio data — in tiaé\fersion oBig Sampler.

While 40% consumption was significantly better,dnted to find a better way to store samples. |
considered two routes — storing less audio dattasing the audio data on ZBTs. The latter was my
initial choice. Each ZBT can store about 7 timesnagh data as all the BRAM on the lab kit. The
ZBTs are each 36 bits wide, so the simplest waydmtain an easy addressing scheme is storing two
audio samples per row and leaving 4 bits emptyn€identally, accessing the ZBT takes two clock
cycles, so I'd have two samples ready every tinvarted to write a row. After doing a bit of math, |
determined could store a single 16 second sampiesimgle ZBT.

While this seems wonderful at first, | realizedttiveost of the samples I'd want to store would be
considerably smaller — probably topping out at Beeonds. Those could be broken up into smaller
bits that are even smaller by isolating sounds.l&hisamplers with huge samples would be better
than no samplers, | felt they would be wasting spdtie only option seemed to be horizontally
partitioning the ZBTs into 3 or 4 smaller chunks.tAat point, however, each sampler on the kit woul
have to be aware of all other sampler and use dimaeng to access all the necessary bits. Themyste
didn’t seem to scale well and broke out wrappetrabton so | concluded that puzzling it out would
be more trouble that its worth.

| decided instead to explore what | could do todmwn the size of the internal memory but still
maintain audio quality. After a few quick experingn realized that the top 8 bits of audio data
sampled at 48kHz sounded surprisingly good durlag pback. | also took advantage of the realization
that specific instrument samples could be undercarsd long. The final result w&mall Sampler,

10

which samples only the top 8 bits of incoming autia for about half a second. It uses a 32Kx8
memory, one quarter the size of the larger version.

If | were to extend the sampler further, | wouldidde ability to add a delay for playback. The gela
would be relatively trivial to implement. A simpt@unter that increments with each ready pulse would
keep track of the number of cycles to delay befeterning to the beginning of the memory and
playing the data back.

Such a delay would save valuable memory from beiasted on silence. For example, the user could
create three small samples for a snare drum, brase dnd hi-hat and space them out to create the
“standard 4/4 rock beat” instead of sampling 2 l@ats worth (at least 2 seconds of audio data). In
fact, by using the sequencer to alternate delayegahe user could alternate seamlessly between the
standard beat and “double time”.

2.6 Mixer

TheMixer module we originally proposed was to be a paranzeid N-to-1 mixer module. However,
since each input would be accompanied by a levaky#he arithmetic for supporting N-to-1 soon got
very tricky. Therefore, | focused instead on a Z-tmixer that could be chained together for N-to-1
mixing.

Besides the standard clock, ready, and reseMik@ module takes four standard inputs and one
parameterized input. It has only one output, theechisignal. Thénl andin2 inputs are audio

inputs whilelevell andlevel2 tell the mixer how to combine the two streams. deeimal
parameter tells how many bits of the incoming lexsdles are fractional. fecimal is O, the levels
are whole numbers (essentially gainddicimal is 15, the level is a fraction less than one.rlieo

to average the signals, bdévels and thedecimal value are 1, indicating the output value would
be the sum of half of each incoming signal .

The original version of thilixer (before it became a 2-to-1 mixer) assumed thatnmieglevel
values were unsigned whole numbers. The moduleditbign require summing the product of an
unknown number of signals. In order to make sueentiodule did not use too many resources, the
module did a single signal by level product eacdtklcycle and added it to the sum stored 40-bit
register. | chose 40 bits because | assumed thiéipiimation of two 16-bit values provided a 32-bit
product and that there would be at most 8 signailsgomixed at one time.

When | decided to make a 2-to-1 mixer, | shrunkrdwster down to 34-bits. Signed multiplication of
two 16-bit values could create a 33-bit value. 8itiere were only two signals, | knew | 34 bits was
enough to contain the sum. | also retained thglesiproduct per clock system so that Mike’s modules
would hopefully not contend with mine for resources

The trickiest part was adding support for signegtional values. Without fractions, I'd always ckec
the top 16 bits of the product sum for non-zeragalf the value wasn’t zero, | knew that signal ha
clipped the upper limit and the module output tlghést 16-bit value. If the value of the upper bits
were zero, | would know the signal did not clip @hd module output the bottom 16 bits of the sum.
By adding fractional values, | had to account far signed bit and fractional bits, meaning | had to
check a different set of bits for clipping.

