Speech Recognition in Hardware: For Use as a Novel
Input Device

Nicholas Harrington
Tao B. Schardl

December 10, 2008

Abstract

Conventional computer input devices often restrict programs to exclusively utilize
button presses and mouse movements as input, even when such an interface is not the
most intuitive one for the user using that application. To address this restriction in
the case where the more intuitive control interface is the user’s voice, we created an
isolated word speech recognition system in hardware and attached it to a conventional
joystick interface. Users are able to train this system on a set of words, and this system
subsequently translates the recognition of distinct words into distinct button presses at
the joystick interface, allowing our device to communicate seamlessly with a computer
as a joystick. This device’s functionality has been verified both through controlled
system testing and gameplay testing, in which it has been used both exclusively to
control a game and in conjunction with another input device.

11

Contents
1 Overview 1
1.0.1 MATLAB Implementation 4
2 Summary of Modules 4
2.1 Audio Preprocessing/Vector Generation. 6
2.1.1 Discarding Significant Bits 6
2.1.2 Run Time Parameter Control 6
2.1.3 Low Pass Filter and Downsampler 6
2.1.4 Pre-emphasis Filter o000 7
2.1.5 Window Applier 7
2.1.6 FFT Feeding Buffer and FFT 7
2.1.7 Magnitude Finder oo 7
2.1.8 Mel-scale Spectrum Calculator 8
2.1.9 Energy Finder and Word Detector 8
2.1.10 Cepstral Coefficient Generator 8
2.2 Word Recognition o 8
22,1 Mastero 8
222 DTW o 10
223 Judge 13
2.3 System Output 13
2.3.1 Bar Graph Display 13
232 DTWDisplay 14
2.4 Joystick Output 14
3 Testing 14
3.1 Unit Testing 14
3.1.1 Preprocessing 15
3.1.2 Word Recognitiono 15
3.1.3 Experimentation Lo 15
3.1.4 Gameplay Testing 17

4 Conclusion 18

111

List of Figures

U W N =

Mel Scale and Conversion Windows 2
Example of DTW Algorithm 3
Modular Breakdown of Preprocessing and Vector Generation Component . . 5
Modular Breakdown Word Recognition Component 9
Breakdown of DTW Module 11

1 Overview

We implemented an isolated word speech recognition system in hardware. Every time a word
is uttered into a microphone it is compared against a set of words stored in memory in order
to determine if it matches one of them. If a match is found a signal is sent via a parallel
port to a computer that interprets it as joystick input.

Matching two audio signals first entails compressing the audio data into a form meaningful
for speech recognition. In our case each 30 ms section of audio is converted into a vector of 16
numbers. Each stored word or incoming word is represented as an array of these vectors. We
compare these arrays of vectors with an algorithm known as dynamic time warping (DTW).

The vectors used to parameterize the audio signal are the Mel-scale frequency spectrums for
chunks of incoming audio. The Mel-scale frequency spectrum is logarithmically shifted from
the typical hertz-scale frequency spectrum. It places audio signals perceived as having equal
distances apart by humans at equal distances apart. Humans also perceive higher frequency
sounds as being louder relative to their amplitude. In order to match this as well the in-
coming audio signal is also sent through a pre-emphasis filter that amplifies high frequency
signals. This is meant to give the DT'W module vectors that most accurately represent how
humans perceive the sound.

Generating the Mel-scale frequency spectrum entails taking an DFT of a block of the filtered
audio data and then converting that spectrum to the Mel-scale. Each Mel-scale frequency
spectrum value is generated from the DFT data by applying an appropriately located trian-
gular window.

This method also requires a way of determining whether a chunk of audio data is part of a
word. This was accomplished by measuring the energy of the chunk of audio. If the energy
is stably maintained over a threshold value that chunk of audio data is deemed to be part
of a word.

In order to perform word matching our system compared audio signals using the dynamic
time warping (DTW) algorithm. (See Figure 2 for an example.) Conceptually the DTW al-
gorithm will match two signals by finding an optimal many-to-one matching between points
in two given time series. This allows two signals that may have experienced local time warp-
ing during their generation to be accurately matched.

