Daniel Gerber
Tynan Smith
10/30/08
Poke Kirby with a Laser
Project Proposal and Block Diagram

Our project will be a hardware-implemented game. Specifically, it will likely be
a multiplayer combat game featuring Kirby, but the rules and details of the game will be
decided at a later time. Players will control the game through laser and keyboard input.
Each player will wield a laser pointer that will be pointed at a location on screen. Control
of the player’s character will involve keystrokes followed by laser pointer gestures. The
gestures will be processed and recorded and the character’s actions will be dictated by the
combination of these inputs.

This project will require five high level modules. Each of these five high level
modules will very likely require several of their own modules as well. The five high
level modules are the video analyzer, the gesture processor, the game logic, the keyboard
input processor, and the graphics processor.

The video analyzer will take input from the camera’s NTSC signal. This module
will then produce five outputs. The first two outputs are the x and y pixel coordinates of
the red laser dot and the other outputs are the x and y pixel coordinates of the green dot.
The fifth output will be a simple ready signal that will be used by the gesture processor to
synchronize with the video analyzer module. The video analyzer will ultimately receive
several pixels of the red dot and the green dot since each dot will be several pixels in
diameter. In addition, to average the pixels of the dot in order to find its actual
coordinates, a divider will be required. However, it is easy to divide by powers of two,
so we will likely just take the first four or eight pixels of that color that have been
detected and shift the sum of the coordinates by the appropriate power in order to average
the coordinates. The video analyzer will know whether a dot is not on the screen if it
does or does not receive enough pixels of the expected color. Its output for that color’s
coordinates will be the highest possible output for that coordinate, and will be
appropriately interpreted by the gesture recognizer as no dot. The coordinates of each dot
will also be sent to the game logic for the purpose of pasting a target on screen and other
such functions.

We believe that ultimately, we will not need to store the entire video frame in
RAM for each frame that comes from the camera. We can probably intercept the input as
it comes in and convert it into pixel data. From that, the module will increment a counter
if it 1s red or green, save the coordinates, and then discard the pixel data altogether. This
module will be tested first by outputting the video input to the monitor. After that, we
will try to get the hex display to output the coordinates of a laser pointer. We will test the
laser on white paper first because it will have a good contrast and very little interference.
It has already been decided that Daniel Gerber will work on the video analyzer module.

We are currently planning on implementing the gesture recognition module as a
fairly complex FSM. There will be one copy of the module to analyze the green laser and
one copy to analyze the red laser. Each module will take as input the ready signal and

coordinates from the video processor as well as certain inputs from the keyboard. It will
produce as output the detected gesture, a ready signal, and the relative speed of the
gesture to the game logic which will use the input to control the characters. The gesture
module will have two main components. The first component will be an FSM that uses
successive coordinates to determine the motion of the laser in small chunks. The second
component will look at the series of motions made and determine if a valid gesture was
formed and send the appropriate signal to the game logic.

Whenever a ready signal is sent by the video processing module the first gesture
module will grab the next set of coordinates. It will start in a default state of no gesture
being input and will wait until valid coordinates are given. Then it will transition to a
state where it will save the last few coordinates (a number yet to be determined) and
analyze their motion until it determines the initial motion of the laser. At this point it will
enter the main states of the FSM where it keeps a buffer of the last few coordinates given
and looks at the motion and changes states based on the motion. The motion will be
divided into 24 possible categories/states two each for the two possible directions of
motion of the following possible paths: horizontal line, vertical line, 45 and 135 degree
diagonal line, four quarter circles in vertical/horizontal orientation, and four quarter
circles rotated by 45 degrees from the other four. The state machine will look at the
motion and the current trajectory to determine when the coordinates have differed from
the current trajectory and onto a new one. This will involve a fair amount of arithmetic,
particularly calculating distances and vectors, but shouldn't take an excessive amount and
shouldn't use too much memory. As the state machine changes states it will save a history
of the states. It will also have a counter that keeps track of how many coordinates have
been given since the start of the gesture. A gesture will be completed and the FSM will
return to the original state when the laser pointer leaves the screen (invalid coordinates
are sent) or when the laser stops moving (the distance between coordinates is less than
some threshold for some amount of time as indicated by another counter). There will also
be a maximum number of states that will be recorded, at which point the gesture will also
be terminated. When the gesture is determined to have ended, the recorded segments of
motion, as well as the number of coordinates in the gesture will be sent to the next
gesture module. A ready signal will tell the next module to start processing the given
data.