If | represent an it signed decimal value as A(a,b), where b bitsespond to fractional bits at
a+b = n4, the product A(al,bl) * A(a2,bcan be represented A&@l+a2+1, b1+b2). | know that t
is zero, since the audio data is a whole numbethe final result is A(al+a2+1,b1). The value of
the parametedecimal , so | knevhow many bits to drop from the bottom of the prddiwom. The
next 16 bits were valid audio data, and any hidfsrwere either sign information or exct
indicating clipping. | tested thixer extensively in ModelSim while addirecimal support and
decided to assume that if theighe” bits were all the same (either all O or all 1) thesre sigr
extensions and thus tlaedio valuesdn the lower bits were valid. Ihe bits were not the same
decided the bits were probably excess values arglgiovided a clipped maximum sigi

2.7 Delay

The true purpose of adding decimal support tctMixer module came from my using it twice ir
Delay module. ThéDelay modulebasically stores a certain amount of and inpuastren memory an
then mixes this buffered value with the input stnedhe module also supports feedback, mixinc
output of the previous mixer with the incoming \@khefore storag

Thedelay input deéermines how many cycles of input data the modteikl store. This value wi
also the number of ready cycles to hold input datdefore mixing it back in with the current ing
data.

Thewetdry , gain , andfeedback inputs were basicallievel values fo the twoMixers used in
Delay. A wet signal would just be the delayed signal whiléry signal would just be the current inf
| assumed thevetdry signal to be a fully fractional signed value betw-1 and 1. When zero, t
signal is dry and when trabsolute value is 1 the signal is completely

The product of the audio data and wetdry input is mixed with the output of th'® mixer to
determine the output of the modi The levels for thidMixer are thegain input, applied to th
product, and the inverse of tgain , applied to the othévlixer’s output.

~
PR

)
‘-)
c

¢
4

Figure2. Delay Routing

The otheMixer handles feedback, mixing the input and the outpthe@modue. The level for thi
output isfeedback while the input has level of 1feedback .

| did not finish developing thBelay module for this project, but believe that my cutt
implementation is pretty close to working. | am Bote that | am using the correct address fo
memory | created, and would probably ccrt the logic to make use of a bii-wide register array
allowing me to select different addresses for neg and writing each ready signal.

2.8 Display

The original purpose of theisplay module was to provide a visual component to tlogegt. We had
wanted a way to display the waveforms from any nieeétboth for our own debugging purposes and
for users to know what they are doing. Over tinmyéver, the debugging purpose became less useful,
allowing me have a bit more fun playing with theualization aspect.

We decided early on that we wanted to turn thelayspounter-clockwise 90 degrees. In this
configuration, we have 1024 pixels worth of vettgace, which would allow us to display signed
values between positive and negative 512. Turnimckavise also ensures that the monitor’s vertical
scan progresses from right to left.

While the module receives 16 bits of input, onlg thp 10 bits are ever used. Values are sampled fro
the input data every 32 ready pulses, and addad 6x768 array of values. When pixels are drawn to
the screen, the pixels on each row of the screeakcagainst the value in the corresponding rovihef t
array. The value of the row is shifted upward b & fit between 0 and 1024. For each row, pixels
whose horizontal coordinate lies between 512 arftedharray value are colored.

The coloring scheme is also determined from thbitstored in the arrajpisplay was meant to be
run on Andrew’s Nexsys Il kit. His kit uses onlypects 8 bits of color information, with 3 for regl,
for green, and 2 for blue. As a result, | chosm#ke the outpytixel 8 bits wide. The 6.111 Lab Kit
uses 8 bits per color. | decided to break uppikel into the 3-3-2 format for different red, green,
and blue values and then repeat each value untést8 bits long. In this way, the color of eaci ro
also corresponds to the value of the incoming data.