The DTW algorithm uses a dynamic programming strategy to find this optimal matching
by first aligning both signals along opposite axes of a matrix. This algorithm then fills in
that matrix with values such that each entry of the matrix contains the distance between

0 T
3000 -] | i
2800 |- | ! I ! //r" ! 4
//
2600 | — .
/
00 - // |] Mel-Scale Triangular Windows
200 | I | 4 0.7 - T
2000 |- | | | -
0.6 q
L, b I I | I I I N
§ 1600 - yd 4
e ¥ 0.5 i
s /
5 100 g o
= 04 i
i [l K
1200 y g
1000 : Z
kL 1
800 |/ 1 1 | . E
600 /1 ! 1 1 I ! ! 1 0.2 .
400 |f—— : ! 1
/ 0.1 b
200 H | | | | | -
0 { 1 1 1 | | 1 1 1 ! 0 L L \ ! | |
0 1000 2000 3000 4000 G000 6000 7000 8OO0 9000 10000 0 20 40 50 30 100 120
Hertz scale Frequency Spectrum Index

Figure 1: The left image contains an illustration of how the Hertz frequency spectrum maps
to the Mel-scale spectrum. [1] The image on the right is the series of triangular windows
used in conversion. Each windows dot product with the DFT spectrum generates one of the
Mel-scale spectrum values. The windows featured convert a 128 point Hz-scale spectrum to
a 16 point Mel-scale spectrum.

30

WK

25

15

10
.

w2 ’

. . s 1wl s

Figure 2: Example of conceptual DTW algorithm execution. [2]

it’s row’s associate value and it’s column’s associated value. Finally the algorithm finds
the minimum weight path from the corner of the matrix corresponding to the beginning of
both series to the opposite corner, which corresponds to the end of both time series. This
minimum weight path consists of entries in the computation matrix that are each connected
to previous adjacent entries either from below, from the left, or from the intervening diago-
nal. The resultant path therefore corresponds directly to the optimal many-to-one mapping
between discrete points in the two given signals.

To efficiently match a new input word with a set of known words each DTW module stores
a trained word in memory and new input words are fed to each DTW module in parallel.
Each module executes the DTW algorithm and reports the distance value of the minimum
weight path found.

To finally determine if a word match occurred the output of every DTW module is given to
a single “judge” module that finds the best reported distance value and determines if that
distance is within some specified threshold. If this is found to be the case, the corresponding
DTW is declared to be the winner for that particular input.

1.0.1 MATLAB Implementation

The preprocessing and DTW algorithm were tested in MATLAB before being implemented
in hardware. The website http://www.speech-recognition.de/matlab-files.html pro-
vided some of the preprocessing employed. This encompassed taking an FFT and then
generating the Mel-scale frequency spectrum. We then added pre-emphasis filters, the cal-
culation of cepstral coefficients, and the DTW algorithm. The pre-emphasis helped with
words that contained fricatives and the cepstral coefficients proved to be a better param-
eterization of audio input. Later during implementation, the MATLAB simulation would
provide an excellent framework for testing how our implementation would work under the
constraints provided by trying to implement the algorithm in hardware.

2 Summary of Modules

Our system was divided into two main components: preprocessing and vector generation,
and word recognition. Each component was subsequently broken down into interconnected
modules, which processed the specified input for that component and produced the output
specified in that components contract. An additional component, system output, was used
to graphically display the function of the system and produce the desired joystick output.

