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Abstract  

Project Name : Ray-Cast Three-Dimensional Pong 
Project Team Members : Elizabeth Power!, Richard Hughes 
 
In this project we created a 3-D variant of the pong project from lab 5 with ray-traced 
graphics. The game will have three dimensions of movement for the spherical puck and 
two dimensions of movement for the square paddle, and it will keep track of your score 
(i.e., how many consecutive bounces you’ve managed) on-screen with hardware ‘sprite’ 
characters. The puck will bounce off the paddle at different angles depending on the 
relative position of the puck to the paddle. The ray-tracing will include shadows, 
checkerboard walls, and 8-bit color, with 3 bit red and green and 2 bit blue. 
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Overview   
 

Ray-tracing is a graphics rendering algorithm that logically renders a three-dimensional 
scene pixel-by-pixel.  Each pixel corresponds to a single ray projected from a particular 
‘view point’; the rays are projected as if to intersect with the ‘pixels’ on an imaginary 
‘screen’ defined in the 3Dwhat? . Geometrical analysis is performed to determine what 
objects in the simulated 3D space each ray intersects and we perceive the closest 
intersection. We then perform geometric analysis to determine how much light each 
light-source casts on to that intersection surface by casting rays from the intersection to 
the light and determining the angle of incidence, how distant and bright the light is, and 
whether the light is shadowed. We sum this light, determine how much of it is being sent 
towards the screen, and that is the color of the pixel. We then repeat that for every pixel. 
 
In Figure 0, below, the ‘center of projection’ represents the ‘view point’ and the surface 
of the picture plane represents the screen. This illustrates how one might determine 
what point on the screen corresponds to a given point in 3-dimensional space. 
  

 
Figure 0: Ray-Casting* 

 
Technically, this process is called ‘ray-casting’, meaning that it is not iterative — ray-
tracing is, technically, an iterative form of this process that uses rays cast off from the 
point of intersection to accurately model such effects as reflection, transparency, 
refraction, or shadows that blur with distance. We will not be attempting to model such 
effects as reflection or refraction and so recasting is sufficient for our needs. As a result, 
the mathematics required to calculate the intersection of a raw with any given geometry 
are bounded, and thus we can run each intersection-calculation in parallel without 
worrying about one taking a far longer time than another. 
 
Using this graphics system we are able to three dimensionally represent the physics of 
our Pong game.  Within the game, we will use all of the basic rules of traditional Pong, 
with a twist.  Traditional Pong is a two dimensional simulation of table tennis, where the 
players hit a ball back and forth with paddles and are allowed to bounce the ball off the 
walls.  Our Pong will use a “puck,” as opposed to a ball, that will bounce off the walls in 

* Image courtesy "The Arrow in the Eye" by Michael Kubovy, Christopher Tyler and WebExhibits. 
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the scene at the same angle which it hits the wall.  There is also a paddle that will be 
used to keep the puck within the scene and collect points, just as in traditional Pong. 
Our scene will include five planes and a sphere, as illustrated in Figure 1 below.  Four of 
the planes — left side, right side, top, & bottom — will be sloped so that they are smaller 
at the back of the space and therefore appear farther away.  The fifth plane will contain 
the controllable, square paddle and be at the back of the space.  These five plans will 
be superimposed behind the sphere.  In order to calculate where, and if, a ray intersects 
with the sphere, we need to calculate a square root of a fixed-point real number and 
perform division. 
 

 
Figure 1: Python Generated Scene 

 
The goal of the traditional game is to earn more points than the opponent, which are 
earned when one fails to return the ball to the other.  The main difference between our 
three dimensional version and the traditional two dimensional version, other than the 
extra dimensional, is that our game is a one player version.  Because of this, we have 
changed the goals and scoring of our players: the goal is to reach 63 points, which are 
earned by catching the ball with the puck. 
 

Description — Backend  Elizabeth Power! 
 

We have been referring to the backend of our system the “Physics” section because 
that is where all of the actual physical interactions take place.  Our backend follows 
most of the laws of physics — we chose to ignore certain forces like gravity and friction 
— in order to help the game appear as realistic as possible. 
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Figure 2: Pong Backend — Physics 
 
As illustrated in Figure 2, above, the back end will use the inputs left, right, up, and 
down as well as loading the same Reset into each module.  It also takes the clock 
signal and loads that into the Ready Module for the 30Hz system clock.  The system will 
output the 9-bit X/Y/Z coordinates of the puck and paddle (Puckx, Pucky, Puckz, Paddlex, 
& Paddley), and the 8-bit score array, as well as single bit win, lose and ready signals.  
In order to simplify testability, I have also divided up the backend in to the five self-
contained modules in Figure 3 (below): Ready, Puck, Paddle, Game, and Score.   
 

 
Figure 3: Physics Block Diagram 
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Ready Module 
 

In order to control the game at a playable speed, the Physics Division created a “Ready” 
signal for the system to use.  This ready signal also helps to reduce synchronization 
issues between the Physics & Graphic Divisions.  The Ready Module works as a simple 
counter to convert the 27MHz clock into a 30Hz pulse signal.   We will use the simple 
counting logic pictured in Figure 4 below: every .33 of a second (Count = 2 166 667), 
the signal will output a high enable for one clock cycle, otherwise it will output a low and 
add one to the count each 27MHz clock cycle.  

 

  
Figure 4: Ready Module Counting Diagram 

 
As illustrated in image A of Figure 5 below, we temporarily increased the ready 
frequency in order to simplify testing the ready module.  Examine Appendix A for the 
Ready Module Verilog code and test bench.  Image A shows that the module 
increments at each positive clock edge properly and that each time Ready is enabled it 
is only high for one clock cycle.  Image B of Figure 5 below shows the same 
functionality, zoomed out such that the repeating ready signal is visible. 

 

 
A. Counting to 21 

 

 
B. Repeating Ready Signal 

 

Figure 5: Ready Test Bench Results 
 
Puck Module 
 

The only duty of the Puck Module is to go at a designated speed and, when the player 
loses, stop moving.  As illustrated in Figure 6 on the next page, this module takes the 
prerequisite Reset and Ready signals, as well as the desired 5-bit x, y, and z velocities 
(Vx, Vy, & Vz).  The Puck Module will output the three 9-bit x, y, and z coordinates (Puckx, 
Pucky, & Puckz) for the puck’s location at any given clock cycle. 
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Figure 6: Puck Module Block Diagram 

 
The function of the Puck Module is to keep track of the three-dimensional location of the 
puck as it travels around the scene with the variable velocities Vx, Vy, & Vz.  Each axis of 
movement is controlled individually: at each ready cycle the Puckx will change by |Vx| in 
the current direction (positive or negative).  When the Puck “hits a wall” it will “bounce 
off” at the same angle.  This can be accomplished by simply inverting the direction of 
movement for that axis — when the Puckx (moving at +Vx) reaches 300 (wall is at 320 & 
RPuck = 20), it will switch to moving at -Vx — irregardless of the y-axis and z-axis 
movement.  Refer to Appendix B for the Verilog implementation of this module. 
 
Testing for the Puck Module was fairly simple — refer to Appendix B for the Test Bench 
code.  The first step was to test the puck’s movement along each of the axes as, Image 
A of Figure 7 below shows selected segments of movement along the x-axis.  As you 
can see, Puckx changes by |Vx| in one direction until it reaches the coordinate of that 
axis’ wall (in this case 300) — after that point, Puckx will change by |Vx| in the other 
direction.  Image A shows the puck easily moving though the 0 coordinate and bouncing 
off of both the positive and negative walls (ie right and left).  After verifying that each 
axis works properly, Image B of Figure 7 shows that each axis functions independently 
of and at the same time as each other. 
 

 

 
A. Movement on X-Axis 

 

 
B. Movement on Three Axes 

 

Figure 7: Puck Test Bench Results 
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As stated previously, the puck will stop moving whenever the paddle misses the puck — 
indicating that the game is over and the player has lost.  This functionality is not 
implemented within the Puck Module, but within the Game Module (discussed on page 
FOO).  The Game Module will change Vx, Vy, & Vz to be 0, therefore keeping Puckx, 
Pucky, and Puckz from changing and preventing the puck from moving. 
 
Paddle Module   
 

The only duty of the Paddle Module is to follow the input directions.  As illustrated in 
Figure 8 below, this module takes the prerequisite Reset and Ready signals, in the 
internal miss signal, as well as the game control inputs (Up, Down, Left and Right).  The 
Paddle Module will output the two 9-bit x and y coordinates (Paddlex & Paddley) for the 
paddle’s location on the back wall of the space at any given ready cycle. 
 

 
 
 

Figure 8: Paddle Module Block Diagram 
 
The function of the Paddle Module is to move the paddle as directed by the player.  The 
paddle will move in whatever direction the player directs until it reaches the edge of the 
space, at witch point it will stay there.  The working functionality of this up, right, down, 
and left movement to the edge of the space is illustrated Images A though D in the test 
bench results on the next page (Figure 9).  In addition to the ability to control the paddle 
in one direction at a time, some may find it useful to move diagonally (ie. In 2 directions 
at once).  This ability is illustrated in Image E of Figure 9 (on the next page)— you can 
see Paddlex and Paddley changing independently of each other and as instructed by the 
inputs.  Also refer to Appendix C for the Verilog code and test bench for this module.  
 
