
- XX -

Ray-Cast Three-Dimensional Pong

Elizabeth Power!
Richard Hughes

December 2008

- XX -

Abstract

Project Name : Ray-Cast Three-Dimensional Pong
Project Team Members : Elizabeth Power!, Richard Hughes

In this project we created a 3-D variant of the pong project from lab 5 with ray-traced
graphics. The game will have three dimensions of movement for the spherical puck and
two dimensions of movement for the square paddle, and it will keep track of your score
(i.e., how many consecutive bounces you’ve managed) on-screen with hardware ‘sprite’
characters. The puck will bounce off the paddle at different angles depending on the
relative position of the puck to the paddle. The ray-tracing will include shadows,
checkerboard walls, and 8-bit color, with 3 bit red and green and 2 bit blue.

- i -

- XX -

Table of Contents

I. Abstract Page i

II. Table of Contents Page ii

III. List of Figures Page iv

IV. Overview Page 1
• Figure 0: Ray-Casting
• Figure 1: Python Generated Scene

V. Description

A. Backend — Elizabeth Power! Page 2
• Figure 2: Pong Backend — Physics
• Figure 3: Physics Block Diagram

1. Ready Module Page 4
• Figure 4: Ready Module Counting Diagram
• Figure 5: Ready Test Bench Results

2. Puck Module Page 4
• Figure 6: Puck Module Block Diagram
• Figure 7: Puck Test Bench Results

3. Paddle Module Page 6
• Figure 8: Paddle Module Block Diagram
• Figure 9: Paddle Test Bench Results

4. Game Module Page 7
• Figure 10: Game Module Block Diagram
• Figure 11: Game Test Bench Results

5. Score Module Page 10
• Figure 12: Score Module Block Diagram
• Figure 13: Score Test Bench Results

B. Graphics — Richard Hughes Page 11
• Figure 14: Overall Structure of the Pipelined Ray-Caster

1. Ray-Tracing and Ray-Casting Page 12

 2. Ray-Generator Module Page 13

 3. Ray Format Page 14
• Figure 15: Ray Generator Figure

 4. Sphere-Intersector Module Page 15
• Figure 16: Sphere Intersector Diagram

 5. Plane-Intersector Module Page 17
• Figure 17: Plane Intersector Diagram

 6. Color Manager Page 18
• Figure 18: Color Managing Diagram

- ii -

- XX -

VI. Conclusion Page 19

VII. References & Appendices

Appendix A: Ready Module & Test Bench Page 20

Appendix B: Puck Module & Test Bench Page 21

Appendix C: Paddle Module & Test Bench Page 24

Appendix D: Game Module & Test Bench Page 25

Appendix E: Score Module & Test Bench Page 26

Appendix F: pong_game.v Page 31

Appendix G: ray_generator.v Page 35

Appendix H: fast_sphere_intersector.v Page 36

Appendix I: plane_intersector.v Page 40

Appendix J: good_color_manager.v Page 43

- iii -

- XX -

List of Figures

Figure 0: Ray-Casting Page 1

Figure 1: Python Generated Scene Page 2

Figure 2: Pong Backend — Physics Page 3

Figure 3: Physics Block Diagram Page 3

Figure 4: Ready Module Counting Diagram Page 4

Figure 5: Ready Test Bench Results Page 4

Figure 6: Puck Module Block Diagram Page 5

Figure 7: Puck Test Bench Results Page 5

Figure 8: Paddle Module Block Diagram Page 6

Figure 9: Paddle Test Bench Results Page 7

Figure 10: Game Module Block Diagram Page 8

Figure 11: Game Test Bench Results Page 9

Figure 12: Score Module Block Diagram Page 10

Figure 13: Score Test Bench Results Page 10

Figure 14: Overall Structure of the Pipelined Ray-Caster Page 12

Figure 15: Ray Generator Figure Page 14

Figure 16: Sphere Intersector Diagram Page 16

Figure 17: Plane Intersector Diagram Page 18

Figure 19: Color Managing Diagram Page 19

- iv -

- XX -

Overview

Ray-tracing is a graphics rendering algorithm that logically renders a three-dimensional
scene pixel-by-pixel. Each pixel corresponds to a single ray projected from a particular
‘view point’; the rays are projected as if to intersect with the ‘pixels’ on an imaginary
‘screen’ defined in the 3Dwhat? . Geometrical analysis is performed to determine what
objects in the simulated 3D space each ray intersects and we perceive the closest
intersection. We then perform geometric analysis to determine how much light each
light-source casts on to that intersection surface by casting rays from the intersection to
the light and determining the angle of incidence, how distant and bright the light is, and
whether the light is shadowed. We sum this light, determine how much of it is being sent
towards the screen, and that is the color of the pixel. We then repeat that for every pixel.

In Figure 0, below, the ‘center of projection’ represents the ‘view point’ and the surface
of the picture plane represents the screen. This illustrates how one might determine
what point on the screen corresponds to a given point in 3-dimensional space.

Figure 0: Ray-Casting*

Technically, this process is called ‘ray-casting’, meaning that it is not iterative — ray-
tracing is, technically, an iterative form of this process that uses rays cast off from the
point of intersection to accurately model such effects as reflection, transparency,
refraction, or shadows that blur with distance. We will not be attempting to model such
effects as reflection or refraction and so recasting is sufficient for our needs. As a result,
the mathematics required to calculate the intersection of a raw with any given geometry
are bounded, and thus we can run each intersection-calculation in parallel without
worrying about one taking a far longer time than another.

Using this graphics system we are able to three dimensionally represent the physics of
our Pong game. Within the game, we will use all of the basic rules of traditional Pong,
with a twist. Traditional Pong is a two dimensional simulation of table tennis, where the
players hit a ball back and forth with paddles and are allowed to bounce the ball off the
walls. Our Pong will use a “puck,” as opposed to a ball, that will bounce off the walls in

* Image courtesy "The Arrow in the Eye" by Michael Kubovy, Christopher Tyler and WebExhibits.

- 1 -

- XX -

the scene at the same angle which it hits the wall. There is also a paddle that will be
used to keep the puck within the scene and collect points, just as in traditional Pong.
Our scene will include five planes and a sphere, as illustrated in Figure 1 below. Four of
the planes — left side, right side, top, & bottom — will be sloped so that they are smaller
at the back of the space and therefore appear farther away. The fifth plane will contain
the controllable, square paddle and be at the back of the space. These five plans will
be superimposed behind the sphere. In order to calculate where, and if, a ray intersects
with the sphere, we need to calculate a square root of a fixed-point real number and
perform division.

Figure 1: Python Generated Scene

The goal of the traditional game is to earn more points than the opponent, which are
earned when one fails to return the ball to the other. The main difference between our
three dimensional version and the traditional two dimensional version, other than the
extra dimensional, is that our game is a one player version. Because of this, we have
changed the goals and scoring of our players: the goal is to reach 63 points, which are
earned by catching the ball with the puck.

Description — Backend Elizabeth Power!

We have been referring to the backend of our system the “Physics” section because
that is where all of the actual physical interactions take place. Our backend follows
most of the laws of physics — we chose to ignore certain forces like gravity and friction
— in order to help the game appear as realistic as possible.

- 2 -

- XX -

Figure 2: Pong Backend — Physics

As illustrated in Figure 2, above, the back end will use the inputs left, right, up, and
down as well as loading the same Reset into each module. It also takes the clock
signal and loads that into the Ready Module for the 30Hz system clock. The system will
output the 9-bit X/Y/Z coordinates of the puck and paddle (Puckx, Pucky, Puckz, Paddlex,
& Paddley), and the 8-bit score array, as well as single bit win, lose and ready signals.
In order to simplify testability, I have also divided up the backend in to the five self-
contained modules in Figure 3 (below): Ready, Puck, Paddle, Game, and Score.

Figure 3: Physics Block Diagram

- 3 -

- XX -

Ready Module

In order to control the game at a playable speed, the Physics Division created a “Ready”
signal for the system to use. This ready signal also helps to reduce synchronization
issues between the Physics & Graphic Divisions. The Ready Module works as a simple
counter to convert the 27MHz clock into a 30Hz pulse signal. We will use the simple
counting logic pictured in Figure 4 below: every .33 of a second (Count = 2 166 667),
the signal will output a high enable for one clock cycle, otherwise it will output a low and
add one to the count each 27MHz clock cycle.

Figure 4: Ready Module Counting Diagram

As illustrated in image A of Figure 5 below, we temporarily increased the ready
frequency in order to simplify testing the ready module. Examine Appendix A for the
Ready Module Verilog code and test bench. Image A shows that the module
increments at each positive clock edge properly and that each time Ready is enabled it
is only high for one clock cycle. Image B of Figure 5 below shows the same
functionality, zoomed out such that the repeating ready signal is visible.

A. Counting to 21

B. Repeating Ready Signal

Figure 5: Ready Test Bench Results

Puck Module

The only duty of the Puck Module is to go at a designated speed and, when the player
loses, stop moving. As illustrated in Figure 6 on the next page, this module takes the
prerequisite Reset and Ready signals, as well as the desired 5-bit x, y, and z velocities
(Vx, Vy, & Vz). The Puck Module will output the three 9-bit x, y, and z coordinates (Puckx,
Pucky, & Puckz) for the puck’s location at any given clock cycle.

