VOICE-CONTROLLED CHESS GAME ON FPGA USING
DYNAMIC TIME WARPING

Varun Chirravuri, Michael Kuo

Project Abstract

Most modern digital chess games employ a mouse and keyboard based user
interface. We change this paradigm by designing an FPGA based, voice-controlled,
chess game. We will train the game to recognize specified voice commands from the
players. We will use dynamic time warping to compare real-time speech samples to
the trained command templates to determine what move a player wishes to make.
The game will be displayed on a VGA display with all the functionality of a standard

chess game.

Table of Contents

VOICE-CONTROLLED CHESS GAME ON FPGA USING DYNAMIC TIME WARPING ..covveueerssrssessasenss i
8 O [T oL AN] 0 - Lot PPN i
0T 0] ST 1o TP iv
L0723 4 (TP 1
Audio Recognition HarAWarreeimmeeisseesssssssess 1
CRESS HATAWATE ...eerceereeeeeseesseesseessesssesssesssssessesssss s s ssse s sssas s ssse bbb sssanes 2
KEYDOArd INPUL...couuiereresrerseeesssssssesssssssssesssssssssessssssssssssssessssssssssessssssssssessssssssssesssssssssssssssssssaeses 2

08 =T 0 0T 0o PPN 2
GraphiCSs ENINE ..couceeiereeeiressessssessssessssssssssessssssssssesssssssssssssssssssssessssssssssesssssssssssssssssssssessssssssanees 3
D133 1 010 (0) o 3
INPUL s 3
Audio Recognition HarAWaAre........eeemeeesssssssssssessssssssssssssssssssssssssssssessssssssssessssssssssssans 3
DTW SyStem CONEIOILET....uieeerierecereeseesesseessseseesesssesssssssssss s sssesans 4
Dynamic Time Warping ENGINeS........cnneneseesesessesssesessessssssssssssessssssessesssssssans 7
Valid CRECKET ..o ss s ssseneas 10
Finite Impulse RESPONSE Filteromienreenneineiseeseseessessessssssessssssesssssssssssssssssesssssees 11

Y 0o 00333 =T ot o) o TSP 11
CheSS HATAWATE ...eevceeeeeeereeseesseesseessesssesssssessessssssssessssssssessssssssessssssssessssssssessssssssssssesssessssesssessssees 12
KEYDOATd INPUL....cuiieeetsseisseesssesssssssssssssses s ssnes 12
KEYDOATA ENTIY wuceieerrierctssesscsssssssesssens 12
Keyboard ENCOAET ... nesssnes 13
CRESS ENZINE ..eeiceeceeeeeeesseesreesseesseeessesssesssesssesssessssesssessssesssessssssssassssssssssssessssesssessssssssessssssssesssnees 13
ChESS ENZINE ..eeieeeeeneeeeesseesseesseeseeessessseessesssesssessssesssesssssssssssssssssasssssssssssseesssesssessssesssessssssssesssnees 14
MOVE CRECKET .ereeeeeeeeeeeseesreesseeseeessessseessess s sess s sssss s ss s s s s es s s s s sssssesssnees 15
GIaphiCS ENGINE ...coeeeeeereeerresseesreesesseeessessssessesssesssesssssssssssssssssesssessssasssessssssssessssesssessssssssesssnees 16
CheSSDOArA DIAWETceueeeeeneeseeesseeseeessensesessesssesssessssssssessssssssesssssssessssssssessssssssssssessssesssesssnees 16
CheSS PlECES DIAWETceueeeeeueeseeessensseessesssssssessssssssessssssssesssessssasssessssassssssssesssessssesssessssesssesssnees 17
S o D) 1<) PPN 18
CheSS GIraPRiCS ..t sssssssssssssssssssssssssssnes 18
Testing and DeDUGZINGccveeereeereeeerreeseesseesseesseessesssesssesssesssessssssssessssssssessssssssessssssssesssssssssens 18
Audio Recognition HardWareceeceeeeceseeseesseesseessesssesssssssesssssssessssessssssssssssesssssssnns 18

DTW ENGINE i ssssssssssssssssssssssssanss 19

DTW System CONTIOLIEr ... errererssesssssssssssssass 20
System INteZration ... ————— 20
Proof of CONCEPE TESHING ... wuueriresmiersesssessssssssssssssss 20
CRESS HATAWATE c..ceerceereeeeeeeseessseessesssessssssssssssessssesssessssssssss s s ssses s sssssssssssssssessssssssssssnees 21
000 0 Lol 11 13 1o s L0H OO 22
y N 0] 01=) o o B ol 1PN 23
Appendix A : Single DTW Test Data “Funk” v “Bridge” and “Cat” v “Dog”cccouueue.. 23
Appendix B: Letter Hit Frequency Data.......eessssssssssssssssssssssssssssssseess 25
Appendix C: Shift CONNECLOr VETIlOZ.....ocureriierierneersessssssssesssssssssesssssssssssssssssssssssssssseess 28
Appendix D: FIR 31 VETilOgoueriereersssesssesssssssssssssssssssssesss 30
Appendix E: DTW ENGine VErilog.....oumrereresssessssssssessssssssessssssssssesssssssssssssssssssseees 33
Appendix F: DTW System Controller + Valid Checker Verilog ... 38
Appendix G: Modified Lab 4 W/ Instantiated Modules + Debouncer Verilog.......... 46
Appendix H: Labkit File for Chess SYStemceeereeesseesseesssessssssssesssssssssneees 62
Appendix I: KEYDOArd ENTIY ... esessessesesssnes 74
Appendix]: Keyboard ENCOAETeesieneessessessesssesssessessssssssssssssssssssssssssssssssssssssnes 76
Appendix K: Chess ENGINE ... sssesssnes 81
AppPendix L: MOVE CRECKET ..cueceereereeesssesseessssesssnes 88
Appendix L: Chesshoard DIAWETimesssans 97
Appendix M: Chess PIeCES DIaWeTceemenesesssans 98
APPENdixX N: TEXt DIQWET c..cviereeernesssesssssssssesssnes 102
Appendix O: Chess GraphiCS... i esssnes 108
Appendix P: MATLAB JPG t0 COE .. ceeseeesrsessesssssessesessssssssesssssssssessssssssssessssssssssssssns 111

iii

Table of Figures

Figure 1. High Level Block Diagram Of Entire SYyStem.......coeemsessssssssssssssens 1
Figure 2. Top level block diagram of chess SYyStem. ... 2
Figure 3. Move cOmmMand €NCOAINEG......currmmmmmmsssessssnes 3
Figure 4. Block Diagram Of Audio Recognition Hardware. ... 4
Figure 5. Outer FSM of the DTW System CONtroller. ... 5
Figure 6. Inner FSM of the DTW System Controller. ... 7
Figure 7. Diagram of the DTW ENGINe.......cossssssssssssssssssssssssssssssssssssssanes 8
Figure 8. Dynamic Time Warping Engine FSM........osssssenns 10
Figure 9. Block diagram of keyboard input cOmponent.eeeeeeessesseeenns 12
Figure 10. Block diagram of chess engine COmMpONent.eesessmssssesssssssssseeenns 13
Figure 11. State diagram of chess engine FSM.cccssssssssessssssssessnns 14
Figure 12. Graphics produced by the graphics engine. ... 16
Figure 13. Text types. Labels are red. Column and row indicators are green. 17
Figure 14. “Dog” and “Cat” when trained 0n “Dog”.......ceemessessssesssesssssssssesenns 21
Figure 15. “Bridge” and “Funk” when trained on “Funk”........n. 21

iv

Overview

The complete system takes in voice commands and keyboard inputs to control a
chess game displayed on an XVGA display. The system is divided into two
components: audio recognition hardware and chess hardware.

Voice-
Command | Voice Recognition |Command
ﬁ . >
Engine

Chess Game
Engine

Keyboard
Command

v

Figure 1. High Level Block Diagram Of Entire System

Audio Recognition Hardware (Varun)

The audio recognition hardware is in charge of handling all of the audio processing
and calculations associated with the voice-recognition portion of the chess game.
Employing a series of finite state machines and the dynamic time warping algorithm
to compare audio samples, the system correctly determines which move the user
wishes to make in the chess game, and sends that information to the chess engine to
execute.

Incoming audio streams are down-sampled and filtered to reduce the aliasing
effects caused by the down-sampling. The filtered audio stream is then sent to a
valid-checking module that determines whether a valid word has indeed been
spoken or if the incoming audio is simply background noise.

When the checking module detects a valid word, the system begins actively
recording the audio stream. A one-half second audio clip is stored into memory, and
then streamed down to the dynamic time warping engines.

There are a total of eight dynamic time warping (DTW) engines. Once trained, each
engine contains audio-templates corresponding to one of the eight letters (A-H), and
one of the eight numbers (1-8) that specify all possible positions on the board.
Depending on where in the command sequence the user is when the valid sample is
detected, the incoming audio streamed is compared to either all eight numbers or all
eight numbers, once comparison per engine.

The DTW engines use the dynamic time warping algorithm to compare the samples.
The algorithm uses dynamic programming to correct for temporal differences
between stored samples and the valid sample, and returns a value corresponding to
the error between the samples. The template belonging to the engine that returns
the lowest error for a given audio input is determined to be the intended number or
letter. Once four such commands are issued, the system concatenates the results as
a complete command consisting of two numbers and two letters and sends the
information to the chess engine.

Chess Hardware (Michael)

The chess system is an implementation of a two-player chess game on the 6.111
LabKit. It receives move instructions from either the voice recognition system or a
keyboard, checks that instructed moves are permissible, and displays the
chessboard and chess pieces on an XVGA display. The three main components of the
chess system, as illustrated in the figure below, are the keyboard input, the chess
engine, and the graphics engine.

new_chessboard,
white_captures,
black_captures

kbd_command_rdy

>

kbd_command »>
vga

Chess Engine

stringl, string2

Keyboard Entry Graphics Engine

kb_string

Figure 2. Top level block diagram of chess system.

Keyboard Input
The keyboard input component encodes keyboard input into a move command that
is passed to the chess engine.

Chess Engine

The chess engine directs the flow of the chess game. It keeps track of the turn,
determines if instructed moves from the voice recognition system or keyboard input
are permissible, and manages the internal representation of the chessboard and the
chess pieces on the board.

Graphics Engine

The graphics engine generates video images for the chess game to be displayed on
the XVGA display. The video images include the chessboard and the chess pieces on
the board, a grid of the pieces that each player has captured, as well as text from the
chess engine and keyboard input.

Description

Input (Michael)

In order to modularize the voice recognition system and the chess system, a unified
encoding scheme was defined for all move commands passed to the chess engine.
The encoding of the move command is composed of the column and row (file and
rank) of the square containing the piece being moved and the column and row of the
square where the piece is being moved.

11 0

from column fromrow tocolumn torow

Figure 3. Move command encoding.

The chessboard is a square board of eight columns and eight rows of squares. The
columns, which are lettered A through H are encoded with 0 through 7, and the
rows, which are numbered 1 through 8 are also encoded with 0 through 7. The
complete encoding of the move command is twelve bits - three bits for each of the
columns and rows of the original square and destination square of the piece being
moved.

Audio Recognition Hardware (Varun)

Audio is sent to the audio recognition hardware from the AC97 codec found in the
6.111 lab 4 documents. Audio is sampled from the headphones at 48 kHz and sent
from the codec directly to the Audio Recognition Hardware. The hardware consists
of five modules, listed in the order of complexity: the DTW System Controller, DTW
Engines, Valid Detector, Finite Impulse Response Filter, and the Shift Connector.
Because of the many modules involved in processing incoming audio, a complex
signaling and handshaking system was used to ensure data was not lost, and was
processed in the correct order.

program category \yord
48kHz to 4 kHz FIR31 | filtered i

S

vr_new_command
audio from_AC97 (m vr_to_chess
\
—> AC97 DTW System Controller

L) Shift Connector
cdtegory > Module buffers
\ and sends to all 8
\ \ addr \
\ Nl [\)

Buffer Memory

AC97

possible_matc dist audio_template
Commands -

temp
2K x 8 WE

e J —

Y v l' L 4 L 4
sound_in 8b, DTW Engine

&
<

e —
Figure 4. Block Diagram Of Audio Recognition Hardware.

DTW System Controller

The DTW System Controller controls the flow of data through the entire system, and
therefore contains the most complexity. It is implemented as two nested finite state
machines. The outer most FSM is in charge of capturing incoming data, sending valid
samples to the DTW Engines, and then interpreting the error values returned by the
DTW Engines to output the correct command to the chess module. The inner FSM is
used to determine which section of the command the user is inputting (from_letter,
from_number, to_letter, or to_number) and if a complete command has been issued
and is ready to be outputted. The next state and next substate are determined
combintationally, with state being updated to reflect the next state at the following
clock edge.

Passive

valid_done_f valid

Valid_Out

If substate = to_number:

program_in &&
training_done_f

!program_in &&
all_done_f

!program_in &&
all_done_f

\V

Figure 5. Outer FSM of the DTW System Controller.

Outer FSM

Passive State

The outer FSM has four states: passive, active, to_DTW, and valid_out. The default
state of the machine is passive. In this state, audio is downsampled from the 48 kHz
sampling rate of the AC97 codec to 4 kHz. Audio is only sampled when users press
the record button, indicating that they wish to record audio. Incoming audio is
immediately sent to the anti-aliasing filter to correct for the error induced by
downsampling. The filter output is then stored in a 2048 x 8 bit BRAM (incoming
audio is 8 bits wide). The BRAM stores approximately half a second of audio, and is
used like a circular buffer when in the passive state. Whenever a sample is written
to memory, an enable pulse is sent to the Valid_Checker module along with the
current sample being written. The Valid_Checker outputs a valid signal whenever a
valid word is spoken. Because the valid-checking module outputs a valid pulse only
after there is a noticeable increase in the amplitudes of the previous 128 samples, a
start_val pointer is updated to point 128 memory locations behind the current
location being written to. As soon as a valid signal is outputted, the FSM switches to
the active state.

Active State

The job of the active state is to continue downsampling and recording audio until a
complete, half-second audio segment is written to memory. While downsampling,
and filtering occur just as in the passive state, the start_val and end_val pointers are
no longer updated. Enable signals are no longer sent to the Valid_Checker as we have
already recording a valid word. Writing to memory continues and incrementing the
address continues until a sample is written to the end_val address. At this point, the
system asserts a flag (end_record_f) letting the system know a half-second word has

5

been recorded. Once this flag goes high, to_DTW is assigned to next state, and
becomes the state on the following clock cycle.

To_DTW State

Upon entering the to_ DTW state, the end record flag is reset to zero and the memory
address is set to the sample-starting pointer, start_val. Over the next 2048 clock
cycles, all 2048 audio samples stored in the Controller’s memory are outputted to
one of two audio output channels depending on whether the system is training the
DTW Engines or if it is sending then possible match audio to compare against their
templates.

If the user is training the system and the train_in switch is set high, then a write
enable signal (temp_WE) is outputted to the DTW Engines. When training, users use
switches to choose which category they are training (letters or numbers) and which
word (1-8 or A-H) they wish to train. This data is outputted via the 3 bit word_out
and 1 bit category_out registers, which are combinationally assigned to the value
selected by the user. The flag training_done_fis raised to indicate that training is
complete, and nextstate is set to passive, so the system can accept a new training
sample or a command.

If the user is not training the device, the match write enable is raised instead of the
template write enable, signalling to the DTW engines that the incoming audio
sample is a possible match and should be compared to the stored template. The
system remains in the to DTW state until all 8 of the DTW engines signal that they
have finished their calculations and have returned a valid distance value. When this
happens, the all_done_f flag is raised and the system moves the valid out state.

Valid_Out State

The valid_out state compares the distance values returned by the DTW Engines and
determines which trained template most closely matched the inputted audio. To
prevent any timing issues, and to reduce redundancy, the system sequentially
calculates the minimum of the 8 returned value in 4 clock cycles. In the first three
clock cycles, the system performs four, two, and one comparison respectively to
determine which DTW Engine returned the lowest distance. The number of the
DTW Engine with the lowest distance is stored. On the fourth clock cycle, a
valid_done_f flag is raised, indicating all comparisons are done, and setting the state
back to passive. The number of the register with the lowest distance is stored as the
intended letter/number (1-8, A-H). If all four parts of the complete command have
been determined, the complete command is sent to the chess engine along with a
signal v new_command which signals that a new command has indeed been sent.

&Y

From_Letter

valid_done_f &&

valid_done_f && 'valid_done_old

valid_done_old

To_Numbe

r
vr_new_command = 1

From_Number

valid_done_f &&
Ivalid_done_old

valid_done_f &&
tvalid_done_old

To_Letter

\V

Figure 6. Inner FSM of the DTW System Controller.

Inner FSM

The inner FSM is in charge of determining which element of the complete command
the current input corresponds to, and is much simpler than the outer FSM. All state
changes occur at the positive edge of the valid_out_f flag—that is, once the previous
section of the command, or the previous command has successfully been computed.
The states correspond to each section of the complete command - the letter and
number coordinates of the piece to be moved (from_letter, from_number), and the
letter and number coordinates of the location the piece is to be moved to (to_letter,
to_number). Because the last section of a command is the number of the square
where the piece should be moved, commands are only outputted when the inner
FSM is in the to_letter substate and the outer FSM is in the valid_out state. The
sequential nature of the inner FSM ensures that the entire command is specified
once the system reaches this overall state.