Just as with the puck, one of the indications that the player has lost is that the Paddle 
will stop moving whenever it misses the puck.  However unlike the puck, the paddle 
takes the Miss input from the Game Module (discussed on page FOO ) and disallows 
movement when the signal is high.  Refer to Figure 9, Image E for the test bench 
visualization of this “Miss” functionality and to Appendix C for the desired output from 
the test bench for the Paddle.  
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A. Up 

 

 
B. Right 

 

 
C. Down 

 

 
D. Left 

 

 
E. Together & Miss 

 

Figure 9: Paddle Test Bench Results 
 
Game Module 
 

The Game Module is where all of the work and logic for the game happens.  As shown 
in Figure 10 on the next page, this module takes the inputs Reset, Ready, and the 9-bit 
x/y/z coordinates of the puck and paddle (Puckx, Pucky, Puckz, Paddlex, & Paddley).  
The Game Module will then use its internal logic to output the three 5-bit x, y, and z 
velocities (Vx, Vy, & Vz) and single bit Catch and Miss signals. 
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Figure 10: Game Module Block Diagram 

 
Within the function of a normal Pong game, all of the logic is used when the puck is at 
the same edge as the paddle — our implementation is no different.  The first thing that 
the module looks for is that the puck is at the paddle (ie Puckz ≤ 20 = Radius of Puck) 
and if the puck is not at the paddle it will change nothing.  If the puck is at the paddle, 
the internal logic will determine if it counts as a “catch” or a “miss” — enabling the 
appropriate signal and changing the velocities accordingly.  Refer to Figure 11 (on the 
next page) for graphical representation of the Game Module Test Bench and Appendix 
D for the Verilog implementation of this module and test bench.  
 
If the paddle misses the puck, the module will permanently enable “Miss” and set the x, 
y, & z velocities (Vx, Vy, & Vz) to zero until Reset is enabled.  Referring to the test bench 
results in Image A of Figure 11 on the next page, you can verify that the module uses 
the following logic: 
 

  (puck_x <= (paddle_x - 50)) 
| (puck_x >= (paddle_x + 50)) 
| (puck_y <= (paddle_y - 50)) 
| (puck_y >= (paddle_y + 50)) 

 
 

If the center of the puck does not fall within the area of the paddle, it counts as a miss 
and Miss becomes high.  The right side of Image A also shows that if the game allowed 
the puck or paddle to move after Miss becomes enabled, nothing will change — Miss 
will stay high and the velocities will remain zero.**   
 

** Note that if all of the modules are functioning normally, this is a situation that cannot happen 
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A. Miss 

 

 
B. Catch 

 

 
C. Velocity Changing 

 

Figure 11: Game Test Bench Results 
 
If the paddle catches the puck, the module will enable a simple pulse on the Catch 
output.  Looking at Image B of Figure 11 above, you can see that the output Catch is 
high for one ready cycle at each instant of the paddle catching the puck (clock cycles 4 
and 9).   The Game Module will also increase the z velocity (Vz) by one at each catch — 
again refer to Image B clock cycles 4 and 9 in Figure 11.   
 
A catch also enables a change the x & y velocities (Vx & Vy), based on where on the 
Paddle the Puck hits.  The Game Module looks at the difference between the center of 
the puck and center of the paddle and changes the velocity using the following formula: 
 

((puck_y - paddle_y) / 2)  
 
Image C of Figure 11 above, shows these changes in velocity as simulated in the test 
bench at clock cycles 3, 7, and 10.  Also note that Vz changes as described above. 
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Score Module 
 

The Score Module keeps track of the status of the game.  As illustrated in Figure 12, 
below, the score module takes the inputs: Reset, Ready, Miss, and Catch.  It then 
outputs an 8-bit Score and two 1-bit signals: Win and Lose.  Each time the paddle 
“catches” the puck it increments and outputs the score, when the score reaches 63 
catches the player has won the game and the Win signal is enabled.  If at any point in 
time the player misses the puck, the module will enable the Lose signal.  See Appendix 
E for the Verilog implementation of the Score Module. 
 

 
 

Figure 12: Score Module Block Diagram 
 
As expected from running the Score Module Test Bench (full code in Appendix E), 
Image B in Figure 13 (below) shows that the Score Module increments at every positive 
clock edge that Catch is enabled.  Image B also shows that whenever there is a miss, 
the Lose signal is enabled and the score is frozen.  After 63 catches without a miss, the 
player has ‘won’ and the Win signal is enabled — see Image A of Figure 13 below. 
 
 

 
A. Win 

 
B. Catch 5 & Miss 

 

 
C. Stay Winning or Losing 

 

Figure 13: Game Test Bench Results 
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Image C of Figure 13, on the previous page, illustrates that once win or lose have been 
asserted they cannot be changed until Reset is enabled.  Although this is another 
instance of something that will not occur if the game is functioning normally, it is an 
important feature to keep things working — just in case something else isn’t. 

 
Description — Graphics  Richard Hughes 

 

The graphics circuitry produced for this project uses a rendering pipe-line to produce 
640x480 VGA graphics at 30 frames per second. As in Lab 5, the graphics pipeline 
takes the the hcount, vcount, hsync, vsync, and blank signals from the VGA module as 
input and provides a red-green-blue signal plus delayed phsync, pvsync, and pblank 
signals as output. However, where Lab 5 had a latency of two to four clock cycles, 
depending on the design, the pipelined ray-caster has a latency of over a hundred. 
 
In order to allow the ray-casting modules to be pipelined, it was necessary for them to 
efficiently pass data from one to another. Each module takes in the direction of an 
incoming ray, and the distance and color of the last known intersection with the ray, and 
puts out the direction of the ray and the distance and color of the last known intersection 
with the ray. If the ray does not intersect the geometry, or intersects with the ray farther 
from the origin than a previous intersection, it outputs the same intersection and color 
that was input. 
 
Rather than include the entire 24-bit color of the intersection, which would require 24 
bits of register storage at each of the 100+ stages of the rendering pipeline and 
additional logic in each geometry-intersection module to calculate the color, I passed 
along two bits of data to select from a 'color palette' of three possible color functions. 
Using this color palette, the ray direction, and the ray distance, the 'Color Manager' 
module calculates the coordinates of the intersection, and then uses those coordinates 
as input for one of three color functions chosen by the color bits. This saves at least 
3,168 bits of registers. 
 
The diagram (Figure 14) on the next page summarizes the flow of data through the 
pipeline. The ray generator takes the hcount and vcount data and provides the 
rendering modules with a ray and initial intersection data that implies a non-intersection. 
The puck, wall, ceiling, floor, and paddle modules all process the ray and intersection 
data in turn, keeping them synchronized and overwriting the intersection data as 
appropriate as they go. The final step, the color manager, turns the ray data and 
intersection data in to a color to be written to a pixel on-screen. A pipeline delays the 
VGA synchronization signals to keep them in alignment with the rays and compensate 
for the latency of the rendering pipeline. 
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Figure 14: Overall Structure of the Pipelined Ray-Caster 

 
RAY-TRACING AND RAY-CASTING 
 

In order to understand how my code works, it's necessary to understand how ray-tracing 
and ray-casting work. Through geometry and algebra, it's possible to calculate whether 
a ray (defined as a point in space, plus a vector defining the direction the ray projects 
from that point) intersects a mathematically describable shape such as a sphere or 
plane, and where it intersects. In order to calculate the intersection of a ray and a shape, 
it must be possible to calculate if any given point is part of that shape. For example, the 
points of a sphere can be defined by the function "(X - Xc)^2 + (X - Xc)^2 + (X - Xc)^2 = 
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Radius^2" - i.e., that a given point is exactly calculable as either in the sphere or not. 
Further more, it must be possible to solve that function for t after you replace X, Y, and 
Z with "Xo + Xd * t", "Xo + Xd * t", and "Xo + Xd * t", respectively. The real-number 
solutions for t in that equation are the values of t for which that ray defined by the origin 
point Xo,Yo,Zo and the direction vector Xd,Yd,Zd intersects the object. 
 
In ray tracing, you then create additional rays from the point of intersection. You send 
one to each light source, to check if it's shadowed or illuminating the point of 
intersection. If the object is translucent, one through the object at the angle defined by 
the refractive indices of the object and the air. If the object is reflective, you send one 
ray out at the reflected angle to see what color it strikes. The color contributes from 
these sources are then summed together according to their respective values (highly 
reflective objects add more from their reflection and less from their light source) and 
added to a baseline color representing the ambient light. Under this model, the number 
of rays needed to calculate the color for any given ray is unbounded, unless artificial 
cut-offs are imposed; a pair of mirrors facing each other can reflect indefinitely, creating 
an arbitrary amount of secondary rays. 
 
Ray-casting can be interpreted as a special case of ray-tracing, where no objects are 
translucent or reflective, there are no light sources, and you use only ambient light. In 
other words, you never send out any rays from the initial point of intersection. As a 
result, the number of rays needed for any pixel is constant: one. 
 
To keep the VGA signals coordinated with the pipeline, the hsync, vsync, and blank 
signals are passed through a relay of registers with the same throughput and 
(approximately) the same latency as the rendering pipeline, so that the coordinates of 
the pixels on the screen correspond to the hcount and vcount values passed to the 
rendering pipeline. 
 
RAY-GENERATOR MODULE 
 
To create the initial rays, and ensure each one corresponds to a pixel in a meaningful 
way, the rays all have the same origin and each one passes through a point on a flat 
rectangle in space analogous to the computer screen. Similar techniques were used in 
early artistic studies of perspective; see figure 0. 
 
The data that a pipeline rendering module needs to take in - and thus the data that the 
ray generator needs to put out - are the Xd, Yd, and Zd directions of the ray, as well as 
the color and t-value (distance from origin) of the closest intersection so far. In order for 
us to generate this information, the ray generator module takes in the hcount and 
vcount values. 
 
In some algorithms, the rays are 'normalized', their direction vectors set to a length of 
one with their proportions (and direction) preserved. Our algorithm does not do this, and 
instead uses ray vectors with integer components for Xd, Yd, and Zd. Because the 
origin point is at a fixed distance from the screen, and the screen is exactly 
perpendicular to the Z axis of our euclidean geometry, the Zd value is fixed. To take 
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advantage of this, I hard-wired the Zd value in to all of my modules. The ray-generator 
module thus only needs to output the Xd and Yd values. 
 
