FINGER ART

Sean Liu
Grace Li
October 31, 2008

PROPOSAL

I ntroduction

In our project, we will simulate the act of painting. The user will wear aapgove with
LEDs, which will enable a camera to track the motion and gestures of the user'Alsahe.
user “paints”, the system will calculate the location, velocity, and anghedfands, which
translate into variations in virtual brushes. Additionally, the system also inatgpgrainting
effects such as color mixing, paint splatter, and brush saturation. The gosinmitate a real
painting experience.

Our project is composed of two parts: the video interface and the paint canvasisyrnthe
video interface takes movements from the user’s hands and identifies the postiewidial
paintbrush, the velocity with which it is moving, and the orientation or angle of tHe baads.
These three pieces of information are then passed to the paint canvas syntiepainticanvas
synthesis system takes in the position, speed, and orientation data and selebtscalbrys
saturation, and surrounding splatter around the brush. These selections aredrats|pbeel
color assignments, which add to what the user has already painted.

Functionality

In order to understand the how the painting occurs; one must first understand how weénenodel t
paint, palette, and paintbrush. The paint is represented using three 5-bit binary numbers to
encode RGB color, and an additional 3-bit number to encode the saturation level. Thesscreen i
divided into two sections — the canvas and palette. If the system identifidsetiget’s brush is
over the palette section, then paint is absorbed onto the brush. If the user’s brush is over the
canvas section, then paint is deposited on the canvas. The palette contains ansetyof pri

colors, which the user can absorb at various saturations to mix and match paints. Rkaally, t
user’s hands represent a paintbrush, which will be the instrument for depositing trenfmint

the canvas and picking it up from the palette.

The paintbrush is represented as a line of blobs, and the line can have very diffentsitianrs.
Each blob has a core zone of high saturation surrounded by a zone of lower saturation, which
represents the spreading out of the paint. Where the paintbrush touches the canvas, the core
blobs of the brush deposit color on the canvas at the user hand location. When the paintbrush
moves, each place that is rests upon will have paint deposited in the area of thiediabs.

The makeup of the paintbrush from different kinds of blobs comes from the velocity of the

brush. The faster the paintbrush, the narrower and more randomized the blobs, and the slower
the brush, the finer and more well defined the blobs.

There will be a finite amount of paint on the paintbrush, and as the paintbrush is moved, paint is
deposited onto the canvas, and less paint remains on the paintbrush. This simulates the real
effect observed in painting, where long strokes gradually deposit reduced amaqaitg.oiVe
represent this effect by gradually decreasing the saturation of thedeplasited. Eventually,

when the paintbrush has deposited all of its paint on the canvas, there will no longer diatany p
on the paintbrush, and paint will no longer be deposited onto the canvas.

The palette will serve as the location where the user can pick up more paintwillhese
sections for the three primary colors, sections for both black and white so thatrtbaruseke
their chosen color both darker and lighter, and a section where the user can chlaro wif
from their paintbrush. How much of a certain color is picked up by the paintbrush and the
saturation of that color are directly proportional to the time that the paintbrustesoine color.

System Usage

In this section, we will describe the different user interactions that aribleosgh the system
and how the different user actions translate to painting. The user should be able to do the
following things:

» Determine the position and velocity of the paintbrush

» Determine the orientation of their paintbrush

* Touch their paintbrush to the canvas to start painting

 Lift their paintbrush from the canvas to stop painting

» Pick up different amounts of paint from different colors on the palette
* Mix colors

* Clean their paintbrush

The user will wear a glove which has two LEDs attached. One will be altaxhige index
finger and the other will be attached to the thumb. The midpoint of the two LEDs teilirdee
the center of the paintbrush. Using the movement of their hand, the user will be able to
determine the velocity of the paintbrush by changing the position of their hand.

Orientation of the paintbrush will be determined by the relative positions of theBias. The

line between the two LEDs on the user’s index finger and thumb is used as the orientaigon of
paintbrush. In order to touch the paintbrush to the canvas, the user will blink the LERrdice
the system will know to start painting. Then, when the user again blinks the LEDttveice
system will know that it should stop painting. To acquire paint on the brush, the user will
position their index finger over the patch of paint on the palette and move their firger i
circular motion. Then, to clean the paintbrush off, the user will move their index iimge
circular motion over the cleaning area of the palette.

M odule Definitions

Here we will discuss overviews of the modules in the system. Figuredableck diagram
identifying the modules in the system. Conceptually we can divide the systetwantain
parts. The first part consists of the Video Capture, Gesture recognizer,artcbinmodules.
The second part consists of the Painter, Saturation, Color Generator, and Displaasmdtel
Game Pixel Generator and Scorer are areas for potential expansion.

Display location o

’ game gesture
. expected
Game Pixel | cojor of Scorer User score
Generator
pX
ZBT 800x600 ZBT
frame|
4 A 4 3
Frame Frame 13 3
800x600 800x600
Y pixel |saturation Y L Yy
Camer. ; adar
i Video Gesture current Display
Capture Recognizer cqlor pjxel :
E [————— Monitor
X1,Y2| Xoly2 midpt | velocity :
: — — || — | ——
: — — —|—]— [——>
r 3 Core
| brush px .
' Brush 24 Painter
i 10 Generator
i enable f 3‘ color
5 - 1%
f l‘ ’ saturation
i add,
| Debouncer Intention subtract | Saturation Color Gen
Buttor — |

| s]

selected color

Figure 1: Modules of the Finger Paint system
Part 1: Video Capture, Gesture Recognition, and I ntention M odules
The purpose of the video capture, gesture recognition, and intention modules is to identify t
location, velocity, and orientation of the user’s hands, which are then passed to the seadnd pa
the system for brush and paint rendering. Here we discuss each module in turn.
Video Capture
The video capture takes a frame every 1/60 of a second from the camera.ilteitsetihé pixels,

removing any pixels from the frame that are less than a given threshold. d$tettrwill be
set in calibration when the device first powers on.