Dynamic Time Warping Engines

The Dynamic Time Warping Engines use a dynamic programming to remove
temporal differences between audio samples and compare how closely they match.
For instance, if a speaker says the word “book” twice, it is highly unlikely that the
time-domain waveforms of the words will correspond—it is more likely that one of
the two times the word will be spoken slower or faster than the other. Algorithms
that just match time-domain samples cannot correct for this difference, and so an
algorithm like dynamic time warping is used.

possible_match

Matrix
Memory \ addr
category \ \
4K x 8 dist \

tempWE
temp_audio_in
DTW Engine temp_
samw \ Jr \ 4
N
Template
Input Memory
Memory <
match_addr
2K x 8 temp_addr 4K x 8

match_out

Figure 7. Diagram of the DTW Engine.

Dynamic Time Warping Algorithm

The DTW algorithm is fairly straightforward. Take two data series, X and Y, of length
m and n respectively. Create an m x n matrix D, where the element Dj; represents the
squared difference between the it sample of X and the jt" sample of Y. That is:

Dij=(Xi-Y;)’ for0<i<mand 0 <j<n

From this matrix, we then solve the the dynamic programming problem of the
shortest path from Dgo to Dmn by creating a second m+1 x n+1 matrix 1. The values of
Yare computed as such:

Yij=Di1j1+min(Vi Yij1,Yig-15) for 1 <i <m+1and 1<j<n+1
with Ypj= Yo =00, Y11= Dooand Yoo =0

Thus, every value Vj represents the shortest “error path” found from the first
element of D to the current element. So it stands that, once the algorithm completes,

Yin+1,n+1 will be the shortest “error path” that exists between the two samples. So,
for example, if the word “book” is said once at a normal pace, and once twice as

slow, the algorithm will traverse 1~ precisely on the diagonal with a slope of 2,
accruing no error as it traverses, and will indicate that the words are an exact match.

Dynamic Time Warping Implementation

The main challenge with porting the DTW algorithm into hardware is that assuming
that the samples are of length m and n with each sample having width b, the overall
memory needed will be m*n*b bits. At 2048 8-bit samples per audio segment,
running 8 DTW Engines on the FPGA would exceed the memory available. To work
around this limitation, a simple solution was chosen. At each iteration of the

algorithm, only two rows of Y are ever needed to compute the current element. So

instead of needing to store 2048*2048%*8 bits of data, the algorithm would only need
2048*2*8 bits or memory, which is feasible. Also, the algorithm must keep 4 data
registers to hold the 4 values needed to compute the next value of the matrix

Di-1j-1, Yi-1j, Yij-1, Yi-1-17).
j o Lij j

To do this, the DTW Engine keeps two counters, one that is 11 bits and one that is 22
bits. At each iteration of the algorithm, both counters are incremented. The first
counter rolls back to 0 once it has reached 2047, and so it is used to indicate where
in the row the algorithm is. The other counter increments until it reaches the value

4,194,303, which indicates that the algorithm has computed all of the values of 1.

The algorithm then moves sequentially, with each iteration taking 5 clock cycles. On
the first clock, if the value of element (i,j) is being computed, the algorithm
decrements the memory address for the DTW pseudo-matrix memory by 2047, so
that it loads the value of the (i,j-1) on the third clock. On the second clock, it pulls the
value for the it" element of the template and the jt" element of the inputted sample
and stores their difference to a register. On the third clock cycle, the previous value
of (i,j) isloaded into the register for (ij-1), the previous value of (i-1,j) is loaded into
the register for (i-1,j-1) , and the value coming out of the DTW memory is loaded
into the (i-1,j) register. Essentially, the frame of reference for the computation shifts
right. Also on the third clock cycle, the value Dj;; is computed by squaring the
difference found in the second clock cycle, and storing that back into the same
register. The DTW memory address is also set to point to the next location in
memory to store the (i,j) t value in two clock cycles.

A simple speedup that was used reduced the number of comparisons needed in the
next clock cycle was to store the minimum of the (i,j) and (i-1,j) elements and
storing that instead of shifting the values in those registers into the other registers
and finding the minimum of three values on the next clock.

On the third clock cycle, the algorithm performs all of the comparisons, and
computes the value for the next (ij) value. If the 22 bit counter is at zero, it simply
loads the Djj value into the (ij) register. If the 22 bit counter is less than 2047, the
algorithm is still computing the first row of the matrix and so (i,j) is the sum of D
and (i,j-1). When the 11 bit counter is 0 but the 22 bit counter is not 0, the algorithm
is computing the first column, so (i,j) is the sum of D;; and (i-1,j). Otherwise (ij) is
computed as the sum of Dj; and the minimum of (i-1,j) and the “speedup” register
mentioned in the previous paragraph. Once the 22 bit counter reaches its maximum
value, the algorithm has finished computing, and the current value of Dj;; + (i)
represents the minimum “distance” between the samples. At each iteration both
counters are incremented. At every pass, the address to the possible match BRAM is
incremented, and only when the 11 bit counter is zero and the 22 bit is not zero is
the address to the template BRAM incremented.

DTW Engine FSM

To allow for the DTW Engine to be trained, to take in template samples, and to
compute the distance between samples and a template, an FSM is implemented. It
has four states: hold, training, transfer, and calculate. When in the hold state, the FSM
simply waits for either a training enable or a transfer enable from the DTW System
Controller. If in training, the engine uses the category bit from the System Controller
to determine whether to store the sample in the first 2048 memory locations, or in
the last 2048 memory locations in its template BRAM—O is for letter and is stored in
the first 2048, 1 is for number and is stored in the last. Similarly, when in the
transfer and calculate states, it uses the same category bit to determine which
template to compare the input against. Once a template is fully transferred to the
BRAM, the system depends on the train from the Controller to fall to move into the
hold state. When in the transfer state, the system depends on the enable signal from
the Controller to go low to move into the calculate state, where the above
calculations are performed. Once completed, the system outputs a DTW_done signal,
and outputs the calculated distance value. The DTW holds its outputs for 3 clocks
cycles, and completely wipes the DTW pseudo-matrix memory after it has finished
computing the distance value.

train &&en

Training Transfer

DTW_done

Calculate

\V

Figure 8. Dynamic Time Warping Engine FSM.

Valid Checker

The valid checker algorithm samples the audio stream coming into the System
Controller to determine whether a word is being spoken. It uses a 256 x 8 bit
register partitioned into two 128 halves. The register array is used as a FIFO buffer.
At each clock, when an enable is issued from the Controller, the valid checker takes
the audio input sent to it, calculates its absolute value, and then adds it to the tail of

10

the array. Three values are always maintained - the index of the current sample, the
256t sample, and the 128t sample. Initially all registers in the array are set to zero.
Two sum counters, first and last, are set to zero as well. When a new sample arrives,
it is inserted into the array, and its absolute value is added to the last sum counter.
The value of the old 128t sample is subtracted from that sum counter, and added to
the other. The value of the old 256t sample is subtracted off of the first sum
counter. The indices of the 128t and 256 values are moved back to indicate that
the frame of reference as shifted. As this repeats and the buffer fills up, the values of
the sum counters reflect the sum of the first 128t and last 128t samples. When the
value of sum last exceeds the value of sum first by some margin that was empirically
determined, the valid checker outputs a valid signal, and then clears the register
array as well as the sum first and sum last counters in preparation for the next time
the System Controller enters the passive state.

Finite Impulse Response Filter

The FIR filter used here was the same 31 tap FIR filter designed in 6.111 lab 4, with
the filter coefficients modified to represent the change in downsampling rate. It is
implemented with a circular register array to hold audio samples, and an
accumulator that performs the necessary convolution multiplication between ready
signals from the AC97 codec to output filtered data to the DTW System Controller.

Shift Connector

The shift connector module sits between the DTW System Controller and all of the
DTW Engines. When the System Controller sends train signals to the engines, the
shift connector uses the word outputted by the System Controller to determine
which of the 8 engines should receive the training enable pulse and the template
audio. The shift connector has the important function of allowing the System
Controller and the DTW Engine to communicate as state machines, without having to
assign outputs at different times to compensate for the one clock lag of changing
state. There is a one-clock lag from when the DTW Engine receives an enable pulse
and changes state to training or transfer, to when it actually accepts audio data in
the new state. So without the shift connector, the DTW Engine would drop the first
audio sample from the System Controller. To avoid this, the shift connector extends
the enable/train from the System Controller by one clock cycle, and holds each audio
sample being streamed down for one clock cycle, padding the first, dropped packet
with a 0 value.

11

Chess Hardware (Michael)

Keyboard Input

The keyboard input component consists of two modules: keyboard entry and
keyboard encoder. A block diagram containing the two modules is illustrated in the
figure below.

command_rdy

string_rdy
" command_valid
Keyboard Entry 68 Keyboard Encoder >
> 11
string >
A A
command
>
° =
3 ©
by

ps2_ascii

Figure 9. Block diagram of keyboard input component.

Keyboard Entry

The keyboard entry module packages inputs from the keyboard into strings of ASCII
code to be encoded into move commands. Professors ke Chuang’s and Chris
Terman'’s ps2_kbd module’ is used to convert scan codes generated by the keyboard
into ASCII codes. An array stores the ASCII codes as keys are pressed - up to five
codes, as five ASCII characters is enough to issue a keyboard move instruction.
Keyboard move instructions take the form

<from column><from row>_<to column><to row>

(e.g. “A2 A3”). Pressing the Backspace key deletes the last stored ASCII code stored
in the array - functionally similar to pressing the Backspace key in a word
processor. Pressing the Enter key locks the array of ASCII codes for one clock cycle
and signals on the same clock cycle that a string of ASCII code is ready to be

Lhttp://web.mitedu/6.111/www/f2005/code/ps2_kbd.v
12

encoded. Afterwards, the array is cleared to allow new ASCII codes for new move
commands to be stored.

Keyboard Encoder

The keyboard encoder module encodes the string of ASCII code received from the
keyboard entry module into a 12-bit move instruction using the encoding scheme
described previously. Each ASCII code is encoded if it corresponds to a valid letter
or number, depending on its position in the string. The rightmost and forth-from-
right ASCII codes in the string should each correspond to one of the letters from A
through H, the second-from-right and leftmost ASCII codes in the string should each
correspond to one of the numbers from 1 through 8, and the third-from-right ASCII
code in the string should correspond to a whitespace. The overall encoding is valid if
the above criteria are met. A one clock cycle ready signal is raised once encoding is
complete or the string of ASCII code has been determined to be invalid - a valid
signal is raised at the same time if the overall encoding is actually valid.

Chess Engine
The chess engine component consists of two modules: chess engine and move

checker. A block diagram containing the two modules is illustrated in the figure
below.

command_rdy 64*5
cheésboard
command_valid 16*3

\ 4

Chess Engine white_captures

11 16*3

4
A\

blacK_captures

64*5

12
che{sboard

com/mand

start
done, valid

<
<
<

Move Checker

Figure 10. Block diagram of chess engine component.

13

Chess Engine

The chess engine module is an FSM that directs the play of the chess game and
manages the internal representation of the chessboard. Its states and transitions are
illustrated in the figure below.

accept_move &&
~reject_move

reject_move &&
~accept_move

command_rdy &&

command_valid
CHECK

MOVE

DISPLAY
MOVE

h 4

mc_done &&
mc_valid

command_rdy &&
command_valid

mc_done &&
~mc_valid

command_rdy &&
~command_valid

WAIT FOR
NEW CMD

Figure 11. State diagram of chess engine FSM.

The FSM starts in the state WAIT FOR CMD, with a register indicating the current
player initialized to WHITE. Two switches on the 6.111 LabKit are used to select the
input signals for the two players. If the input is the voice recognition module, then
the chess engine will wait for a ready signal from that. Otherwise it will wait for a
ready signal from the keyboard encoder. On a ready signal from the voice
recognition module, the FSM will direct the start of move checking to determine if
the instructed move is permissible. On a ready signal from the keyboard encoder,
the FSM will check that the encoding was valid before signaling the start of the move
checker. An invalid encoding will land the FSM in the state WAIT FOR NEW CMD,
which is also the state that the FSM transitions to if the move checker decided that
an instructed move is impermissible. However, if the move checker determines that
the instructed move is valid, the chess engine will update the internal
representation of the chessboard - a multidimensional array of registers - to reflect
the move in the state DISPLAY MOVE.

14

Because the voice recognition module is not expected to generate the correct move
instruction all of the time, the chess engine keeps a second copy of the chessboard to
allow the players (regardless of their input type) to review their moves. The two
copies of the chessboard are designated old-chessboard and new-chessboard.
Moves are always made to new-chessboard first. If a player rejects a move, then the
two affected squares of new-chessboard are replaced with the values in the
corresponding squares of old-chessboard. On the other hand, if a player accepts the
move, then the two affected squares of new-chessboard are copied over to old-
chessboard. Once a player accepts the move, his or her turn is over (the register
indicating the current player switches to the other player), and the two chessboards
are made identical by the start of the next player’s turn.

The chess engine also handles pawn promotions, as well as outputs text to be
displayed on the XVGA screen. When pawns have reached the other side of the
chessboard, they are, due to design limitations, automatically promoted to queens.
The chess engine outputs text to let the players know whose turn it is, as well as
direct them as they play the game.

Move Checker

The move checker module determines whether an instructed move is valid
according to the style of movement of the piece being moved. The move checker
first determines the type of piece being moved by looking at the square in new-
chessboard corresponding to the from-column and from-row specified in the move
instruction. If there is a piece in the square, then the move checker verifies that it
belongs to the current player, as well as verifies that the destination square,
corresponding to the to-column and to-row specified in the move instruction, is
empty or contains an opponent’s piece. Only then does it check to see that the
instructed move matches the style of movement of the piece being moved.
Descriptions of each piece’s style of movement are listed below.

Piece Style of Movement

King One square in any direction

Queen Up to seven squares in any direction if its path
is unhindered

Rook Up to seven squares horizontally or vertically
if its path is unhindered

Bishop Up to seven squares diagonally if its path is
unhindered

Knight L-shaped - two squares horizontally or

vertically, then one square vertically or
horizontally, respectively

Pawn Generally, one square up the rows for WHITE
and down the rows for BLACK, but can
advance two squares in the same manner on
the piece’s first move - captures are made one
square in the forward diagonal direction

15

For queens, rooks, and bishops, the move checker directs a sub-module to iterate
through the squares along its path of movement to determine if the path is clear or
blocked by another piece. Otherwise, the move checker uses combinational logic to
determine if a piece’s movement matches its prescribed style of movement. The
move checker signals for one cycle that it is done if a move instruction is determined
to be valid or as soon as it is determined to be invalid. A valid signal is raised at the
same time if the move instruction is valid.

Graphics Engine
The graphics engine produces the visual aspects of the chess game, pictured in the
figure below.

WHITE
WHITE

TYPE A COMMAND
[FROM-SQUARE TO-SQUARE]
> HELLO

Figure 12. Graphics produced by the graphics engine.

Chessboard Drawer

Chessboard drawer generates the pixel values needed to render a chessboard on the
XVGA display. The width of each square of the chessboard is 64 pixels, so within the

bounds of the chessboard, the chessboard drawer uses only the higher order bits of

normalized hcount and vcount signals to determine which of the two parameterized
color values to output.

16

Chess Pieces Drawer

Chess pieces drawer generates the pixel values needed to render images of chess
pieces on the XVGA display. Twelve images of the six types of pieces in white and
black were obtained from Wikipedia. Using GIMP, the backgrounds of these images
were filled with solid blue and the images were converted into .jpg files. A MATLAB
script (Appendix P) was then used to generate .coe files from the .jpg files. The .coe
files were then analyzed to determine what values the originally solid blue had
become. Those values of blue are used as transparent colors.

Twelve ROMs for the chess piece images are instantiated in the chess pieces drawer.
All twelve ROMs are addressed by the five lower order bits of normalized hcount
and vcount signals. The data out from a specific ROM is selected if a corresponding
piece needs to be drawn at the location specified by hcount and vcount. Otherwise,
the module generates the pixel value corresponding to a blue transparent color. The
pixel values from the ROM and the blue transparent color are 8-bits (3-bits red, 3-
bits green, 2-bits blue), so they are upconverted into 24-bit values by padding with
Zeros.

INVALID COMMAND. SAY A COMMAND
[FROM-SQUARE TO-SQUARE]
>

Figure 13. Text types. Labels are red. Column and row indicators are green.

17

Text Drawer

Text drawer generates all the pixel values for text to be rendered on the XVGA
display. The text to be rendered is divided into three types: labels, column and row
indicators for the chessboard, and body text. As indicated in the figure above, the
labels include the headers for the grids of captured pieces as well as the turn
indicator above the chessboard. Column and row indicators are the letters and
numbers surrounding the perimeter of the chessboard. These indicators make it
easier for the players to specify columns and rows in making moves. Body text
consists of two lines of text from the chess engine and text from the keyboard entry
module. The texts of each type are all the same length. Labels read either “WHITE”
or “BLACK”, which are five characters each. Column and row indicators are single
characters. The actual lines of body text and text from the keyboard entry module
vary, but are each padded to be 32 characters long. In order to render the three
different types of text, three instances of Professors Ike Chuang’s and Chris
Terman’s cstringdisp? module are instantiated with the appropriate parameter
values. Since the text is designed to have no overlap, the outputs from the three
cstringdisp modules are composed into one output by taking the bitwise OR of the
three signals.