- 4 -

- XX -

Figure 6: Puck Module Block Diagram

The function of the Puck Module is to keep track of the three-dimensional location of the
puck as it travels around the scene with the variable velocities Vx, Vy, & Vz. Each axis of
movement is controlled individually: at each ready cycle the Puckx will change by |Vx| in
the current direction (positive or negative). When the Puck “hits a wall” it will “bounce
off” at the same angle. This can be accomplished by simply inverting the direction of
movement for that axis — when the Puckx (moving at +Vx) reaches 300 (wall is at 320 &
RPuck = 20), it will switch to moving at -Vx — irregardless of the y-axis and z-axis
movement. Refer to Appendix B for the Verilog implementation of this module.

Testing for the Puck Module was fairly simple — refer to Appendix B for the Test Bench
code. The first step was to test the puck’s movement along each of the axes as, Image
A of Figure 7 below shows selected segments of movement along the x-axis. As you
can see, Puckx changes by |Vx| in one direction until it reaches the coordinate of that
axis’ wall (in this case 300) — after that point, Puckx will change by |Vx| in the other
direction. Image A shows the puck easily moving though the 0 coordinate and bouncing
off of both the positive and negative walls (ie right and left). After verifying that each
axis works properly, Image B of Figure 7 shows that each axis functions independently
of and at the same time as each other.

A. Movement on X-Axis

B. Movement on Three Axes

Figure 7: Puck Test Bench Results

- 5 -

- XX -

As stated previously, the puck will stop moving whenever the paddle misses the puck —
indicating that the game is over and the player has lost. This functionality is not
implemented within the Puck Module, but within the Game Module (discussed on page
FOO). The Game Module will change Vx, Vy, & Vz to be 0, therefore keeping Puckx,
Pucky, and Puckz from changing and preventing the puck from moving.

Paddle Module

The only duty of the Paddle Module is to follow the input directions. As illustrated in
Figure 8 below, this module takes the prerequisite Reset and Ready signals, in the
internal miss signal, as well as the game control inputs (Up, Down, Left and Right). The
Paddle Module will output the two 9-bit x and y coordinates (Paddlex & Paddley) for the
paddle’s location on the back wall of the space at any given ready cycle.

Figure 8: Paddle Module Block Diagram

The function of the Paddle Module is to move the paddle as directed by the player. The
paddle will move in whatever direction the player directs until it reaches the edge of the
space, at witch point it will stay there. The working functionality of this up, right, down,
and left movement to the edge of the space is illustrated Images A though D in the test
bench results on the next page (Figure 9). In addition to the ability to control the paddle
in one direction at a time, some may find it useful to move diagonally (ie. In 2 directions
at once). This ability is illustrated in Image E of Figure 9 (on the next page)— you can
see Paddlex and Paddley changing independently of each other and as instructed by the
inputs. Also refer to Appendix C for the Verilog code and test bench for this module.

Just as with the puck, one of the indications that the player has lost is that the Paddle
will stop moving whenever it misses the puck. However unlike the puck, the paddle
takes the Miss input from the Game Module (discussed on page FOO) and disallows
movement when the signal is high. Refer to Figure 9, Image E for the test bench
visualization of this “Miss” functionality and to Appendix C for the desired output from
the test bench for the Paddle.

- 6 -

- XX -

A. Up

B. Right

C. Down

D. Left

E. Together & Miss

Figure 9: Paddle Test Bench Results

Game Module

The Game Module is where all of the work and logic for the game happens. As shown
in Figure 10 on the next page, this module takes the inputs Reset, Ready, and the 9-bit
x/y/z coordinates of the puck and paddle (Puckx, Pucky, Puckz, Paddlex, & Paddley).
The Game Module will then use its internal logic to output the three 5-bit x, y, and z
velocities (Vx, Vy, & Vz) and single bit Catch and Miss signals.

- 7 -

- XX -

Figure 10: Game Module Block Diagram

Within the function of a normal Pong game, all of the logic is used when the puck is at
the same edge as the paddle — our implementation is no different. The first thing that
the module looks for is that the puck is at the paddle (ie Puckz ≤ 20 = Radius of Puck)
and if the puck is not at the paddle it will change nothing. If the puck is at the paddle,
the internal logic will determine if it counts as a “catch” or a “miss” — enabling the
appropriate signal and changing the velocities accordingly. Refer to Figure 11 (on the
next page) for graphical representation of the Game Module Test Bench and Appendix
D for the Verilog implementation of this module and test bench.

If the paddle misses the puck, the module will permanently enable “Miss” and set the x,
y, & z velocities (Vx, Vy, & Vz) to zero until Reset is enabled. Referring to the test bench
results in Image A of Figure 11 on the next page, you can verify that the module uses
the following logic:

 (puck_x <= (paddle_x - 50))
| (puck_x >= (paddle_x + 50))
| (puck_y <= (paddle_y - 50))
| (puck_y >= (paddle_y + 50))

If the center of the puck does not fall within the area of the paddle, it counts as a miss
and Miss becomes high. The right side of Image A also shows that if the game allowed
the puck or paddle to move after Miss becomes enabled, nothing will change — Miss
will stay high and the velocities will remain zero.**

** Note that if all of the modules are functioning normally, this is a situation that cannot happen

- 8 -

- XX -

A. Miss

B. Catch

C. Velocity Changing

Figure 11: Game Test Bench Results

If the paddle catches the puck, the module will enable a simple pulse on the Catch
output. Looking at Image B of Figure 11 above, you can see that the output Catch is
high for one ready cycle at each instant of the paddle catching the puck (clock cycles 4
and 9). The Game Module will also increase the z velocity (Vz) by one at each catch —
again refer to Image B clock cycles 4 and 9 in Figure 11.

A catch also enables a change the x & y velocities (Vx & Vy), based on where on the
Paddle the Puck hits. The Game Module looks at the difference between the center of
the puck and center of the paddle and changes the velocity using the following formula:

((puck_y - paddle_y) / 2)

Image C of Figure 11 above, shows these changes in velocity as simulated in the test
bench at clock cycles 3, 7, and 10. Also note that Vz changes as described above.

- 9 -

- XX -

Score Module

The Score Module keeps track of the status of the game. As illustrated in Figure 12,
below, the score module takes the inputs: Reset, Ready, Miss, and Catch. It then
outputs an 8-bit Score and two 1-bit signals: Win and Lose. Each time the paddle
“catches” the puck it increments and outputs the score, when the score reaches 63
catches the player has won the game and the Win signal is enabled. If at any point in
time the player misses the puck, the module will enable the Lose signal. See Appendix
E for the Verilog implementation of the Score Module.

Figure 12: Score Module Block Diagram

As expected from running the Score Module Test Bench (full code in Appendix E),
Image B in Figure 13 (below) shows that the Score Module increments at every positive
clock edge that Catch is enabled. Image B also shows that whenever there is a miss,
the Lose signal is enabled and the score is frozen. After 63 catches without a miss, the
player has ‘won’ and the Win signal is enabled — see Image A of Figure 13 below.

A. Win

B. Catch 5 & Miss

C. Stay Winning or Losing

Figure 13: Game Test Bench Results

- 10 -

- XX -

Image C of Figure 13, on the previous page, illustrates that once win or lose have been
asserted they cannot be changed until Reset is enabled. Although this is another
instance of something that will not occur if the game is functioning normally, it is an
important feature to keep things working — just in case something else isn’t.

Description — Graphics Richard Hughes

The graphics circuitry produced for this project uses a rendering pipe-line to produce
640x480 VGA graphics at 30 frames per second. As in Lab 5, the graphics pipeline
takes the the hcount, vcount, hsync, vsync, and blank signals from the VGA module as
input and provides a red-green-blue signal plus delayed phsync, pvsync, and pblank
signals as output. However, where Lab 5 had a latency of two to four clock cycles,
depending on the design, the pipelined ray-caster has a latency of over a hundred.

In order to allow the ray-casting modules to be pipelined, it was necessary for them to
efficiently pass data from one to another. Each module takes in the direction of an
incoming ray, and the distance and color of the last known intersection with the ray, and
puts out the direction of the ray and the distance and color of the last known intersection
with the ray. If the ray does not intersect the geometry, or intersects with the ray farther
from the origin than a previous intersection, it outputs the same intersection and color
that was input.

Rather than include the entire 24-bit color of the intersection, which would require 24
bits of register storage at each of the 100+ stages of the rendering pipeline and
additional logic in each geometry-intersection module to calculate the color, I passed
along two bits of data to select from a 'color palette' of three possible color functions.
Using this color palette, the ray direction, and the ray distance, the 'Color Manager'
module calculates the coordinates of the intersection, and then uses those coordinates
as input for one of three color functions chosen by the color bits. This saves at least
3,168 bits of registers.

The diagram (Figure 14) on the next page summarizes the flow of data through the
pipeline. The ray generator takes the hcount and vcount data and provides the
rendering modules with a ray and initial intersection data that implies a non-intersection.
The puck, wall, ceiling, floor, and paddle modules all process the ray and intersection
data in turn, keeping them synchronized and overwriting the intersection data as
appropriate as they go. The final step, the color manager, turns the ray data and
intersection data in to a color to be written to a pixel on-screen. A pipeline delays the
VGA synchronization signals to keep them in alignment with the rays and compensate
for the latency of the rendering pipeline.