The ray generator module produces valid output as long as hcount and vcount are less 
than 640 and 480, respectively. Otherwise, it may produce garbage data. However, 
hcount and vcount are less than 640 and 480 for all pixels visible onscreen, so this is 
not an issue. 
 
RAY FORMAT 
 

Each ray is represented by an Xd and a Yd (both 10-bit 2's complement numbers). The 
previous intersection is represented by the t-value (a 14 bit integer, of which the most 
significant bit represents 21 and the least significant bit represents 2-12) and the color 
value (a 2-bit integer where 0: no intersection, 1: Wall, Ceiling, or Floor, 2: Puck, and 3: 
the Paddle.) The t-value, which can be anywhere from 0 to 3 + 4095/4096, spans a 
range long enough to reach anywhere in the module 
 

 
Figure 15: Ray Generator Figure 
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SPHERE-INTERSECTOR MODULE 
 

The equation used to define a sphere is: 
 

(X - X c)
2 + (Y - Y c)

2 + (Z - Z c)
2 = Radius 2 

 
Where X, Y, and Z are any given point, Xc, Yc, and Zc are the center of the sphere, and 
Radius is the radius of the sphere. When we substitute X0 + Xd * t, etc, for X, Y, and Z, 
this becomes: 
 
(X 0 + X d * t - X c)

2
 + (Y 0 + Y d * t - Y c)

2
 + (Z 0 + Z d * t - Z c)

2
 = Radius 2 

 
We can isolate t2, t, and 1 in this equation with 0 on the right side to get an equation we 
can solve by the quadratic equation: 
 

A*t 2 + B*t + C = 0 
A = X d

2 + Y d

2 + Z d

2 
B = 2 * (X d * (X 0 - X c) + Y d * (Y 0 - Y c) + Z d * (Z 0 - Z c)) 

C = (X 0 - X c)
2 + (Y 0 - Y c)

2 + (Z 0 - Z c)
2 - S r

2 
 

t = (-B +/- (B 2 - 4*A*C) 1/2 ) / 2A 
 
The module has the radius of the sphere hard-wired in, but it must receive the sphere's 
center as input. The sphere's center is defined by an X, Y, and Z value which are 10, 10, 
and 11 bit 2's complement signed integers, respectively. 
 
Normally, we would need to use a square root module in order to calculate (B2 - 
4*A*C)1/2. However, we cheat; we know that the sphere is always in front, so we don't 
bother to calculate anything except whether or not (B2 - 4*A*C) is negative. If it is 
negative, there is no real solution and so there is no intersection. In this instance, the 
module outputs whatever color and t value it was originally provided. If it is not negative, 
there is a solution, and thus there is an intersection, and it's always the first intersection. 
In this instance, the module outputs color = 2 and t = 4095. The lowest possible t value 
that can be created by the other geometry in the scene is 4096, so the sphere is always 
in front. The module always outputs the same Xd and Yd it received at the same time it 
outputs the corresponding color and t values. 
 
BUGS — ie. IT DOESN'T WORK 
 

Unfortunately, the sphere intersector module does not function properly. While the 
output for a successful or unsuccessful intersection is correct, intersections do not occur 
as they should. The cross section on the screen is not circular, but warps in appearance 
like a hyperbolic shape. Whatever quadratic equation the module solves, it isn't a 
sphere. 
 
Investigation and testing showed that the module works effectively in simulation, but 
fails in implementation. The most obvious possibility is that there is a timing problem, as 
the simulation does not reveal those. Some possible avenues of solution are replacing 
the behavior-description verilog multiplier with a pipelined multiplier module, but this 
may or may not function. Alternatively, the module is small enough that it would be 
practical to scrap it and start over completely, ideally to avoid whatever minor error led 
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to the flawed behavior in the second attempt. Ultimately, the failure of this module is a 
mystery to me. 
 
The diagram below illustrates the pipelining for the sphere intersector. 
 

 
Figure 16: Sphere Intersector Diagram 
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PLANE-INTERSECTOR MODULE 
 

The equation used to define a plane is: 
 

A x + B y + C z + D = 0 
 
Where (A,B,C) is a vector defining the normal of the plane, and D is how close the plane 
comes to the origin (positive values indicating the normal of the plane points towards 
the origin, negative values indicating the plane points away.) If we substitute the ray 
equations for X, Y, and Z and solve for t, we get: 

 
A(X 0 + X d * t) + B(Y 0 + Y d * t) + (Z 0 + Z d * t) + D = 0 

t = - (A * X 0 + B * Y 0 + C * Z 0 + D) / (A * X d + B * Y d + C * Z d) 
 
Unlike in the sphere, the plane is in a constant position, so A, B, C, and D are all 
hardwired. This makes it easy to calculate the value of (A * Xd + B * Yd + C * Zd). (A * X0 
+ B * Y0 + C * Z0 + D) is constant, because the plane and the origin do not move. - 
indeed, since the origin has X0 = 0 and Y0 = 0, we can simplify it to (C * Z0 + D) and 
save time. However, dividing (A * X0 + B * Y0 + C * Z0 + D) by (A * Xd + B * Yd + C * Zd) 
takes 25 clock cycles with a pipelined divider. Calculating the t value thus takes 27 clock 
cycles. 
 
BUGS — GOING RIGHT ROUND 
 

When I first tested the plane intersector module, the back paddle didn't seem to be 
working properly. I could see the other four planes extending off in to infinity as parallel 
lines, and I couldn't fathom why. Later, I realized that the reason for the problem was 
due to the limited number of bits in the t value - any t equal to or greater than 2^14 
came out modulo 2^14, because t only had 14 bits. As a result, extremely distant 
objects such as the planes extending in to the distance came out with lower t values 
than much closer objects, and so they were errantly drawn in front. 
 
Because the four planes extended infinitely to the horizon under my geometry model, no 
number of bits in t would fix this problem. Additionally, every bit of storage in t would 
need to be duplicated at every point in the pipeline, which could become expensive 
quickly. I solved the problem with the cheap hack of defining a 'rendering box' for each 
plane, maximum and minimum xd and yd values that could intercept them. All rays that 
fell outside that boundary automatically missed. I set the bounding boxes to block off the 
areas of the screen where the t values began to wrap around, and the problem no 
longer appeared. 
 
Another bug I experienced while developing and testing the plane intersector module 
was not in the code, but in the FPGA. When the FPGA was reprogrammed without 
being power cycled first (i.e., turn it off and turn it on again), graphical glitches would 
appear in the screen. Programming in to a 'fresh' FPGA eliminates these flaws. 
 
The diagram on the next page illustrates the pipelining for the plane intersector. 
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Figure 17: Plane Intersector Diagram 

 
COLOR MANAGER 
 

The color manager takes the intersection information (direction, t, and palette code) and 
the paddle and puck coordinates. In the first phase, it uses the direction and t to 
calculate the position of the intersection in XYZ coordinates. In the second phase, it 
removes the 12 least significant bits of the results, which represent fractional value. In 
the third phase, it takes the palette code and chooses one of four color functions: 

• A checkerboard for the walls, 
• A white square for the paddle, 
• A flat pink for the puck, 
• A bright yellow for a 'miss'. 

 
The output is an RGB value appropriate for the pixel passed in. 
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The diagram blow illustrates the pipelining of the color manager module. 

 
Figure 18: Color Managing Diagram 

 
 

Conclusion  
 

The design presented here is a product of many compromises between our 
limitations and our accomplishments. Among the features completed here are 
functioning physics (or backend) modules, a full ModelSim testing suite for the backend, 
real time pipelined ray-casting with texture-palette color management, and a functioning 
ray-plane intersection module. Unfortunately, the sphere rendering module is not 
functional. Further iterations to the design could repair and improve the sphere 
intersector module to allow for a functional sphere intersection, and later, a sphere 
intersector that provides not only a boolean "intersected / did not intersect" test but 
provides the exact point of intersection. By repairing the sphere intersector and 
synchronizing the coordinate input more carefully, it should be possible to quickly 
improve the game to a playable level. 
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Appendix A: Ready Module & Test Bench  
 
//   READY MODULE 
// Turn the 65MHz Clock into a 30Hz Signal 
 
module ready_module  
  (input clock, reset, 
      output reg ready, 
   output reg [18:0] counter); 
 
always @(posedge clock) 
   if (reset) 
    begin 
      counter <= 0; 
      ready <= 0; 
    end 
   else 
    begin 
      if (counter == 2166667) 
//    if (counter == 21)          // for testing pu rposes 
        begin 
     counter <= 0; 
     ready <= 1; 
        end 
      else if (counter == 0) 
        begin 
     ready <= 0; 
          counter <= counter + 1; 
        end 
      else 
        counter <= counter + 1; 
    end   // else 
 
endmodule 
 
 
//   READY MODULE TEST BENCH 
// for testing the ready module 
 
`timescale 1 ns / 1 ps 
 
module ready_tb (); 
 
reg clock, reset; 
wire ready; 
wire [18:0] counter; 
 
initial begin 
  clock = 0; 
  forever #5 clock = ~clock;  // goes high every #1 0 
end 
 
initial begin 
  reset = 1; 
  #33; 
  reset = 0; 
  #5000 
  reset = 1; 
  #30; 
  reset = 0; 
  #50 
  $stop(); 
  end  
 
ready_module readysignal(.clock(clock),.reset(reset ), 
              .ready(ready),.counter(counter)); 
endmodule 
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Appendix B: Puck Module & Test Bench 
 
//    PUCK MODULE 
// the puck moves around the screen based on x, y, & z input velocities.  It  
// "bounces" off of "walls" when it reaches the edg e of our space. 
 