& Ausdio a8 AA_fudio & PE_fudic ¢ Yin_RE
Input Audio Low-Pass Filtar and - Window Applier and Start)
ACHT Downsampler Preamphasis Filter FFT Feeding Buffer 256 point FFT
Ready Slow_Ready Slow_Ready Fit_twel_ir_wa
17 L 3
w = g
£Ve B
7| s &
Mel_WE NeLaddr 7 N
ieo_entry v ag_tkdr
ek Mo Ben O -
. 4 Mag_Data
Wors_Data Mel Buffer 4 Mel Scale Converter - FFT Buffer 1 Magnitude Calculator
" MFJ‘[‘l\a'.a_Oul ¢ L A LAy e &
Bx16 BRAM 5 128x16 BRAM ~
gln 2
5]
= =
B a
Mel Scale
Coefficients End Point Detector
Module
2048x8 BRAM
a
§ ®
i & 2
o g 3
o,

Figure 3: Simplified breakdown of the preprocessing and vector generation component. Mod-
ules communicate through the signals indicated by connecting edges.

2.1 Audio Preprocessing/Vector Generation

The audio preprocessing takes an 8 bit, 48kHz audio signal and converts into meaningful
vectors for use in the DTW system. This conversion chain encompasses an initial filtering
and downsampling stage followed by taking the discrete Fourier transform of a block of the
audio signal. The frequency spectrum generated by the FFT is then converted into a Mel-
scale frequency spectrum and the number of values are reduced to 16. These 16 Mel-scale
frequency spectrum values are the parameters used by the DTW modules to match words.
The energy of the signal is also calculated and is used to determine when a word is being
said into the microphone. Once a block of data reaches the end of the preprocessing chain
a signal is sent to the DTW

2.1.1 Discarding Significant Bits

Many of the calculations performed during preprocessing could theoretically generate much
larger values than they do during typical operation. The discrete Fourier transform, for
example, could generate very large values if the input was consistently a very large value.
This is very unlikely to happen, however. In order to keep the size of the circuitry used
during the calculations down many times during the preprocessing chain significant bits
were discarded. If in the value cannot be represented in the new bit reduced version of the
data, the new data would take the value in the bit reduced form that was closest to what the
old would have produced. That typically means the maximum integer possibly represented
in the new bit reduced version of the data. In many instances the least significant bits are
discarded. The goal is to have most of the information carried in human speech preserved
while keeping the size of the circuit down. The number of bits discarded is controlled by
parameters programmable at runtime. All of the sections with discarded bits have a direct
graphical representation allowing for easy calibration.

2.1.2 Run Time Parameter Control

A set of parameters that affect the preprocessing chain and the word identification are
controlled via the up and down buttons on the FPGA. The parameter to be modified is
selected with a set of switches. These are used to control the discarding of significant bits,
the threshold levels for what is considered a word and the timing values associated with word
identification, and the threshold values for word matches.

2.1.3 Low Pass Filter and Downsampler

The low pass filter is a 31 tap digital finite impulse response (FIR) filter. It is set to
filter frequencies above 3.7 kHz which is above the range of normal human speech. The
coefficients were generated using matlab and then scaled by 2'° and rounded in order to

make the coefficients integer values. The incoming 8 bit 48 kHz signal from the AC 97
microphone data is sent through the low pass filter and then is downsampled to 8kHz by
taking every 6th value. The data is then passed to the pre-emphasis filter.

2.1.4 Pre-emphasis Filter

The pre-emphasis filter amplifies higher frequencies relative to lower frequencies in order to
have the DFT spectrum better reflect the human response to audio because we perceive
higher frequencies as louder relative to the energy in the signal. This is also a FIR digital
filter. The coefficients have the form 1 — /a for a € (0,1). For our use o ~ 2/5. The
coefficients were scaled by 22 and rounded. These were then fed to the Window Applier.

2.1.5 Window Applier

The window applier repeatedly applies a Hann window to the incoming data to reduce
leakage in the FFT. This multiplies incoming audio data by coefficients representing the
window stored in a ROM. In order ensure it is synchronized with the buffer feeding the
FFT, the window applier is reset whenever the FFT buffer sends data to the FFT.