Chess Graphics

The chess graphics module combines the outputs from the chessboard drawer, the
chess pieces drawer, the text drawer, as well as two solid-colored rectangles
generated by the blob? module from Lab 5, to produce the final output to be
displayed on the XVGA display. The chessboard, text, and solid-colored rectangles
are designed so that they do not overlap. Thus, the outputs from chessboard drawer,
text drawer, and two blobs can be combined simply by performing a bitwise OR on
the four. The chess pieces produced by the chess pieces drawer, however, are
intended to layer on top of the chessboard and the two solid colored rectangles. In
terms of layering, the chess pieces make up the top layer and everything else make
up the bottom layer. The graphics module displays the top layer when there are
chess pieces to be displayed and the bottom layer otherwise. To accomplish this, the
chess graphics module allows the bottom layer to filter through when pixel values in
the top layer correspond to the blue transparent colors.

Testing and Debugging

Audio Recognition Hardware (Varun)

Debugging the Audio Recognition hardware initially done entirely in ModelSim, and
once the ModelSim tests were satisfactory, the modules were debugged and tested
on hardware. To develop solid testing practices and to build awareness of common
mistakes that were being made, an informal bug log was kept for the first week of
ModelSim testing. The shift connector, finite impulse response filter, and valid

2 http://web.mit.edu/6.111/www/f2005/code/cstringdisp.v
3 http://web.mit.edu/6.111/www/f2008/handouts/labs/lab5.html

18

checker modules were relatively easy to debug. They each required only ModelSim
verification before being shown to work up to specification on hardware.

For the valid checker, additional testing on hardware was done to find the optimal
threshold at which to acknowledge a valid word was spoken. It was integrated into
the 6.111 lab4 audio recorder* and fed incoming audio streams with varying
thresholds. The goal was to systematically determine what threshold provided the
highest hit rate for spoken words while minimizing the rate of false positives (ie.
prevent short audio bursts like claps from being acknowledged as valid words).

DTW Engine

The first stage of testing the DTW involved performing a proof of concept test on the
DTW algorithm. For that, a version of the algorithm quickly scripted in Python was
fed a series of audio test vectors and shown to perform satisfactorily. After this was
shown, the algorithm was examined rigorously to find where improvements could
be made to reduce memory requirements. At this stage, it would have been very
beneficial to build a MATLAB or Python simulation of the hardware-optimized
algorithm to ensure that no unforeseen errors could occur, but luckily careful
planning was all that was necessary.

Once the frameworks for the algorithm were written in Verilog, they were run over
and over again in ModelSim. Trying to pipeline the circuit for increased
computational throughput created the biggest problem. This caused serious
problems because of the necessary accesses to different parts of the DTW Memory.
Eventually this was scrapped in favor of a sequential approach. While the sequential
approach required almost six times as many clock cycles to complete as a working
pipelined version would have, the incremental gain in time would have been
imperceptible. Finally a version of the algorithm was shown to work on known test
vectors in ModelSim and hardware testing began.

The first problem noticed when testing on hardware began almost immediately.
When fed any audio samples, the algorithm would return a distance metric that
hovered around a value that seemed linked to the template audio. That is, when the
template audio was very loud, the distance returned would be very large, and vice
versa. Using the Logic Analyzer, it was found to be a problem with state. The

DTW _done signal was not being reset fast enough so as soon as the System
Controller would move into the to_DTW state, it would see the done signal high, and
only have one clock cycle to send data before its FSM would move it to the next state
- meaning that the DTW Engine would compare the template against an audio
sample with one valid input and the rest zeros.

The second major problem had to do with how the engine handled audio inputs. In
simulation, test vectors were chosen to be unsigned integer values. As such, the
algorithm code never specified that the audio samples should be treated as signed
integers, and so seemingly small negative numbers were viewed as large positive

4 http://web.mit.edu/6.111/www/f2008/handouts/labs/lab4.v
19

numbers. So while the algorithm continued to produce the proper values when
hardwired to positive constants, when fed audio, the values that were being
computed were absurd. Luckily, the fix was relatively simple—just adding the word
signed to the Verilog.

DTW System Controller

The DTW System Controller was initially written in pseudo code on paper and then
refined to be as robust as possible. Once the pseudo code was written, it was
translated into Verilog and tested top to bottom. First, its ability to transition
between states with proper input sequences was tested. At the same time, the
system was shown not to glitch when many inputs arrived simultaneously, and
instead dealt with them sequentially as it was supposed to.

After state transitions were tested, enable pulse timings were tested and debugged.
Because the entire system has so many parts that depend on exact timing and
transfer of data, this step was very important.

Next to be tested was the audio buffering and transfer procedure. The address
incrementing and memory storage/output were examined to show that no data was
being truncated, lost, or written improperly.

Once this was done, the system was ready to be tested on hardware, with

DTW _done pulses controlled by switches and distance values set to by switches. The
states, substates, and outputted commands were displayed on the hex display using
the module provided in the 6.111 lab documentation. Because of the ModelSim
testing, this phase only took a few hours to debug the entire controller system.

System Integration

Because the input/output and handshaking behavior of each module were
understood from their individual ModelSim simulations, whole system integration
was not too challenging. It was first done in ModelSim and shown to work. The
ModelSim model was then compiled to hardware. After fixing the bug caused by not
clearing the DTW_done signal before the System Controller reached the to_ DTW
state—which took three days to catch—and after losing a day to not specifying the
proper bit width of an output, the system worked as hoped.

Proof of Concept Testing

Once the system was running, the performance of one single DTW Engine was
tested. While the engine had trouble distinguishing between words like “alpha” and
“beta”, it was shown to be able to distinguish between “funk” and “bridge” when
trained on “funk”, and between “cat” and “dog” when trained on “dog” as can be seen
in Figures 14 and 15(data for “cat v dog” and “funk v bridge”, see Appendix A).
Further testing revealed on the entire system with all 8 DTW Engines showed that
the system had between a 3% and 12% hit rate when matching complete chess
commands to human voices—and had an almost 90% hit rate when trying to
distinguish a spoken number 5 (See Appendix B).

20

The errors with the system are almost entirely due to the variable nature of human
voice, as well as the environmental noise of the training and testing environment.
When a computer generated voice was used to train the system and then inputted as
test audio, the computer had a 100% hit rate - indicating that it could successfully
match perfect signals. Furthermore, when the audio was sped up or slowed down by
up to 12%, the algorithm still exhibited a 95% hit rate. This indicates that the DTW

algorithm was, in fact, performing dynamic time warping successfully.

700000

600000 N
%

300000 =l = - -~
200000 | EEH E-E —
100000
0 : : : : .
0 5 10 15 20 25

® ¢ @ Catv Dog
500000
© > o9 50 ™|
400000 -4—4—30 - L PN o E_g_é— W Dogv Dog

Figure 14. “Dog” and “Cat” when trained on “Dog”.

500000

450000 ® ®

<
400000 —— =99
350000 L e® o,

=]]
300000 -] 1~
250000 o H e S

200000 &
150000 o>
100000
50000
0 T T T T 1

0 5 10 15 20 25

¥ Bridge v. Funk
@ Funk v. Funk

Figure 15. “Bridge” and “Funk” when trained on “Funk”.

Chess Hardware (Michael)

Testing of the modules of the chess system was done either by visual inspection or
by simulating using ModelSim. The keyboard entry and the graphics engine modules
were tested by loading up the LabKit and checking the visual output on the XVGA
display. Since the keyboard encoder and move checker had no visual components,
they were tested in ModelSim. Problems were usually caught by checking the

Warning messages in the Xilinx tool, as well as by carefully analyzing and

reanalyzing the Verilog code that had been written. However, [did come upon an
odd bug that took the help of Ben to resolve - at one point, my project file could not
be opened by Xilinx, and any attempts to create a new project from the old Verilog

21

file resulted in Xilinx closing unannounced. After numerous attempts at creating
new projects and copying various fragments of code into to Xilinx, Ben noticed that a
localparam had been assigned to itself. Sure enough, this circular assignment was
the cause of the mysterious problem.

Conclusion

The Voice Controlled Chess Game built on the FPGA was successfully shown to
demonstrate full chess visualizations and game play, as well as sufficient voice
recognition capability.

The voice recognition hardware was shown to be a successful implementation of the
Dynamic Time Warping algorithm. Controlling for the effects of environment noise
and audio pitch, the system was able to detect and match input audio samples of
varying rates of up to 15% from the trained sample. It also demonstrated that the
DTW algorithm, which is normally thought to be memory inefficient, could be built
in a way so as to preserve the functionality while greatly curbing memory usage.

The system’s inability to reliably detect microphone inputs can be attributed to the
shortcomings of comparing unfiltered time series of audio instead of converting
audio streams features vectors that emphasize spoken voice and normalize for the
speaker’s pitch and amplitude. One such technique involves using Mel-cepstral
coefficients to scale the Fourier Transform of incoming audio before passing these
new scaled feature-vectors to the DTW Engine. This has been implemented on
FPGAs and shown to perform better than the system implemented in this project.

The chess hardware was successfully implemented on the FPGA. Capable of taking
both keyboard and speech commands, it can function both independently and as a
part of the voice controlled chess system. The chess hardware features basic move
checking - checking that moves match the style of movement of a piece. Thus, it
does have a number of limitations, preventing it from functioning as a full-fledged
chess system. Due to design limitations, the chess system does not allow a number
of special moves, namely, en passant captures and castling. Pawn promotion is also
limited to queens. Regardless of these shortcomings in the chess engine, the chess
hardware is still complete, taking moves and displaying them on screen.

The Voice Controlled Chess Game is fully functional, although there are features that
we would have liked to implement.

22

Appendices

Appendix A : Single DTW Test Data “Funk” v “Bridge” and “Cat” v “Dog”

Cat v Dog Dog v Dog
6360E 407054 47889 293001
74628 476712 3D6D3 251603
8255D 533853 420F0 270576
65E4C 417356 36CDE 224478
806ad 525997 44ESF 282207
628BA 403642 55812 350226
6FFAB 458667 3148A 201866
7C193 508307 3B28B 242315
9830C 623372 44706 280326
73B0OA 473866 5B9CF 375247
7455F 476511 30770 198512
6A867 436327 47119 291097
6434D 410445 3C9A3 248227
731C7 471495 6CDF4 445940
796A4 497316 5A901 370945
94692 607890 43061 274529
8EC7E 584830 66072 417906
87AES8 555752 72C33 470067
7193C 465212 5D8AB 383147
65A2C 416300 4A219 303641
Mean 487545.2 308792.8
Median 475188.5 286652
Std Dev 67004.73487 79157.35594
Bridge v Funk Funk v Funk
33f16 212758 4be07 310791
40b71 265073 4efdl 323537
488al 297121 5c625 378405
607a7 395175 436b9 276153
60b37 396087 476b1 292529
58dbf 363967 45de4 286180
61af2 400114 46e06 290310
564ad 353453 488d1 297169
53533 341299 4e272 320114
675el 423393 4c6a9 313001
599e9 367081 49f7c 302972
5dfda 384986 45d59 286041
21afd 137981 423f5 271349
5a56a 370026 43d37 277815
548f7 346359 4de76 319094
6a5a0 435616 436cd 276173
64846 411718 4551a 283930
66826 419878 49e9d 302749
6423c 410172 4d0e9 315625
69d0d 433421 4dada 318170
33f16 212758 4be07 310791
40b71 265073 4efdl 323537
488a1l 297121 5c625 378405

607a7 395175 436b9 276153

60b37
58dbf

396087
363967

476b1
45de4

292529
286180

24

Appendix B: Letter Hit Frequency Data

spoken

—h Th ~h —h —h —h =h O O ® ®M ® ® ® ® QO O O Qa 0O o a0 a o 0o o o0 A o000 g o oo o oo oo o oy o 9 Y 9

received

@ ™" 0o®C O 0 T 9 TKu hpPm a0 T Y STTTJ]KTu Th M OO oo STKL "o O oY JFAQ DO OO O JTWQ ThDO OO0 o9

frequency

0.31
0.02
0.09
0.00
0.10
0.12
0.06
0.30
0.00
0.30
0.10
0.00
0.00
0.10
0.00
0.40
0.00
0.20
0.00
0.00
0.20
0.10
0.30
0.20
0.20
0.00
0.00
0.00
0.50
0.00
0.00
0.30
0.30
0.00
0.00
0.00
0.40
0.10
0.00
0.20
0.33
0.00
0.22
0.00
0.00
0.00
0.00

25

O O3 03 30§ uuuauaua =

a d A D DDA DDA PP WLWUWWWWWWNNNNNNNNRERRRRRB R =

JoOQu = 0 o 0 U QO O QO o T o T

R 0O NO UuddWNRONOGOOOUPNANWNMNE ONOOUUDNWNRLROONOOUDN WN R

0.44
0.00
0.20
0.10
0.00
0.20
0.00
0.00

0.40
0.00
0.60
0.00
0.00
0.10

0.30
0.00
0.00

0.61
0.13
0.01
0.14
0.08
0.01
0.01
0.01
0.00

0.70
0.00
0.10
0.00
0.20
0.00
0.00
0.00
0.20

0.30
0.00
0.10

0.30
0.10
0.10
0.00

0.60
0.10

0.30
0.00
0.00
0.00
0.00
0.00

26

W 0 W 0w 0 0 W 0 NN N NNNNVYNOTOOTOOOOTOTOOODO U Bl Bl BT 0

0O NGO U A WNERE ONOOTUUDNWNERLRONOOUDN WNNERE ONOOOLPNAWN

0.00
0.00
0.10
0.90
0.00
0.00
0.00
0.00
0.00
0.00
0.30
0.10
0.50
0.00
0.00
0.00
0.40
0.00
0.20
0.20
0.00
0.10
0.00
0.10
0.20
0.00
0.10
0.10
0.50
0.00
0.00

27

Appendix C: Shift Connector Verilog

module shift_connector(clock, reset, cat_in,word_in,

train_in, train_audio_in,
en_in, audio_in,
en_out, audio_out,
cat_out, train_audio_out,
train_|, train_2, train_3, train_4,
train_5, train_6, train_7, train_8);

input wire dock;

input wire reset;

input wire cat_in;

input wire [2:0] word_in;

input wire train_in;

input wire [7:0] train_audio_in;

input wire en_in;

input wire [7:0] audio_in;

output reg en_out;

output reg [7:0] audio_out;

output reg cat_out;

output reg [7:0] train_audio_out;

output reg train_|;

output reg train_2;

output reg train_3;

output reg train_4;

output reg train_5;

output reg train_6;

output reg train_T;

output reg train_§;

[*shift registers that hold things back two clock cycles*/
reg en_old;

reg en_old_old;

reg train_old;

reg train_old_old;

reg [7:0] audio_hold_l;

reg [7:0] train_hold_I;

reg cat_in_hold;

reg word_in_hold;

always @ (posedge dlock) begin
if (reset) begin

audio_hold_| <= (;
audio_hold_2 <= (;
train_hold_I| <= 0;
train_hold_2 <= 0;
en_old <=0
en_old_old <= 0;
train_old <= 0;
train_old_old <= (;

en_out <= 0;
audio_out <= 0;
cat_out <= (;
train_audio_out <= 0;
train_| <= 0;
train_2 <= 0;
train_3 <= 0;
train_4 <= 0;
train_5 <= 0;
train_6 <= 0;
train_1 <= 0;
train_8 <= 0;

end

else begin

en_old <= en_in;
en_old_old <= en_old;

train_old <= train_in;
train_old_old <= train_old;

if (train_in | | train_old_old) begin
en_out <= 0;
cat_in_hold <= (train_in) ? cat_in : cat_in_hold;
train_hold_| <= (train_in) ? train_audio_in : 0;
train_audio_out <= train_hold_I;
cat_out <= cat_in;

train_| <= (word_in == 0) 2 1 : (;
train_2 <= (word_in == 1) 2 1 : (;
train_3 <= (word_in ==2) 7 1:(;
train_4 <= (word_in ==3) 7 1:(;
train_5 <= (word_in ==4) 7 | : 0;
train_6 <= (word_in ==5) 71 : 0;
train_7 <= (word_in == 6) 7 | : 0;
train_§ <= (word_in ==T7) 7 1:0;
end
else if (en_in | | en_old_old) begin
train_| <= (;
train_2 <= (;
train_3 <= 0;
train_4 <= 0;
train_5 <= 0;
train_6 <= 0;
train_7 <= 0;
train_8 <= 0;

audio_out <= audio_in;
cat_out <= cat_in;

en_out <= |;

end

else begin
audio_hold_| <= (;
audio_hold_2 <= (;
train_hold_I| <= 0;
train_hold_2 <= 0;
en_old <= (;

en_old_old <= 0;
train_old <= 0;
train_old_old <= (;
en_out <= 0;
audio_out <= 0;
train_audio_out <= 0;

train_| <= 0;
train_2 <= 0;
train_3 <= 0;
train_4 <= 0;
train_5 <= 0;
train_6 <= 0;
train_1 <= 0;
train_8 <= 0;
end

end
end
endmodule

Appendix D: FIR 31 Verilog

;j?;;;///

//
// 31-tap FIR filter, 8-bit signed data, 10-bit signed coefficients.

// ready is asserted whenever there is a new sample on the X input,

// the Y output should also be sampled at the same time. Assumes at

// least 32 clocks between ready assertions. Note that since the

// coefficients have been scaled by 2**10, so has the output (it's

// expanded from 8 bits to 18 bits). To get an 8-bit result from the

// filter just divide by 2**10, ie, use Y[17:10].