- 11 -

- XX -

Figure 14: Overall Structure of the Pipelined Ray-Caster

RAY-TRACING AND RAY-CASTING

In order to understand how my code works, it's necessary to understand how ray-tracing
and ray-casting work. Through geometry and algebra, it's possible to calculate whether
a ray (defined as a point in space, plus a vector defining the direction the ray projects
from that point) intersects a mathematically describable shape such as a sphere or
plane, and where it intersects. In order to calculate the intersection of a ray and a shape,
it must be possible to calculate if any given point is part of that shape. For example, the
points of a sphere can be defined by the function "(X - Xc)^2 + (X - Xc)^2 + (X - Xc)^2 =

- 12 -

- XX -

Radius^2" - i.e., that a given point is exactly calculable as either in the sphere or not.
Further more, it must be possible to solve that function for t after you replace X, Y, and
Z with "Xo + Xd * t", "Xo + Xd * t", and "Xo + Xd * t", respectively. The real-number
solutions for t in that equation are the values of t for which that ray defined by the origin
point Xo,Yo,Zo and the direction vector Xd,Yd,Zd intersects the object.

In ray tracing, you then create additional rays from the point of intersection. You send
one to each light source, to check if it's shadowed or illuminating the point of
intersection. If the object is translucent, one through the object at the angle defined by
the refractive indices of the object and the air. If the object is reflective, you send one
ray out at the reflected angle to see what color it strikes. The color contributes from
these sources are then summed together according to their respective values (highly
reflective objects add more from their reflection and less from their light source) and
added to a baseline color representing the ambient light. Under this model, the number
of rays needed to calculate the color for any given ray is unbounded, unless artificial
cut-offs are imposed; a pair of mirrors facing each other can reflect indefinitely, creating
an arbitrary amount of secondary rays.

Ray-casting can be interpreted as a special case of ray-tracing, where no objects are
translucent or reflective, there are no light sources, and you use only ambient light. In
other words, you never send out any rays from the initial point of intersection. As a
result, the number of rays needed for any pixel is constant: one.

To keep the VGA signals coordinated with the pipeline, the hsync, vsync, and blank
signals are passed through a relay of registers with the same throughput and
(approximately) the same latency as the rendering pipeline, so that the coordinates of
the pixels on the screen correspond to the hcount and vcount values passed to the
rendering pipeline.

RAY-GENERATOR MODULE

To create the initial rays, and ensure each one corresponds to a pixel in a meaningful
way, the rays all have the same origin and each one passes through a point on a flat
rectangle in space analogous to the computer screen. Similar techniques were used in
early artistic studies of perspective; see figure 0.

The data that a pipeline rendering module needs to take in - and thus the data that the
ray generator needs to put out - are the Xd, Yd, and Zd directions of the ray, as well as
the color and t-value (distance from origin) of the closest intersection so far. In order for
us to generate this information, the ray generator module takes in the hcount and
vcount values.

In some algorithms, the rays are 'normalized', their direction vectors set to a length of
one with their proportions (and direction) preserved. Our algorithm does not do this, and
instead uses ray vectors with integer components for Xd, Yd, and Zd. Because the
origin point is at a fixed distance from the screen, and the screen is exactly
perpendicular to the Z axis of our euclidean geometry, the Zd value is fixed. To take

- 13 -

- XX -

advantage of this, I hard-wired the Zd value in to all of my modules. The ray-generator
module thus only needs to output the Xd and Yd values.

The ray generator module produces valid output as long as hcount and vcount are less
than 640 and 480, respectively. Otherwise, it may produce garbage data. However,
hcount and vcount are less than 640 and 480 for all pixels visible onscreen, so this is
not an issue.

RAY FORMAT

Each ray is represented by an Xd and a Yd (both 10-bit 2's complement numbers). The
previous intersection is represented by the t-value (a 14 bit integer, of which the most
significant bit represents 21 and the least significant bit represents 2-12) and the color
value (a 2-bit integer where 0: no intersection, 1: Wall, Ceiling, or Floor, 2: Puck, and 3:
the Paddle.) The t-value, which can be anywhere from 0 to 3 + 4095/4096, spans a
range long enough to reach anywhere in the module

Figure 15: Ray Generator Figure

- 14 -

- XX -

SPHERE-INTERSECTOR MODULE

The equation used to define a sphere is:

(X - X c)
2 + (Y - Y c)

2 + (Z - Z c)
2 = Radius 2

Where X, Y, and Z are any given point, Xc, Yc, and Zc are the center of the sphere, and
Radius is the radius of the sphere. When we substitute X0 + Xd * t, etc, for X, Y, and Z,
this becomes:

(X 0 + X d * t - X c)

2
 + (Y 0 + Y d * t - Y c)

2
 + (Z 0 + Z d * t - Z c)

2
 = Radius 2

We can isolate t2, t, and 1 in this equation with 0 on the right side to get an equation we
can solve by the quadratic equation:

A*t 2 + B*t + C = 0
A = X d

2 + Y d

2 + Z d

2
B = 2 * (X d * (X 0 - X c) + Y d * (Y 0 - Y c) + Z d * (Z 0 - Z c))

C = (X 0 - X c)
2 + (Y 0 - Y c)

2 + (Z 0 - Z c)
2 - S r

2

t = (-B +/- (B 2 - 4*A*C) 1/2) / 2A

The module has the radius of the sphere hard-wired in, but it must receive the sphere's
center as input. The sphere's center is defined by an X, Y, and Z value which are 10, 10,
and 11 bit 2's complement signed integers, respectively.

Normally, we would need to use a square root module in order to calculate (B2 -
4*A*C)1/2. However, we cheat; we know that the sphere is always in front, so we don't
bother to calculate anything except whether or not (B2 - 4*A*C) is negative. If it is
negative, there is no real solution and so there is no intersection. In this instance, the
module outputs whatever color and t value it was originally provided. If it is not negative,
there is a solution, and thus there is an intersection, and it's always the first intersection.
In this instance, the module outputs color = 2 and t = 4095. The lowest possible t value
that can be created by the other geometry in the scene is 4096, so the sphere is always
in front. The module always outputs the same Xd and Yd it received at the same time it
outputs the corresponding color and t values.

BUGS — ie. IT DOESN'T WORK

Unfortunately, the sphere intersector module does not function properly. While the
output for a successful or unsuccessful intersection is correct, intersections do not occur
as they should. The cross section on the screen is not circular, but warps in appearance
like a hyperbolic shape. Whatever quadratic equation the module solves, it isn't a
sphere.

Investigation and testing showed that the module works effectively in simulation, but
fails in implementation. The most obvious possibility is that there is a timing problem, as
the simulation does not reveal those. Some possible avenues of solution are replacing
the behavior-description verilog multiplier with a pipelined multiplier module, but this
may or may not function. Alternatively, the module is small enough that it would be
practical to scrap it and start over completely, ideally to avoid whatever minor error led

- 15 -

- XX -

to the flawed behavior in the second attempt. Ultimately, the failure of this module is a
mystery to me.

The diagram below illustrates the pipelining for the sphere intersector.

Figure 16: Sphere Intersector Diagram

- 16 -

- XX -

PLANE-INTERSECTOR MODULE

The equation used to define a plane is:

A x + B y + C z + D = 0

Where (A,B,C) is a vector defining the normal of the plane, and D is how close the plane
comes to the origin (positive values indicating the normal of the plane points towards
the origin, negative values indicating the plane points away.) If we substitute the ray
equations for X, Y, and Z and solve for t, we get:

A(X 0 + X d * t) + B(Y 0 + Y d * t) + (Z 0 + Z d * t) + D = 0

t = - (A * X 0 + B * Y 0 + C * Z 0 + D) / (A * X d + B * Y d + C * Z d)

Unlike in the sphere, the plane is in a constant position, so A, B, C, and D are all
hardwired. This makes it easy to calculate the value of (A * Xd + B * Yd + C * Zd). (A * X0
+ B * Y0 + C * Z0 + D) is constant, because the plane and the origin do not move. -
indeed, since the origin has X0 = 0 and Y0 = 0, we can simplify it to (C * Z0 + D) and
save time. However, dividing (A * X0 + B * Y0 + C * Z0 + D) by (A * Xd + B * Yd + C * Zd)
takes 25 clock cycles with a pipelined divider. Calculating the t value thus takes 27 clock
cycles.

BUGS — GOING RIGHT ROUND

When I first tested the plane intersector module, the back paddle didn't seem to be
working properly. I could see the other four planes extending off in to infinity as parallel
lines, and I couldn't fathom why. Later, I realized that the reason for the problem was
due to the limited number of bits in the t value - any t equal to or greater than 2^14
came out modulo 2^14, because t only had 14 bits. As a result, extremely distant
objects such as the planes extending in to the distance came out with lower t values
than much closer objects, and so they were errantly drawn in front.

Because the four planes extended infinitely to the horizon under my geometry model, no
number of bits in t would fix this problem. Additionally, every bit of storage in t would
need to be duplicated at every point in the pipeline, which could become expensive
quickly. I solved the problem with the cheap hack of defining a 'rendering box' for each
plane, maximum and minimum xd and yd values that could intercept them. All rays that
fell outside that boundary automatically missed. I set the bounding boxes to block off the
areas of the screen where the t values began to wrap around, and the problem no
longer appeared.

Another bug I experienced while developing and testing the plane intersector module
was not in the code, but in the FPGA. When the FPGA was reprogrammed without
being power cycled first (i.e., turn it off and turn it on again), graphical glitches would
appear in the screen. Programming in to a 'fresh' FPGA eliminates these flaws.

The diagram on the next page illustrates the pipelining for the plane intersector.