2.1.6 FFT Feeding Buffer and FFT

The FFT feeding buffer stores incoming samples until it has 256 8 bit samples. At this point
it stops receiving data, sends the appropriate control signals to the FFT and then dumps
all the data in the buffer to the real input in the FFT. The FFT used is a Xilinx Logi-
CORE IP Fast Fourier Transform. For the specifications on this see http://www.xilinx.
com/support/documentation/ip_documentation/xfft_ds260.pdf The module used is an
8 bit, 256 point FFT with 16 bits for phase information. It uses the radix-2 burst mode and
truncated rounding. For more information on this topic see the documentation at the URL
given above.

2.1.7 Magnitude Finder

The magnitude of the complex numbers exiting the FFT was found through a pipelined
calculation that squared the real and imaginary values, added them together and then took
the square root. The square root was calculated using a large look up table that could accept
numbers as large as 12 bits. It returned 4 times the square root of the number in order to
provide slightly better data for output. The values exiting the magnitude finder were passed
to two block RAMs. One stores data to accessed by a display module. The other stores data
to be accessed by the Mel-scale spectrum calculator.

2.1.8 Mel-scale Spectrum Calculator

The Mel-scale spectrum calculator is meant to take the 128 unique values coming out of
the magnitude finder representing the frequency spectrum of the incoming audio data and
convert it into 16 numbers representing the Mel-frequency spectrum. The Mel-frequency
spectrum reflects how humans perceive sound.

If we consider the 128 value data as an incoming vector, then this was accomplished by per-
forming the dot product of the incoming vector with 16 vectors that are triangular windows
spaced such that they produce the desired Mel-scale spectrum. The 16 values are stored in
three buffers. One to be used for a graphical display, one to be sent to the DTW modules
and one to be sent to the Cepstral coefficient generator.

2.1.9 Energy Finder and Word Detector

The energy is found using the same hardware as the Mel-scale Spectrum Calculator. Instead
of feeding in a vector representing a triangular window, however, it sends in two versions of
the 128 point frequency spectrum. Their dot product is the energy. The energy value is then
used to determine if this segment of audio is part of a possible word. If the energy is above a
certain threshold value for a set number of incoming energy values then it is deemed a word.
If it drops below that energy value for another set number of incoming energy values it is no
longer deemed a word. These delays exist to ensure that multisyllabic words are counted as
one word.

Once the Mel-scale values are calculated and whether they are part of a word is determined
a signal is sent to the D'TW modules signalling that a new block of data is ready.

2.1.10 Cepstral Coefficient Generator

During MATLAB simulations before implementation cepstral coefficients were found to be
a better parameterization of the audio data. In our hardware implementation the Mel-scale
spectrum values proved to be a better parameterization. This is partly due to instabilities
in the phase of the cepstral values. Calculating cepstral values involved taking a square root
of the Mel-scale spectrum values and then taking the real part of the output of an IDFT. A
vestigial graphical output of them exists.

2.2 Word Recognition
2.2.1 Master

In the original design of our the word recognition component we used a master module to
control all of our DTWs and maintain synchronicity in starting their execution. However

DTW1

SouEIEIT LML

aung” 1aLa

Word_Daza

DTW_Salact a OTW_pses
AT N T2 Distance %
\13\]

I word p
DTW2 6 Judge

Rarorring OTW_win
P W - N DTw2_Done ;Tb
4

sU00 CALA

BRSO EMLD

_— ¥ DTW3

Ward_raady

Veg_enlry 4 -

Slart

Master

Figure 4: Simplified breakdown of complete word recognition component. For compactness
only a 3 DTW system is shown here; the final system used 15 DTW modules connected

similarly.

10

a redesign of the DTW implementation to stream the computation for matching of a new
input signal removed the need for this master module, as all DTW modules could listen to
the same data bus from the vector generator and manage themselves individually.

There was need for a simple module that acted between the Vector Generator and the jury
(the array of 15 DTW modules.) The Vector Generator produced new vectors by filling in
a small BRAM and generating a signal when that BRAM had new data available. In order
to satisfy the input specifications of the DTW module an additional module was needed
to access the values stored in this BRAM such that it would return its data to the DTW
modules according to their specification. In addition this module needed to generate the
appropriate word _ready signal for those DTW modules. Fortunately a similar module was
necessary for unit testing the DTW module, so this module was modified and used as a
simple “master” module to deliver new data to all of the DTW modules simultaneously.