//
;;;j;j///

module fir31(
input wire clock,reset,ready,
input wire signed [7:0] x,
output reg signed [17:0] y

);
reg signed [7:0] sample[31:0]; // buffer of 32 8-bit signed samples
reg [4:0] offset; // offset pointer for sample memory
reg [4:0] index;
wire signed [9:0] coeff;
coeffs31 coeffs31(.index(index),.coeff(coeff));
always @(posedge clock) begin
if (reset) begin
offset <= 0;
index <= 0;
y<=0;
end
else if (ready) begin
offset <= offset + 1;
sample[offset] <=x;
y<=0;
index <= 0;
end
else if (index < 31) begin
y <=y + coeff * sample[(offset - index - 1) & 31] ;
index <= index + 1;
end
end
endmodule

30

;?;;;;///
//

// Coefficients for a 31-tap low-pass FIR filter with Wn determined for a 4kHz
sampling rate. Since we're doing integer arithmetic, we've scaled

// the coefficients by 2**10

// Matlab command: round(fir1(30,.2/24)*1024)

//
;j?;ﬁ;///

module coeffs31(
input wire [4:0] index,
output reg signed [9:0] coeff
);
// tools will turn this into a 31x10 ROM
always @(index)

case (index)

'd0: coeff=-1;

'd1: coeff=-1;

'd2: coeff=-1;

'd3: coeff=0;

'd4: coeff=2;

'd5: coeff=75;

'd6: coeff=11;

'd7: coeff=19;

'd8: coeff=28;

'd9: coeff = 40;

'd10: coeff=52;

'd11: coeff = 64;

'd12: coeff=75;

'd13: coeff = 84;

'd14: coeff=90;

'd15: coeff=91;

'd16: coeff=90;

'd17: coeff = 84;

'd18: coeff=75;

'd19: coeff = 64;

'd20: coeff=52;

'd21: coeff =40;

'd22: coeff=28;

'd23: coeff=19;

'd24: coeff=11;

'd25: coeff=75;

'd26: coeff = 2;

31

'd27: coeff =0;
'd28: coeff=-1;
'd29: coeff=-1;
'd30: coeff=-1;
default: coeff = 10'hXXX;
endcase
endmodule

32

Appendix E: DTW Engine Verilog
module dtw_engine2(input wire dock,
input wire reset,

input wire signed [7:0] train_in,//training audio

input wire train,
input wire en,
input wire signed [7:0] audio_in,

input wire category, /1 bit toggle for category

output reg [25:0] distance,
output reg DTW_done);

reg [11:0]a_temp;

reg we_temp;

reg signed [7:0] mem_in_temp;

wire signed [7:0] mem_out_temp;

/[Template Memory

mybram #(.LOGSIZE(12),.WIDTH(8))
template(.addr(a_temp),.clk(clock),.we(we_temp),.din(mem_in_temp),.dout(mem_out_temp));

reg [10:0] a_match;

reg we_match;

reg signed [7:0] mem_in_match;

wire signed [7:0] mem_out_match;

/Match Memory

mybram #(.LOGSIZE(1),.WIDTH(8))
match(.addr(a_match),.clk(clock),.we(we_match),.din(mem_in_match),.dout(mem_out_match));

reg [11:0] a_dtw;
reg [11:0] a_dtw_store;
Istores the address of a_dtw so that we can go back to it while doing the address manipulation
reg we_dtw;
reg [19:0] mem_in_dtw;
wire [19:0] mem_out_dtw;
/IDTW Memory
mybram #(.LOGSIZE(12),. WIDTH(20))
DTW(.addr(a_dtw),.clk(clock),.we(we_dtw),.din(mem_in_dtw),.dout(mem_out_dtw));

[*miscellaneous */

reg [2:0] state;

reg [2:0] nextstate;
reg [2:0] substate;

reg train_old;

reg train_old_old;

reg en_old;

reg en_old_old;

reg we_dtw_old;

reg a_dtw_toggle;

reg clear_dtw_mem_f;
reg [12:0] dear_count;

[*pointers */

reg [11:0] end_val;
reg [11:0] start_val;
reg [21:0] count;
reg [10:0] rollcount;

[*local storage */
reg [25:0] ij;
/Ithe four blocks needed for each calculation
reg [25:0] ilj;
reg [25:0] min_ijl_iljl;

33

reg [25:0] iljl;
reg [25:0] ijl;
reg [17:0] Dij;
/ldifference between the two samples

[*state*/

localparam training = 1;
localparam transfer = 2;
localparam calculate = 3;
localparam hold = 4;

[*substate®/

localparam write = 0;
localparam add = I;
localparam read_dtw = 2;
localparam read_mem = 3;
localparam burn_dclock = 4;

always @ * begin

case (state)
training: nextstate <= ('train) ? hold : training;
transfer: nextstate <= (‘en) ? calculate : transfer;
calculate: nextstate <= (DTW_done) ? hold : calculate;
hold: nextstate <= (train) ? training : ((en) ? transfer : hold);
default: nextstate <= training;

endcase

end
always @ (posedge dlock) begin

if (reset) begin
a_dtw_toggle <= 0;
state <= training;
substate <= burn_clock;
rollcount <= 0;

count <= 0;
a_temp <= (;
we_temp <= 0;
a_match <= 0;
we_match <= 0;
a_dtw <= 0;
we_dtw <= 0;

clear_dtw_mem_f <= 0;
clear_count <= 4100;
a_dtw_store <= 0;
count <= 0;
rollcount <= 0;
DTW_done <= (;
distance <= 0;

ij <=0;
Djj <=0,
ilj <=4
ijl <=0
iljl <=0
min_ijl_iljl <=0;
end
else begin

end_val <= (category) ? 4095 : 2047;

train_old <= train;

train_old_old <= train_old;

/1 delays address incrementing

en_old <= en;

en_old_old <= en_old; //hack

we_dtw_old <= we_dtw; //hack -- resets a_match properly
state <= nextstate;
if (nextstate !=state) begin

34

if (nextstate == training) begin
a_temp <= (category) ? 2048 : 0;
/lset the start of the template recording
we_match <= (;
we_dtw <= 0;
end
else if (nextstate == transfer) begin
a_match <= 0; //reset the match address
we_temp <= 0;
we_dtw <= 0;

count <= 0;
rollcount <= 0;
DTW_done <= 0;

end
else if (nextstate == calculate) begin
substate <= burn_clock;
a_dtw <=10;
a_dtw_store <= 0;
a_match <= 0;
a_temp <= (category) ? 2048 : 0;
we_temp <= 0;
we_match <= 0;
Dij <= 0;
ij <=0
ilj <=0
ijl <=0
iljl <=0
min_ijl_iljl <=0;
distance <= 0;
end
end
else if (clear_dtw_mem_f == 1) begin
if (clear_count == 0) begin
clear_dtw_mem_f <= 0;
we_dtw <= [;
mem_in_dtw <= 0;
DTW_done <= 0;
end
Ilexplicitly hold the dtw_done on for 3 clock cycles and force a reset
else if (dear_count == | || dear_count == 12 || dclear_count == 3) begin
DTW_done <= |;
distance <= ij+Dij;
clear_count <= clear_count - I;
end
else begin
clear_count <= clear_count - [;
a_dtw <= a_dtw - [;
we_dtw <= I;
mem_in_dtw <= 0;
end
end

else if (state == training & (train | | train_old_old)) begin
/Imake sure we're in training state but not just defaulted
if (a_temp != end_val) begin
//to not load the previous train_in improperly when a shifts
if (train && train_old_old) begin
we_temp <= [;

35

mem_in_temp <= train_in;
a_temp <= a_temp + I;
end
else if (train && 'train_old_old) begin
we_temp <= [;
mem_in_temp <= train_in;

end
end
else begin
we_temp <= 0;
end
end
else if (state == transfer) begin

if (a_match != 1I'b1ITTTTTTTIT) begin
if (en && en_old_old) begin
we_match <= 1;
a_match <= a_match + [;
mem_in_match <= audio_in;
end
else if (en && 'en_old_old) begin
we_match <= 1;
mem_in_match <= audio_in;
end
end
else if (a_match == [I'bIIITITTIT11) begin
we_match <= 0;

end
end
else if (state == calculate) begin
if (a_dtw_toggle == 0)begin
a_match <= 0;
a_temp <= (category) ? 2048 : (;
a_dtw_store <= 0;
end

if (substate == burn_dock)begin

we_dtw <= 0;

substate <= substate - |;

a_dtw <= a_dtw - 2047,

end

else if (substate == read_mem) begin
/Imake Dij positive for posterity
Dij <= (mem_out_temp > mem_out_match) ? mem_out_temp - mem_out_match : mem_out_match - mem_out_temp;

substate <= substate - |;

end

else if (substate == read_dtw) begin
if (a_dtw_toggle != 0) begin

Dij <= Dij*Dij; //square Dij
a_dtw_store <= a_dtw_store + [;
ilj <= mem_out_dtw;
ijl <=ij
min_ijl_iljl <= (ij > ilj) 2ilj : i
Ilsaves the two "left" squares as one

end
substate <= substate - |;
end
else if (substate == add) begin
if (count == 22'bILLLELTELTELEEITETELTL) begin // last piece
a_dtw_toggle <= 0;
dear_dtw_mem_f <= 1I; //dear the dtw memory!
clear_count <= 4100;

36

end

else begin
substate <= substate - I;
if (count == 0 && a_dtw_toggle == 0) begin //first spot
ij <= Dij;
end
else if (rollcount == 2047) begin //first column
ij <= Dij +ilj;
count <= count + I;
rollcount <= rollcount + 1I;
end
else if (count < 2048) begin //first row
ij <= Dij + ijl;
count <= count + I;
rollcount <= rollcount + I;
end
else if (count >= 2048) begin //normal pieces
ij <= (min_jl_iljl <ilj) 2 Dij + min_ijl_iljl : Dij + ilj;
count <= count + I;
rollcount <= rollcount + I;
end
end

end

else if (substate == write) begin
substate <= burn_clock;
if (count != 0 && rollcount == 0) begin
a_temp <= a_temp + I; end

if (a_dtw_toggle == 0) begin
a_dtw_toggle <= |;
a_dtw <= (category) ? 2048 : 0;
/la_dtw <= (;
mem_in_dtw <= ij;
we_dtw <= |[;
end
else begin
a_match <= a_match + |;
/fincrement everything
we_dtw <= |[;
a_dtw <= a_dtw_store;
mem_in_dtw <= ij;
a_dtw_toggle <= |;
end

end

end
end

end

endmodule

Appendix F: DTW System Controller + Valid Checker Verilog

module recorder(

input wire dlock, /1 2Tmhz system clock
input wire reset, /11 to reset to initial state
input wire playback, 111 for playback, 0 for record
input wire ready, /11 when AC9T data is available

input wire [7:0] from_ac97_data, // 8-bit PCM data from mic
input wire category_in, //inputted category being trained
input wire [2:0] word_in, Ilwhich word is being trained
input wire program_in, /fare we programming now?
input wire [25:0] distance_l, //distance calculated by DTW |
input wire [25:0] distance_2, //distance calculated by DTW 2
input wire [25:0] distance_3, //distance calculated by DTW 3
input wire [25:0] distance_4, //distance calculated by DTW 4
input wire [25:0] distance_5, //distance calculated by DTW 5
input wire [25:0] distance_6, //distance calculated by DTW 6
input wire [25:0] distance_7, //distance calculated by DTW 7
input wire [25:0] distance_8, //distance calculated by DTW 8

input wire DTW_done_1, /ldone signal from DTW_|
input wire DTW_done_2, /ldone signal from DTW_2
input wire DTW_done_3, /ldone signal from DTW_3
input wire DTW_done_4, /ldone signal from DTW_4
input wire DTW_done_5, /ldone signal from DTW_5
input wire DTW_done_6, /ldone signal from DTW_6
input wire DTW_done_7, /ldone signal from DTW_7
input wire DTW_done_8, /ldone signal from DTW_8
output reg [7:0] possible_match_out, /faudio sample to check against

output reg [7:0] template_audio_out, //template audio
output reg category_out,
output reg [2:0] word_out,

output reg en, /1write enable for samples

output reg temp_WE, [Hwrite enable for template memory
output reg vr_new_command, [lenable signal for chess game
output reg [11:0] vr_to_chess, /output from VR to chess

output reg LED_TO_RECORD,
output reg [2:0] state_out,
output reg [2:0] substate_out,
output reg valid_disp,

output reg [7:0] to_ac97_data);

reg [10:0] a; //RAM address. initially zero

reg [7:0] mem_in ; //data to be written to RAM address a
wire [7:0] mem_out; //data outputted from RAM address a
reg we; [fwrite enable for RAM

/linstantiate ram
mybram #(.LOGSIZE(1),.WIDTH(8))
ram(.addr(a),.clk(clock),.we(we),.din(mem_in),.dout(mem_out));
reg [1:0] to_filter;
wire [17:0] from_filter;
fir31 fir(clock, reset, ready,to_filter,from_filter);

reg vc_enable;

wire valid;

/linstantiate the valid_checker

valid_checker ve(.clk(clock), .reset(reset),.enable(vc_enable), .in(mem_in), .valid(valid));

/lcounter used to determine when to sample

reg [3:0] store_count;

//the maximum memory address written to during a record cydle. so as not to play
Ilprevious recordings when in the playback mode

reg [10:0] start_sample;

reg [10:0] end_sample;

reg [2:0] state;

reg [2:0] next_state;

reg [1:0] substate;

reg [1:0] next_substate;

/Imajor states of behavior

localparam training = 1;

localparam passive = 2;

localparam active = 3;

localparam to_dtw = 4; //also "to_template_memory"
localparam valid_out = 5;

/lsubstates in determining what we're recording
localparam from_letter = 0;

localparam from_number = [;

localparam to_letter = 2;

localparam to_number = 3;

Ilregisters to hold values to be outputted

/1 no "to_number_r" because it's just concatenated to output, never saved
reg [2:0] from_letter_r; //A-F --> 0:7

reg [2:0] from_number_r; // 1-8 --> 0:7

reg [2:0] to_letter_r;

/Mflags and misc

reg end_record_f; //done recording

reg valid_done_f; //done outputting valid

reg valid_done_old; //holds old valid done

reg program_in_old;

reg all_done_f; //all distances have returned

reg training_done_f; //done training the module

reg [1:0] valid_compare; //used to denote end of comparing distances
reg minl_2; IIrepresents DTWI and DTW2 -- whichever is lesser
reg min3_4;

reg min5_6;

reg min7_8;

reg [2:0] min_so_far_I; //min # of DTW's 1,2,3,4

reg [2:0] min_so_far_r; //min # of DTW's 5,6,7

reg [2:0] min_dist; /1# of min DTW

/Iregisters to hold DTW_done_i signals
reg dtwdunl;
reg dtwdun;
reg dtwdun3;
reg dtwdund;
reg dtwdun5;
reg dtwduné;
reg dtwdunT;
reg dtwdung;

always @ * begin
substate_out = substate;
state_out = state;
valid_disp = valid;
/fall_done_f becomes a | dock long pulse that occurs when all DTW_done_i are |
all_done_f = (dtwdun|&&dtwdun2&&dtwdun3&&dtwdun4&&dtwdun5&&dtwduné&&dtwdun7&&dtwdung) ? 1 : 0;
/ftraining will be done clocked and override all!
LED_TO_RECORD = (state == passive) ? | : 0;
case (state)
//determines next_state
passive: next_state = (valid) ? active : passive;
active: next_state = (end_record_f) ? to_dtw : active;
to_dtw: next_state = (program_in) ? ((training_done_f) ? passive : to_dtw) : ((all_done_{f) ? valid_out
valid_out: next_state = (valid_done_f) ? passive : valid_out;
default next_state = passive;
endcase

case(substate)
//determines next_substate at the rising edge of valid_done_f
from_letter: next_substate = (valid_done_f{&&(~valid_done_old)) ? from_number : from_letter;
from_number:next_substate = (valid_done_f&&(~valid_done_old)) ? to_letter : from_number;
to_letter: next_substate = (valid_done_f&&(~valid_done_old)) ? to_number : to_letter;

: to_dtw);

39

to_number:next_substate = (valid_done_{&&(~valid_done_old)) ? from_letter

default: next_substate = from_letter;
endcase

if (~program_in) begin

if (next_substate == from_letter | | next_substate == to_letter)

category_out = 0;

else if (next_substate == from_number | | next_substate == to_number)

category_out = |;
end
else if (program_in) begin
category_out = category_in;
word_out = word_in;
end
end

always @ (posedge clock) begin

/lensure that all values are set to zero when the machine loads

if (reset)begin

dtwdunl <= 0;

dtwdun2 <= 0;

dtwdun3 <= 0;

dtwdund <= (;

dtwdun5 <= 0;

dtwduné <= 0;

dtwdun7 <= 0;

dtwdun8 <= 0;

playback_old <= 0;
a <=0
start_sample <= 0;
end_sample <= 0;

en <= 0;
store_count <= 0;
we <= 1'b0;

state <= passive;

substate <= from_letter;

end_record_f <= (;
valid_done_f <= 0;
valid_compare <= 3;
temp_WE <= 0;
end_record_f <=0;

valid_done_f<=0;

valid_done_old <=(;

minl_2<=0;

min3_4<=0;

min5_6<=0;

min_8 <=0,

min_so_far_I<=0;

min_so_far_r<=0;

min_dist<=0;

from_letter_r<=0;

from_number_r<=0;

to_letter_r<=0;

vr_new_command <= 0;

vr_to_chess <= 0;

template_audio_out <= (;

end

state <= next_state;

substate <= (program_in) ? from_letter : next_substate;

valid_done_old <= valid_done_f;

if (‘all_done_f) begin
dtwdunl <= (DTW_done_lI) 2 | :
dtwdun2 <= (DTW_done_2) ? | :
dtwdun3 <= (DTW_done_3) ? | :
dtwdund4 <= (DTW_done_4) ? |
dtwdun5 <= (DTW_done_5) ? |

dtwdunl;
dtwdun2;
dtwdun3;