module puck_module ( 
   input clock,    // 24MHz clock 
   input reset,    // 1 to initialize module 
   input signed [5:0]  V_x,    // puck horizontal s peed in pixels/tick  
   input signed [5:0]  V_y,    // puck vertical spe ed in pixels/tick  
   input        [5:0]  V_z,    // puck depth speed in pixels/tick  
   
   output reg signed [9:0] puck_x,    // puck's hor izontal position 
   output reg signed [9:0] puck_y,    // puck's ver tical position   
   output reg signed [9:0] puck_z     // puck's dep th position      
   ); 
 
reg xMovement; 
reg yMovement; 
reg zMovement; 
 
always @(posedge clock) 
 begin 
 
if (reset) 
 begin 
 puck_x <= 0; 
 puck_y <= 0; 
 puck_z <= 320; 
 xMovement <= 1;    // moving right 
 yMovement <= 1;    // moving down 
 zMovement <= 1;    // moving forward  
 end //reset 
 
else 
 begin //Go Go Puck 
 
 if (xMovement)    // horizontal movement 
  begin 
  if (puck_x >= 300) 
   xMovement <= 0; 
  else 
   puck_x <= puck_x + V_x; 
  end  // xMovement 
 else  // !xMovement 
  begin 
  if (puck_x <= - 300) 
   xMovement <= 1; 
  else 
   puck_x <= puck_x - V_x; 
  end // !xMovement 
 
 if (yMovement)    // vertical movement 
  begin 
  if (puck_y >= 220) 
   yMovement <= 0; 
  else 
   puck_y <= puck_y + V_y; 
  end  // yMovement 
 else  // !yMovement 
  begin 
  if (puck_y <= - 220) 
   yMovement <= 1; 
  else 
   puck_y <= puck_y - V_y; 
  end // !yMovement 
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 if (zMovement)    // depth movement 
  begin 
  if (puck_z >= 620) 
   zMovement <= 0; 
  else 
   puck_z <= puck_z + V_z; 
  end  // zMovement 
 else  // !zMovement 
  begin 
  if (puck_z <= 20) 
   zMovement <= 1; 
  else 
   puck_z <= puck_z - V_z; 
  end // !zMovement 
 
 end //Go Go Puck 
 
end //aways block    
endmodule 
 
 
//  PUCK TEST MODULE ** test module is for a larger scene 
// for testing the puck module 
 
`timescale 1 ns / 1 ps 
 
module puck_tb (); 
 
reg clock, reset; 
reg signed [5:0] V_x; 
reg signed [5:0] V_y; 
reg        [5:0] V_z; 
wire signed [10:0] puck_x; 
wire signed [10:0] puck_y; 
wire signed [10:0] puck_z; 
 
initial begin 
  clock = 0; 
  forever #5 clock = ~clock;  // goes high every #1 0 
end 
 
initial begin 
  reset = 1; 
  #33;   // puck_x=0, puck_y=0, puck_z=500 
  reset = 0; 
  V_x = 0; 
  V_y = 0; 
  V_z = 0; 
  #300   // puck_x=0, puck_y=0, puck_z=500  
//------------------------------------------------- ------------reset------------- 
  reset = 1; 
  #30;   // puck_x=0, puck_y=0, puck_z=500  
  reset = 0; 
  V_x = 5; 
  V_y = 0; 
  V_z = 0; 
  #5000  // puck_x="count" by 2 +/- 472, puck_y=0, puck_z=500 
//------------------------------------------------- ------------reset------------- 
  reset = 1; 
  #30;   // puck_x=0, puck_y=0, puck_z=500  
  reset = 0; 
  V_x = 0; 
  V_y = 5; 
  V_z = 0; 
  #3000  // puck_x=0, puck_y="count" by 2 +/- 344, puck_z=500 
//------------------------------------------------- ------------reset------------- 
  reset = 1; 
  #30;   // puck_x=0, puck_y=0, puck_z=500 
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  reset = 0; 
  V_x = 0; 
  V_y = 0; 
  V_z = 5; 
  #5000  // puck_x=0, puck_y=0, puck_z="count" by 2 0-1004  
//------------------------------------------------- ------------reset------------- 
  reset = 1; 
  #30;   // puck_x=0, puck_y=0, puck_z=500  
  reset = 0; 
  V_x = 5; 
  V_y = 5; 
  V_z = 5; 
  #5000  // all "count" by 2... x=+/- 472, y=+/- 34 4, z=20-1004  
 
  $stop(); 
end  
 
puck_module puck(.clock(clock),.reset(reset), 
       .V_x(V_x),.V_y(V_y),.V_z(V_z), 
       .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck _z)); 
 
endmodule 
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Appendix C: Paddle Module & Test Bench 
 
//    PADDLE MODULE 
// The paddle moves around back wall based on x & y  inputs.  The inputs are up,  
// down, left & right and the paddle moves accordin gly. 
 
 
module paddle_module ( 
   input clock,      // 24MHz clock 
   input reset,      // 1 to initialize module 
   input up,         // 1 when paddle should move u p 
   input down,        // 1 when paddle should move down 
   input left,      // 1 when paddle should move le ft 
   input right,        // 1 when paddle should move  right 
   input miss,      // paddle doesn't catch the puc k 
 
   output reg signed [9:0] paddle_x,   // paddle's horizontal position 
   output reg signed [9:0] paddle_y );  // paddle's  vertical position  
 
always @(posedge clock) 
 begin 
 
if (reset)       // reset 
 begin 
 paddle_x <= 0; 
 paddle_y <= 0; 
 end 
else if (miss)      // miss 
 begin 
 paddle_x <= paddle_x; 
 paddle_y <= paddle_y; 
 end  
else 
 begin //gogo paddle 
        // Horizontal Movement 
 if (left) 
  begin 
  if (paddle_x <= - 270) 
   paddle_x <= paddle_x; 
  else 
   paddle_x <= paddle_x - 4; 
  end // left 
 else if (right) 
  begin 
  if (paddle_x >= 270) 
   paddle_x <= paddle_x; 
  else 
   paddle_x <= paddle_x + 4; 
  end //down 
        // Vertical Movement 
 else if (up) 
  begin 
  if (paddle_y >= 190) 
   paddle_y <= paddle_y; 
  else 
   paddle_y <= paddle_y + 4; 
  end // up 
 else if (down) 
  begin 
  if (paddle_y <= - 190) 
   paddle_y <= paddle_y; 
  else 
   paddle_y <= paddle_y - 4; 
  end //down 
 else 
  begin 
  paddle_x <= paddle_x; 
  paddle_y <= paddle_y; 
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  end 
 end //gogo paddle 
 
end //always statement 
endmodule 
 
 
//  PADDLE TEST MODULE ** test module is for a larger scene 
// for testing the paddle module 
 
`timescale 1 ns / 1 ps 
 
module paddle_tb (); 
 
reg clock, reset; 
reg up, down, left, right; 
wire signed [10:0] paddle_x; 
wire signed [10:0] paddle_y; 
 
initial begin 
  clock = 0; 
  forever #5 clock = ~clock;   // goes high every # 10 
end 
 
initial begin 
  reset = 1; 
  up = 0; 
  down = 0; 
  left = 0; 
  right = 0; 
  #43;   
  reset = 0; 
  up = 1; 
  down = 0; 
  left = 0; 
  right = 0; 
  #1000    // paddle_x = 0, paddle_y => 284 
  right = 1; 
  up = 0; 
  #1500    // paddle_x => 412, paddle_y = 284 
  down = 1; 
  right = 0; 
  #2000    // paddle_x = 0, paddle_y => -284 
  left = 1; 
  down = 0; 
  #3000    // paddle_x => -412, paddle_y = 0 
  reset = 1; 
  #30;     // paddle_x = 0, paddle_y =0 
 
  $stop(); 
end  
 
paddle_module game(.clock(clock),.reset(reset), 
    .up(up),.down(down),.left(left),.right(right), 
    .paddle_x(paddle_x),.paddle_y(paddle_y)); 
 
endmodule 
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Appendix D: Game Module & Test Bench 
 
//    GAME MODULE 
// Impliments the interactions between the puck and  the paddle 
 
module game_module ( 
   input clock,                         // 24MHz cl ock 
   input reset,                         // 1 to ini tialize module 
   input signed [9:0] puck_x,           // puck's h orizontal position 
   input signed [9:0] puck_y,           // puck's v ertical position 
   input signed [9:0] puck_z,           // puck's d epth position  
   input signed [9:0] paddle_x,         // paddle's  horizontal position 
   input signed [9:0] paddle_y,         // paddle's  verdical position  
 
   output reg signed [5:0] V_x,         // puck's a bsolute horiz. velocity 
   output reg signed [5:0] V_y,         // puck's a bsolute vertical velocity 
   output reg        [5:0] V_z,        // puck's ab solute depth velocity 
   output reg catch,                    // paddle c atches puck 
   output reg miss,                     // paddle d oesn't catches puck 
   output reg signed [9:0] V_xDelta,    // x differ ence between puck & paddle 
   output reg signed [9:0] V_yDelta );  // y differ ence between puck & paddle 
 
always @(posedge clock) 
 begin 
 
if (reset)         // reset game 
 begin 
 miss <= 0;  
 catch <= 0; 
 V_x <= 3; 
 V_y <= 3; 
 V_z <= 3; 
 V_xDelta <= 0; 
 V_yDelta <= 0; 
 end // reset 
else if (miss)        // if missed puck...stay miss ed 
 begin 
 miss <= 1; 
 V_x <= 0; 
 V_y <= 0; 
 V_z <= 0;  
 end //miss 
else if (catch) 
 catch <= 0; 
 
else if (puck_z <= 20)       // puck is at the back  of the screen 
 begin  
 
 if ((puck_x <= (paddle_x - 50)) 
   | (puck_x >= (paddle_x + 50)) 
   | (puck_y <= (paddle_y - 50)) 
   | (puck_y >= (paddle_y + 50)))  // puck does not  hit paddle 
  begin //miss puck  
  miss <= 1; 
  V_x <= 0; 
  V_y <= 0; 
  V_z <= 0;  
  end //miss puck 
 else         // puck hits the paddle 
  begin //catch puck     
  catch <= 1; 
     V_xDelta <= (puck_x - paddle_x); 
  V_yDelta <= (puck_y - paddle_y); 
  V_x <= ((puck_x - paddle_x) / 2); 
  V_y <= ((puck_y - paddle_y) / 2); 
  V_z <= V_z + 1;  
  end //catch puck 
 end //puck_z <=40 
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else       // not reset, has not missed, or puck is  not @ the back 
 begin 
 miss <= miss; 
 catch <= catch; 
 V_x <= V_x; 
 V_y <= V_y; 
 V_z <= V_z;  
 end //else 
  
 end // always block   
endmodule 
 
 
//  GAME TEST MODULE ** test module is for a larger scene 
// for testing the game module 
 