2.2.2 DTW

The primary module in the Word Recognition component was the Dynamic Time Warping
(DTW) module. This module received input from the Vector Generation component via the
Master and performed one of two functions. In the training mode the DTW module would
record the input it had received, treating that input word as training data. In the testing
mode the DT'W module will process incoming data as a word sample against which it should
attempt to match.

Inputs and Parameters Parameter ID: Unique identifier for each DTW module. It is
assumed that all DTW ID’s are greater then 0.

Input word_data: Bus containing word data, delivered in a packet of 16 8-bit values
sent in succession for each vector.

Input word_ready: 1 clock cycle pulse that indicates the availability of new data (the
first entry in a vector) on the word_data bus.

Input in_word: Level signal to indicate a set of contiguous vectors that compose a single
word.

Input dtw_select: Bus indicating which DTW is currently being trained, or 0 when
DTWs should attempt to match new input.

Input recording: Level signal indicating when the selected DTW should attempt to
store an incoming word as a training sample.

Word Storage
2048x8 BRAM
5 gl g =
] £ =| %
= = z
" B B
Worrd_Data
Ward_ready :] DTwx_Distance
In_woird 8
—_— DTW Control
DTW_Sebazt
;.T. —_—
Resarding 4 OTWx_Dane
—'
i p 8
£ i g n
z 1
i- o g §.
5 E 3 £
< L5 bl
B -] 36

Computation Matrix

256x36 BRAM

11

Figure 5: Simplified breakdown of DTW module. This module interfaced with two BRAMs

using control logic that possessed two modes of operation: training and testing.

12

Components and Operation The DTW module has two modes of operation: training
and testing.

Each DTW module contained a BRAM for storing a new training word. This BRAM was
capable of storing 128 16-entry vectors of 8-bit words. The Vector Generation component
produced one such vector for each time slice of input data in a word, and because each
vector represented approximately 32 ms of input data a full BRAM would corresponded to
a maximum word length of 4 seconds. This corresponds to a very long word; most words
examined during testing consisted of at most 24 samples. Therefore, for simplicity, we de-
cided not to concern ourselves with potentially overflowing this training word storage BRAM.

To control this training word BRAM, each DTW possessed a small amount of recording con-
trol logic. This logic examined to determine if the DTW was currently selected for training,
(dtw_select equaled the DTW’s ID) the user was recording, and the in_word signal was high.
If all of these were true, then new word data received, packets of which were indicated via
the “word_ready” signal, were stored in the training word BRAM. If the word ended and a
new word began while the “recording” signal was engaged, the latter word would overwrite
the first word, allowing the user to retrain a single DTW without imposing a full reset of
the system.

When the DTWs were not engaged in training mode (dtw_select was 0) new word data
would be processed in testing mode. In this mode the DTW module evaluated one row of
the computation matrix at a time. When the DTW module received a complete vector it
would treat that vector as the next value in the testing input, and compute the distance
between that vector and every stored vector in that DTW’s trained word. Meanwhile the
DTW module would use the previously computed row of values to determine the distances
of the minimum weight paths to each cell in the new row, and subsequently combine those
path values with the distances associated with entry to compute complete path length values
for the new row.

At the end of this computation the weight of the minimum weight path to the final cell
examined corresponded to the minimum weight path in the complete matrix for the word
received thus far. Therefore if the in_word signal went low after this vector, indicating the
end of the word, the DTW module may simply return this last computed net distance value
and indicate that it had completed.