. dtwdun4;
. dtwdun5;

: to_number,

40

dtwduné <= (DTW_done_6) ? | : dtwduné;
dtwdun7 <= (DTW_done_7) ? | : dtwdunT,
dtwdun8 <= (DTW_done_8) ? | : dtwdun$;
end
else if (all_done_f) begin
dtwdunl <= 0;
dtwdun <= 0;
dtwdun3 <= 0;
dtwdund <= 0;
dtwdun5 <= 0;
dtwdun6 <= 0;
dtwdun7 <= 0;
dtwdun8 <= 0;
end

if (ready) begin
if (state == passive) begin
vr_new_command <= 0;
valid_compare <= 3;
valid_done_f <= 0;
training_done_f <= 0;
if (~playback) begin

if (store_count == 1) begin //if we're on the I2th sample
we <= [;
vc_enable <= I[;
a<=a+ |
store_count <= (;
start_sample <= a - 127; //128 behind current sample
end_sample <= start_sample; //129 behind current sample -- we will consider the last 128 samples as "valid"
to_filter <= from_ac97_data;
mem_in <= from_filter[I7:10];
to_ac97_data <= mem_out;
end
else begin
we <=0,
vc_enable <= 0;
store_count <= store_count + I;
end
end
end
else if (state == active) begin
vc_enable <= 0;
if (~playback) begin

if (store_count == |1)begin

store_count <= (;

ifla == end_sample | | a == start_sample) begin //handle the one clock of wait between changing states by allowing a to be end OR start_sample
end_record_f <= 1I; //start sending to dtw
we <=0;
a <= start_sample; //move up one so we can access entire stored sample

end

else begin
we <= |;
a<=a+ |

to_filter <= from_ac97_data;
mem_in <= from_filter[17:10];
to_ac97_data <= mem_out;

end

end

else begin
we <= (;
store_count <= store_count + |;

end

end
end
end

41

if (state == to_dtw) begin
valid_compare <= 3;
we <= (;
end_record_f <= (;
valid_done_f <= 0; //overspecification
if (a != end_sample) begin
if (program_in) begin
a<=a+|;
template_audio_out <= mem_out;
temp_WE <= [;
end
else begin
a<=a+|;
en <= 1I; //enable writing to DTW
possible_match_out <= mem_out; //send the possible match down
end
end

else if (program_in && a == end_sample) en <= 0;

else if (program_in && a == end_sample) begin
temp_WE <= 0;
training_done_f <= 1;
end
end

else if (state == valid_out) begin
en <= (;

//build a 7->1 fan in comparator
if (valid_compare == 3) begin

minl_2 <= (distance_| < distance_2) ? 0 : I; //signifies which is lesser
min3_4 <= (distance_3 < distance_4) 2 0 : I;
min5_6 <= (distance_5 < distance_6) ? 0 : I;
min_8 <= (distance_7 < distance_8) ? 0 : I;

valid_compare <= 1;
end
else if (valid_compare == 2) begin
case({minl_2, min3_4})
2'b00: min_so_far_| <= (distance_| < distance_3) 2 0 : 2;

2'bI1: min_so_far_| <= (distance_2 < distance_4) ? | : 3;
2'b01: min_so_far_| <= (distance_| < distance_4) ? 0 : 3;

2'b10: min_so_far_| <= (distance_2 < distance_3) ? | : 2;
endcase
case ({min5_6, min7_8})

2'b00: min_so_far_r <= (distance_5 < distance_7) ? 4 : 6;

2'b11: min_so_far_r <= (distance_6 < distance_8) ? 5 : 7,
2'b01: min_so_far_r <= (distance_5 < distance_8) 2 4 : T,

2'b10: min_so_far_r <= (distance_6 < distance_7) 2 5 : 6;
endcase
valid_compare <= 1[;
end
else if (valid_compare == 1) begin
case ({min_so_far_|, min_so_far_r}
{3'b000,3'b100}: min_dist
{3'b001,3'b100}: min_dist
{3'b010,3'b100}: min_dist

<= (distance_| < distance_5) ?

<

<
{3'b011,3'b100}: min_dist <

<

<

<

)

()20
(distance_2 < distance_5) ? |
(distance_3 < distance_5) ? 2
(distance_4 < distance_5) ? 3 :
()20
()21
()21

{3'b000,3'b101}: min_dist
{3'b001,3'b101}: min_dist
{3'b010,3'b101}: min_dist

distance_| < distance_6) ?
distance_2 < distance_6) ?
distance_3 < distance_6) ?

42

{3'011,3'b101}: min_dist <= (distance_4 < distance_6) ? 3 : 5;
{3'6000,3'b110}: min_dist <= (distance_| < distance_7) ? 0 : 6;
{3'b001,3'b110}: min_dist <= (distance_2 < distance_7) ? | : 6;
{3'b010,3'b110}: min_dist <= (distance_3 < distance_7) 2 2 : 6;
{3'b011,3'b110}: min_dist <= (distance_4 < distance_7) ? 3 : 6;
{3'6000,3'b1'11}: min_dist <= (distance_| < distance_8) 2 0 : T,
{3'b001,3'b111}: min_dist <= (distance_2 < distance_8) ? | : 7
{3'b010,3'b111}: min_dist <= (distance_3 < distance_8) 72 : T
{3'011,3'bIT1}: min_dist <= (distance_4 < distance_8) ? 3 : T;
endcase
valid_compare <= (;
end
else if (valid_compare == 0) begin

if (substate == to_letter) begin
to_letter_r <= min_dist;
valid_done_f <= 1;
end
else if (substate == to_number) begin//hold the proper output high for | clocks
vr_new_command <= |;
vr_to_chess <= {from_letter_r, from_number_r, to_letter_r, min_dist};
valid_done_f <= 1;
end
else if (substate == from_letter) begin
from_letter_r <= min_dist;
valid_done_f <= 1;
end
else if (substate == from_number) begin

rom_number_r <= min_dist;
valid_done_f <= [;
end
end

end

end
endmodule

module mybram # (parameter LOGSIZE=[4, WIDTH=1)

(input wire [LOGSIZE-1:0] addr,
input wire clk,
input wire [WIDTH-1:0] din,
output reg [WIDTH-1:0] dout,
input wire we);

/1 let the tools infer the right number of BRAMs

(* ram_style = "block" *)

reg [WIDTH-1:0] mem[(I<<LOGSIZE)-1:0];

integer i;
initial begin
for (i =0;i<32%i=1i-+1)begin
meml[i] = 8'd0;
end
end

always @ (posedge clk) begin
if (we) mem[addr] <= din;
dout <= mem[addr];
end
endmodule

43

module valid_checker (input clk, input reset, input enable, input [7:0] in, output reg valid);

/[Throws an enable pulse if a valid audio sample is noted!
reg [7:0] temp [255:0]; //holds data

reg [7:0] temp_store;
reg [19:0] sum_first; //sums the oldest 128 samples
reg [19:0] sum_last; //sums the newest 128 samples
reg [1:0] §; /findexes up to 256
reg [7:0] index;
reg [7:0] top_index;
reg dlear_flag; Ifsignals to hold valid high count
reg [8:0] clear_count; //holds valid out for 2 clocks
reg en_old;
reg [7:0] abs_in;

integer j;
initial for(j = 0; j <= 255; j=j+1)
temp[j] = 0;

[luse for loop to zero out things whenever program or train is hit!

//0ne clock delay on valid --> please note
always @ (posedge dlk) begin
if (reset)begin
top_index <= 1;
i <=0;
index <= 128;
valid <= 0;
sum_first <= 0;
sum_last <= 0;
dear_flag <= 0;
clear_count <= 255;

end
else if (clear_flag) begin
if (clear_count == 0) begin
clear_count <= 255;
dear_flag <=0;
temp[clear_count] <= 0;

end
else begin
valid <= (;
temp[clear_count] <= 0;
clear_count <= clear_count -I;
end
end

else begin
en_old <= enable;
if(enable && ~en_old) begin
i<=i+l;
top_index <= i+2;
index <= i+129;
temp[i] <= abs_in;
sum_first <= (sum_first < temp[top_index]+temp[index]) ? 0 : sum_first - temp[top_index] +temp[index];//remove the oldest sample and shift over the
middle sample
sum_last <= (sum_last + abs_in < temp[index]) ? 0 : sum_last + abs_in - temp[index]; //add newest sample and remove the shifted one
end
if (sum_first + {5'b00100, 9'5000000000} < sum_last)begin //found empirically - use 9'b000...
sum_first <= 0;
sum_last <= 0;
top_index <= 1[;
i <=0;
index <= [28;
sum_first <= 0;

44

sum_last <= 0;

valid <= |[;
dear_flag <= 1;
end
else begin
valid <= 0;

end

end
end

endmodule

always @ * begin
if (in[7] == 1)
abs_in = ~in + I;//if negative, make positive
else
abs_in = in;
end

45

Appendix G: Modified Lab 4 W/ Instantiated Modules + Debouncer Verilog

“default_nettype none

T T T
1

/1 Switch Debounce Module

1
T LT

module debounce (
input wire reset, clock, noisy,
output reg clean

)
reg [18:0] count;
reg new;

always @ (posedge clock)

if (reset) begin
count <= 0;
new <= noisy;
dean <= noisy;

end

else if (noisy != new) begin
/1 noisy input changed, restart the .01 sec clock

new <= noisy;
count <= 0;
end

else if (count == 270000)
/1 noisy input stable for .01 secs, pass it along!
dean <= new;
else
/1 waiting for .01 sec to pass
count <= count+1;

endmodule

T L]
I

/1 bi-directional monaural interface to AC97

I
T LT

module lab4audio (
input wire dock_27mhz,
input wire reset,
input wire [4:0] volume,
output wire [7:0] audio_in_data,
input wire [7:0] audio_out_data,
output wire ready,
output reg audio_reset_b, // ac97 interface signals
output wire ac97_sdata_out,
input wire ac97_sdata_in,
output wire ac97_synch,
input wire ac97_bit_dock

wire [7:0] command_address;

wire [15:0] command_data;

wire command_valid;

wire [19:0] left_in_data, right_in_data;
wire [19:0] left_out_data, right_out_data;

/1 wait a little before enabling the AC97 codec
reg [9:0] reset_count;

always @ (posedge clock_27mhz) begin
if (reset) begin
audio_reset_b = I'b0;
reset_count = (;

end else if (reset_count == 1023)
audio_reset_b = I'bl;
else
reset_count = reset_count+;
end

wire ac97_ready;

ac9T ac97(.ready(ac97_ready),
.command_address(command_address),
.command_data(command_data),
.command_valid(command_valid),
left_data(left_out_data), left_valid(1'bl),
.right_data(right_out_data), .right_valid(1'bl),
left_in_data(left_in_data), .right_in_data(right_in_data),
.ac97_sdata_out(ac97_sdata_out),
.ac97_sdata_in(ac97_sdata_in),
.ac97_synch(ac97_synch),
.ac97_bit_clock(ac97_bit_clock));

/1 ready: one cycle pulse synchronous with dock_27mhz

reg [2:0] ready_sync;

always @ (posedge dock_27mhz) ready_sync <= {ready_sync[l:0], ac97_ready};
assign ready = ready_sync[l] & ~ready_sync[2];

reg [7:0] out_data;
always @ (posedge dock_27mhz)
if (ready) out_data <= audio_out_data;
assign audio_in_data = left_in_data[9:12];
assign left_out_data = {out_data, 12'5000000000000};
assign right_out_data = left_out_data;

/1 generate repeating sequence of read/writes to AC97 registers

ac9Tcommands cmds(.clock(dlock_27mhz), .ready(ready),
.command_address(command_address),
.command_data(command_data),
.command_valid(command_valid),
.volume(volume),
source(3'b000)); // mic

endmodule

/1 assemble/disassemble AC97 serial frames
module ac97 (

output reg ready,

input wire [7:0] command_address,

input wire [15:0] command_data,

input wire command_valid,

input wire [19:0] left_data,

input wire left_valid,

input wire [19:0] right_data,

input wire right_valid,

output reg [19:0] left_in_data, right_in_data,

output reg ac97_sdata_out,

input wire ac97_sdata_in,

output reg ac97_synch,

input wire ac97_bit_dock

reg [7:0] bit_count;

reg [19:0] |_cmd_addr;

reg [19:0] |_cmd_data;

reg [19:0] I_left_data, |_right_data;

reg |_cmd_v, I_left_v, |_right_v;

initial begin

47

ready <= 1'b0;

/1 synthesis attribute init of ready is "0";
ac97_sdata_out <= 1'b0;

/1 synthesis attribute init of ac97_sdata_out is "0";
ac97_synch <= 1'b0;

/1 synthesis attribute init of ac97_synch is "0";

bit_count <= 8'h00;

/1 synthesis attribute init of bit_count is "0000";
|_emd_v <= I'b0;

/1 synthesis attribute init of |_cmd_v is "0";
I_left_v <= 1'b0;

/1 synthesis attribute init of |_left_v is "0";
I_right_v <= 1'b0;

/1 synthesis attribute init of |_right_v is "0";

left_in_data <= 20'h00000;

11 synthesis attribute init of left_in_data is "00000";

right_in_data <= 20'h00000;

/1 synthesis attribute init of right_in_data is "00000";
end

always @ (posedge ac97_bit_clock) begin
/1 Generate the sync signal
if (bit_count == 255)
ac97_synch <= 1'bl;
if (bit_count == 15)
ac97_synch <= 1'b0;

/1 Generate the ready signal
if (bit_count == 12§)

ready <= ['bl;
if (bit_count ==)
ready <= 'b0;

/1 latch user data at the end of each frame. This ensures that the
/1 first frame after reset will be empty.
if (bit_count == 255) begin
|_cmd_addr <= {command_address, 12'h000};
|_cmd_data <= {command_data, 4'h0};
|_emd_v <= command_valid;
|_left_data <= left_data;
I_left_v <= left_valid;
|_right_data <= right_data;
I_right_v <= right_valid;
end

if ((bit_count >= 0) && (bit_count <= 15))
11 Slot 0: Tags
case (bit_count[3:0])
4'h0: ac97_sdata_out <= I'bl; // Frame valid
4'hl: ac97_sdata_out <= |_ecmd_v; // Command address valid
4'h2: ac97_sdata_out <= |_cmd_v; // Command data valid
4'h3: ac97_sdata_out <= |_left_v; // Left data valid
4'h4: ac97_sdata_out <= |_right_v; // Right data valid
default: ac97_sdata_out <= 1'b0;
endcase
else if ((bit_count >= 16) && (bit_count <= 35))
/1 Slot 1: Command address (8-bits, left justified)
ac97_sdata_out <= |_cmd_v ? |_cmd_addr[35-bit_count] : I'b0;
else if ((bit_count >= 36) && (bit_count <= 55))
/1 Slot 2: Command data (16-bits, left justified)
ac97_sdata_out <= |_cmd_v ? |_cmd_data[55-bit_count] : I'b0;
else if ((bit_count >= 56) && (bit_count <= T5)) begin
/1 Slot 3: Left channel
ac97_sdata_out <= |_left_v ? |_left_data[19] : 1'b0;
I_left_data <= { |_left_data[l8:0], I_left_data[l9] };
end

48

else if ((bit_count >= 76) && (bit_count <= 95))
/1 Slot 4: Right channel

ac97_sdata_out <= |_right_v ? |_right_data[95-bit_count] :

else
ac97_sdata_out <= 1'b0;

bit_count <= bit_count+1;
end // always @ (posedge ac97_bit_clock)

always @ (negedge ac97_bit_dlock) begin
if ((bit_count >= 57) && (bit_count <= 76))
/1 Slot 3: Left channel
left_in_data <= { left_in_data[18:0], ac97_sdata_in };
else if ((bit_count >= T77) && (bit_count <= 96))
/1 Slot 4: Right channel
right_in_data <= { right_in_data[18:0], ac97_sdata_in };
end
endmodule

/1 issue initialization commands to AC97
module ac97commands (
input wire dlock,
input wire ready,
output wire [7:0] command_address,
output wire [15:0] command_data,
output reg command_valid,
input wire [4:0] volume,
input wire [2:0] source
)
reg [23:0] command;

reg [3:0] state;

initial begin
command <= 4'h0;
/1" synthesis attribute init of command is "0";
command_valid <= 1'b0;
/1 synthesis attribute init of command_valid is "0";
state <= 16'h0000;
/1" synthesis attribute init of state is "0000";

end

assign command_address = command[23:16];
assign command_data = command[15:0];

wire [4:0] vol;
assign vol = 3I-volume; // convert to attenuation

always @ (posedge clock) begin
if (ready) state <= state+1;

case (state)
4'h0: // Read ID
begin
command <= 24'h80_0000;
command_valid <= [I'bl;
end
&'hl: // Read ID
command <= 24'h80_0000;
4'h3: // headphone volume
command <= { 8'h04, 3'b000, vol, 3'b000, vol };
4'h5: // PCM volume
command <= 24'h18_0808;
4'hé: // Record source select

command <= { 8'hlA, 5'b00000, source, 5'500000, source};