`timescale 1 ns / 1 ps 
 
module game_tb (); 
 
reg clock, reset; 
reg signed [10:0] puck_x; 
reg signed [10:0] puck_y; 
reg signed [10:0] puck_z; 
reg signed [10:0] paddle_x; 
reg signed [10:0] paddle_y; 
wire [5:0] V_x; 
wire [5:0] V_y; 
wire [5:0] V_z; 
wire [10:0] V_xDelta; 
wire [10:0] V_yDelta; 
wire catch, miss; 
 
initial begin 
  clock = 0; 
  forever #5 clock = ~clock;  // goes high every #1 0 
end 
 
initial begin 
  reset = 1; 
  #43    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  reset = 0; 
  #20    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_x = -10; 
  puck_y = 25; 
  puck_z = 560; 
  #10    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_x = -10; 
  puck_y = 25; 
  puck_z = 560; 
  paddle_x = -10; 
  paddle_y = 25; 
  #10    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_z = 19; 
  #10    // V_x= 0, V_y= 0, V_z= 5, catch= 1, miss=  0 
  #10    // V_x= 0, V_y= 0, V_z= 5, catch= 0, miss=  0 
  puck_z = 777; 
  #30    // V_x= 0, V_y= 0, V_z= 5, catch= 0, miss=  0 
  puck_z = 2; 
  #10    // V_x= 0, V_y= 0, V_z= 6, catch= 1, miss=  0 
  #10    // V_x= 0, V_y= 0, V_z= 6, catch= 0, miss=  0 
// ------------------------------------------------ --------------reset---------- 
  reset = 1; 
  #30    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  reset = 0; 
  puck_x = -20; 
  puck_y = 100; 
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  puck_z = 560; 
  paddle_x = -10; 
  paddle_y = -25; 
  #20    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_z = 20; 
  #20    // V_x= 0, V_y= 0, V_z= 0, catch= 0, miss=  1 
// ------------------------------------------------ --------------reset---------- 
  reset = 1; 
  #30    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  reset = 0; 
  #10    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_x = -200; 
  puck_y = 10; 
  puck_z = 560; 
  paddle_x = -10; 
  paddle_y = -25; 
  #20    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_z = 12; 
  #20    // V_x= 0, V_y= 0, V_z= 0, catch= 0, miss=  1 
// ------------------------------------------------ --------------reset---------- 
  reset = 1; 
  #30    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  reset = 0; 
  puck_x = -20; 
  puck_y = 10; 
  puck_z = 560; 
  paddle_x = -10; 
  paddle_y = -25; 
  #10    // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss=  0 
  puck_z = 12; 
  #10    // V_x= -10, V_y= 15, V_z= 5, catch= 1, mi ss=0 
  puck_z = 22; 
  #10    // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0 
  puck_z = 42; 
  #10    // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0 
  puck_x = -15; 
  puck_y = -40; 
  puck_z = 22; 
  paddle_x = -10; 
  paddle_y = -25; 
  #10    // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0 
  puck_z = 12; 
  #10    // V_x= -5, V_y= -15, V_z= 6, catch= 1, mi ss=0 
  puck_z = 52; 
  #10    // V_x= -5, V_y= -15, V_z= 6, catch= 0, mi ss=0 
  puck_x = 15; 
  puck_y = -10; 
  puck_z = 22; 
  paddle_x = -10; 
  paddle_y = 25; 
  #10    // V_x= -5, V_y= -15, V_z= 6, catch= 0, mi ss=0 
  puck_z = 12; 
  #10    // V_x= 25, V_y= -35, V_z= 7, catch= 1, mi ss=0 
  puck_z = 52; 
  #10    // V_x= 25, V_y= -35, V_z= 7, catch= 0, mi ss=0 
 
  $stop(); 
end  
 
game_module gamer(.clock(clock),.reset(reset), 
       .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck _z), 
       .paddle_x(paddle_x),.paddle_y(paddle_y), 
       .V_x(V_x),.V_y(V_y),.V_z(V_z), 
       .catch(catch),.miss(miss), 
       .V_xDelta(V_xDelta),.V_yDelta(V_yDelta)); 
 
endmodule 
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Appendix E: Score Module & Test Bench 
 
//    SCORE MODULE 
// counts the number of times that the paddle "catc hes" the puck.  It  
// also creates the win and lose signals for the ga me. 
 
module score_counter( 
 input clock, 
 input reset, 
 input catch, 
 input miss, 
 
 output reg win, 
 output reg lose, 
 output reg [5:0] score); 
 
always @(posedge clock) 
 if (reset)     // reset 
  begin 
 win <= 0; 
 lose <=0; 
 score <= 0; 
  end // reset 
 else if (win)   // stay winning 
 win <= win; 
 else if (lose)   // stay losing 
 lose <= lose; 
 
 else if (score == 63)  // how to win 
    win <= 1; 
 else if (miss)   // how to lose 
    lose <= 1; 
 else if (catch)   // how to increase score 
    score <= score + 1; 
 
 else 
  begin 
    win <= win; 
    lose <= lose; 
    score <= score; 
  end 
 
endmodule 
 
 
//  SCORE TEST MODULE 
// for testing the score module 
 
`timescale 1 ns / 1 ps 
 
module score_tb (); 
 
reg clock, reset, catch, miss; 
wire win, lose; 
wire [5:0] score; 
 
initial begin 
  clock = 0; 
  forever #5 clock = ~clock; 
end 
 
initial begin 
  reset = 1; 
  miss = 0; 
  catch = 0; 
  #30;   // win=0, lose=0, score=0 
  reset = 0; 
  catch = 1; 
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  #50;   // win=0, lose=0, score=1,2,3,4,5 
  catch = 0; 
  miss = 1;    
  #30;   // win=0, lose=1, score=5 
// ------------------------------------------------ reset---------- 
  reset = 1; 
  miss = 0; 
  catch = 0; 
  #30;   // win=0, lose=0, score=0 
  reset = 0; 
  catch = 1; 
  #400   // win=0, lose=0, score=growing 
  catch = 0; 
  miss = 1;    
  #30;   // win=0, lose=1, score=??? 
// ------------------------------------------------ reset---------- 
  reset = 1; 
  miss = 0; 
  catch = 0; 
  #30;   // win=0, lose=0, score=0 
  reset = 0; 
  catch = 1; 
  #650   // win=0, lose=0, score=growing 
  #20   // win=1, lose=0, score=63 
// ------------------------------------------------ reset---------- 
  reset = 1; 
  miss = 0; 
  catch = 0; 
  #30;   // win=0, lose=0, score=0 
  reset = 0; 
  catch = 1; 
  #650   // win=0, lose=0, score=growing 
  #10   // win=1, lose=0, score=63 
  catch = 0; 
  miss = 1;    
  #30;   // win=1, lose=0, score=63 
// ------------------------------------------------ reset---------- 
  reset = 1; 
  miss = 0; 
  catch = 0; 
  #30;   // win=0, lose=0, score=0 
  reset = 0; 
  catch = 1; 
  #50   // win=0, lose=0, score=1,2,3...10 
  catch = 0; 
  miss = 1;    
  #30;   // win=0, lose=1, score=10 
  miss = 0; 
  catch = 1; 
  #30;   // win=0, lose=1, score=10 
 
  $stop(); 
end  
 
score_counter sc(.clock(clock),.reset(reset), 
       .catch(catch),.miss(miss), 
       .win(win),.lose(lose),.score(score)); 
 
endmodule 
 

- 30 - 



- XX - 

Appendix F: pong_game.v 
 /////////////////////////////////////////////////// ///////////////////////////// 
// 
// pong_game: the game itself! 
// 
/////////////////////////////////////////////////// ///////////////////////////// 
 
module pong_game ( 
   input vclock, // 65MHz clock 
   input reset,  // 1 to initialize module 
   input up,  // 1 when paddle should move up 
   input down,   // 1 when paddle should move down 
   input [3:0] pspeed,  // puck speed in pixels/tic k  
   input [10:0] hcount, // horizontal index of curr ent pixel (0..1023) 
   input [9:0]  vcount, // vertical index of curren t pixel (0..767) 
   input hsync,  // XVGA horizontal sync signal (ac tive low) 
   input vsync,  // XVGA vertical sync signal (acti ve low) 
   input blank,  // XVGA blanking (1 means output b lack pixel) 
   
   output phsync, // pong game's horizontal sync 
   output pvsync, // pong game's vertical sync 
   output pblank, // pong game's blanking 
   output [23:0] pixel // pong game's pixel 
   output signed [47:0] X0minusXc, 
 output signed [47:0] Y0minusYc, 
 output signed [47:0] Z0minusZc, 
 output reg signed [47:0] X0minusXc_2, 
 output reg signed [47:0] Y0minusYc_2, 
 output reg signed [47:0] Z0minusZc_2, 
 output reg signed [47:0] C, 
 output reg signed [47:0] Xd_Sqrd, // 0 to 262_144 
 output reg signed [47:0] Yd_Sqrd, // 0 to 147_456 
   output reg signed [47:0] Zd_Sqrd, // Always 262_ 144. 
 output reg signed [47:0] XdDotX0minusXc, // 19 bit  2's complement 
 output reg signed [47:0] YdDotY0minusYc, // 19 bit  2's complement. 
   output reg signed [47:0] ZdDotZ0minusZc, // 21 b it 2's complement. 
 output reg signed [47:0] A, // 20 bit integer. 
 output reg signed [47:0] B, // 23 bit 2's compleme nt. 
 output reg signed [47:0] four_A_C, // 43 bit integ er. 
 output reg signed [47:0] B_sqrd); // 43 bit intege r. 
  