This strategy for computation had a number of advantages. Because the DTW computation
for each row depended only on the previously computed row in the computation matrix, only

13

two rows of this matrix had to be stored at any time. Because each new vector was received
at least 32 ms apart, an entire row of the DTW computation matrix could be computed
before the reception for the next vector. This removed the necessity of our algorithm to
store an entire word for matching purposes, and allowed the DTW modules to return almost
immediately upon receiving a signal of the end of the word (in_word going low.) The end
result of this strategy is therefore increased efficiency and a smaller memory requirement
for each DTW. These optimizations to the DTW module were important, since we were
planning on using a large number of DTW modules (15) and desired low latency from our
system.

2.2.3 Judge

The judge module took distance values and completion signals from all DTW modules and
determined which of those DTWs successfully matched the last input word. The judge uti-
lized two metrics to determine if a match was found. First it examined all distances returned
by the DTW modules and examined if they were below some pre-specified threshold value.
Second, if examined the distance from all DTW modules to determine which was gave the
smallest distance.

The judge module produced two output signals. First it produced a bus of values indicating
which DTWs had produced a distance value that was within the specified threshold. Second
it produced the ID of the “winning” DTW, where a DTW could only win if it produced the
smallest measured distance of any other module and that value was less then the specified
threshold. This output was subsequently processed by the DTW display modules and the
joystick module, or “executioner,” to produce the desired output to the user.

2.3 System Output

Our system had two forms of output. First, to visually observe its processing and for
debugging purposes, we incorporated a number sprite modules to print pertinent data to the
display. Second, we incorporated a joystick interface module to translate word recognition
into joystick button presses and to interface with a computer as a joystick.

2.3.1 Bar Graph Display

The hertz scale frequency spectrum values, the Mel-scale frequency spectrum values, and the
Cepstral coefficients are all displayed on a VGA display. They are displayed as bar graphs
that update everytime a packet of audio data is sent through the processing chain. They are
implemented as sprites that are sent a pixels position and return the color one clock cycle
later. The heights of the bars are stored in a BRAM that updates during the vsync pulse.

14

2.3.2 DTW Display

For debugging and visualization purposes, each DTW was connected to a display module
that would display pertinent data concerning the DTW. Each DTW display module dis-
played the DTW’s ID and associated distance value. The DTW displays were clustered
based on the intended usage pattern of our system, where three DTW modules would be
trained for each word.

This text display would assume a different color depending on the status of that DTW’s
output, as determined by the associated DTW module and the judge. If the DTW was pro-
cessing (dtw_done was low) the text for that DTW would be displayed in white. Otherwise, if
the judge had determined that DTW’s distance value had failed to beat the stored threshold
value, this text would be displayed in red. If the distance value returned by the DTW was
within the threshold limit, the display for that module would be colored cyan. Finally, if the
judge determined that the particular value produced by a DTW was within the threshold
limit and was the best value of those returned by any DTW module, that DTW’s display
would display green text, indicating the winning module.

2.4 Joystick Output

Joystick output is generated following the protocol used by Playstation 1 controllers. This is
a basic serially protocol done over four data lines. All of the incoming data was sent through
a debouncer before interacting with the controller circuitry. With the modification of a few
timing parameters the communication protocol will also work with a PS2. To interface this
to a computer we relied on a freeware program named PSX Pad. For more information on
the protocol see http://users.ece.gatech.edu/~hamblen/489X/f04proj/USB_PSX/psx_
protocol.html.

3 Testing

A series of tests were performed to debug and examine the effectiveness of our system. First
each component was tested through a series of unit tests and component-wide integration
tests. Once both components were found to be working properly they were combined and
full system integration tests were performed. Finally we performed controlled experiments
to examine the effectiveness of our algorithm and gameplay tests to examine its performance
in an example application.

3.1 Unit Testing

We performed individual unit testing on the preprocessing and word recognition components.

15

3.1.1 Preprocessing

The coefficients for the two filters were first tested on simulated audio data in MATLAB.
The actual Verilog implementation was then tested with simulated audio data in Modelsim.
The window applier was tested by generating canned input and viewing the output on a logic
analyzer. The FFT feeding buffer was also sent predetermined data and then the output
was observed to make sure it met all the timing specs of the FFT and presented the proper
data. The Xilinx FFT was given a few delta pulses with known responses in order to test
correctness. The magnitude finder was tested with a set of inputs. The hardware used to
implement the Mel-spectrum calculator was tested with Modelsim.