- 17 -

- XX -

Figure 17: Plane Intersector Diagram

COLOR MANAGER

The color manager takes the intersection information (direction, t, and palette code) and
the paddle and puck coordinates. In the first phase, it uses the direction and t to
calculate the position of the intersection in XYZ coordinates. In the second phase, it
removes the 12 least significant bits of the results, which represent fractional value. In
the third phase, it takes the palette code and chooses one of four color functions:

• A checkerboard for the walls,
• A white square for the paddle,
• A flat pink for the puck,
• A bright yellow for a 'miss'.

The output is an RGB value appropriate for the pixel passed in.

- 18 -

- XX -

The diagram blow illustrates the pipelining of the color manager module.

Figure 18: Color Managing Diagram

Conclusion

The design presented here is a product of many compromises between our
limitations and our accomplishments. Among the features completed here are
functioning physics (or backend) modules, a full ModelSim testing suite for the backend,
real time pipelined ray-casting with texture-palette color management, and a functioning
ray-plane intersection module. Unfortunately, the sphere rendering module is not
functional. Further iterations to the design could repair and improve the sphere
intersector module to allow for a functional sphere intersection, and later, a sphere
intersector that provides not only a boolean "intersected / did not intersect" test but
provides the exact point of intersection. By repairing the sphere intersector and
synchronizing the coordinate input more carefully, it should be possible to quickly
improve the game to a playable level.

- 19 -

- XX -

Appendix A: Ready Module & Test Bench

// READY MODULE
// Turn the 65MHz Clock into a 30Hz Signal

module ready_module
 (input clock, reset,
 output reg ready,
 output reg [18:0] counter);

always @(posedge clock)
 if (reset)
 begin
 counter <= 0;
 ready <= 0;
 end
 else
 begin
 if (counter == 2166667)
// if (counter == 21) // for testing pu rposes
 begin
 counter <= 0;
 ready <= 1;
 end
 else if (counter == 0)
 begin
 ready <= 0;
 counter <= counter + 1;
 end
 else
 counter <= counter + 1;
 end // else

endmodule

// READY MODULE TEST BENCH
// for testing the ready module

`timescale 1 ns / 1 ps

module ready_tb ();

reg clock, reset;
wire ready;
wire [18:0] counter;

initial begin
 clock = 0;
 forever #5 clock = ~clock; // goes high every #1 0
end

initial begin
 reset = 1;
 #33;
 reset = 0;
 #5000
 reset = 1;
 #30;
 reset = 0;
 #50
 $stop();
 end

ready_module readysignal(.clock(clock),.reset(reset),
 .ready(ready),.counter(counter));
endmodule

- 20 -

- XX -

Appendix B: Puck Module & Test Bench

// PUCK MODULE
// the puck moves around the screen based on x, y, & z input velocities. It
// "bounces" off of "walls" when it reaches the edg e of our space.

module puck_module (
 input clock, // 24MHz clock
 input reset, // 1 to initialize module
 input signed [5:0] V_x, // puck horizontal s peed in pixels/tick
 input signed [5:0] V_y, // puck vertical spe ed in pixels/tick
 input [5:0] V_z, // puck depth speed in pixels/tick

 output reg signed [9:0] puck_x, // puck's hor izontal position
 output reg signed [9:0] puck_y, // puck's ver tical position
 output reg signed [9:0] puck_z // puck's dep th position
);

reg xMovement;
reg yMovement;
reg zMovement;

always @(posedge clock)
 begin

if (reset)
 begin
 puck_x <= 0;
 puck_y <= 0;
 puck_z <= 320;
 xMovement <= 1; // moving right
 yMovement <= 1; // moving down
 zMovement <= 1; // moving forward
 end //reset

else
 begin //Go Go Puck

 if (xMovement) // horizontal movement
 begin
 if (puck_x >= 300)
 xMovement <= 0;
 else
 puck_x <= puck_x + V_x;
 end // xMovement
 else // !xMovement
 begin
 if (puck_x <= - 300)
 xMovement <= 1;
 else
 puck_x <= puck_x - V_x;
 end // !xMovement

 if (yMovement) // vertical movement
 begin
 if (puck_y >= 220)
 yMovement <= 0;
 else
 puck_y <= puck_y + V_y;
 end // yMovement
 else // !yMovement
 begin
 if (puck_y <= - 220)
 yMovement <= 1;
 else
 puck_y <= puck_y - V_y;
 end // !yMovement

- 21 -

- XX -

 if (zMovement) // depth movement
 begin
 if (puck_z >= 620)
 zMovement <= 0;
 else
 puck_z <= puck_z + V_z;
 end // zMovement
 else // !zMovement
 begin
 if (puck_z <= 20)
 zMovement <= 1;
 else
 puck_z <= puck_z - V_z;
 end // !zMovement

 end //Go Go Puck

end //aways block
endmodule

// PUCK TEST MODULE ** test module is for a larger scene
// for testing the puck module

`timescale 1 ns / 1 ps

module puck_tb ();

reg clock, reset;
reg signed [5:0] V_x;
reg signed [5:0] V_y;
reg [5:0] V_z;
wire signed [10:0] puck_x;
wire signed [10:0] puck_y;
wire signed [10:0] puck_z;

initial begin
 clock = 0;
 forever #5 clock = ~clock; // goes high every #1 0
end

initial begin
 reset = 1;
 #33; // puck_x=0, puck_y=0, puck_z=500
 reset = 0;
 V_x = 0;
 V_y = 0;
 V_z = 0;
 #300 // puck_x=0, puck_y=0, puck_z=500
//--- ------------reset-------------
 reset = 1;
 #30; // puck_x=0, puck_y=0, puck_z=500
 reset = 0;
 V_x = 5;
 V_y = 0;
 V_z = 0;
 #5000 // puck_x="count" by 2 +/- 472, puck_y=0, puck_z=500
//--- ------------reset-------------
 reset = 1;
 #30; // puck_x=0, puck_y=0, puck_z=500
 reset = 0;
 V_x = 0;
 V_y = 5;
 V_z = 0;
 #3000 // puck_x=0, puck_y="count" by 2 +/- 344, puck_z=500
//--- ------------reset-------------
 reset = 1;
 #30; // puck_x=0, puck_y=0, puck_z=500

- 22 -

- XX -

 reset = 0;
 V_x = 0;
 V_y = 0;
 V_z = 5;
 #5000 // puck_x=0, puck_y=0, puck_z="count" by 2 0-1004
//--- ------------reset-------------
 reset = 1;
 #30; // puck_x=0, puck_y=0, puck_z=500
 reset = 0;
 V_x = 5;
 V_y = 5;
 V_z = 5;
 #5000 // all "count" by 2... x=+/- 472, y=+/- 34 4, z=20-1004

 $stop();
end

puck_module puck(.clock(clock),.reset(reset),
 .V_x(V_x),.V_y(V_y),.V_z(V_z),
 .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck _z));

endmodule

- 23 -

- XX -

Appendix C: Paddle Module & Test Bench

// PADDLE MODULE
// The paddle moves around back wall based on x & y inputs. The inputs are up,
// down, left & right and the paddle moves accordin gly.

module paddle_module (
 input clock, // 24MHz clock
 input reset, // 1 to initialize module
 input up, // 1 when paddle should move u p
 input down, // 1 when paddle should move down
 input left, // 1 when paddle should move le ft
 input right, // 1 when paddle should move right
 input miss, // paddle doesn't catch the puc k

 output reg signed [9:0] paddle_x, // paddle's horizontal position
 output reg signed [9:0] paddle_y); // paddle's vertical position

always @(posedge clock)
 begin

if (reset) // reset
 begin
 paddle_x <= 0;
 paddle_y <= 0;
 end
else if (miss) // miss
 begin
 paddle_x <= paddle_x;
 paddle_y <= paddle_y;
 end
else
 begin //gogo paddle
 // Horizontal Movement
 if (left)
 begin
 if (paddle_x <= - 270)
 paddle_x <= paddle_x;
 else
 paddle_x <= paddle_x - 4;
 end // left
 else if (right)
 begin
 if (paddle_x >= 270)
 paddle_x <= paddle_x;
 else
 paddle_x <= paddle_x + 4;
 end //down
 // Vertical Movement
 else if (up)
 begin
 if (paddle_y >= 190)
 paddle_y <= paddle_y;
 else
 paddle_y <= paddle_y + 4;
 end // up
 else if (down)
 begin
 if (paddle_y <= - 190)
 paddle_y <= paddle_y;
 else
 paddle_y <= paddle_y - 4;
 end //down
 else
 begin
 paddle_x <= paddle_x;
 paddle_y <= paddle_y;

- 24 -

- XX -

 end
 end //gogo paddle

end //always statement
endmodule

// PADDLE TEST MODULE ** test module is for a larger scene
// for testing the paddle module

`timescale 1 ns / 1 ps

module paddle_tb ();

reg clock, reset;
reg up, down, left, right;
wire signed [10:0] paddle_x;
wire signed [10:0] paddle_y;

initial begin
 clock = 0;
 forever #5 clock = ~clock; // goes high every # 10
end

initial begin
 reset = 1;
 up = 0;
 down = 0;
 left = 0;
 right = 0;
 #43;
 reset = 0;
 up = 1;
 down = 0;
 left = 0;
 right = 0;
 #1000 // paddle_x = 0, paddle_y => 284
 right = 1;
 up = 0;
 #1500 // paddle_x => 412, paddle_y = 284
 down = 1;
 right = 0;
 #2000 // paddle_x = 0, paddle_y => -284
 left = 1;
 down = 0;
 #3000 // paddle_x => -412, paddle_y = 0
 reset = 1;
 #30; // paddle_x = 0, paddle_y =0

