
  

Kirby 
vs 

King Dedede
(super ultra laser attack game)

Daniel Gerber
Tynan Smith



  

Segment
Analyzer

Pattern
Analyzer

Video
Analyzer

Segment
Analyzer

Pattern
Analyzer

Red: X (10),
Y (10), done

Green: X (10),
Y (10), done

ready

Green: Pattern (5), Speed (2), Ready

Red: Pattern (5), Speed (2), Ready

PS2
Keyboard

Sprite
Modules

TV input 
ycrcb (10)

Video
Modules

X scale (3), Y scale (3),
X coord (10), Y coord (10),
Sprite ID (ceil(log2(#sprites))), 

X coord (10), Y coord (10)

Color (9)

vsync

Keyboard Input

Video Input

Video Output

Game LogicGame Logic



  

NTSC
Decoder

Modified
NTSC to ZBT Pipeline

Output Submodule:

If(rgb == red, reddone == 0)
redx = x;
redy = y;
reddone = 1;

If(rgb == green, greendone == 0)
greenx = x;
greeny = y;
greendone = 1;

If(x == 1024, y == 768)
ready = 1;

Else
ready = 0;

If(x == 0, y == 0)
reddone = 0;
greendone = 0;

TV input 
ycrcb (10)

Video Input

F, V, H,
Data Valid

Ycrcb (30)

ycrcb2rgbycrcb2rgb

Y (10)

Cr (10)

Cb (10) R (8), G (8), B (8)

X (10),
Y (10)
Data Valid

X (10),
Y (10)
Data Valid

To 6.111 ZBT

Address (19),
Data (36),
WE

To Game Logic
And Gesture Modules

Redx, Redy, Greenx, Greeny,
Ready, Reddone, GreenDone



  

Gesture Recognizer

0000

0001
0011

0111

1111

1110
1100

1000

Segment Encoding
0010 - Stop
0100 - Start

The segments are encoded such that the 
more similar the segments, the less the 
hamming distance between the encodings. 
This is used in our simple heuristic for 
computing score to take into account 
misinterpreted  segments. Additionally 
special encodings indicate the start and 
stop of a gesture, that way if we get as input 
many segments fewer or more than the 
length of the gesture we can take this into 
account in our score.Segment Determiner

Looks at the displacement between successive points, if they are far enough apart then count 
them, if they are not see if the gesture has ended. Every few points check the total movement 
and determine the segment, if we have enough of the same segment in a row, send this segment 
to the pattern determiner.

Pattern Determiner
Each gesture has its own module with a ROM storing the list of segments 
expected for that gesture and a register keeping track of the number of 
segments seen so far in the current gesture. Each time a new segment 
comes in we compare it to the expected segment (as well as previous and 
next segments in case one was dropped or added) and the score is 
updated. The maximizers update the current best pattern and if a stop 
segment is received we let the final score update and then compare it to a 
threshold. If a pattern matched sufficiently it is sent to the game logic.



  

Segment Determiner

Registers:
● ~8 signed 11 bit registers for storing 

point data 
● ~6 4-6 bit registers used for counting
● 1 ~20 bit counter used for speed

Computation:
● 2 signed 11 bit multipliers
● ~ 15 signed 11 bit adders/subtracters
● ~ 10 4-20 bit adders/subtracters
● ~ 4 right and left bit shifters

Time:
● ~ 10 clock cycles to analyze each 

coordinate pair

Scheduled Completion:
● In the process of testing initial verilog

modules in ModelSim
● Expect to be done with testing by 11/17
● After that will modify as necessary to 

work with actual video data once that 
module is ready

Gesture Recognizer
Pattern Determiner

Time:
● ~ 8 clock cycles to analyze each 

segment 

Scheduled Completion:
● In the process of testing initial verilog

modules in ModelSim
● Expect to be done with testing by 11/17

Clock Reset Clock Reset

Speed

Ready

Segment

Ready

Speed

PatternX coord

Y coord

Ready

10

10

4

3

3

6

Patterns
Each pattern will 
have its own module 
that will take as input 
the segment and 
ready signals.

Registers:
● 1 5-bit reg that 
 counts segments

● 4-bit x 32 ROM that
stores the pattern

● 1 10-bit reg for score

Computation:
● ~ 5 10-bit adders 
● ~5 10-bit shifters
● ~5 bit counters

Maximizers
A series of two 10-bit 
input maximizers will 
take the scores from 
the patterns and find 
the highest one. 

Registers:
● 1 6-bit reg that 
stores pattern

● 1 10-bit reg for score

Computation:
● ~ 1 10-bit subtracter

10

6

Score

Pattern

The gesture recognizer analyzes the coordinates of the laser in real time, decomposing it into 
straight line segments. These segments are then analyzed in real time by modules representing 
each possible gesture, simple heuristics determine the score and are used to pick the matching 
pattern.



  

Game Logic
Input
● Red and Green coordinates, gesture and speed
● Keyboard input used to control players
● Vertical sync from the video output module

Output
● The position and size of every sprite

Registers
● Registers to keep track of the position and speed of every sprite
● Registers to keep track of player data (health, state (jumping etc.))

Computation
● Movement, and animation (changing sprites) of sprites – signed addition
● Collision detection for sprites – comparisons – signed addition, possibly multiplication for circles
● Simple physics (gravity, friction), counting etc. - signed and unsigned addition 

Time
● Each new frame will be computed while the current one is being displayed with the new outputs stored in 
registers. When the vsync indicates that we are no longer drawing the current frame then the new outputs will 
be sent to all the sprites. We will have an entire frame to compute the next frame and sense the logic will be 
fairly simple and can be done in parallel we foresee no issues with completing the computations in time.

Scheduled Completion
● Upon completion simple functional versions of the video analyzer, and gesture recognition module, we will 
begin to work on this module. We will also update the related modules as necessary (add sprites, gestures 
etc.) until the game is really really awesome!



  

From Game Logic

X scale (3),
Y scale (3),
X coord (10),
Y coord (10)

Sprite 1.1

Sprite 1.N

Sprite 1.1

Sprite 1.N

Sprite 1

Sprite N

Color (9)

XVGA

To Game Logic

Vsync

Video Module

Hcount (11),
Vcount (10),
Vsync, Hsync,
Blank

X coord (10),
Y coord (10)

To VGA

PVsync,
PHsync,
PBlank
Color (8)



  

Schedule

Nov 9 – 15: Tynan: Complete testing of verilog gesture recognition 
modules, Dan: complete initial detection of one laser dot on white paper

Nov 16 – 22: Tynan: Implement gesture recognition with existing video 
system, Dan: complete video system to work with two dots on screen

Nov 23 – 29: Tynan: Finish deciding on overall game mechanics and 
begin game logic structure, Dan: Begin work on sprite and video output 
system

Nov 30 – Dec 6: Tynan: Finish game implementation, Dan: finish sprite 
implementation and all sprites

Dec 6 – Dec 8: Both: Finish writing up paper, tweak game as necessary 
and add awesome features, play game and celebrate being done


	Slide 1
	PowerPoint Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