3.1.2 'Word Recognition

The most complex module in the Word Recognition component was the DTW module it-
self, so it in particular was subjected to a substantial amount of careful testing. The DTW
module was first simulated using ModelSim in order to ensure the correct synchronization
of internal signals for accessing the storage and computation matrix BRAMs as well as for
performing the computation pipelines to execute the DTW algorithm.

Once these signals were verified the DTW module was tested on the FPGA itself. A simple
module that would eventually become the Master was created to access preloaded BRAMs
of values and feed their contents to the DTW modules according to their specification.
These preloaded BRAMSs were loaded with specific values to examine different aspects of the
DTW’s execution. For example, two identical BRAMs were used for training and testing of
the DTW module to ensure that the distance produced was 0. More complex sets of training
and testing BRAMs whose distance value according to DTW was known were also tested to
ensure the correctness of the computation.

Finally the Judge and DTW Display modules were connected to a single DTW module to
verify the correctness of both of these modules and the word recognition component as a
whole. We first tested a complete word recognition component that incorporated a single
DTW module. Once the proper functionality of this setup was observed we connected more
DTW modules to the system and verified their parallel functionality.

3.1.3 Experimentation

We performed a few tests to gain a sense of the error rates of our system. Two sets of tests
were performed; one where each DTW trained stored a unique word, and one where sets of
three DTWs were trained per word. This initial set of tests examined the performance of the
algorithm itself, while the latter tests examined more closely the performance of the system

16

as we planned to use it in gaming applications.

To complement our initial Matlab tests between the words “taco” and “fish” we examined
our system’s recognition of these two words. Each word was uttered 10 times, and the
number of matches for each word was recorded. The vertical chart of the following graph
describes the two words trained into the system, while the horizontal axis describes the word
being used to test.

’ Trained Word \ fish \ taco ‘

fish 10 0
taco 0 10
As expected based on our initial experimentation with Matlab, our algorithm was able to
effectively distinguish the words “fish” and “taco,” scoring perfect results.

We then subjected our algorithm to two more challenging tests. First it’s ability to dis-
tinguish “pot‘ay’to” from “pot‘ah’to,” and results given below were found. Again, for the
results below, each word was uttered 10 times, and the number of matches for each trained
is recorded; missing entries indicate instances where the utterance failed to match any word.

’ Trained Word \ pot‘ay’to \ pot‘ah’to ‘

pot‘ay’to 9 0
pot‘ah’to 1 4
In these tests we found significantly more errors on account of the significantly more similar
words. One false positive was discovered, and the system had difficulty matching pot‘ah’to
many times. The higher word similarity is the most likely cause of the mismatch discovered.
The failed matches are probably due to a sub-par training recording or the pre-emphasis
filter, which amplified the higher frequencies in an attempt to make our system better able
to handle fricatives.

The final algorithmic test we attempted, and arguably the most difficult, attempted to dis-
tinguish the words “alpha,” “bravo,” “charlie,” and “delta” from each other. In this case
each word was uttered 5 times, yielding the results depicted below.

’ Trained Word ‘ alpha ‘ bravo ‘ charlie ‘ delta ‘

alpha) 1 0 3
bravo 0 4 0 0
charlie 0 0 2 0
delta 0 0 0 2

This test demonstrated some significant problem areas in our algorithm. First, our algorithm
had difficulty detecting the utterance of a fricative, due to the high-frequency low-magnitude

17

nature of fricatives. This accounts for the lack of successful matches with the word “charlie,”
since that test point starts with a fricative-like sound. This test also compared two words
that sounded very similar: “alpha” and “delta.” Unsurprisingly our algorithm had diffi-
culty distinguishing such similar words from each other, matching each word approximately
equally when the uttered word was “delta.” This may be due to the soft or quiet nature of
the initial consonant, which may not have been detected by our system in many cases.