 $stop();
end

paddle_module game(.clock(clock),.reset(reset),
 .up(up),.down(down),.left(left),.right(right),
 .paddle_x(paddle_x),.paddle_y(paddle_y));

endmodule

- 25 -

- XX -

Appendix D: Game Module & Test Bench

// GAME MODULE
// Impliments the interactions between the puck and the paddle

module game_module (
 input clock, // 24MHz cl ock
 input reset, // 1 to ini tialize module
 input signed [9:0] puck_x, // puck's h orizontal position
 input signed [9:0] puck_y, // puck's v ertical position
 input signed [9:0] puck_z, // puck's d epth position
 input signed [9:0] paddle_x, // paddle's horizontal position
 input signed [9:0] paddle_y, // paddle's verdical position

 output reg signed [5:0] V_x, // puck's a bsolute horiz. velocity
 output reg signed [5:0] V_y, // puck's a bsolute vertical velocity
 output reg [5:0] V_z, // puck's ab solute depth velocity
 output reg catch, // paddle c atches puck
 output reg miss, // paddle d oesn't catches puck
 output reg signed [9:0] V_xDelta, // x differ ence between puck & paddle
 output reg signed [9:0] V_yDelta); // y differ ence between puck & paddle

always @(posedge clock)
 begin

if (reset) // reset game
 begin
 miss <= 0;
 catch <= 0;
 V_x <= 3;
 V_y <= 3;
 V_z <= 3;
 V_xDelta <= 0;
 V_yDelta <= 0;
 end // reset
else if (miss) // if missed puck...stay miss ed
 begin
 miss <= 1;
 V_x <= 0;
 V_y <= 0;
 V_z <= 0;
 end //miss
else if (catch)
 catch <= 0;

else if (puck_z <= 20) // puck is at the back of the screen
 begin

 if ((puck_x <= (paddle_x - 50))
 | (puck_x >= (paddle_x + 50))
 | (puck_y <= (paddle_y - 50))
 | (puck_y >= (paddle_y + 50))) // puck does not hit paddle
 begin //miss puck
 miss <= 1;
 V_x <= 0;
 V_y <= 0;
 V_z <= 0;
 end //miss puck
 else // puck hits the paddle
 begin //catch puck
 catch <= 1;
 V_xDelta <= (puck_x - paddle_x);
 V_yDelta <= (puck_y - paddle_y);
 V_x <= ((puck_x - paddle_x) / 2);
 V_y <= ((puck_y - paddle_y) / 2);
 V_z <= V_z + 1;
 end //catch puck
 end //puck_z <=40

- 26 -

- XX -

else // not reset, has not missed, or puck is not @ the back
 begin
 miss <= miss;
 catch <= catch;
 V_x <= V_x;
 V_y <= V_y;
 V_z <= V_z;
 end //else

 end // always block
endmodule

// GAME TEST MODULE ** test module is for a larger scene
// for testing the game module

`timescale 1 ns / 1 ps

module game_tb ();

reg clock, reset;
reg signed [10:0] puck_x;
reg signed [10:0] puck_y;
reg signed [10:0] puck_z;
reg signed [10:0] paddle_x;
reg signed [10:0] paddle_y;
wire [5:0] V_x;
wire [5:0] V_y;
wire [5:0] V_z;
wire [10:0] V_xDelta;
wire [10:0] V_yDelta;
wire catch, miss;

initial begin
 clock = 0;
 forever #5 clock = ~clock; // goes high every #1 0
end

initial begin
 reset = 1;
 #43 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 reset = 0;
 #20 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_x = -10;
 puck_y = 25;
 puck_z = 560;
 #10 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_x = -10;
 puck_y = 25;
 puck_z = 560;
 paddle_x = -10;
 paddle_y = 25;
 #10 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_z = 19;
 #10 // V_x= 0, V_y= 0, V_z= 5, catch= 1, miss= 0
 #10 // V_x= 0, V_y= 0, V_z= 5, catch= 0, miss= 0
 puck_z = 777;
 #30 // V_x= 0, V_y= 0, V_z= 5, catch= 0, miss= 0
 puck_z = 2;
 #10 // V_x= 0, V_y= 0, V_z= 6, catch= 1, miss= 0
 #10 // V_x= 0, V_y= 0, V_z= 6, catch= 0, miss= 0
// -- --------------reset----------
 reset = 1;
 #30 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 reset = 0;
 puck_x = -20;
 puck_y = 100;

- 27 -

- XX -

 puck_z = 560;
 paddle_x = -10;
 paddle_y = -25;
 #20 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_z = 20;
 #20 // V_x= 0, V_y= 0, V_z= 0, catch= 0, miss= 1
// -- --------------reset----------
 reset = 1;
 #30 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 reset = 0;
 #10 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_x = -200;
 puck_y = 10;
 puck_z = 560;
 paddle_x = -10;
 paddle_y = -25;
 #20 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_z = 12;
 #20 // V_x= 0, V_y= 0, V_z= 0, catch= 0, miss= 1
// -- --------------reset----------
 reset = 1;
 #30 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 reset = 0;
 puck_x = -20;
 puck_y = 10;
 puck_z = 560;
 paddle_x = -10;
 paddle_y = -25;
 #10 // V_x= 4, V_y= 4, V_z= 4, catch= 0, miss= 0
 puck_z = 12;
 #10 // V_x= -10, V_y= 15, V_z= 5, catch= 1, mi ss=0
 puck_z = 22;
 #10 // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0
 puck_z = 42;
 #10 // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0
 puck_x = -15;
 puck_y = -40;
 puck_z = 22;
 paddle_x = -10;
 paddle_y = -25;
 #10 // V_x= -10, V_y= 15, V_z= 5, catch= 0, mi ss=0
 puck_z = 12;
 #10 // V_x= -5, V_y= -15, V_z= 6, catch= 1, mi ss=0
 puck_z = 52;
 #10 // V_x= -5, V_y= -15, V_z= 6, catch= 0, mi ss=0
 puck_x = 15;
 puck_y = -10;
 puck_z = 22;
 paddle_x = -10;
 paddle_y = 25;
 #10 // V_x= -5, V_y= -15, V_z= 6, catch= 0, mi ss=0
 puck_z = 12;
 #10 // V_x= 25, V_y= -35, V_z= 7, catch= 1, mi ss=0
 puck_z = 52;
 #10 // V_x= 25, V_y= -35, V_z= 7, catch= 0, mi ss=0

 $stop();
end

game_module gamer(.clock(clock),.reset(reset),
 .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck _z),
 .paddle_x(paddle_x),.paddle_y(paddle_y),
 .V_x(V_x),.V_y(V_y),.V_z(V_z),
 .catch(catch),.miss(miss),
 .V_xDelta(V_xDelta),.V_yDelta(V_yDelta));

endmodule

- 28 -

- XX -

Appendix E: Score Module & Test Bench

// SCORE MODULE
// counts the number of times that the paddle "catc hes" the puck. It
// also creates the win and lose signals for the ga me.

module score_counter(
 input clock,
 input reset,
 input catch,
 input miss,

 output reg win,
 output reg lose,
 output reg [5:0] score);

always @(posedge clock)
 if (reset) // reset
 begin
 win <= 0;
 lose <=0;
 score <= 0;
 end // reset
 else if (win) // stay winning
 win <= win;
 else if (lose) // stay losing
 lose <= lose;

 else if (score == 63) // how to win
 win <= 1;
 else if (miss) // how to lose
 lose <= 1;
 else if (catch) // how to increase score
 score <= score + 1;

 else
 begin
 win <= win;
 lose <= lose;
 score <= score;
 end

endmodule

// SCORE TEST MODULE
// for testing the score module

`timescale 1 ns / 1 ps

module score_tb ();

reg clock, reset, catch, miss;
wire win, lose;
wire [5:0] score;

initial begin
 clock = 0;
 forever #5 clock = ~clock;
end

initial begin
 reset = 1;
 miss = 0;
 catch = 0;
 #30; // win=0, lose=0, score=0
 reset = 0;
 catch = 1;

- 29 -

- XX -

 #50; // win=0, lose=0, score=1,2,3,4,5
 catch = 0;
 miss = 1;
 #30; // win=0, lose=1, score=5
// -- reset----------
 reset = 1;
 miss = 0;
 catch = 0;
 #30; // win=0, lose=0, score=0
 reset = 0;
 catch = 1;
 #400 // win=0, lose=0, score=growing
 catch = 0;
 miss = 1;
 #30; // win=0, lose=1, score=???
// -- reset----------
 reset = 1;
 miss = 0;
 catch = 0;
 #30; // win=0, lose=0, score=0
 reset = 0;
 catch = 1;
 #650 // win=0, lose=0, score=growing
 #20 // win=1, lose=0, score=63
// -- reset----------
 reset = 1;
 miss = 0;
 catch = 0;
 #30; // win=0, lose=0, score=0
 reset = 0;
 catch = 1;
 #650 // win=0, lose=0, score=growing
 #10 // win=1, lose=0, score=63
 catch = 0;
 miss = 1;
 #30; // win=1, lose=0, score=63
// -- reset----------
 reset = 1;
 miss = 0;
 catch = 0;
 #30; // win=0, lose=0, score=0
 reset = 0;
 catch = 1;
 #50 // win=0, lose=0, score=1,2,3...10
 catch = 0;
 miss = 1;
 #30; // win=0, lose=1, score=10
 miss = 0;
 catch = 1;
 #30; // win=0, lose=1, score=10