If I were to improve the module, | would like toveafound a way to sync the screen and updates so
the waveform would have a smooth continuous maoss the screen. In addition, downsampling
makes the output image rather jagged and the ougiues could have used filtering (much like Lab

4).

3. Command, Control, and Internal Routing

3.1 Routing Overview

As was mentioned in the System Overview, therdvapesignal requirements a digital Modular
Synthesizer will require which need a different lerpentation than one would find in an analog
synth: control and audio data. While seeminglgigtitforward to create, the little complexities of
both of these data routing problems ended up apstiyself and the project in general several weeks
of planning, coding, and debugging. However, daheecbus architectures | designed were fully
functional they allowed Mike and Teja’s DSP compuséo be simply “dropped” into a wrapper
template | wrote to encapsulate the audio procgssia network components into a single audio
module (APU).

3.2 Audio Data Routing

The Audio Data Routing system needed by the Modsyathesizer had two major hurdles to
overcome before it could be deployed, namely fléikjand scale. The need for flexibility
represented the desire for a user to be able togehthe pathway taken by audio data between the
source i.e., the AC97 input, tone generator, or sampler memibmgugh a variety of audio modules
towards the AC97 output.

At first glance the simple solution to this probleo simply connect each module to all of thesogh
using individual data busses. With that in place a set of multiplexers used as selectors, it dvbel
possible to connect any arbitrary data pathwayrmime. However, this concept suffers from the
second hurdle: scale. If each APU instantiatettiwithe system can talk to each of the others, the
number of wires grows with ordat, wheren is the number of APUs built. If the unidirectidityaof
Verilog nets is taken into account and modulestalknto themselves, this growth order rises'to n
The implication of this is that unless the numbieinetantiated modules igry low, the total number
of direct interconnects quickly grows outside tloeitids an FPGA can handle.

The next iteration of my Audio Data Routing systeas to have each APU output and input a
standard 16-bit serial signal updated at 48 kHzlsgonous with the new samm@gnc signal. These
serial 1/0 pins would then be connected to hardware located on the 6.111 labkit, allowing the
human user to simply plug wires between the appatgmputs and outputs to form connections.

While this approach may seem feasible (after tail, only a digitized version of the analog pateimel
used on other synthesizers), it was suggested toyrReofessor Terman et al. to look into an interna
“virtual patch panel” based on a continuously-lempnetwork with a ring topology. This approach,
which | would later implement as the Audio Ring &uf would avoid all of the noise and potentially
intermittent errors associated with using hardvwear@nections to drive high-bandwidth digital
connections.

3.2.1 Theory of Operation

In a nutshell, théudio Ring Buffer is designed to give each APU &sc® an addressed versior
every other APU’s data. It also has to meet théggiirement quickly in comparison to the 48 k
sync signal provided by the ACH since this signal is essentially our synthe&z@aetronome.

The following diagram illustrates the behaviorahbbhad in place for a single module wk
designing the Audio Ring Buffer. The key realipati had while working this timing speccation
out was the fundamental truth that any audio DS&aiwn would take a n-zero number of cloc
cycles between the time that its new input is add on its input and its output has the propeulte:
Given that the system clo€_Kis many tims faster than th8YNCsignal, as long as the DSP ¢
ensure that its output is valid by the time thetr&XNC signal comes along this only forces-SYNC
latency from audio input to output (illustrated the red arrows)

nnn

Figure 3. Audio Router - Behavioral Goal

From here | realized that if all of the APUs weomgected linearly in a circular fashion and assiiga
unigque address, it would be possible to “rotateirtidata value around the bus by inserting cloc
regisers between each audio module. If clocked onyhtes clock, these registers would effectiv
pipeline the bus and cause the data to loop arthendng bus once even cycles forn modules on
the bus. Combined with an address bus also clookdte system clock, this idea yielded f
following functional spec:

! 1 rrryreyrryryrerrerrer1reryrr1ryoor
N N L L A N S N

SYNC |

-

[RLE A XXX | DxXXXX . OxF2C7 , 0x2103 [0x0000 , 0xB20C , 0x0000 . Ox001F . OxF2C7 , 0x2103 , 0x0000 , 0x820C | Ox3FDLl , Dx1234

Figure4. Ring Buffer - Ringing Behavior

Figure 4 also illustrates (on the red clock cyths) fact that data will have to be injected on Itkus
in order forit to be useful. As we saw in figure 3, if we regueach DSP core to produce a vi
answer by the rising edge of the nSYNCsignal, we could use this pipelined ring buffectpy date
we know is valid at the rising edge SYNConto the bus at théime. If all of the modules on the b
do this at once on a comm&YNCand rotate on a commaLK it is possible to essentially reset-
entire Ring Buffer bus on vel§YNC(to contain only fresh values from the previous adtame.

15

3.2.2 Output Drivers & Ring Cycling

The net result of the bus design theory mentiomedeis shown in Figure 5, which depicts
hardware necessary to create a constantly “ringRigly Buffer whichsnaps to a new state ev«
SYNC As is evidenced in the imageis a very small design using only 2 muxes and steg. The
module address programmed onto the address comipafrtéye ring buffer is a parameter se
compile time.

Figure5. Ring Buffer - Output System

Figure 6 expandsn the ringing behavioral spec seen in figure #he¢tude a variety of signals locat
within each audio module. As is shown with the enppost set of red arrows, the value located ol
DSP units output is loaded onto the data bus. At the dame the associated module’s addres
loadedonto the address bus. Both will then rotate comtirsly until the nexSYNCrising edge, which
will load the bus with new datalhis functionality is actually coded network_flow_controller.

Previous Audio Curmrank Audio NextAudio
frame frame frame
1

OxXX00x | OxF2CT | 022103 0 0x0000 0 0xB20C . 00000 0 Ox001F , OxF2CT o 02103 0 0x0000 OxB30C . 0x%3FDL . 0x1234

INFUT
VALID

I ¢ Input latency: » I ¢ DSP latency:) jule data: O oC7
3 otk 11 . 1: e Module address: 0x03

< Total latency: 7 o > Input address: 0x00

|¢————— 2aundio Frame: 1350 clks typ. (clk = 64.8 MHZ) ———p|

Figure 6. Ring Buffer - Output Behavior
16

3.2.3 Input Receivers & Control Registers

While the implementation developed so far provithesability to write values to a ring buffer, tl
information would effectively be getting lost urdesnothr module has the ability to read t
addresses and data values on the bus. The impatoenof this system is shown bel

g
g

-

B
il

Iu
|h

Input Selectorxr

Figure7. Ring Buffer - Input System

As the figure shows, eadontrol_register is designed to output a (nominally b&) value and :
single-bit signalnput_valid . Internally,control_register contains 4 globallyaccessible registe
which can be programmed over the control Imentioned in 83.3). Two of these modules

(nominally 16-bit) registerg/hich store a value programmed by the user andug vaceived from th
ring bus.

Additionally, there is a smaller register which danprogrammed by the user and contains the ¢
module’s address whiatontrol _register will read in on evensYNCpulse. Onc&YNC has been
assertedgontrol_register’s INPUT_VALID pin will drop to indicate that it is currently waig to see
the ring buffer’'s address value equal the valueestn the small register. When it sees that vahe
control logic stores into one of the 1-bit registers This process occurs on eviSYNCregardless of
whether or not that value will be passed along &Pore That is controlled by the value of a sir-
bit registerINPUT_SELECTOR

More information on the control bus architecturd aow acontrol_register instance can b
programmed is available in 83.3 6ntrol Signal Routir”.