// Module Diagram: 
//  
// Inputs 
//  || (hcount, vcount) 
// +-------------+ 
// |Ray Generator| 
// +-------------+ 
//  |||| (xd[1],yd[1],color[1],t[1]) 
// +----------------+ 
// |Puck Intersector| <- puck_x/y/z 
// +----------------+ 
//  |||| (xd[2],yd[2],color[2],t[2]) 
// +---------------------+ 
// |Left Wall Intersector| 
// +---------------------+ 
//  |||| (xd[3],yd[3],color[3],t[3]) 
// +----------------------+ 
// |Right Wall Intersector| 
// +----------------------+ 
//  |||| (xd[4],yd[4],color[4],t[4]) 
// +-----------------+ 
// |Floor Intersector| 
// +-----------------+ 
//  |||| (xd[5],yd[5],color[5],t[5]) 
// +-------------------+ 
// |Ceiling Intersector| 
// +-------------------+ 
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//  |||| (xd[6],yd[6],color[6],t[6]) 
// +------------------+ 
// |Paddle Intersector| 
// +------------------+ 
//  |||| (xd[7],yd[7],color[7],t[7]) 
// +-------------+ 
// |Color Manager| <- puck_x/y/z, paddle_x/y 
// +-------------+ 
//  ||| 
// Outputs 
 
  
  
 reg signed [9:0]   puck_x; // -472 to 472 
 reg signed [9:0]   puck_y; // -344 to 344 
 reg signed [10:0]  puck_z; //   40 to 1023 
 reg signed [9:0] paddle_x; // -412 to 412 
 reg signed [9:0] paddle_y; // -284 to 284 
 reg [24:0] counter; 
  
  
  
 always @(posedge vclock) begin 
  if (reset) begin 
   puck_x <= 100; // Placeholders 
   puck_y <= 0; // for 
   puck_z <= 620; // testing 
  
   paddle_x <= -40; 
   paddle_y <= 40; 
   counter <= 0; 
  end else if (counter >= 25'b00_0001_1001_1011_111 1_1100_110) begin 
   puck_x <= puck_x; // Placeholders 
   puck_y <= puck_y; // for 
   puck_z <= puck_z; // testing 
  
   paddle_x <= paddle_x; 
   paddle_y <= paddle_y; 
   counter <= 0; 
  end else if (up) begin 
   counter <= counter + 1; 
  end 
 end 
  
  
 wire signed [9:0] xd[7:1];  // -512 to 511 
 wire signed [9:0] yd[7:1];  // -512 to 511 
 wire [1:0] color[7:1];      // 0 to 3 
 wire [13:0] t[7:1]; 
  
 wire [7:0] red; 
 wire [7:0] green; 
 wire [7:0] blue; 
   
 // RAY GENERATOR 
 ray_generator ray_gen(.clk(vclock), .reset(reset),  
  // Input 
  .hcount(hcount), .vcount(vcount), 
  // Output 
         .rayX(xd[1]), 
         .rayY(yd[1]), 
     .color(color[1]), 
        .tOut(t[1])); 
  
 // PUCK 
 fast_sphere_intersector puck(.reset(reset), .clk(v clock), 
  // Sphere coordinates. 
  .Xc(puck_x), .Yc(puck_y), .Zc(puck_z), 
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  // Ray coordinates input. 
           .Xd(xd[1]),  
     .Yd(yd[1]), 
   .colorIn(color[1]),  
           .tIn(t[1]), 
  // Ray coordinates output, 
         .outX(xd[2]),  
         .outY(yd[2]), 
  .colorOut(color[2]), 
    .tOut(t[2])); 
  
 // LEFT WALL ** complete ** 
 plane_intersector #(.X_NORMAL(1),.Y_NORMAL(0),.Z_N ORMAL(0),.DISTANCE(-
320),.COLOR(1),.X_MAX(-163)) 
 left_wall ( 
  // input 
  .reset(reset), .clk(vclock), 
          .Xd(xd[2]), 
          .Yd(yd[2]), 
  .colorIn(color[2]), 
          .tIn(t[2]), 
  // output 
        .outX(xd[3]), 
        .outY(yd[3]), 
   .colorOut(color[3]), 
         .tOut(t[3])); 
  
 // RIGHT WALL ** complete ** 
 plane_intersector #(.X_NORMAL(-1),.Y_NORMAL(0),.Z_ NORMAL(0),.DISTANCE(-
320),.COLOR(1),.X_MIN(162)) 
 right_wall ( 
  // input 
  .reset(reset), .clk(vclock), 
          .Xd(xd[3]), 
      .Yd(yd[3]), 
  .colorIn(color[3]), 
          .tIn(t[3]), 
  // output 
        .outX(xd[4]),  
    .outY(yd[4]), 
   .colorOut(color[4]), 
         .tOut(t[4])); 
  
 // FLOOR ** complete ** 
 plane_intersector #(.X_NORMAL(0),.Y_NORMAL(-
1),.Z_NORMAL(0),.DISTANCE(240),.COLOR(1),.Y_MAX(-12 0)) 
 floor ( 
  // input 
  .reset(reset), .clk(vclock), 
          .Xd(xd[4]),  
      .Yd(yd[4]), 
  .colorIn(color[4]), 
          .tIn(t[4]), 
  // output 
        .outX(xd[5]),  
    .outY(yd[5]), 
   .colorOut(color[5]), 
           .tOut(t[5])); 
  
 // CEILING ** complete ** 
 plane_intersector
 #(.X_NORMAL(0),.Y_NORMAL(1),.Z_NORMAL(0),.DISTANCE (240),.COLOR(1),.Y_MIN(11
9)) 
 ceiling ( 
  // input 
  .reset(reset), .clk(vclock), 
           .Xd(xd[5]),  
     .Yd(yd[5]), 
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   .colorIn(color[5]), 
           .tIn(t[5]), 
  // output 
         .outX(xd[6]), 
     .outY(yd[6]), 
  .colorOut(color[6]), 
          .tOut(t[6])); 
  
 // PADDLE ** complete ** 
 plane_intersector #(.X_NORMAL(0),.Y_NORMAL(0),.Z_N ORMAL(-
1),.DISTANCE(640),.COLOR(3)) 
 paddle_plane ( 
  // input 
  .reset(reset), .clk(vclock), 
           .Xd(xd[6]),  
     .Yd(yd[6]), 
   .colorIn(color[6]), 
           .tIn(t[6]), 
  // output 
         .outX(xd[7]), 
     .outY(yd[7]), 
  .colorOut(color[7]), 
          .tOut(t[7])); 
  
 // COLOR MANAGER 
 good_color_manager colormanager( 
  // input 
  .reset(reset), .clk(vclock), 
         .inX(xd[7]),  
     .inY(yd[7]), 
  .colorIn(color[7]), 
          .tIn(t[7]), 
  .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck_z), 
  .paddle_x(paddle_x),.paddle_y(paddle_y), 
  // output 
  .red(red),.green(green),.blue(blue)); 
 
   assign pixel = {red,green,blue}; 
  
 // Pipeline the VGA signals. 
 pipe hsync_pipe(.clk(vclock), .in(hsync), .out(phs ync)); 
 pipe vsync_pipe(.clk(vclock), .in(vsync), .out(pvs ync)); 
 pipe blank_pipe(.clk(vclock), .in(blank), .out(pbl ank)); 
  
endmodule 
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Appendix G: ray_generator.v 
 
module ray_generator(input clk, 
         input reset, 
       input [10:0] hcount, // 
horizontal index of current pixel (0..1023) 
       input [9:0]  vcount, // vertical 
index of current pixel (0..767) 
       output reg signed [9:0] rayX, 
       output reg signed [9:0] rayY, 
       output reg [1:0] color, 
       output reg [13:0] tOut); 
 
 // Colors: 
 // 0: None decided yet. 
 // 1: Wall. 
 // 2: Puck. 
 // 3: Paddle. 
  