4'hT: // Record gain = max
command <= 24'h1C_0FOF;

4'h9: // set +20db mic gain
command <= 24'h0E_8048;

1'b0;

4'hA: /1 Set beep volume
command <= 24'h0A_0000;

4'hB: // PCM out bypass mix|
command <= 24'h20_8000;

default:
command <= 24'h80_0000;

endcase // case(state)
end // always @ (posedge clock)
endmodule // ac97commands

T T T T T T
I

/1 generate PCM data for 750hz sine wave (assuming f(ready) = 48khz)
I

T T T T T

module tone750hz (

input wire dlock,

input wire ready,
output reg [19:0] pcm_data
)
reg [8:0] index;

initial begin
index <= 8'h00;
/1 synthesis attribute init of index is "00";
pem_data <= 20'h00000;
/1 synthesis attribute init of pem_data is "00000";
end

always @ (posedge clock) begin
if (ready) index <= index+1;
end

/1 one cyde of a sinewave in 64 20-bit samples
always @ (index) begin
case (index[5:0])
6'h00: pem_data <= 20'h00000;
6'h01: pem_data <= 20'h0C8BD;
6'h02: pam_data <= 20'h18F8B;
6'h03: pem_data <= 20'h25280;
6'h04: pam_data <= 20'h30FBC;
6'h05: pam_data <= 20'h3(56B;
6'h06: pam_data <= 20'h471CE;
6'h07: pam_data <= 20'h5133(;
6'h08: pam_data <= 20'h5A827,
6'h09: pam_data <= 20'h62F20;
6'h0A: pcm_data <= 20'h6A6DY;
6'h0B: pam_data <= 20'h70E2(;
6'h0C: pem_data <= 20'h76414;
6'h0D: pem_data <= 20'h7ATDO;
6'h0E: pem_data <= 20'hTDBAS;
6'h0F: pem_data <= 20'h7F623;
6'h10: pem_data <= 20°hTFFFF;
6'hl1: pam_data <= 20'h7F623;
6'h12: pem_data <= 20'hTDBAS;
6'h13: pam_data <= 20'hTATDO;
6'h14: pam_data <= 20'h7641A;
6'hI5: pem_data <= 20'h70E2C;
6'h16: pam_data <= 20'h6A6DY;
6'hI7: pam_data <= 20'h62F20;
6'h18: pem_data <= 20'h5A827,
6'h19: pam_data <= 20'h5133(;
6'hIA: pem_data <= 20'h47I1CE;
6'hIB: pem_data <= 20'h3(56B;
6'hIC: pem_data <= 20'h30FBC;
6'hID: pem_data <= 20'h25280;
6'hIE: pem_data <= 20'h18F8B;

6'hIF: pem_data <= 20'h0C8BD;
6'h20: pem_data <= 20'h00000;
6'h21: pem_data <= 20'hF3743;
6'h22: pem_data <= 20'hE7075;
6'h23: pem_data <= 20'hDAD80;
6'h24: pam_data <= 20'hCF044;
6'h25: pam_data <= 20'hC3A95;
6'h26: pam_data <= 20'hB8E3;
6'h27: pam_data <= 20'hAECC4;
6'h28: pam_data <= 20'hA57DY;
6'h29: pam_data <= 20'h9DOE0;
6'h2A: pem_data <= 20'h95927;
6'h2B: pem_data <= 20'h8FID4;
6'h2C: pem_data <= 20'h89BE6;
6'h2D: pem_data <= 20'h85830;
6'h2E: pem_data <= 20'h8275B;
6'h2F: pem_data <= 20'h809DD;
6'h30: pem_data <= 20'h80000;
6'h31: pem_data <= 20'h809DD;
6'h32: pam_data <= 20'h8275B;
6'h33: pam_data <= 20'h85830;
6'h34: pam_data <= 20'h89BES;
6'h35: pam_data <= 20'h8FID4;
6'h36: pam_data <= 20'h95927;
6'h37: pem_data <= 20'h9DOEO;
6'h38: pam_data <= 20'hA57DY;
6'h39: pam_data <= 20'hAEC(4;
6'h3A: pem_data <= 20'hB8E32;
6'h3B: pem_data <= 20'hC3A95;
6'3C: pem_data <= 20'hCF044;
6'h3D: pem_data <= 20'hDAD8(;
6'h3E: pam_data <= 20'hET075;
6'h3F: pem_data <= 20'hF3743;
endcase // case(index[5:0])
end // always @ (index)
endmodule

T T LT
I

/1 6.111 FPGA Labkit -- Template Toplevel Module

I

/1 For Labkit Revision 004

/I Created: October 31, 2004, from revision 003 file

/I Author: Nathan Ickes, 6.111 staff

I
W T T

module lab4(
/1 Remove comment from any signals you use in your design!

11 AC97
output wire /*beep,”*/ audio_reset_b, ac97_synch, ac97_sdata_out,
input wire ac97_bit_dock, ac97_sdata_in,

/1 VGA

J*

output wire [7:0] vga_out_red, vga_out_green, vga_out_blue,

output wire vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync, vga_out_vsync,
*

/1 NTSC OUT

J*

output wire [9:0] tv_out_ycrch,

output wire tv_out_reset_b, tv_out_dock, tv_out_i2c_dcock, tv_out_i2c_data,
output wire tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
output wire tv_out_subcar_reset;

*

/I NTSC IN

I+

input wire [19:0] tv_in_ycrch,

input wire tv_in_data_valid, tv_in_line_clockl, tv_in_line_dcock2, tv_in_aef, tv_in_hff, tv_in_aff,
output wire tv_in_i2¢_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,
inout wire tv_in_i2¢_data,

*/

/1 BT RAMS

s

inout wire [35:0] ram0_data,

output wire [18:0] ram0_address,

output wire ram0_adv_Id, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b,
output wire [3:0] ram0_bwe_b,

inout wire [35:0]ram|_data,

output wire [18:0]ram|_address,

output wire ram|_adv_Id, raml_clk, ram|_cen_b, ram|_ce_b, raml_oe_b, raml_we_b,
output wire [3:0] ram|_bwe_b,

input wire clock_feedback_in,

output wire clock_feedback_out,

*

/1 FLASH

s

inout wire [15:0] flash_data,

output wire [23:0] flash_address,

output wire flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b,
input wire flash_sts,

Wi

/1 RS232

/*

output wire rs232_txd, rs232_rts,
input wire rs232_rxd, rs232_cts,
Wi

11 PS2

/*

input wire mouse_clock, mouse_data, keyboard_clock, keyboard_data,
Wi

/1 FLUORESCENT DISPLAY

output wire disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b,
input wire disp_data_in,
output wire disp_data_out,

// BUTTONS, SWITCHES, LEDS
/finput wire button(,
/finput wire buttonl,
/finput wire button2,
/finput wire button3,
input wire button_enter,
/finput wire button_right,
/finput wire button_|left,
input wire button_down,
input wire button_up,
input wire [7:0] switch,
output wire [7:0] led,

/1 USER CONNECTORS, DAUGHTER CARD, LOGIC ANALYZER
/finout wire [31:0] userl,

/finout wire [31:0] user2,

[finout wire [31:0] user3,

[finout wire [31:0] userd,

[finout wire [43:0] daughtercard,

output wire [15:0] analyzer|_data, output wire analyzerl_clock,

52

Iloutput wire [I5:0] analyzer2_data, output wire analyzer2_clock,
output wire [15:0] analyzer3_data, output wire analyzer3_clock,
Iloutput wire [15:0] analyzerd_data, output wire analyzerd_clock,

/1 SYSTEM ACE

s

inout wire [15:0] systemace_data,

output wire [6:0] systemace_address,

output wire systemace_ce_b, systemace_we_b, systemace_oe_b,
input wire systemace_irq, systemace_mpbrdy,

*

/1 CLOCKS

[finput wire dlockl,
[finput wire clock2,
input wire dock_27mhz

T T T T T

I

/1 Reset Generation

I

/1 A shift register primitive is used to generate an active-high reset

11 signal that remains high for 16 clock cycles after configuration finishes

/1 and the FPGA's internal clocks begin toggling.

I

T T T T

wire reset;

SRLIG #(.INIT(16'hFFFF)) reset_sr(.D(1'b0), .CLK(clock_27mhz), .Q(reset),
AO(I'bl), AL(I'bT), A2(I'b1), A3(I'bI));

wire [7:0] from_ac97_data, to_ac97_data;
wire ready;

/1 allow user to adjust volume
wire vup,vdown;
reg old_vup,old_vdown;
debounce bup(.reset(reset),.clock(clock_27mhz),.noisy(~button_up),.clean(vup));
debounce bdown(.reset(reset),.clock(clock_27mhz),.noisy(~button_down),.clean(vdown));
reg [4:0] volume;
always @ (posedge dock_27mhz) begin
if (reset) volume <= 5'dg;
else begin
if (vup & ~old_vup & volume != 5'd3) volume <= volume+1;
if (vdown & ~old_vdown & volume != 5'd0) volume <= volume-1;
end
old_vup <= vup;
old_vdown <= vdown;
end

/1 AC9T driver

labdaudio a(clock_27mhz, reset, volume, from_ac97_data, to_ac97_data, ready,
audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_clock);

/1 push ENTER button to record, release to playback
wire playback;
debounce benter(.reset(reset),.cock(clock_27mhz),.noisy(button_enter),.cean(playback));

11 switch 0 up for filtering, down for no filtering
wire filter;
debounce sw0(.reset(reset),.clock(clock_27mhz),.noisy(switch[0]),.clean(filter));

/1 light up LEDs when recording, show volume during playback.
/1 led is active low
Iassign led = playback ? ~{filter,2'b00, volume} : ~{filter,T'hFF};
wire ledd;
wire valid;

53

assign led[7:1] = T'hFF;

assign led[0] = ~ledd;

/1 record module

wire [25:0] distance_l;
wire DTW_done_;

wire [25:0] distance_2;
wire DTW_done_2;

wire [25:0] distance_3;
wire DTW_done_3;
wire [25:0] distance_4;
wire DTW_done_4;

wire [25:0] distance_5;
wire DTW_done_5;
wire [25:0] distance_6;
wire DTW_done_6;
wire [25:0] distance_T;
wire DTW_done_7;
wire [25:0] distance_8;
wire DTW_done_8;

wire [7:0] possible_match_out;
wire [7:0] template_audio_out;
wire en_out;

wire temp_WE;

wire vr_new_command;

wire [11:0] vr_to_chess;

wire [2:0] word_out;

wire category_in;

wire category_out;

wire [2:0] state_out;

wire en_out_sc

wire [7:0] audio_out_s
wire cat_out_sc

wire [7:0] train_audio_out;
wire train_|;

wire train_2;

wire train_3;

wire train_4;

wire train_5;

wire train_6;

wire train_7;

wire train_8;

wire [7:0] mem_in;
wire [7:0] mem_out;
wire we_debug;

wire [10:0] address_out;

wire [2:0] substate_out;

wire [11:0] vr_newcommandh = (vr_new_command) ? vr_to_chess : vr_newcommandh;

recorder r(.clock(clock_27mhz), .reset(reset),.word_in(switch[2:0]), .LED_TO_RECORD(ledd), .playback(playback), .ready(ready), .from_ac97_data(from_ac97_data),
.category_in(switch[5]), .program_in(switch[7]), .distance_3(distance_3),.DTW_done_3(DTW_done_3),
distance_2(distance_2),.DTW_done_2(DTW_done_2),.distance_| (distance_1),.DTW_done_| (DTW_done_1),
distance_4(distance_4),.DTW_done_4(DTW_done_4),.distance_5(distance_5),.DTW_done_5(DTW_done_5),
distance_6(distance_6),.DTW_done_6(DTW_done_6),.distance_8(distance_8),.DTW_done_8(DTW_done_38),

distance_7(distance_7),.DTW_done_7(DTW_done_7),

.possible_match_out(possible_match_out), .template_audio_out(template_audio_out),
.category_out(category_out), .word_out(word_out), .en(en_out), .temp_WE(temp_WE), .vr_new_command(vr_new_command),

.vr_to_chess(vr_to_chess), .state_out(state_out), .substate_out(substate_out), .valid_disp(valid), .to_ac97_data(to_ac97_data)) ;

shift_connector sc(.dock(clock_2Tmhz), .reset(reset), .cat_in(category_out),.word_in(word_out),
train_in(temp_WE), .train_audio_in(template_audio_out),
.en_in(en_out), .audio_in(possible_match_out),
.en_out(en_out_sc), .audio_out(audio_out_sc),
.cat_out(cat_out_sc), .train_audio_out(train_audio_out),
train_| (train_l), .train_2(train_2), .train_3(train_3),
train_4(train_4),
train_5(train_5), .train_6(train_6), .train_7(train_7),
train_8(train_8));

dtw_engine2 de0(.clock(clock_27mhz),
reset(reset),
train_in(train_audio_out),
train(train_l),

.en(en_out_sc),

55

dtw_engine2 del(.clock(clock_27mhz),

dtw_engine2 de(.clock(clock_27mhz),

dtw_engine2 de3(.clock(clock_27mhz),

dtw_engine2 ded(.clock(clock_27mhz),

dtw_engine2 de5(.clock(clock_27mhz),

dtw_engine2 de6(.clock(clock_27mhz),

.audio_in(audio_out_sc),
.category(cat_out_sc) , /1 bit toggle for category
distance(distance_I),

.DTW_done(DTW_done_1));

reset(reset),

train_in(train_audio_out),

train(train_2),

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , /1 bit toggle for category
distance(distance_2),

.DTW_done(DTW_done_2));

reset(reset),

train_in(train_audio_out),

train(train_3),

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , //1 bit toggle for category
distance(distance_3),

.DTW_done(DTW_done_3));

reset(reset),

train_in(train_audio_out),

train(train_4),

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , //I bit toggle for category
distance(distance_4),

.DTW_done(DTW_done_4));

reset(reset),

train_in(train_audio_out),

train(train_5),

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , //1 bit toggle for category
distance(distance_5),

.DTW_done(DTW_done_5));

reset(reset),

train_in(train_audio_out),

train(train_6),

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , //I bit toggle for category
distance(distance_6),

.DTW_done(DTW_done_$));

reset(reset),
train_in(train_audio_out),
train(train_T),

56

.en(en_out_sc),

.audio_in(audio_out_sc),

.category(cat_out_sc) , /1 bit toggle for category
distance(distance_7),

.DTW_done(DTW_done_T7));

dtw_engine2 del(.clock(clock_27mhz),
reset(reset),
train_in(train_audio_out),
train(train_8),
.en(en_out_sc),
.audio_in(audio_out_sc),
.category(cat_out_sc) , /1 bit toggle for category
distance(distance_8),
.DTW_done(DTW_done_8));

display_I6hex disp(.reset(reset), .clock_27mhz(cdock_27mhz), .data({I'b0,state_out, I'b0, substate_out, 40'h0000000000,1'b0, vr_newcommandh[I1:9], 1'b0,
vr_newcommandh([8:6], 1'b0, vr_newcommandh[5:3], I'b0, vr_newcommandh[2:0]}),
.disp_blank(disp_blank), .disp_clock(disp_clock), .disp_rs(disp_rs), .disp_ce_b(disp_ce_b),
.disp_reset_b(disp_reset_b), .disp_data_out(disp_data_out));

/1 output useful things to the logic analyzer connectors

assign analyzer| _clock = dock_27mhz;

Ifassign analyzer| _data[0] = valid;

Ifassign analyzer| _data[7:0] = template_audio_out;

assign analyzer|_data[15:0] = {3'b000, vr_new_command, vr_to_chess};
Ifassign analyzer| _data[3] = ac97_synch;

Ifassign analyzer| _data[15:3] = 0;

assign analyzer3_clock = dock_27mhz;

/I assign analyzer3_clock = dock_27mhz;
assign analyzer3_data = {state_out, address_out, 2'b00};

endmodule

I T T T T T
I

/1 6.111 FPGA Labkit -- Hex display driver

I

/1 File: display_l6hex.v

/1 Date: 24-Sep-05

I

/1 Created: April 27, 2004

/1 Author: Nathan Ickes

i

/1 24-Sep-05 lke: updated to use new reset-once state machine, remove dlear
11 28-Nov-06 (JT: fixed race condition between CE and RS (thanks Javier!)
i

/1 This verilog module drives the labkit hex dot matrix displays, and puts
/1 up 16 hexadecimal digits (8 bytes). These are passed to the module
/1 through a 64 bit wire ("data"), asynchronously.

i

I T T T T

module display_I6hex (veset, clock_27mhz, data,
disp_blank, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_out);

input reset, clock_27mhz; // dock and reset (active high reset)
input [63:0] data; /116 hex nibbles to display

output disp_blank, disp_clock, disp_data_out, disp_rs, disp_ce_b,
disp_reset_b;

57

reg disp_data_out, disp_rs, disp_ce_b, disp_reset_b;

I T T T
1

/1 Display Clock

1

/1 Generate a 500kHz clock for driving the displays.