3.2.4 Testing and Debugging

By themselves, bothetwork flow_controller andcontrol_register function without needing ar
external control inputs beyor@LK, SYNGC and (in the case abntrol_register) aCONTROL_BL.
Moreover, the ring biter implementation | designed is fatolerant because it separathe input and
output stages into two distinct, indepencmodules which do not commuiaie with one anothe
directly. This greatly enhanced my ability to test and (g the network control modules becaus
meant | had to provide a much sinr testbed without worryingbout concurrency or timing issue

The block diagram shown below figure 8 demonstrates how keepieach of the logical componer
in the ring buffer implementatioas individual lov-level modules yields audio modules designs w
are solely wrappers and interconnects. In the ensgow, he only components needed in the at
module are 3 instances aintrol_register, 1 DSP_Core, and 1network flow_controller. Everything
else is simply wires.

DATA TH ADDR IN

Input valids
inputa

DSP Core

DEV _ADDR
parameter

Reg [BUS WIDTH-1:0] Reg [ADDR WIDIH-1:0]

Figure 8. Ring Buffer - Input Behavior

18

3.3 Control Signal Routing

As | mentioned earlier, the control system usethieyModular Synthesizer relies on a common
command and control interface shared among all@atidio modules to set the parameters of each
module’s behavior. In essence itis like a virtoahk of knobs or sliders which can be commanded to
communicate with instantiatexntrol_register, although in its current form it is much more like
having a virtual keyboard that can communicate witery module.

3.3.1 Theory of Operation

As was noted earlier, eachntrol_register instance requires a connection to a common cobtrsl
which provides the setup information it needs tacfion. The required information falls into three
categories which correspond to the register whach ef them is stored:

1. External (User-Provided) Data Value
2. Valid_Address
3. Input Selector

Between these three values (and Internal Data Vedael from the bus at location Valid_Address)
eachcontrol_register would know when to properly read from the ringfeufind what data to output.
Therefore, | designed a 31-bit wide data bus thahects every control register in the Synthesiaer t
single master controller, which takes in user irfpin a serial port and commands a specific registe
to a certain state.

3.3.2 Control Bus Implementation

The control bus | implemented which is connecteevierycontrol_register is 31-bits wide. However,
these bits are broken down into four distinct rangich each control a certain component of the
system. These parts are:

1. Control Bus Data (CTRL_BUS_DATA)

2. Control Bus — Module Address (CTRL_MOD_ADDR)
3. Control Bus — Register Address (CTRL_REG_ADDR)
4. Control Bus — Location Selector (CTRL_LOC_SEL)

Eachcontrol_register then implements a simple conditional logic treeétermine if it is the module
which is being commanded to a new state:

If (control bus module address == MY_MODULE_ADDRES
If (control bus register address == MY_REGISTERDRESS) {

If (control bus location selector == 0)
External_data_valué control_bus_data[15:0];

If (control bus location selector == 1)
Valid_Address_valué control_bus_data[4:0];

If (control bus location selector == 2)
Location_Select& control_bus_data[1:0];

If (control bus location selector == 3)
Do nothing since there aren't 4 registers to se

19

The following figure demonstrates the behavior control_register with an initial setup as lied
responding to a bunch of user input over the cobire

MODULE ADDRESS: 0x02, REGISTER ADDRESS: 0x0B
initial: VALID_ADDR = OxOF, INPUT_SELECT = 1 (external)

INPUT VALID
T L] L LJ L L
TEMF INPUT
SELECT |
INPUT |
SELECT
VALID
ADDR Ox0F O0x0B
mg::“ OXABCD O0XBCDE 0x0003 0x0004 0x0005
EXTERNAL 0x92DF O0XBEES
DATA

REGISTER

p 0x92DF 0x0003 0%0004 0%0005

3.3.3 RS-232 UART System

As it quickly became apparent within the first wexdlstarting the Modular Synthesizer projthat
developing a custom LCD touchscreen terminal fer irgput would be too complex to be possibl
decided to fall back to simpler serial interface wherein the user woulceeah digit value in
hexadecimal values (0-9,A} which maps to thassociated 3bit value present on the control bus
implemented a simple state machine which ensuedghb user only prees valid hex keys and do
not enter the vale to the bus until all 8 bytes have been rece

Regarding the actual serializer ancserializer componestthemselves, | chose to use the TX and
Verilog files provded for public use awww.fpga4fun.com I felt that while writing my own copy of
UART protocol transceiver woulde fun, the UART was only being used as a meaget my data
into the synthesizer. Therefore, | chose to sinysly premade modules and instead focus on he
integrate the system as wellasrk on a complex finite state machine which cquédse hume-
readable text into control bus valt

3.3.4 Serial Command Parser

The serial parser consisted of a very simple FS&ded around an counter which ranged from €&
characters entered on theigkport) to O (every character entered, so loddesanto the ontrol bus).
As this was a vergimple implementation of the control interfaceydrked without incident at 96C

bps 8N1.