 // T is a value ranging from 0 to 3 + 4095/4096 
 // - long enough to reach anywhere in the box. 
 // Ray origin: X=0, Y=0, Z=-512. 
 // Farthest possible ray destination: X=-512, Y=-3 84, Z=1023. 
 // Distance: ~1662, = ~3.2 * 511, definitely reach able. 
 
 always @(posedge clk) begin 
  if (reset) begin 
   rayX <= 0; 
   rayY <= 0; 
   color <= 0; 
   tOut <= 14'b11_1111_1111_1111; 
  end else begin 
   rayX <= -320 + hcount; 
   rayY <=  239 - vcount; 
   color <= 0; 
   tOut <= 14'b11_1111_1111_1111; 
  end 
 end 
endmodule 
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Appendix H: fast_sphere_intersector.v 
 
module fast_sphere_intersector( 
 input reset, 
 input clk, 
 // Sphere coordinates. 
 //  Xc: -472 <= val <=  472 
 //  Yc: -344 <= val <=  344  
 //  Zc:   40 <= val <= 1023 
 input signed [9:0] Xc, 
 input signed [9:0] Yc, 
 input signed [10:0] Zc, 
 // Ray coordinates 
 //  X0: 0. 
 //  Y0: 0. 
 //  Z0: -512. 
 //  Xd: -512 to +511. 
 //  Yd: -384 to +383. 
 //  Zd: +512, thus Zd^2 = 262_144. 
 input signed [9:0] Xd, 
 input signed [9:0] Yd, 
 // Previously calculated values; 
 // may be replaced, might not. 
 input [1:0] colorIn, 
 input [13:0] tIn, 
 // Outputted valued include: 
 //  outX and outY, the Xd and Yd 
 //  colorOut, the new color 
 //  tOut, the intersection of that ray. 
 output reg signed [9:0] outX, 
 output reg signed [9:0] outY, 
 output reg [1:0] colorOut, 
 output reg [13:0] tOut, 
 // Testing output ports 
 output signed [47:0] X0minusXc, 
 output signed [47:0] Y0minusYc, 
 output signed [47:0] Z0minusZc, 
 output reg signed [47:0] X0minusXc_2, 
 output reg signed [47:0] Y0minusYc_2, 
 output reg signed [47:0] Z0minusZc_2, 
 output reg signed [47:0] C, 
 output reg signed [47:0] Xd_Sqrd, // 0 to 262_144 
 output reg signed [47:0] Yd_Sqrd, // 0 to 147_456 
   output reg signed [47:0] Zd_Sqrd, // Always 262_ 144. 
 output reg signed [47:0] XdDotX0minusXc, // 19 bit  2's complement 
 output reg signed [47:0] YdDotY0minusYc, // 19 bit  2's complement. 
   output reg signed [47:0] ZdDotZ0minusZc, // 21 b it 2's complement. 
 output reg signed [47:0] A, // 20 bit integer. 
 output reg signed [47:0] B, // 23 bit 2's compleme nt. 
 output reg signed [47:0] four_A_C, // 43 bit integ er. 
 output reg signed [47:0] B_sqrd); // 43 bit intege r.  
 
// The fast sphere intersector checks whether inter section occurs, 
// but it doesn't calculate WHERE it occurs. Thus i t's only useful 
// for flat-shading and only if we have a pre-exist ing rendering order. 
// For example, in our application, the sphere alwa ys takes priority, 
// so we just replace whatever else the ray might h ave with the sphere's color. 
 
integer i; 
 
// Constants: 
//  X0 and Y0: 0. Just factor these out of the equa tions. 
//  Z0: -512. 
//  Xd: -512 to +511. 
//  Yd: -384 to +383. 
//  Zd: +512, thus Zd^2 = 262_144. 
//  Xc: -472 <= val <=  472 
//  Yc: -344 <= val <=  344  
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//  Zc:   40 <= val <= 1023 
//  Sr: +40, thus Sr^2 = 1600. 
 
wire signed [9:0] Z0; 
wire signed [9:0] Zd; 
assign Z0 = -320; 
assign Zd = 320; 
 
// SPHERE-COORDINATE & CONSTANT BASED CALCS 
// X/Y/Z0 - X/Y/Zc 
// (X0-Xc) = -Xc. 
//  bits: 10 bit 2's complement. 
// (Y0-Yc) = -Xc 
//  bits: 10 bit 2's complement. 
// (Z0-Zc) = -552 to -1535 
//  bits: 12 bit 2's complement. 
 
// wire signed  [9:0] X0minusXc; 
// wire signed  [9:0] Y0minusYc; 
// wire signed [11:0] Z0minusZc; 
 assign X0minusXc =  0 - Xc; 
 assign Y0minusYc =  0 - Yc; 
 assign Z0minusZc = Z0 - Zc; 
 
// (X/Y/Z0-X/Y/Zc)^2 
// X: min:       0. max:   222_784. 
// Y: min:       0. max:   118_336. 
// Z: min: 304_704. max: 2_356_225. 
 
// wire [17:0] X0minusXc_2; 
// wire [16:0] Y0minusYc_2; 
// wire [21:0] Z0minusZc_2; 
// assign X0minusXc_2 = X0minusXc * X0minusXc; 
// assign Y0minusYc_2 = Y0minusYc * Y0minusYc; 
// assign Z0minusZc_2 = Z0minusZc * Z0minusZc; 
 
 // C = Xc^2 + Yc^2 + (-512-Zc)^2 - Sr^2 
 //  min of C = 0 + 0 + 304_704 - 1600 
 //     = 303_104 
 //  max of C = 222_784 + 118_336 + 2_356_225 - 160 0 
 //     = 2_695_745 
 //  bits for C: 22 bit integer. 
// wire [21:0] C; 
 // assign C = X0minusXc_2 + Y0minusYc_2 + Z0minusZ c_2 - 1600; 
 
// REGISTERS FOR PIPELINE PHASES: 
// # Multi-Phase Registers: 
//  # Phase 1-3 
 
 reg signed [9:0] regX[3:1]; 
 reg signed [9:0] regY[3:1]; 
 reg [1:0] regColor[3:1]; 
 reg [13:0] regT[3:1]; 
 
// # Phase 1: 
//  * Calculate X/Y/Zd^2 
//  * Calculate Yd^2 
//  * We already know Zd^2 = 262_144. 
//  * Calculate Xd*(X0-Xc) and for Y and Z. 
 
// reg [18:0] Xd_Sqrd; // 0 to 262_144 
// reg [17:0] Yd_Sqrd; // 0 to 147_456 
//wire [18:0] Zd_Sqrd; // Always 262_144. 
   //assign Zd_Sqrd = 19'd262_144; 
 
// Xd*(X0-Xc) 
//  min: -241_664. Max: 241_664. 
// Yd*(Y0-Yc) 
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//  min: -132_096. Max: 132_096. 
// Zd*(Z0-Zc) = 512*(-552 to -1535) 
//  min: -785_920. Max: -282_624. 
// reg signed [18:0] XdDotX0minusXc; // 19 bit 2's complement 
// reg signed [18:0] YdDotY0minusYc; // 19 bit 2's complement. 
//wire signed [20:0] ZdDotZ0minusZc; // 21 bit 2's complement. 
 // assign ZdDotZ0minusZc = 512 * Z0minusZc; 
 
// # Phase 2: 
//  * From X/Y/Zd^2, calculate A. 
//  * From X/Y/Zd*(X/Y/Z0-X/Y/Zc), calculate B. 
//  * We already know C. 
 
// A = Xd^2 + Yd^2 + Zd^2 
//  min = 261_121. max = 670_721. 
// reg [19:0] A; // 20 bit integer. 
// B = 2 * (-Xd*Xc - Yd*Yc + Zd*(Z0-Zc)) 
//  min = -2_319_360. max = 182_272. 
// reg signed [22:0] B; // 23 bit 2's complement. 
 
// # Phase 3: 
//  * From A and C, calculate 4*A*C. 
//  * From B, calculate B^2. 
 
// 4AC 
//  min =   316_587_278_336 
//  max = 7_232_371_128_580 
// reg [42:0] four_A_C; // 43 bit integer. 
  
// B^2 
//  min = 0. max = 5_379_430_809_600. 
// reg [42:0] B_sqrd; // 43 bit integer. 
 
// # Phase 4 (OUTPUT): 
//  * If 4AC > B^2, no intersection. 
//   @ Pass on colorIn as colorOut, tIn as tOut 
//  * Otherwise, intersection. 
//   @ Replace colorOut with 2'b10. 
//   @ Replace tOut with 1. 
 
 always @(posedge clk) begin 
   
  // Phase 1-3  
      regX[1]    <= Xd; 
      regY[1]    <= Yd; 
  regColor[1]    <= colorIn; 
      regT[1]    <= tIn; 
  for (i = 1; i <3; i = i+1) begin 
    regX[i+1] <=     regX[i]; 
      regY[i+1] <=     regY[i]; 
  regColor[i+1] <= regColor[i]; 
      regT[i+1] <=     regT[i]; 
  end 
 
  // Phase 1 
  Xd_Sqrd        <= Xd*Xd; 
  Yd_Sqrd        <= Yd*Yd; 
  Zd_Sqrd   <= Zd*Zd; 
  XdDotX0minusXc <= Xd*X0minusXc; 
  YdDotY0minusYc <= Yd*Y0minusYc; 
  ZdDotZ0minusZc <= Zd*Z0minusZc; 
  X0minusXc_2  <= X0minusXc*X0minusXc; 
  Y0minusYc_2  <= Y0minusYc*Y0minusYc; 
  Z0minusZc_2  <= Z0minusZc*Z0minusZc; 
   
  // Phase 2 
  A      <= Xd_Sqrd + Yd_Sqrd + Zd_Sqrd; 
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  B      <= (2 * XdDotX0minusXc) + (2 * 
YdDotY0minusYc) + (2 * ZdDotZ0minusZc); 
  C      <= X0minusXc_2 + Y0minusYc_2 + 
Z0minusZc_2 - 40000; 
   
  // Phase 3 
  four_A_C   <= 4 * A * C; 
  B_sqrd    <= B*B; 
     
  // Phase 4 
  outX     <=     regX[3]; 
  outY     <=     regY[3]; 
  if (four_A_C > B_sqrd) begin 
   // No intersection. 
    colorOut   <= regColor[3]; 
        tOut   <=     regT[3]; 
  end else begin 
   // Intersection. 
    colorOut   <= 2'd2; 
        tOut   <= 14'b00_1111_1111_1111; 
  end 
 end 
endmodule 
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Appendix I: plane_intersector.v 
 
 // complete 
 
module plane_intersector 
 #(parameter signed [2:0] X_NORMAL = 0, 
   parameter signed [2:0] Y_NORMAL = 0, 
   parameter signed [2:0] Z_NORMAL = 0, 
   parameter signed [9:0] DISTANCE = 0, 
   parameter [2:0] COLOR = 2'b01, 
   parameter signed [9:0] X_MIN = -320, 
   parameter signed [9:0] X_MAX = 319, 
   parameter signed [9:0] Y_MIN = -240, 
   parameter signed [9:0] Y_MAX = 239) ( 
 input reset, 
 input clk, 
 // Ray coordinates 
 //  X0: 0. 
 //  Y0: 0. 
 //  Z0: -512. 
 //  Xd: -512 to +511. 
 //  Yd: -384 to +383. 
 //  Zd: +512, thus Zd^2 = 262_144. 
 input signed [9:0] Xd, 
 input signed [9:0] Yd, 
 // Previously calculated values; 
 // may be replaced, might not. 
 input [1:0] colorIn, 
 input [13:0] tIn, 
 // Outputted valued include: 
 //  outX and outY, the Xd and Yd 
 //  colorOut, the new color 
 //  tOut, the intersection of that ray. 
 output reg signed [9:0] outX, 
 output reg signed [9:0] outY, 
 output reg [1:0] colorOut, 
 output reg [13:0] tOut); 
 
// For-Loop Master 
integer i; 
 
// The plane-intersector calculates IF and WHERE a ray intersects a plane. 
 