1
i

reg [4:0] count;

reg [7:0] reset_count;
reg dock;

wire dreset;

always @ (posedge clock_27mhz)

begin
if (reset)
begin
count = 0;
cock = 0;
end
else if (count == 26)
begin
cdock = ~dock;
count = 5'h00;
end
else
count = count+1;
end

always @ (posedge clock_27mhz)
if (reset)
reset_count <= 100;
else
reset_count <= (reset_count==0) ? 0 : reset_count-I;

assign dreset = (reset_count != 0);
assign disp_clock = ~clock;

I T T T T
I

/1 Display State Machine

I
T T T T]

reg [1:0] state; /1 FSM state

reg [9:0] dot_index; /1 index to current dot being clocked out
reg [31:0] control; /1 control register

reg [3:0] char_index; // index of current character

reg [39:0] dots; /1 dots for a single digit

reg [3:0] nibble; /1 hex nibble of current character

assign disp_blank = 1'b0; // low <= not blanked

always @ (posedge clock)
if (dreset)
begin
state <= (;
dot_index <= (;
control <= 32'hTFTFIFTF;

end
else
casex (state)
8'h00:
begin

58

/1 Reset displays
disp_data_out <= I'b0;
disp_rs <= 1'b0; // dot register
disp_ce_b <= I'bl;
disp_reset_b <= 1'b0;
dot_index <= 0;
state <= state+|;

end

8'h0l:
begin
/I End reset
disp_reset_b <= 1'bl;
state <= state+1;
end

8'h02:
begin
/1 Initialize dot register (set all dots to zero)
disp_ce_b <= 1'b0;
disp_data_out <= 1'b0; // dot_index[0];
if (dot_index == 639)
state <= state+1;
else
dot_index <= dot_index+1;
end

8'h03:

begin
/1 latch dot data
disp_ce_b <= 1I'bl;
dot_index <= 3I; /1 re-purpose to init ctrl reg
disp_rs <= 1'bl; // Select the control register
state <= state+1;

end

8'h04:
begin
/1 Setup the control register
disp_ce_b <= 1'b0;
disp_data_out <= control[31];
control <= {control[30:0, I'b0}; // shift left
if (dot_index == 0)
state <= state+1;
else
dot_index <= dot_index-|;
end

8'h05:
begin
/1 latch the control register data / dot data
disp_ce_b <= I'bl;

dot_index <= 39; /1 init for single char
char_index <= 15; /1 start with MS char
state <= state+|;
disp_rs <= 1'b0; 11 Select the dot register
end
8'h06:
begin

/1 Load the user's dot data into the dot reg, char by char
disp_ce_b <= 1'b0;
disp_data_out <= dots[dot_index]; // dot data from msb
if (dot_index == ()
if (char_index == 0)
state <= 5; /1 all done, latch data
else
begin

59

endcase

char_index <= char_index - I; /1 goto next char
dot_index <= 39;
end
else
dot_index <= dot_index-1; // else loop thru all dots
end

always @ (data or char_index)
case (char_index)

4'h0:
4'hl:
4'h2:
4'h3:
4'hé:
4'h5:
4'hé:
4'hT:
4'h8:
4'h9:
4'hA:
4'hB:
4'hC:
4'hD:
4'hE:
4'hF:
endcase

nibble <= data[3:0];

nibble <= data[7:4];

nibble <= data[l1:8];
nibble <= data[15:12];
nibble <= data[19:16];
nibble <= data[23:20];
nibble <= data[27:24];
nibble <= data[31:28];
nibble <= data[35:32];
nibble <= data[39:36];
nibble <= data[43:40];
nibble <= data[47:44];
nibble <= data[51:48];
nibble <= data[55:52];
nibble <= data[59:56];
nibble <= data[63:60];

always @ (nibble)

case (nibble)

4'h0: dots <= 40'b00111110_01010001_01001001_01000101_00111110;
4'hl: dots <= 40'500000000_01000010_01111111_01000000_00000000;
4'h2: dots <= 40'b01100010_01010001_01001001_01001001_01000110;
4'h3: dots <= 40'b00100010_01000001_01001001_01001001_00110110;
4'h4: dots <= 40'b00011000_00010100_00010010_01111111_00010000;
4'h5: dots <= 40'b00100111_01000101_01000101_01000101_00111001;
4'hé: dots <= 40'b00111100_01001010_01001001_01001001_00110000;
4'h7: dots <= 40'500000001_01110001_00001001_00000101_00000011;
4'h8: dots <= 40'b00110110_01001001_01001001_01001001_00110110;
4'h9: dots <= 40'500000110_01001001_01001001_00101001_00011110;
4'hA: dots <= 40'b01111110_00001001_00001001_00001001_0I111110;
4'hB: dots <= 40'b0I111111_01001001_01001001_01001001_00110110;
4'hC: dots <= 40'b00111110_01000001_01000001_01000001_00100010;
4'hD: dots <= 40'b01111111_01000001_01000001_01000001_00I11110;
4'hE: dots <= 40'b0I111111_01001001_01001001_01001001_01000001;
4'hF: dots <= 40'b01111111_00001001_00001001_00001001_00000001;
endcase
endmodule

60

61

Appendix H: Labkit File for Chess System

[1777777 7777777777777 777777777777777777/77777777777777777777777777777777
/17711717

//

// Pushbutton Debounce Module (video version)

//

[1777777 7777777777777 777777777777777777/77777777777777777777777777777777
/11111717

module debounce (input reset, clock, noisy,
output reg clean);

reg [19:0] count;
reg new;

always @ (posedge clock)
if (reset) begin new <= noisy; clean <= noisy; count <= 0; end
else if (noisy != new) begin new <= noisy; count <= 0; end
else 1if (count == 650000) clean <= new;
else count <= count+l;

endmodule

[I1777 7777777777777 7777777777777 777777777777777777777777777777777777777
/1177777

//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//

[I1777 7777777777777 /7777777777777 777777777777777777777777777777777777777
/1777777

// CHANGES FOR BOARD REVISION 004

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in ycrcb" to 20 bits.

// 3) Renamed "tv out data" to "tv out i2c data" and "tv_out sclk" to
// "tv_out i2c clock".

// 4) Reversed disp data in and disp data out signals, so that "out" is

// output of the FPGA, and "in" is an input.
//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash ce b.
// CHANGES FOR BOARD REVISION 002

// 1) Added SRAM clock feedback path input and output
62

// 2) Renamed "mousedata" to "mouse data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated
into

// the data bus, and the byte write enables have been combined into
the
// 4-bit ram# bwe b bus.

// 4) Removed the "systemace clock" net, since the SystemACE clock is
now

// hardwired on the PCB to the oscillator.

//

L1107 7 7770777777777 7777777777777 7777777777777
/1717777

//

// Complete change history (including bug fixes)

//

// 2005-Sep-09: Added missing default assignments to "ac97 sdata out",
// "disp data out", "analyzer[2-3] clock" and

// "analyzer[2-3] data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb
devices

// actually populated on the boards. (The boards support
up to

// 256Mb devices, with 25 address lines.)

//

// 2004-0Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp data in" to be an output, and gave it a
default

// value. (Previous versions of this file declared this
port to

// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb
devices

// actually populated on the boards. (The boards support
up to

// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

L1177 7007777770007 7777 77707777777 777777777777777777777777777777
11777777

module labkit (beep, audio_reset b, ac97 sdata out, ac97 sdata in,
ac97 synch,
ac97 bit clock,

vga_ out red, vga out green, vga out blue, vga out sync b,
vga out blank b, vga out pixel clock, vga out hsync,
vga out vsync,

tv_out ycrcb, tv _out reset b, tv out clock,
tv_out i2c clock,

tv_out i2c data, tv out pal ntsc, tv out hsync b,

tv_out vsync b, tv out blank b, tv out subcar reset,

63

tv_in ycrcb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv_in hff, tv _in aff,
tv_in i2c clock, tv_in i2c data, tv_in fifo read,
tv_in fifo clock, tv_in iso, tv_in reset b, tv_in clock,

ram0 data, ramO_address, ram0O adv 1ld, ramO clk,
ram0_cen b,
ram0 _ce b, ram0 oe b, ram0 we b, ram0 bwe b,

raml data, raml address, raml adv 1ld, raml clk,
raml cen b,

raml ce b, raml oe b, raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oce b,
flash we b,

flash reset b, flash sts, flash byte b,

rs232_txd, rs232 rxd, rs232 rts, rs232 cts,

mouse clock, mouse data, keyboard clock, keyboard data,

clock 27mhz, clockl, clockz,

disp blank, disp data out, disp clock, disp rs,
disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter,
button right,
button left, button down, button up,

switch,

led,

userl, user2, user3, user4,

daughtercard,

systemace data, systemace address, systemace ce Db,

systemace we b, systemace oe b, systemace irgq,
systemace mpbrdy,

analyzerl data, analyzerl clock,

analyzer2 data, analyzer2 clock,

analyzer3 data, analyzer3 clock,

analyzer4 data, analyzer4 clock);

output beep, audio reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,
vga_out hsync, vga out vsync;

64

output [9:0] tv out ycrcb;
output tv_out reset b, tv_out clock, tv out i2c clock,
tv_out i2c data,
tv_out pal ntsc, tv out hsync b, tv out vsync Db,
tv_out blank b,
tv_out subcar reset;

input [19:0] tv_in ycrcb;
input tv_in data valid, tv_in line clockl, tv_in line clock2,
tv_in aef,
tv_in hff, tv _in aff;
output tv_in i2c clock, tv_in fifo read, tv_in fifo clock,
tv_in iso,
tv_in reset b, tv_in clock;
inout tv_in i2c data;

inout [35:0] ram0 data;

output [18:0] ram0 address;

output ramO adv_1d, ramO clk, ramO cen b, ram0 ce b, ram0 oe b,
ram0_we Db;

output [3:0] ramO bwe b;

inout [35:0] raml data;

output [18:0] raml address;

output raml adv_1d, raml clk, raml cen b, raml ce b, raml oe b,
raml we Db;

output [3:0] raml bwe b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

output flash ce b, flash oce b, flash we b, flash reset b,
flash byte b;

input flash sts;

output rs232 txd, rs232 rts;
input rs232 rxd, rs232 cts;

input mouse clock, mouse data, keyboard clock, keyboard data;
input clock 27mhz, clockl, clock2;
output disp blank, disp clock, disp rs, disp ce b, disp reset b;
input disp data in;
output disp data out;
input button0, buttonl, button2, button3, button enter,
button right,
button left, button down, button up;
input [7:0] switch;
output [7:0] led;

inout [31:0] userl, user2, user3, user4;

inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;
output systemace ce b, systemace we Db,
input systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,

analyzer4 data;

output analyzerl clock, analyzer2Z clock, analyzer3 clock,

analyzer4 clock;

systemace oe b;

L1177 0077777770077 7077777777777 7 7777707777777 7777777777777777777777

/1777
//
// I/0 Assignments
//

L1177 0007777777007 7777 7777777777 777777777777777777777777777777

/1777

// Audio Input and Output
assign beep= 1'b0;

assign audio reset b = 1'b0;
assign ac97 synch = 1'b0;
assign ac97 sdata out = 1'b0;
// ac97 sdata in is an input

// Video Output
assign tv_out ycrcb = 10'hO0;

assign tv_out reset b = 1'b0;
assign tv_out clock = 1'b0;
assign tv_out i2c clock = 1'b0;
assign tv_out i2c data = 1'b0;
assign tv_out pal ntsc = 1'b0;
assign tv_out hsync b = 1'bl;
assign tv_out vsync b = 1'bl;
assign tv_out blank b = 1'bl;
assign tv_out subcar reset = 1'b0;
// Video Input

assign tv_in i2c clock = 1'b0;

assign tv_in fifo read = 1'b0;

assign tv_in fifo clock = 1'b0;
assign tv_in iso = 1'b0;

assign tv_in reset b = 1'b0;
assign tv_in clock = 1'b0;

assign tv_in i2c data = 1'bZ;

// tv_in_ycrcb, tv_in data valid, tv_in line clockl,

tv_in line clock2,

// tv_in aef, tv_in hff, and tv_in aff are inputs

// SRAMs

assign ram0 data = 36'hZ;
assign ram0O address = 19'h0;
assign ram0 adv 1d = 1'b0;
assign ramO clk = 1'b0;

66

assign ram0 cen b = 1'bl;

assign ram0 ce b = 1'bl;
assign ram0 oe b = 1'bl;
assign ram0 we b = 1'bl;
assign ram0O bwe b = 4'hF;
assign raml data = 36'hZ;
assign raml address = 19'h0;

assign raml adv _1ld = 1'b0;
assign raml clk = 1'b0;

assign raml cen b = 1'bl;
assign raml ce b = 1'bl;
assign raml oe b = 1'bl;
assign raml we b = 1'bl;
assign raml bwe b = 4'hF;

assign clock feedback out = 1'b0;
// clock feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'hO;
assign flash ce b = 1'bl;
assign flash oce b = 1'bl;
assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;
// flash sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// rs232 rxd and rs232 cts are inputs

// PS/2 Ports
// mouse clock, mouse data, keyboard clock, and keyboard data are
inputs

// // LED Displays

// assign disp blank = 1'bl;

// assign disp clock = 1'bO;

// assign disp rs = 1'bO0;

// assign disp ce b = 1'bl;

// assign disp reset b = 1'b0;
// assign disp data out = 1'b0;
// // disp data in is an input

// Buttons, Switches, and Individual LEDs

assign led = 8'hFF;

// button0, buttonl, button2, button3, button enter, button right,
// button left, button down, button up, and switches are inputs

// User I/Os

// assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 32'h7z;

// Daughtercard Connectors

assign

daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign
assign
assign
assign
assign

systemace data = 16'hZ;
systemace address = 7'h0;
systemace ce b = 1'bl;
systemace we b = 1'bl;
systemace oe b = 1'bl;

// systemace irg and systemace mpbrdy are inputs

// Logic Analyzer

assign
assign
assign
assign
assign
assign
assign
assign

analyzerl data = 16'hO;
analyzerl clock = 1'bl;

analyzer2 data = 16'hO;
analyzer2 clock = 1'bl;
analyzer3 data = 16'hO0;

analyzer3 clock = 1'bl;
analyzer4 data = 16'hO;
analyzer4 clock = 1'bl;

LITTT7 0007777770777 7 7777777777777 7777 77777777777777777777777777

/1777
//

// chess chess chess

//

L1177 7777770077777 7 777777777777 7777777777777777777777

/1777

// use

// 65MHz clock

FPGA's digital clock manager to produce a
(actually 64.8MHz)

wire clock 65mhz unbuf,clock 65mhz;

DCM vclkl (.CLKIN(clock 27mhz),
// synthesis attribute
// synthesis attribute
// synthesis attribute
// synthesis attribute

.CLKFX (clock 65mhz unbuf));
CLKFX_DIVIDE of veclkl is 10
CLKFX_MULTIPLY of vclkl is 24
CLK_FEEDBACK of vclkl is NONE
CLKIN_PERIOD of vclkl is 37

BUFG vclk2(.0(clock 65mhz),.I(clock 65mhz unbuf));

// power-on reset generation

wire power on reset;
SRL16 reset sr (

defparam reset sr.INIT =

// remain high for first 16 clocks

.D(1'b0), .CLK(clock 65mhz), .Q(power on reset),
A0 (1'b1), .A1(1'b1l), .A2(1'bl), .A3(1'bl));
16"hFFFF;

// ENTER button is user reset
wire reset,user reset;
debounce
dbl (.reset (power on reset), .clock(clock 65mhz), .noisy(~button enter), .c

lean (user reset)
assign reset

’

I~

user reset | power on reset;

// UP and DOWN buttons for pong paddle

wire accept move,

reject move;

68

debounce
db2 (.reset (reset), .clock(clock 65mhz), .noisy(~button up), .clean(accept

move)) ;

debounce
db3 (.reset (reset), .clock(clock 65mhz), .noisy(~button down), .clean(rejec
t move));

// generate basic XVGA video signals

wire
wire
wire
xvga

[10:0] hcount;

[9:0] wvcount;

hsync,vsync,blank;

xvgal (.vclock(clock 65mhz), .hcount (hcount), .vcount (vcount),
.hsync (hsync), .vsync (vsync), .blank (blank)) ;

// receive keyboard input as ascii

wire [6*8-1:0] kb string;

wire kb string rdy;

keyboard entry kbe(clock 65mhz, reset, keyboard clock,
keyboard data, kb _string, kb string rdy);

// encode ascii into chess command

wire [11:0] kb_command;

wire kb command rdy;

wire kb command valid;

wire [6*8-1:0] kben string;

keyboard encoder kben (clock 65mhz, reset, kb string,
kb string rdy, kb _command, kb command rdy,

kb command valid,

kben string);

wire [63:0] data;

// chess engine

wire cvsync;

assign userl[31:13] = 19'hZ;

reg sync_rdy 1, sync rdy 2, speech command rdy;

reg [11:0] sync _command 1, sync_command 2, speech command;
always @ (posedge clock 65mhz)

begin
sync_rdy 1 <= userl[12];
sync_command 1 <= userl[11:0];
sync_rdy 2 <= sync_rdy 1;
sync_command 2 <= sync_command 1;
speech command rdy <= sync_rdy 2;
speech command <= sync_command 2;
end
wire [64*5-1:0] flattened chessboard;
wire [16*3-1:0] flattened white captures;

wire [5*8-1:0] player string;

wire [32*8-1:0] string 1, string 2;

chess engine ce(clock 65mhz, reset, cvsync, switch[3:2],
speech command rdy, speech command, kb command rdy,
kb command, kb command valid, accept move, reject move,
flattened chessboard, flattened white captures,
flattened black captures, player string, string 1,
string 2, data[63:60]);