The second gesture module will analyze the series of segments given by the FSM
gesture module and compare them to sequences of segments that correspond to gestures.
It will use a little bit of error minimization logic to determine the most likely gesture if
there is no perfect match. This logic will take into consideration extra motion at the
beginning and end of gestures, misinterpreting similar segments, and similar things. If no
gesture is a close match, the data will be disregarded. If there is a match then the relative
speed of the gesture will be determine by comparing the number of coordinates it
contained to certain thresholds. The gesture and its speed will then be sent to the game
logic and indicated by a ready signal. Both gesture modules will be created by Tynan.

The game logic module will take four coordinate inputs from the video analyzer,
some number of inputs from the keyboard module, and three inputs from each gesture
module. Its outputs will be the x and y coordinates for all of the sprites. The role of the

game logic is to synthesize all of the inputs to the game and calculate where the objects in
the game should be, what they should be doing, and what their status should be. This
module is where all of the game programming will be. The rules of the game have not
yet been decided, but it will probably be a combat game with each player controlling a
different character. The game logic will position the sprites based on internal variables
and inputs and will output these positions. All of these internal variables can probably be
stored in registers. All of the calculations will probably involve nothing more than a lot
of signed addition and comparisons (for collision detection). To test the game logic
module, we will use the hex display to output various internal variables. If the sprites
have been developed and tested properly, we can even test the game logic on the monitor.
Tynan Smith will program the game logic module.

The keyboard module will handle keyboard input and will send it to both the
game logic and the gesture modules. This module may already exist, but it will probably
have to be modified slightly in order to make it output the proper signals for our project.
Its input will be from the keyboard itself. Its output may be the keyboard data, or it may
be a simple number. This module will not need to store anything in memory and it will
not involve any intensive calculations. Testing of this module will involve simply
outputting the key pressed to the hex display. Daniel Gerber will program the keyboard
module.

The graphics of the game will be implemented through sprites. We will start with
simples sprites so we can start working on the game logic at the same time, but will
simultaneously develop more complicated sprites. The current plan is to have the good
guy be Kirby and the bad guy be King Dedede. There will also be some sprites that
describe the level, and sprites that describe projectiles. We have not fully decided on the
content of the game so we don't exactly know how many sprites there will be. We will try
to make some fairly generic sprite modules that use pictures stored in memory or simple
color blobs. We will likely chain the modules together to determine the ultimate color of
each pixel and we will have to pipeline this as a result. Daniel Gerber will program all of
the modules that display the sprites.

In addition to the labkit, we will need a red laser pointer (which we think we
already have), a green laser pointer (which we will likely need help finding) and some
plastic to put on the screen to reflect the laser dots. The plastic should be fairly cheap. If
we can find someone to borrow the green laser pointer from that would be best because
those tend to be fairly pricey.

In conclusion, our game will be loads of fun to play and to create and it will blow
Harley and Rajeev's project out of the water!

The twelve possible basic segments recognized
by the gesture recognition FSM

/\(—\
NP2
N\

Red: X, Y v
o Segment _ Gesture |
. Video ready £ FSM Analyzer
Analyzer
| y
Green: X, Y Segment Gesture |
" FSM | " Analyzer
Video
Input ‘
Green: Gesture, Speed,
Ready
, Red: Gesture, Speed, Read
Keyboard > Game Logic -
: Sprites and Vid
Keyboard » Graphics —» OI teot
o Modules Hipu

y