// CONSTANTS: 
//  X0 and Y0: 0. Just factor these out of the equa tions. 
//  Z0: -320. 
//  Xd: -320 to +319. 
//  Yd: -240 to +239. 
//  Zd: +320, thus Zd^2 = 262_144. 
//  Xn, Yn, Zn, D: Parameterized. 
 
// PLANE-COORDINATE & CONSTANT BASED CALCS 
 
// A*X0 = 0. 
// B*Y0 = 0. 
// C*Z0 = needs actual calculation. 
 
 wire signed [10:0] Zn_Z0 = Z_NORMAL * -320;  
 
// REGISTERS FOR PIPELINE PHASES: 
// # Multi-Phase Registers: 
//  # Phase 1-27 
 
 reg signed [9:0] regX[27:1]; 
 reg signed [9:0] regY[27:1]; 
 reg        [1:0] regC[27:1]; 
 reg       [13:0] regT[27:1]; 
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// PHASE 1: 
 
// X/Y/Zn*X/Y/Zd 
// x min -512, max 512 
// y min -384, max 384 
// z min -512, max 512 
 reg signed [10:0] Xn_Xd; 
 reg signed [10:0] Yn_Yd; 
 wire signed [10:0] Zn_Zd; 
 assign Zn_Zd = Z_NORMAL * 320; 
 
// PHASE 2: 
 
// Pn*R0+D 
//  min -512, max 1535 
 reg signed [10:0] Pn_R0_D_magnitude; 
 reg Pn_R0_D_sign; // 12-bit Sign-magnitude. 
 
// Pn*Rd 
//  min -512, max 512 
 reg signed [9:0] Pn_Rd_magnitude; 
 reg Pn_Rd_sign; // 11-bit Sign-magnitude. 
 
// PHASE 3-27: 
 reg intersect[27:3]; // Did this line intersect at  all? 
 
// PHASE 27: 
 reg [23:0] tLocal; 
 
 wire [23:0] dividerOut; 
 
// Divider Module 
 divide_23_bits_by_10_bits plane_divider(.clk(clk),  
  // Input 
  .dividend({Pn_R0_D_magnitude,12'h000}), 
  .divisor(Pn_Rd_magnitude), 
  // Output 
  .quotient(dividerOut), 
  // Unused Output 
  .remainder(), .rfd()); 
 
 always @(posedge clk) begin 
  // PHASE 1-27 
   
  regX[1] <= Xd; 
  regY[1] <= Yd; 
  regC[1] <= colorIn; 
  regT[1] <= tIn; 
 
  for (i = 1; i<27;i=i+1) begin 
   regX[i+1] <= regX[i]; 
   regY[i+1] <= regY[i]; 
   regC[i+1] <= regC[i]; 
   regT[i+1] <= regT[i]; 
  end 
   
  outX <= regX[27]; 
  outY <= regY[27]; 
 
  // Phase 1 
   
  Xn_Xd = X_NORMAL * Xd; 
  Yn_Yd = Y_NORMAL * Yd; 
 
  // Phase 2 
   
  // Pn*R0+D 
  if (Z_NORMAL * -320 + DISTANCE < 0) begin 
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   Pn_R0_D_magnitude <= Z_NORMAL * 512 - DISTANCE; 
   Pn_R0_D_sign <= 1; 
  end else begin 
   Pn_R0_D_magnitude <= Z_NORMAL * -512 + DISTANCE;  
   Pn_R0_D_sign <= 0; 
  end 
  
  // Pn*Rd 
  if (Xn_Xd + Yn_Yd + Zn_Zd < 0) begin 
   Pn_Rd_magnitude <= -1*(Xn_Xd + Yn_Yd + Zn_Zd); 
   Pn_Rd_sign <= 1; 
  end else begin 
   Pn_Rd_magnitude <= Xn_Xd + Yn_Yd + Zn_Zd; 
   Pn_Rd_sign <= 0; 
  end 
   
  // Phase 3-27 
  if ((Pn_Rd_sign != Pn_R0_D_sign) || (Pn_R0_D_magn itude == 0)) begin 
   // If the plane is behind or parallel to the ray , 
   // We have no intersection. 
   intersect[3] <= 1'b0; 
  end else begin 
   // Otherwise we have an intersection. 
   intersect[3] <= 1'b1; 
  end 
   
  for (i=3; i<27;i=i+1) begin 
   intersect[i+1] <= intersect[i]; 
  end 
   
  // Phase 27 
   
  tLocal <= dividerOut; 
   
  // Phase 28 
  if (intersect[27] && (tLocal[13:0] < regT[27]) &&  (regX[27] >= X_MIN) 
&& (regX[27] <= X_MAX) && (regY[27] >= Y_MIN) && (r egY[27] <= Y_MAX)) begin 
   // If there's an intersection, 
   // and the intersection is before other intersec tions, 
   // and we're in acceptable x and y values 
   // change the t and color. 
    colorOut <= COLOR; 
        tOut <= tLocal[13:0]; 
  end else begin 
   // Leave the t and color alone. 
    colorOut <= regC[27]; 
        tOut <= regT[27]; 
  end 
 
  
 end 
endmodule 
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Appendix J: good_color_manager.v 
 
module good_color_manager( 
 input clk, 
 input reset, 
 input signed [9:0] inX, 
 input signed [9:0] inY, 
 input signed [9:0] puck_x, 
 input signed [9:0] puck_y, 
 input signed [10:0] puck_z, 
 input signed [9:0] paddle_x, 
 input signed [9:0] paddle_y, 
 input [1:0] colorIn, 
 input [13:0] tIn, 
 output reg [7:0] red, 
 output reg [7:0] green, 
 output reg [7:0] blue); 
  
 reg signed [22:0] point_x; 
 reg signed [22:0] point_y; 
 reg signed [23:0] point_z; 
 reg [1:0] point_c; 
 reg [7:0] point_t; 
   reg signed [10:0] point2_x; 
 reg signed [10:0] point2_y; 
 reg signed [11:0] point2_z; 
 reg [1:0] point2_c; 
 reg [7:0] point2_t; 
 
 wire signed [10:0] puck2_x; 
 wire signed [10:0] puck2_y; 
 wire signed [10:0] paddle2_x; 
 wire signed [10:0] paddle2_y; 
  
 assign puck2_x = 320 + puck_x; 
 assign puck2_y = 240 + puck_y; 
 
 assign paddle2_x = 320 + paddle_x; 
 assign paddle2_y = 240 + paddle_y; 
 
 always @(posedge clk) begin 
  // Phase 1 
  point_x = (320*14'b01_0000_0000_0000) + (tIn * in X); 
  point_y = (240*14'b01_0000_0000_0000) + (tIn * in Y); 
  point_z = (tIn - 14'b01_0000_0000_0000) * 320; 
  point_t = tIn[13:6]; 
  point_c = colorIn; 
   
  // All x and Y values positive'd with 0,0 in the lower left. 
   
  // Phase 2 
  point2_x = point_x >>> 12; 
  point2_y = point_y >>> 12; 
  point2_z = point_z >>> 12; 
  point2_t = point_t; 
  point2_c = point_c; 
   
  // All x, y, and z values rounded down to integer . 
   
  // Phase 3 
  if (point2_c == 2'b11) begin 
   // paddle 
   if (((point2_x < puck_x + 50 ) && (point2_x > pu ck_x - 50 )) && 
((point2_y < puck_y + 50 ) && (point2_y > puck_y - 50 ))) begin 
    red   <= 8'hFF; 
    green <= 8'hFF; 
    blue  <= 8'hFF; 
   end else begin 
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    red   <= 0; 
    green <= 0; 
    blue  <= 0; 
   end 
  end else if (point2_c == 2'b10) begin 
   // puck 
   red   <= point2_t; 
   green <= 0; 
   blue  <= 0; 
  end else if (point2_c == 2'b01) begin 
   // wall 
   case({point_x[18],point_y[18],point_z[18]}) 
    3'b000: {red,green,blue} <= 24'h00_00_00; 
    3'b001: {red,green,blue} <= 24'h00_00_FF; 
    3'b010: {red,green,blue} <= 24'h00_FF_00; 
    3'b011: {red,green,blue} <= 24'h00_FF_FF; 
    3'b100: {red,green,blue} <= 24'hFF_00_00; 
    3'b101: {red,green,blue} <= 24'hFF_00_FF; 
    3'b110: {red,green,blue} <= 24'hFF_FF_00; 
    3'b111: {red,green,blue} <= 24'hFF_FF_FF; 
   endcase 
  end else begin 
   {red,green,blue} <= {point2_t,point2_t,{8'h00}};  
  end 
 end 
endmodule 
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