20

4. Conclusion

The focus of our project shifted quite a bit froor original goal. We had originally had a product-
oriented project in mind — with emphasis on theiaaahd user interface. Our actual final project was
much more of a framework. We had originally bel@weat the audio routing problem was solved for
us — we could just serialize audio data in andobwaiur modules via the user pins on the lab kitchlu
of our Ul design time was sacrificed as we impletadrthe ring network and did all of the routing
within the hardware.

We also underestimated the time it would take tomete the audio modules. We had believed that
while some modules were complicated we would hheditne to implement quite a few of the audio
modules. As we found out, it is very difficult tmplement complicated fixed-point or floating-point
arithmetic. We did not expect to run into hardwlaretations while doing our calculations.

That said, the end result was much more of a fraonethat we or any other person could build on in
the future. Had we had the audio routing networkhaee now before we started, we could have
focused on the end product interface much moradthtion, the knowledge we gained while
implementing the more difficult audio modules woutlelp us finish off the easier ones we had planned
much more quickly.

2k

Appendices

Appendix A - Equations

b, + BZ™" + b,Z7? ST 7
H(Z): 0 bl 3 _aO aO aO

a, +aZ"' + az? 1+ 3 71, & 5o
3 3

Equation 1. Biquad Transfer Function
A generic biquad transfer function.

fi o= o e R o g - Ry - 2 yn- g
2 2 3 8 %

Equation 2. Biquad Recurrence Relation
The generic biquad expressed as a recurrenceorelagtween the input signabnd the filter outpuy.

_ f
“ = %wmpnng

= sin(C @)
2 0Q
1
H =
(9 E
b, = b, = 1 - cos(w)
2
_ 1 - cos(wy)
b= 2
a =1+a
a, = -2 [cos(wy)
a, =1-a

Equation 3. Low-Pass Filter Coefficients
Coefficients for a low-pass biquad filter.

22

Appendix B - Examples

-hio Diata-

Example 1. Oscillator in Simulation
The Oscillator module’s different waveforms genedafior 440hz.

+ -@ [Filker _testfiirfout

Cursar 1 1551.776 ns

Example 2. High-PassFilter in Simulation
The output of a high-pass filter with cutoff freaquey 4800hz acting on a 440hz square wave.

23

B vigital Filters Applet ¥1.2 = =l

File ‘iew
v Sound On
Shift Spectrum
Input = Square Wawe _V_i
Filter = Buttermwarth High-pass _j
Spectrur Sarmpling Rate = 44100 =]
Cutoff Frequency
J]

ALLLLEL T -

o Input Freguency

o »

IJava Applet Window

Example 3. High-PassFilter Reference

Paul Falstad’s Java applet displaying a 441hz sqware with a high-pass filter at 4806hz. Notedtinailarity of the
waveform to Example 2.

24

-Mo Data-

Cursol : R
Example 4. Low-PassFilter in Simulation
The output of a low-pass filter with a cutoff freqey of 4800hz on a 440hz square wave.

25

gital Filters Applet ¥1.2 -0 =i
File “iews

v Sound On
v SR
Shift Spectrum
| Input = Souare YWave ;‘
W Filter = Butterworth Low-pass |
Spectrum | Sarmpling Rate = 44100 |
Cutoff Frequency
4 4 i3
| ‘ \ ‘ Mumber of Poles
1 »
||||J|I‘|l|].|.i|i. J J
Input Freguency
| 57

I.Ja\-'a Applet Window

Example5. Low-PassFilter Reference

Paul Falstad’s Java applet generating low-passifij a 441hz square wave with cutoff frequency6#20 Note the
similarity to Example 4.