 $stop();
end

score_counter sc(.clock(clock),.reset(reset),
 .catch(catch),.miss(miss),
 .win(win),.lose(lose),.score(score));

endmodule

- 30 -

- XX -

Appendix F: pong_game.v
 /// /////////////////////////////
//
// pong_game: the game itself!
//
/// /////////////////////////////

module pong_game (
 input vclock, // 65MHz clock
 input reset, // 1 to initialize module
 input up, // 1 when paddle should move up
 input down, // 1 when paddle should move down
 input [3:0] pspeed, // puck speed in pixels/tic k
 input [10:0] hcount, // horizontal index of curr ent pixel (0..1023)
 input [9:0] vcount, // vertical index of curren t pixel (0..767)
 input hsync, // XVGA horizontal sync signal (ac tive low)
 input vsync, // XVGA vertical sync signal (acti ve low)
 input blank, // XVGA blanking (1 means output b lack pixel)

 output phsync, // pong game's horizontal sync
 output pvsync, // pong game's vertical sync
 output pblank, // pong game's blanking
 output [23:0] pixel // pong game's pixel
 output signed [47:0] X0minusXc,
 output signed [47:0] Y0minusYc,
 output signed [47:0] Z0minusZc,
 output reg signed [47:0] X0minusXc_2,
 output reg signed [47:0] Y0minusYc_2,
 output reg signed [47:0] Z0minusZc_2,
 output reg signed [47:0] C,
 output reg signed [47:0] Xd_Sqrd, // 0 to 262_144
 output reg signed [47:0] Yd_Sqrd, // 0 to 147_456
 output reg signed [47:0] Zd_Sqrd, // Always 262_ 144.
 output reg signed [47:0] XdDotX0minusXc, // 19 bit 2's complement
 output reg signed [47:0] YdDotY0minusYc, // 19 bit 2's complement.
 output reg signed [47:0] ZdDotZ0minusZc, // 21 b it 2's complement.
 output reg signed [47:0] A, // 20 bit integer.
 output reg signed [47:0] B, // 23 bit 2's compleme nt.
 output reg signed [47:0] four_A_C, // 43 bit integ er.
 output reg signed [47:0] B_sqrd); // 43 bit intege r.

// Module Diagram:
//
// Inputs
// || (hcount, vcount)
// +-------------+
// |Ray Generator|
// +-------------+
// |||| (xd[1],yd[1],color[1],t[1])
// +----------------+
// |Puck Intersector| <- puck_x/y/z
// +----------------+
// |||| (xd[2],yd[2],color[2],t[2])
// +---------------------+
// |Left Wall Intersector|
// +---------------------+
// |||| (xd[3],yd[3],color[3],t[3])
// +----------------------+
// |Right Wall Intersector|
// +----------------------+
// |||| (xd[4],yd[4],color[4],t[4])
// +-----------------+
// |Floor Intersector|
// +-----------------+
// |||| (xd[5],yd[5],color[5],t[5])
// +-------------------+
// |Ceiling Intersector|
// +-------------------+

- 31 -

- XX -

// |||| (xd[6],yd[6],color[6],t[6])
// +------------------+
// |Paddle Intersector|
// +------------------+
// |||| (xd[7],yd[7],color[7],t[7])
// +-------------+
// |Color Manager| <- puck_x/y/z, paddle_x/y
// +-------------+
// |||
// Outputs

 reg signed [9:0] puck_x; // -472 to 472
 reg signed [9:0] puck_y; // -344 to 344
 reg signed [10:0] puck_z; // 40 to 1023
 reg signed [9:0] paddle_x; // -412 to 412
 reg signed [9:0] paddle_y; // -284 to 284
 reg [24:0] counter;

 always @(posedge vclock) begin
 if (reset) begin
 puck_x <= 100; // Placeholders
 puck_y <= 0; // for
 puck_z <= 620; // testing

 paddle_x <= -40;
 paddle_y <= 40;
 counter <= 0;
 end else if (counter >= 25'b00_0001_1001_1011_111 1_1100_110) begin
 puck_x <= puck_x; // Placeholders
 puck_y <= puck_y; // for
 puck_z <= puck_z; // testing

 paddle_x <= paddle_x;
 paddle_y <= paddle_y;
 counter <= 0;
 end else if (up) begin
 counter <= counter + 1;
 end
 end

 wire signed [9:0] xd[7:1]; // -512 to 511
 wire signed [9:0] yd[7:1]; // -512 to 511
 wire [1:0] color[7:1]; // 0 to 3
 wire [13:0] t[7:1];

 wire [7:0] red;
 wire [7:0] green;
 wire [7:0] blue;

 // RAY GENERATOR
 ray_generator ray_gen(.clk(vclock), .reset(reset),
 // Input
 .hcount(hcount), .vcount(vcount),
 // Output
 .rayX(xd[1]),
 .rayY(yd[1]),
 .color(color[1]),
 .tOut(t[1]));

 // PUCK
 fast_sphere_intersector puck(.reset(reset), .clk(v clock),
 // Sphere coordinates.
 .Xc(puck_x), .Yc(puck_y), .Zc(puck_z),

- 32 -

- XX -

 // Ray coordinates input.
 .Xd(xd[1]),
 .Yd(yd[1]),
 .colorIn(color[1]),
 .tIn(t[1]),
 // Ray coordinates output,
 .outX(xd[2]),
 .outY(yd[2]),
 .colorOut(color[2]),
 .tOut(t[2]));

 // LEFT WALL ** complete **
 plane_intersector #(.X_NORMAL(1),.Y_NORMAL(0),.Z_N ORMAL(0),.DISTANCE(-
320),.COLOR(1),.X_MAX(-163))
 left_wall (
 // input
 .reset(reset), .clk(vclock),
 .Xd(xd[2]),
 .Yd(yd[2]),
 .colorIn(color[2]),
 .tIn(t[2]),
 // output
 .outX(xd[3]),
 .outY(yd[3]),
 .colorOut(color[3]),
 .tOut(t[3]));

 // RIGHT WALL ** complete **
 plane_intersector #(.X_NORMAL(-1),.Y_NORMAL(0),.Z_ NORMAL(0),.DISTANCE(-
320),.COLOR(1),.X_MIN(162))
 right_wall (
 // input
 .reset(reset), .clk(vclock),
 .Xd(xd[3]),
 .Yd(yd[3]),
 .colorIn(color[3]),
 .tIn(t[3]),
 // output
 .outX(xd[4]),
 .outY(yd[4]),
 .colorOut(color[4]),
 .tOut(t[4]));

 // FLOOR ** complete **
 plane_intersector #(.X_NORMAL(0),.Y_NORMAL(-
1),.Z_NORMAL(0),.DISTANCE(240),.COLOR(1),.Y_MAX(-12 0))
 floor (
 // input
 .reset(reset), .clk(vclock),
 .Xd(xd[4]),
 .Yd(yd[4]),
 .colorIn(color[4]),
 .tIn(t[4]),
 // output
 .outX(xd[5]),
 .outY(yd[5]),
 .colorOut(color[5]),
 .tOut(t[5]));

 // CEILING ** complete **
 plane_intersector
 #(.X_NORMAL(0),.Y_NORMAL(1),.Z_NORMAL(0),.DISTANCE (240),.COLOR(1),.Y_MIN(11
9))
 ceiling (
 // input
 .reset(reset), .clk(vclock),
 .Xd(xd[5]),
 .Yd(yd[5]),

- 33 -

- XX -

 .colorIn(color[5]),
 .tIn(t[5]),
 // output
 .outX(xd[6]),
 .outY(yd[6]),
 .colorOut(color[6]),
 .tOut(t[6]));

 // PADDLE ** complete **
 plane_intersector #(.X_NORMAL(0),.Y_NORMAL(0),.Z_N ORMAL(-
1),.DISTANCE(640),.COLOR(3))
 paddle_plane (
 // input
 .reset(reset), .clk(vclock),
 .Xd(xd[6]),
 .Yd(yd[6]),
 .colorIn(color[6]),
 .tIn(t[6]),
 // output
 .outX(xd[7]),
 .outY(yd[7]),
 .colorOut(color[7]),
 .tOut(t[7]));

 // COLOR MANAGER
 good_color_manager colormanager(
 // input
 .reset(reset), .clk(vclock),
 .inX(xd[7]),
 .inY(yd[7]),
 .colorIn(color[7]),
 .tIn(t[7]),
 .puck_x(puck_x),.puck_y(puck_y),.puck_z(puck_z),
 .paddle_x(paddle_x),.paddle_y(paddle_y),
 // output
 .red(red),.green(green),.blue(blue));

 assign pixel = {red,green,blue};

 // Pipeline the VGA signals.
 pipe hsync_pipe(.clk(vclock), .in(hsync), .out(phs ync));
 pipe vsync_pipe(.clk(vclock), .in(vsync), .out(pvs ync));
 pipe blank_pipe(.clk(vclock), .in(blank), .out(pbl ank));

endmodule

- 34 -

- XX -

Appendix G: ray_generator.v

module ray_generator(input clk,
 input reset,
 input [10:0] hcount, //
horizontal index of current pixel (0..1023)
 input [9:0] vcount, // vertical
index of current pixel (0..767)
 output reg signed [9:0] rayX,
 output reg signed [9:0] rayY,
 output reg [1:0] color,
 output reg [13:0] tOut);

 // Colors:
 // 0: None decided yet.
 // 1: Wall.
 // 2: Puck.
 // 3: Paddle.