Gesture Recogni zer

The purpose of the gesture recognizer is to take in a filtered frameezhframn the video
camera and identify the location, velocity, and orientation of the brush.

Location is calculated by identifying the midpoint of the two LEDs. This is peddiby an
nonzero-x and nonzero-y averaging calculation, where:

Xavg = Sum(x)/(number of x)

Yavg = sum(y)/(number of y)

Velocity is actually a squared distance calculation. Here we remove thre sqat and division

by time in order to save performance. Essentially, we can think of the vekmigsented by

the total distance traveled in the last ten screen captures. The last temtsjdpwl a current

sum are stored every 1/60 seconds. For each new calculation, the new veloaitylasechby:
vel' = vel — squaredist(x[n-9],x[n-10]) + squaredist(x[n],x[n-1])

Orientation is represented by the location of the two LEDs. Averaging wRkébs min either side
of the overall average approximates the location of these two endpoints.

X1avg = sum(xleft of Xavg/(number of xleft of Xavg)

X2avg = sum(xright of xayg/(number of xright of Xayg

YAavg = sum(yabove yyg/(number of yabove g

YBavg = sum(ybelow yg/(number of ybelow g

The endpoint combination of x and y is determined by whether or not a white pixslagxist
location: (Xhvg YAavg) OF (XZavg YBavg)-

Intention

The idea of the intention is to identify if the user is over the color palette orheveanvas, and
whether the user is attempting to pick up paint or deposit paint. While the end goal is to
recognize a circular motion of absorbing paints, and flashing LEDs to toggle bhgiaie&éng
and moving, for now we will simply use a button which toggles whether or not the user is
moving the brush or actually painting/absorbing paint.

Part 2: Painter, Saturation, Color Generator, and Display Modules
Brush Generator

The brush generator takes as inputs the endpoints of the brushes and the velocityushthe br
The velocity of the brush is used to select between two different brushes — onehoisvehic
splatter brush (for high velocities), and the other is a fine brush (for low vetycitfehe
squared distance traveled is greater than some threshold T, then the spisiites belected,
else the fine brush. Each brush is defined by it's “core” pixels. These colegriegpassed to
the painter, which will then have color bleeding effects from these “coxefspi Note that each
brush is anchored by its endpoints (noted as crosses in the figures below).

The fine brush will look something as follows:

S | [| | L | &2

The splatter brush will actually be a pseudo-random alternation between theénfgilow

st SRS

Each brush is stored as a bitmap collection of pixels in memory, and is angled apglsofibe
anchored by the endpoints.

Painter

The painter module takes the core pixels for the brush. These core pixels get thedcolor a
saturation passed as inputs to the module. Pixels surrounding the core pixelsravalgies
with saturation that decreases with distance from the core pixels.

This color is then alpha blended with the current pixel on the screen.
ZBT

Overall we store two different frames:
» Frame for video capture: 800x600x18 bits (18 bits color; 800x600 resolution)
» Frame for painting: 800x600x18 bits (15 bits color; 3 bits saturation; 800x600 resolution)

The ZBT memory provided in the system is more than enough.
Saturation

The saturation module takes as input a one-bit signal that determines whethertt®sat
module should add or subtract from its current saturation. Saturation is stored asan3beit.
The saturation module should subtract if the user is painting over the canvas. Tdtesatur
should add if the user is picking up color from the color palette.

Color Generator

The color generator module takes input three bits from the saturation module jsuaov

saturated the brush is with the color it currently holds, which we will denote betall @&s w

fifteen bits from the intention detector, which represents the color that this gserently trying

to pick up. The color generator looks at the saturation of the previous color and then the color
that the user is trying to pick up to make the new, resulting color. The color tha¢the us
picking up from the palette is fully saturated, and we make a weighted averhgeotaf tolor

and the color picked up from the palette using as weights beta, and 8 — beta, regpddiwel
color generator module then passes the color to the painter module.

Display

The display module interfaces with the ZBT which stores the painting, aneiites@s input
from the gesture recognizer module the x and y positions of the LEDs. Giveh x2, and y2,
the display module will form crosshairs to enable the user to see whereDRhes.LE
Additionally, the display module will interface with the ZBT to get the pagnout, and then it
will aggregate the crosshairs and the painting to send to the monitor.

Expansion: Game Logic

If there is time, we will add in functionality for a game. The game wouldaligpk outline of a
shape on the screen, as well as the required color, and the player would be requsiect tate
the color and then draw the shape over the provided outline. The game functionabity will
implemented by two modules, the Game Pixel Generator and the Scorer.

Game Pixel Generator

The game pixel generator module will probably just create circles oresgs@mewhere on the
screen. If more complicated shapes were to be implemented, we’d probably pesfabricate
them and store then in a ZBT. All the game pixel generator does is decide ghonzad a
shape, which it will pass to both the display and the Scorer module.

Scorer

The scorer module will take the desired shape and the color from the Game PeltGe
module as well as the frame that the player produced from the ZBT. ltenaltatover the frame
passed in by the Game Pixel Generator while looking at the frame producedyére pla
comparing the two. It will look at all the pixels where the user was supposed to haee jpai
certain color to make sure that it is indeed that color, while keeping track otahaumber of
target pixels. Then, when the scorer module has looked at the entire frame, inBhsaofe,
which it will send to the display module to display back to the player.