26

Appendix C - Code

Code 1. Python script for verifying the correctness of fitter test bed.

import re
import math

""" converts x, an unsigned decimal representation
a fixed-point binary number to a signed decimal
interpretting x as Qinteger.fraction for unsigned
or Q(integer-1).fraction for signed """
def fixed_point(x, integer, fraction, signed=True):

i=0
ans=0
i = integer
str = int2bin(x, integer+fraction)
for Kk in str:
i-=1
if (k=="1"):
if (signed and i == integer-1):
ans -= 2**(j)
else:
ans += 2**(i)
return ans

""" returns the binary of integer n, using count nu
def int2bin(n, count=16):
return "".join([str((n >>y) & 1) for y in range(c
""" check to see if two numbers are equal to within
tolerance value of one another. ™"
def approximatelyEqual(x, y, debug=True, tol=0.01):
b = abs(x-y) < tol

if (not b):
raise Exception("Values "+repr(x)+" and "+repr(y)
else:
if (debug):
print ":: ", x, "~=",y

f=open("output.dat")
lines = f.readlines()
data = [0 for i in range(0, len(lines)-2)]

tokenize the numbers
for i in range(0, len(lines)):
if (i >=2):

d = re.split("["a-zA-z0-9-]+", lines[i])

data[i-2] = []

forvind:

ifv!i=""and v !="x"
data[i-2].append(int(v))

w0 = 2*math.pi*4800.0/48000.0
¢ = math.cos(w0)

s = math.sin(wO0)

alpha =s/4
actual_b0=(1-c)/2

actual_bl = (1-c)

actual_b2 = actual_b0
actual_a0 =1 + alpha
actual_al = -2*c

actual_a2 =1 - alpha

a0 = 75133
al =-106228 #155916
a2 = 55939

of

mber of digits "™

2F

ount-1, -1, -1)])

+" do not match.")

b0 = 6211
bl =12422
b2 = 6211

print "a0:",
approximatelyEqual(actual_a0, fixed_point(a0, 2, 16
print "al:",
approximatelyEqual(actual_al, fixed_point(al, 2, 16
print "a2:",
approximatelyEqual(actual_a2, fixed_point(a2, 2, 16
print "b0:",
approximatelyEqual(actual_b0, fixed_point(b0, 2, 16
print "b1:",
approximatelyEqual(actual_b1, fixed_point(b1, 2, 16
print "b2:",
approximatelyEqual(actual_b2, fixed_point(b2, 2, 16

#in, x[0], x[1], x[2], y[O], y[1], y[2], accumulat
i=

x_actual =[0,0,0]

y_actual =[0,0,0]

actual_accumulator = 0

for d in data:

input = d[0]

x0 =d[1]

x1 =d[2]

x2 =d[3]

y0 =d[4]

yl=d[5]

y2 =d[6]
accumulator = d[7]

print "(",i,"):", ("input",input), ("x0",x0), ("x1
("y2",y2), ("accum”,accumulator)
print "accumulator:",

approximatelyEqual(b0*x0 + b1*x1 + b2*x2 - al*yl -
approximatelyEqual(actual_accumulator, fixed_point
approximatelyEqual(y_actual[0], fixed_point(y0, 16

i+=1

X_actual[2] = x_actual[1]
X_actual[1] = x_actual[0]
x_actual[0] = input

y_actual[2] = y_actual[1]
y_actual[1] = y_actual[0]

actual_accumulator = actual_bO*x_actual[0] + actua

actual_al*y actual[l] - actual_a2*y actual[2]
y_actual[0] = actual_accumulator / actual_a0

)
)
)
)
)
)

or

28

"x1), ("x2"x2), ("y0",y0), ("y1"y1),

a2*y2, accumulator)
(accumulator, 18, 18), tol=50)
, 2), tol=50)

|_bl1*x_actual[1] + actual_b2*x_actual[2] -