 // T is a value ranging from 0 to 3 + 4095/4096
 // - long enough to reach anywhere in the box.
 // Ray origin: X=0, Y=0, Z=-512.
 // Farthest possible ray destination: X=-512, Y=-3 84, Z=1023.
 // Distance: ~1662, = ~3.2 * 511, definitely reach able.

 always @(posedge clk) begin
 if (reset) begin
 rayX <= 0;
 rayY <= 0;
 color <= 0;
 tOut <= 14'b11_1111_1111_1111;
 end else begin
 rayX <= -320 + hcount;
 rayY <= 239 - vcount;
 color <= 0;
 tOut <= 14'b11_1111_1111_1111;
 end
 end
endmodule

- 35 -

- XX -

Appendix H: fast_sphere_intersector.v

module fast_sphere_intersector(
 input reset,
 input clk,
 // Sphere coordinates.
 // Xc: -472 <= val <= 472
 // Yc: -344 <= val <= 344
 // Zc: 40 <= val <= 1023
 input signed [9:0] Xc,
 input signed [9:0] Yc,
 input signed [10:0] Zc,
 // Ray coordinates
 // X0: 0.
 // Y0: 0.
 // Z0: -512.
 // Xd: -512 to +511.
 // Yd: -384 to +383.
 // Zd: +512, thus Zd^2 = 262_144.
 input signed [9:0] Xd,
 input signed [9:0] Yd,
 // Previously calculated values;
 // may be replaced, might not.
 input [1:0] colorIn,
 input [13:0] tIn,
 // Outputted valued include:
 // outX and outY, the Xd and Yd
 // colorOut, the new color
 // tOut, the intersection of that ray.
 output reg signed [9:0] outX,
 output reg signed [9:0] outY,
 output reg [1:0] colorOut,
 output reg [13:0] tOut,
 // Testing output ports
 output signed [47:0] X0minusXc,
 output signed [47:0] Y0minusYc,
 output signed [47:0] Z0minusZc,
 output reg signed [47:0] X0minusXc_2,
 output reg signed [47:0] Y0minusYc_2,
 output reg signed [47:0] Z0minusZc_2,
 output reg signed [47:0] C,
 output reg signed [47:0] Xd_Sqrd, // 0 to 262_144
 output reg signed [47:0] Yd_Sqrd, // 0 to 147_456
 output reg signed [47:0] Zd_Sqrd, // Always 262_ 144.
 output reg signed [47:0] XdDotX0minusXc, // 19 bit 2's complement
 output reg signed [47:0] YdDotY0minusYc, // 19 bit 2's complement.
 output reg signed [47:0] ZdDotZ0minusZc, // 21 b it 2's complement.
 output reg signed [47:0] A, // 20 bit integer.
 output reg signed [47:0] B, // 23 bit 2's compleme nt.
 output reg signed [47:0] four_A_C, // 43 bit integ er.
 output reg signed [47:0] B_sqrd); // 43 bit intege r.

// The fast sphere intersector checks whether inter section occurs,
// but it doesn't calculate WHERE it occurs. Thus i t's only useful
// for flat-shading and only if we have a pre-exist ing rendering order.
// For example, in our application, the sphere alwa ys takes priority,
// so we just replace whatever else the ray might h ave with the sphere's color.

integer i;

// Constants:
// X0 and Y0: 0. Just factor these out of the equa tions.
// Z0: -512.
// Xd: -512 to +511.
// Yd: -384 to +383.
// Zd: +512, thus Zd^2 = 262_144.
// Xc: -472 <= val <= 472
// Yc: -344 <= val <= 344

- 36 -

- XX -

// Zc: 40 <= val <= 1023
// Sr: +40, thus Sr^2 = 1600.

wire signed [9:0] Z0;
wire signed [9:0] Zd;
assign Z0 = -320;
assign Zd = 320;

// SPHERE-COORDINATE & CONSTANT BASED CALCS
// X/Y/Z0 - X/Y/Zc
// (X0-Xc) = -Xc.
// bits: 10 bit 2's complement.
// (Y0-Yc) = -Xc
// bits: 10 bit 2's complement.
// (Z0-Zc) = -552 to -1535
// bits: 12 bit 2's complement.

// wire signed [9:0] X0minusXc;
// wire signed [9:0] Y0minusYc;
// wire signed [11:0] Z0minusZc;
 assign X0minusXc = 0 - Xc;
 assign Y0minusYc = 0 - Yc;
 assign Z0minusZc = Z0 - Zc;

// (X/Y/Z0-X/Y/Zc)^2
// X: min: 0. max: 222_784.
// Y: min: 0. max: 118_336.
// Z: min: 304_704. max: 2_356_225.

// wire [17:0] X0minusXc_2;
// wire [16:0] Y0minusYc_2;
// wire [21:0] Z0minusZc_2;
// assign X0minusXc_2 = X0minusXc * X0minusXc;
// assign Y0minusYc_2 = Y0minusYc * Y0minusYc;
// assign Z0minusZc_2 = Z0minusZc * Z0minusZc;

 // C = Xc^2 + Yc^2 + (-512-Zc)^2 - Sr^2
 // min of C = 0 + 0 + 304_704 - 1600
 // = 303_104
 // max of C = 222_784 + 118_336 + 2_356_225 - 160 0
 // = 2_695_745
 // bits for C: 22 bit integer.
// wire [21:0] C;
 // assign C = X0minusXc_2 + Y0minusYc_2 + Z0minusZ c_2 - 1600;

// REGISTERS FOR PIPELINE PHASES:
// # Multi-Phase Registers:
// # Phase 1-3

 reg signed [9:0] regX[3:1];
 reg signed [9:0] regY[3:1];
 reg [1:0] regColor[3:1];
 reg [13:0] regT[3:1];

// # Phase 1:
// * Calculate X/Y/Zd^2
// * Calculate Yd^2
// * We already know Zd^2 = 262_144.
// * Calculate Xd*(X0-Xc) and for Y and Z.

// reg [18:0] Xd_Sqrd; // 0 to 262_144
// reg [17:0] Yd_Sqrd; // 0 to 147_456
//wire [18:0] Zd_Sqrd; // Always 262_144.
 //assign Zd_Sqrd = 19'd262_144;

// Xd*(X0-Xc)
// min: -241_664. Max: 241_664.
// Yd*(Y0-Yc)

- 37 -

- XX -

// min: -132_096. Max: 132_096.
// Zd*(Z0-Zc) = 512*(-552 to -1535)
// min: -785_920. Max: -282_624.
// reg signed [18:0] XdDotX0minusXc; // 19 bit 2's complement
// reg signed [18:0] YdDotY0minusYc; // 19 bit 2's complement.
//wire signed [20:0] ZdDotZ0minusZc; // 21 bit 2's complement.
 // assign ZdDotZ0minusZc = 512 * Z0minusZc;

// # Phase 2:
// * From X/Y/Zd^2, calculate A.
// * From X/Y/Zd*(X/Y/Z0-X/Y/Zc), calculate B.
// * We already know C.

// A = Xd^2 + Yd^2 + Zd^2
// min = 261_121. max = 670_721.
// reg [19:0] A; // 20 bit integer.
// B = 2 * (-Xd*Xc - Yd*Yc + Zd*(Z0-Zc))
// min = -2_319_360. max = 182_272.
// reg signed [22:0] B; // 23 bit 2's complement.

// # Phase 3:
// * From A and C, calculate 4*A*C.
// * From B, calculate B^2.

// 4AC
// min = 316_587_278_336
// max = 7_232_371_128_580
// reg [42:0] four_A_C; // 43 bit integer.

// B^2
// min = 0. max = 5_379_430_809_600.
// reg [42:0] B_sqrd; // 43 bit integer.

// # Phase 4 (OUTPUT):
// * If 4AC > B^2, no intersection.
// @ Pass on colorIn as colorOut, tIn as tOut
// * Otherwise, intersection.
// @ Replace colorOut with 2'b10.
// @ Replace tOut with 1.

 always @(posedge clk) begin

 // Phase 1-3
 regX[1] <= Xd;
 regY[1] <= Yd;
 regColor[1] <= colorIn;
 regT[1] <= tIn;
 for (i = 1; i <3; i = i+1) begin
 regX[i+1] <= regX[i];
 regY[i+1] <= regY[i];
 regColor[i+1] <= regColor[i];
 regT[i+1] <= regT[i];
 end

 // Phase 1
 Xd_Sqrd <= Xd*Xd;
 Yd_Sqrd <= Yd*Yd;
 Zd_Sqrd <= Zd*Zd;
 XdDotX0minusXc <= Xd*X0minusXc;
 YdDotY0minusYc <= Yd*Y0minusYc;
 ZdDotZ0minusZc <= Zd*Z0minusZc;
 X0minusXc_2 <= X0minusXc*X0minusXc;
 Y0minusYc_2 <= Y0minusYc*Y0minusYc;
 Z0minusZc_2 <= Z0minusZc*Z0minusZc;

 // Phase 2
 A <= Xd_Sqrd + Yd_Sqrd + Zd_Sqrd;

- 38 -

- XX -

 B <= (2 * XdDotX0minusXc) + (2 *
YdDotY0minusYc) + (2 * ZdDotZ0minusZc);
 C <= X0minusXc_2 + Y0minusYc_2 +
Z0minusZc_2 - 40000;

 // Phase 3
 four_A_C <= 4 * A * C;
 B_sqrd <= B*B;

 // Phase 4
 outX <= regX[3];
 outY <= regY[3];
 if (four_A_C > B_sqrd) begin
 // No intersection.
 colorOut <= regColor[3];
 tOut <= regT[3];
 end else begin
 // Intersection.
 colorOut <= 2'd2;
 tOut <= 14'b00_1111_1111_1111;
 end
 end
endmodule