To combat high error rates when used in practical applications we decided to operate
our system with 3 DTWs trained on 3 instances of each word. We conducted similar error-
rate tests with this modified configuration, using words of more pertinent interest to the
system’s intended use. In both of the tests described below, each word was uttered 10 times
in testing, and a word match was counted if any of the DTWs associated with some word
successfully matched the input. First we examined the error rates when given the words
“up” and “down.”

] Trained Word \ up \ down ‘

up 10 0
down 0 10
Next we examined the error rates when given the words “left” and “right.”

’ Trained Word \ left \ right ‘

left 9 1
right 1 9
With this modification to the application of our algorithm we were able to achieve substan-
tially better error rates on words we expected our system to handle. This result demonstrated
promise for our system to effectively recognize words in a gaming setting.

3.1.4 Gameplay Testing

Thanks to a once flourishing emulation community on the internet there is software that
translates joystick input into mouse or keyboard input. This means that the joystick input
generated by the hardware can be used for a large number of tasks on the computer. We
tested the input with two different uses. The first use was using the joystick input on the
computer to control NES games on an emulator. Because of the slight delay inherent in the
voice processing complete control of the games proved to be problematic. Using the input
to supliment the controls already was a much better idea. Mapping the word “away” to the
button that launches bombs in 71942 for example. That way when you say “bombs away” it
actually happens.

We also used the input to drive a very simple python script that, when it received certain

18

joystick input, played an audio file with “do doo do do doo.” Training the speech recognition
system on “Mahna Mahna” allowed us to reenact that bit. If you have no idea what I am
talking about see http://muppet.wikia.com/wiki/Mahna_Mahna_(song).

4 Conclusion

We implemented an isolated word speech recognition system in hardware. This system
processes raw audio data using Mel scale values and matches words using the dynamic time
warping algorithm. We have successfully demonstrated this systems capability to distinguish
many words from each other, through use of our algorithm and through the use of multiple
DTW modules trained on the same word. Finally we implemented a joystick interface to our
speech recognition system that allows it to interface with an existing computer and execute
joystick button press commands through word recognition.

Our system works well at distinguishing dissimilar words from each other. However there are
a number of points in which recognition does not work as well. Words that begin or end with
fricatives often have difficulties on account of the high-frequency nature of fricative sounds
failing to generate sufficient energy for the system to detect. In a future implementation
we may attempt to combat this effect with a pre-emphasis filter that amplified higher fre-
quencies, although initial testing with such a filter tended to increase these higher frequency
values too much, hurting the system’s ability to match words.

Very short words tend to match much more frequently, since the dynamic time warping al-
gorithm will tend to find a good matching with such short inputs. We attempted to combat
this effect by adding a small punishment value for matching words of dramatically different
lengths, but properly calibrating this punishment value proved tricky on initial implementa-
tion.

In general we found that our algorithm was effective at matching words and identifying the
correct word from the best distance value. However reasonable threshold values were difficult
to determine, and different length words often needed different threshold values. Dynamic
threshold values based on word lengths may be useful to implement to improve our system’s
effectiveness in the future.

As mentioned previously Matlab tests indicated that cepstral coefficients would be more
effective for speech recognition applications then mel scale values. We attempted to imple-
ment this feature, but due to phase instability in the inverse FF'T output we were unable to
make effective matches on these values. Future work should investigate this instability and
attempt to counteract it to provide more effective matches.

19

Overall our system worked reasonably well at isolated word speech recognition. We were
successful in applying a joystick interface to our speech recognition system that allowed us
to play games and perform a variety of tasks on a computer using a voice interface. There
are a number of areas in which our speech recognition system could be improved, but our
system overall achieved reasonable success.

20

References

[1] http://en.wikipedia. org/wiki/Mel_scale. Images of Mel Scale borrowed from
wikipedia. November 2008.

[2] Keogh, Eamonn and Michael Pazzani. Derivative Dynamic Time Warping. Example im-
age of DTW execution borrowed from this paper. November 2008.