- 39 -

- XX -

Appendix I: plane_intersector.v

 // complete

module plane_intersector
 #(parameter signed [2:0] X_NORMAL = 0,
 parameter signed [2:0] Y_NORMAL = 0,
 parameter signed [2:0] Z_NORMAL = 0,
 parameter signed [9:0] DISTANCE = 0,
 parameter [2:0] COLOR = 2'b01,
 parameter signed [9:0] X_MIN = -320,
 parameter signed [9:0] X_MAX = 319,
 parameter signed [9:0] Y_MIN = -240,
 parameter signed [9:0] Y_MAX = 239) (
 input reset,
 input clk,
 // Ray coordinates
 // X0: 0.
 // Y0: 0.
 // Z0: -512.
 // Xd: -512 to +511.
 // Yd: -384 to +383.
 // Zd: +512, thus Zd^2 = 262_144.
 input signed [9:0] Xd,
 input signed [9:0] Yd,
 // Previously calculated values;
 // may be replaced, might not.
 input [1:0] colorIn,
 input [13:0] tIn,
 // Outputted valued include:
 // outX and outY, the Xd and Yd
 // colorOut, the new color
 // tOut, the intersection of that ray.
 output reg signed [9:0] outX,
 output reg signed [9:0] outY,
 output reg [1:0] colorOut,
 output reg [13:0] tOut);

// For-Loop Master
integer i;

// The plane-intersector calculates IF and WHERE a ray intersects a plane.

// CONSTANTS:
// X0 and Y0: 0. Just factor these out of the equa tions.
// Z0: -320.
// Xd: -320 to +319.
// Yd: -240 to +239.
// Zd: +320, thus Zd^2 = 262_144.
// Xn, Yn, Zn, D: Parameterized.

// PLANE-COORDINATE & CONSTANT BASED CALCS

// A*X0 = 0.
// B*Y0 = 0.
// C*Z0 = needs actual calculation.

 wire signed [10:0] Zn_Z0 = Z_NORMAL * -320;

// REGISTERS FOR PIPELINE PHASES:
// # Multi-Phase Registers:
// # Phase 1-27

 reg signed [9:0] regX[27:1];
 reg signed [9:0] regY[27:1];
 reg [1:0] regC[27:1];
 reg [13:0] regT[27:1];

- 40 -

- XX -

// PHASE 1:

// X/Y/Zn*X/Y/Zd
// x min -512, max 512
// y min -384, max 384
// z min -512, max 512
 reg signed [10:0] Xn_Xd;
 reg signed [10:0] Yn_Yd;
 wire signed [10:0] Zn_Zd;
 assign Zn_Zd = Z_NORMAL * 320;

// PHASE 2:

// Pn*R0+D
// min -512, max 1535
 reg signed [10:0] Pn_R0_D_magnitude;
 reg Pn_R0_D_sign; // 12-bit Sign-magnitude.

// Pn*Rd
// min -512, max 512
 reg signed [9:0] Pn_Rd_magnitude;
 reg Pn_Rd_sign; // 11-bit Sign-magnitude.

// PHASE 3-27:
 reg intersect[27:3]; // Did this line intersect at all?

// PHASE 27:
 reg [23:0] tLocal;

 wire [23:0] dividerOut;

// Divider Module
 divide_23_bits_by_10_bits plane_divider(.clk(clk),
 // Input
 .dividend({Pn_R0_D_magnitude,12'h000}),
 .divisor(Pn_Rd_magnitude),
 // Output
 .quotient(dividerOut),
 // Unused Output
 .remainder(), .rfd());

 always @(posedge clk) begin
 // PHASE 1-27

 regX[1] <= Xd;
 regY[1] <= Yd;
 regC[1] <= colorIn;
 regT[1] <= tIn;

 for (i = 1; i<27;i=i+1) begin
 regX[i+1] <= regX[i];
 regY[i+1] <= regY[i];
 regC[i+1] <= regC[i];
 regT[i+1] <= regT[i];
 end

 outX <= regX[27];
 outY <= regY[27];

 // Phase 1

 Xn_Xd = X_NORMAL * Xd;
 Yn_Yd = Y_NORMAL * Yd;

 // Phase 2

 // Pn*R0+D
 if (Z_NORMAL * -320 + DISTANCE < 0) begin

- 41 -

- XX -

 Pn_R0_D_magnitude <= Z_NORMAL * 512 - DISTANCE;
 Pn_R0_D_sign <= 1;
 end else begin
 Pn_R0_D_magnitude <= Z_NORMAL * -512 + DISTANCE;
 Pn_R0_D_sign <= 0;
 end

 // Pn*Rd
 if (Xn_Xd + Yn_Yd + Zn_Zd < 0) begin
 Pn_Rd_magnitude <= -1*(Xn_Xd + Yn_Yd + Zn_Zd);
 Pn_Rd_sign <= 1;
 end else begin
 Pn_Rd_magnitude <= Xn_Xd + Yn_Yd + Zn_Zd;
 Pn_Rd_sign <= 0;
 end

 // Phase 3-27
 if ((Pn_Rd_sign != Pn_R0_D_sign) || (Pn_R0_D_magn itude == 0)) begin
 // If the plane is behind or parallel to the ray ,
 // We have no intersection.
 intersect[3] <= 1'b0;
 end else begin
 // Otherwise we have an intersection.
 intersect[3] <= 1'b1;
 end

 for (i=3; i<27;i=i+1) begin
 intersect[i+1] <= intersect[i];
 end

 // Phase 27

 tLocal <= dividerOut;

 // Phase 28
 if (intersect[27] && (tLocal[13:0] < regT[27]) && (regX[27] >= X_MIN)
&& (regX[27] <= X_MAX) && (regY[27] >= Y_MIN) && (r egY[27] <= Y_MAX)) begin
 // If there's an intersection,
 // and the intersection is before other intersec tions,
 // and we're in acceptable x and y values
 // change the t and color.
 colorOut <= COLOR;
 tOut <= tLocal[13:0];
 end else begin
 // Leave the t and color alone.
 colorOut <= regC[27];
 tOut <= regT[27];
 end

 end
endmodule

- 42 -

- XX -

Appendix J: good_color_manager.v

module good_color_manager(
 input clk,
 input reset,
 input signed [9:0] inX,
 input signed [9:0] inY,
 input signed [9:0] puck_x,
 input signed [9:0] puck_y,
 input signed [10:0] puck_z,
 input signed [9:0] paddle_x,
 input signed [9:0] paddle_y,
 input [1:0] colorIn,
 input [13:0] tIn,
 output reg [7:0] red,
 output reg [7:0] green,
 output reg [7:0] blue);

 reg signed [22:0] point_x;
 reg signed [22:0] point_y;
 reg signed [23:0] point_z;
 reg [1:0] point_c;
 reg [7:0] point_t;
 reg signed [10:0] point2_x;
 reg signed [10:0] point2_y;
 reg signed [11:0] point2_z;
 reg [1:0] point2_c;
 reg [7:0] point2_t;

 wire signed [10:0] puck2_x;
 wire signed [10:0] puck2_y;
 wire signed [10:0] paddle2_x;
 wire signed [10:0] paddle2_y;

 assign puck2_x = 320 + puck_x;
 assign puck2_y = 240 + puck_y;

 assign paddle2_x = 320 + paddle_x;
 assign paddle2_y = 240 + paddle_y;

 always @(posedge clk) begin
 // Phase 1
 point_x = (320*14'b01_0000_0000_0000) + (tIn * in X);
 point_y = (240*14'b01_0000_0000_0000) + (tIn * in Y);
 point_z = (tIn - 14'b01_0000_0000_0000) * 320;
 point_t = tIn[13:6];
 point_c = colorIn;

 // All x and Y values positive'd with 0,0 in the lower left.

 // Phase 2
 point2_x = point_x >>> 12;
 point2_y = point_y >>> 12;
 point2_z = point_z >>> 12;
 point2_t = point_t;
 point2_c = point_c;

 // All x, y, and z values rounded down to integer .

 // Phase 3
 if (point2_c == 2'b11) begin
 // paddle
 if (((point2_x < puck_x + 50) && (point2_x > pu ck_x - 50)) &&
((point2_y < puck_y + 50) && (point2_y > puck_y - 50))) begin
 red <= 8'hFF;
 green <= 8'hFF;
 blue <= 8'hFF;
 end else begin

- 43 -

- XX -

 red <= 0;
 green <= 0;
 blue <= 0;
 end
 end else if (point2_c == 2'b10) begin
 // puck
 red <= point2_t;
 green <= 0;
 blue <= 0;
 end else if (point2_c == 2'b01) begin
 // wall
 case({point_x[18],point_y[18],point_z[18]})
 3'b000: {red,green,blue} <= 24'h00_00_00;
 3'b001: {red,green,blue} <= 24'h00_00_FF;
 3'b010: {red,green,blue} <= 24'h00_FF_00;
 3'b011: {red,green,blue} <= 24'h00_FF_FF;
 3'b100: {red,green,blue} <= 24'hFF_00_00;
 3'b101: {red,green,blue} <= 24'hFF_00_FF;
 3'b110: {red,green,blue} <= 24'hFF_FF_00;
 3'b111: {red,green,blue} <= 24'hFF_FF_FF;
 endcase
 end else begin
 {red,green,blue} <= {point2_t,point2_t,{8'h00}};
 end
 end
endmodule

- 44 -