[
[
wire [16*3-1:0] flattened black captures;
[
[

69

// //*****dummy values for testing****x*
// reg [64*5-1:0] flattened chessboard = 0;
// wire [16*3-1:0] flattened white captures = 48'b001001;

]
// wire [16*3-1:0] flattened black captures = 48'b001001;
// wire [32*%8-1:0] string 1 = "this really sucks";
// wire [32*%8-1:0] string 2 = "a lot";
// wire [5*%8-1:0] player string = "WHITE";
// wire [6*8-1:0] kb string = "HELLO ";

// generate graphics for chess game
wire chsync,cblank;
wire [23:0] cpixel;
chess graphics cg(clock 65mhz, hcount, vcount,
hsync, vsync, blank, flattened chessboard,
flattened white captures,
flattened black captures, player string, string 1,
string 2, kb string,
chsync, cvsync, cblank, cpixel, switch[7]);

// hex display...fun
// wire [63:0] data = 64'b0;

// assign data[63:60] = 4'h0;
assign data[59:48] = kb command;
assign data[47:0] = kben string;

display 1l6hex hex(reset, clock 65mhz, data, disp blank,
disp clock,
disp rs, disp ce b, disp reset b, disp data out);

/1117007 GRAPHICS TEST
[1777777777777777777777777777777777
// localparam [2:0] KING = 3'd6;

]
// localparam [2:0] QUEEN = 3'd5;
// localparam [2:0] ROOK = 3'd4;
// localparam [2:0] BISHOP = 3'd3;
// localparam [2:0] KNIGHT = 3'd2;
// localparam [2:0] PAWN = 3'dl;

// localparam WHITE = 1'bl;
// localparam BLACK = ;

|
i
o
o

// localparam MOVED = 1'bl;
// localparam UNMOVED = 1'b0;

// localparam [4:0] EMPTY = 5'b0;
// reg [4:0] chessboard [7:0][7:0];

// // link flattened representation of chessboard to
// // multidimensional array of chessboard
// integer c;
// integer r;
// always
// begin
// for (¢ = 0; ¢ < 8; ¢c=c¢c + 1)
// begin
// for (r = 0; r < 8;, r=r
// begin

//
flattened chessboardl[((8*c+r+1l) *5-1)-:5] = chessboard[c] [r];
// end
// end
// end
// integer co;
// integer ro;
// initial
// begin
// for (co = 0; co < 8; co =co + 1)
// begin
// // place a pawn in every column in
rows 1 and 6
// chessboard[co] [1] =
{PAWN, WHITE, UNMOVED} ;
// chessboard[co] [6]

{ PAWN, BLACK, UNMOVED} ;

// // empty every square between

rows 2 and 6 (inclusive)

// for (ro = 2; ro < 6; ro = ro
1)
// begin
//
chessboard[co] [ro] = EMPTY;
// end

// end

// // set up main pieces
// chessboard[0][0] = {ROOK,WHITE,UNMOVED};

// chessboard[1][0] = {KNIGHT,WHITE,UNMOVED};
// chessboard[2][0] = {BISHOP,WHITE, UNMOVED};
// chessboard[3][0] = {QUEEN,WHITE,UNMOVED};
// chessboard[4][0] = {KING,WHITE,UNMOVED};
// chessboard[5][0] = {BISHOP,WHITE, UNMOVED};
// chessboard[6][0] = {KNIGHT,WHITE, UNMOVED};
// chessboard[7][0] = {ROOK,WHITE, UNMOVED};
// chessboard[0][7] = {ROOK,BLACK,UNMOVED};
// chessboard[1][7] = {KNIGHT,BLACK,UNMOVED};
// chessboard[2][7] = {BISHOP,BLACK,UNMOVED};
// chessboard[3]1[7] = {QUEEN,BLACK,UNMOVED};
// chessboard[4][7] = {KING,BLACK,UNMOVED};
// chessboard[5][7] = {BISHOP,BLACK,UNMOVED};
// chessboard[6][7] = {KNIGHT,BLACK,UNMOVED};
// chessboard[7][7] = {ROOK,BLACK,UNMOVED};

// end

[0S0/ GRAPHICS TEST
L1777 77 7007 7777777777777777

// switch[1:0] selects which video generator to use:

// 00: chess

// 01: 1 pixel outline of active video area (adjust screen
controls)

// 10: color bars

reg [23:0] rgb;

reg b, hs,vs;

+

71

always @ (posedge clock 65mhz) begin
if (switch[1:0] == 2'b01l) begin
// 1 pixel outline of visible area (white)
hs <= hsync;
vs <= vsync;
b <= blank;

rgb <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ?
24'hFF_FF FF : 0;
end else if (switch[1l:0] == 2'b1l0) begin

// color bars

hs <= hsync;

vs <= vsync;

b <= blank;

rgb <= {{8{hcount[8]1}},{8{hcount[7]}}, {8{hcount[6]}}};
end else begin

// default: chess

hs <= chsync;

vs <= cvsync;

b <= cblank;

rgb <= cpixel;
end

end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock 65mhz.

assign vga out red = rgb[23:16];

assign vga out green = rgb[15:8];

assign vga out blue = rgb[7:0];

assign vga out sync b = 1'bl; // not used
assign vga_ out blank b = ~b;

assign vga out pixel clock = ~clock 65mhz;
assign vga_ out hsync = hs;

assign vga_out vsync = vs;

endmodule

L1177 7777777777777 777777777 777
117177777

//

// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

//

L1117 77 0777777777777 777777777 777
117177177

module xvga (input vclock,

output reg [10:0] hcount, // pixel number on current
line

output reg [9:0] vcount, // line number

output reg vsync,hsync,blank);

// horizontal: 1344 pixels total

// display 1024 pixels per line

reg hblank, vblank;

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);

72

assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total

// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;

assign vblankon = hreset &
assign vsyncon = hreset &
assign vsyncoff = hreset &

assign vreset = hreset &

// sync and blanking

(vcount == 767);
(vcount == 776);

(vcount == 782);
(vcount == 805);

wire next hblank,next vblank;

assign next hblank = hreset ? 0
assign next vblank = vreset ? 0
begin

always @ (posedge vclock)
hcount <= hreset ? 0
hblank <= next hblank;
hsync <= hsyncon ? 0

vcount <= hreset ?
vblank <= next vblank;
vsync <= vsyncon ? 0

blank <= next vblank |
end
endmodule

(vreset 2 0

hblankon ? 1
vblankon ? 1

hblank;
vblank;

hcount + 1;
// active low

hsyncoff 2 1 hsync;

vcount + 1) vcount;

vsyncoff 2 1 vsync; // active low

(next hblank & ~hreset);

73

Appendix I: Keyboard Entry

mod

//

loc
loc
loc

//
wir
wir

ule keyboard entry (
input clock 65mhz,
input reset,
input keyboard clock,
input keyboard data,
output reg [6*8-1:0] string,
output reg string rdy);

ascii codes

alparam [7:0] ENTER = 8'hO0D;
alparam [7:0] BACKSPACE = 8'h08;
alparam [7:0] NULL = 8'h00;

keyboard input converted into ascii
e [7:0] ascii;
e char rdy;

ps2_ascii input ascii input (clock 65mhz, reset,

//
//
//
//
//
reg
alw

reg
reg

//
//
int
alw

keyboard clock, keyboard data, ascii,

string rdy goes high when enter key is pressed;

old string rdy is l-cycle delayed copy of string rdy,
and is used to determine if enter key was pressed
one cycle ago (character array is held for one cycle
after enter key is pressed before being cleared)

char rdy);

old string rdy;
ays @ (posedge clock 65mhz)
begin
string rdy <= (char rdy && (ascii == ENTER));
old string rdy <= string rdy;
end
[7:0] char _array [5:0]; // character (ascii) array
[3:0] index = 5; // index of character array

character array - clears on reset or one cycle
after enter key is pressed

eger 1i;
ays @ (posedge clock 65mhz)
begin
if (reset || (old string rdy && ~string rdy))
begin

index <= 5;
for (1 = 0; 1 < 6; 1 =1+ 1)

begin
char arrayl[i]

end

end

else if (char rdy && ~string rdy)
begin
if (ascii == BACKSPACE)

begin

if (index < 5)
begin

<= NULL;

74

char array[index+1l] <= NULL;

<=

index
index + 1;
end
end
else 1if (index > 0)
begin
char array[index] <=
ascii; -
index <= index - 1;
end
end
end
// tie string to character array
integer j;
always @ (posedge clock 65mhz)
begin
for (J = 0; jJ <6; jJ =3 +1)
begin
string[(7+(8*3j))-:8] <= char array([j];
end
end
endmodule

75

Appendix J: Keyboard Encoder

module keyboard encoder (
input clock 65mhz,
input reset,
input [6*8-1:0] kb string,
input kb string rdy,
output reg [11:0] command,
output reg command rdy,
output reg command valid,
output reg [6*8-1:0] string);

// register to hold kb string
//reg [6*8-1:0] string;

// instantiate encoder for from square

wire [2*8-1:0] from substring = string[(6*8-1)-:(2*8)] ;

wire [5:0] from command values;

wire from valid;

col row encoder from square (from substring, from command values,
from valid);

// instantate encoder for to square

wire [2*8-1:0] to substring = string[(3*8-1)-:(2*8)];

wire [5:0] to command values;

wire to valid;

col row encoder to_ square(to substring, to command values, to valid);

// instante validifier for whitespace

wire [7:0] whitespace substring = string[(4*8-1)-:8];

wire whitespace valid;

whitespace validifier between to and from(whitespace substring,
whitespace valid);

reg started;
always @ (posedge clock 65mhz)

begin
if (reset)
begin
command_rdy <= 0;
command valid <= 0;
started <= 0;
end
else 1f (started)
begin

command rdy <= 1;
command valid <= (from valid && to valid
&& whitespace valid);
command <=
{from command values,to command values};
started <= 0;
end
else if (kb string rdy)
begin
string <= kb string;
command rdy <= 0;

76

end
else
begin
end
end
endmodule

// encodes one letter (A-H)

command valid <= 0;
started <= 1;

command_rdy <= 0;
command valid <= 0;
started <= 0;

and one number (1-8)

// into column and row in chess command encoding

module col row_encoder (

input [2*8-1:0] substring,
output reg [5:0] command values,

output reg wvalid);

reg valid col;
reg valid row;

always @ (*)
begin

case (substring[(2*8-1)-:81])

"A" H

"B" H

"c" .

"D" .

"E" .

"F" .

begin

end

begin

end

begin

end

begin

end

begin

end

begin

end

command values([5:

valid col = 1;

command values([5:

valid col = 1;

command values[5:

valid col = 1;

command values([5:

valid col = 1;

command values([5:

valid col = 1;

command values([5:

valid col = 1;

3'd0;

3'dl;

3'd3;

3'd4;

77

"G":

command values[5:3]
valid col = 1;

command_values[5:3]
valid col = 1;

default: valid col = 0;

command_ values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command_values[2:0]
valid row = 1;

command values[2:0]
valid row = 1;

begin

end
IIHII:

begin

end

endcase
case (substring[(8-1)-:81)

lllll:

begin

end
"2":

begin

end
"3":

begin

end
"4":

begin

end
"5":

begin

end
"6":

begin

end
"7":

begin

end
"8":

begin

end

endcase

default: valid row = O;

3'd6;

3'd7;

3'd0;

3'dl;

3'd2;

3'd7;

valid = (valid col && valid row);
end
endmodule

// validates a whitespace character

module whitespace validifier (
input [7:0] substring,
output valid);

localparam [7:0] SPACE = 8'h20;
localparam [7:0] NULL = 8'h00;

assign valid = (substring == SPACE || substring == NULL);
endmodule

‘timescale 1lns / 100ps
module test kbe ();

reg clk;
reg reset;
reg [5*8-1:0] kb string;
reg kb string rdy;
wire [11:0] command;
wire command rdy;
wire command valid;
initial
begin
clk = 0;
forever #7 clk = ~clk; // 14 ns period clock
end

keyboard encoder kbe(clk, reset, kb string, kb string rdy,
command, command rdy,
command_valid) ;

initial

begin
#14
Sdisplay ("Keyboard Entry: 'A4 A5'");
kb string = "A4 A5";
kb string rdy = 1;
#14
kb string rdy = 0;
#28
Sdisplay ("Keyboard Entry: '6.111'");
kb string = "6.111";
kb string rdy = 1;
#14
kb string rdy = 0;

end

always @ (posedge clk)
begin
if (command rdy)
Sdisplay ("Command: %$b \n Valid: %b", command,
command valid) ;

79

end
endmodule

80

Appendix K: Chess Engine

module chess_engine (
input clock 65mhz,
input reset,
input cvsync,
input [1:0] input mode, // switches[3:2]
input speech command rdy,
input [11:0] speech command,
input kb command rdy,
input [11:0] kb_command,
input kb valid,
input accept move, // button up
input reject move, // button down
output reg [64*5-1:0] flattened chessboard,
output reg [16*3-1:0] flattened white captures,
output reg [16*3-1:0] flattened black _captures,
output reg [5*%8-1:0] player_strlng,
output reg [32*8-1:0] string 1,
output reg [32*8-1:0] string 2,
output reg [2:0] state);

localparam [2:0] KING = 3'd6;

localparam [2:0] QUEEN = 3'd5;

localparam [2:0] ROOK = 3'd4;

localparam [2:0] BISHOP = 3'd3;

localparam [2:0] KNIGHT = 3'd2;

localparam [2:0] PAWN = 3'dl;

localparam WHITE = 1'bl;

localparam BLACK = 1'bO0;

localparam MOVED = 1'bl;

localparam UNMOVED = 1'b0;

localparam [4:0] EMPTY = 5'b0;

localparam [2:0] NONE = 3'b0;

localparam S WAIT FOR CMD = O0;

localparam S WAIT FOR NEW CMD = 1;

localparam S _CHECK MOVE = 2;

localparam S DISPLAY MOVE = 3;

localparam S ACCEPT MOVE = 4;

localparam S REJECT MOVE = 5;

reg delayed cvsync;
wire negedge cvsync (~cvsync & delayed cvsync);
always @ (posedge clock 65mhz)

begin
delayed cvsync <= cvsync;
end
reg player; // current player (1 = WHITE, 0 = BLACK)

wire command rdy
kb command rdy;

(input mode[player]) ? speech command rdy

81

wire [11:0] command = (input mode[player]) ? speech command
kb command;
wire command valid = (input mode[player]) ? 1 : kb valid;

reg mc_start;

reg mc_color;

reg [11:0] mc_command;

wire [2:0] from col = mc_command[11:9];
wire [2:0] from row = mc_command[8:6];
wire [2:0] to col = mc_command[5:3];
wire [2:0] to_row mc_command[2:0];
wire mc_done;

wire mc_valid;

move checker mc(clock 65mhz, reset, mc start, mc_color, mc_command,
flattened chessboard, mc_done, mc_valid);

//reg [2:0] state, next state;
reg [2:0] next state;
always @ (*)
begin
case (state)
S _WAIT FOR CMD: next state
? ((command valid) ? S CHECK MOVE : S WAIT FOR NEW CMD)
S WAIT FOR CMD;

(command_ rdy)

S WAIT FOR NEW CMD: next state = (command rdy)
? ((command valid) ? S CHECK MOVE : S WAIT FOR NEW CMD)
S WAIT FOR NEW CMD;

S _CHECK MOVE: next state = (mc_done) ?
((mc _valid) ? S DISPLAY MOVE : S WAIT FOR NEW CMD) : S CHECK MOVE;
S _DISPLAY MOVE: next state = (accept move

&& ~reject move) ? S ACCEPT MOVE

S _ACCEPT MOVE: next state =
S WAIT FOR CMD;

S_REJECT MOVE: next state =
S WAIT FOR CMD;

default: next state =
S WAIT FOR CMD;

endcase
end

reg [4:0] old chessboard[7:0][7:0];
reg [4:0] new chessboard[7:0][7:0];
reg [2:0] white captures[15:0];
reg [3:0] white captures index;
reg [2:0] black captures[15:0];
reg [3:0] black captures index;

reg piece captured;

integer c;
integer r;
integer 1i;
always @ (posedge clock 65mhz)

82

begin
if (reset)
begin
player <= WHITE;
state <= S WAIT FOR CMD;

white captures index <= 0;
black captures index <= 0;
for (1 = 0; 1 < 16; 1 =1 + 1)
begin
white captures[i] <= NONE;
black captures[i] <= NONE;
end

for (¢ = 0; ¢ < 8; ¢c==c¢c+ 1)
begin
// place a pawn in every
square in rows 1 and 6
old chessboard[c] [1] <=

{PAWN, WHITE, UNMOVED} ;

old chessboard[c] [6] <=
{ PAWN, BLACK, UNMOVED} ;

new_chessboard[c] [1] <=
{PAWN, WHITE, UNMOVED} ;

new_ chessboard[c] [6] <=
{PAWN, BLACK, UNMOVED} ;

// empty every square between
rows 2 and 6 (inclusive)
for (r = 2; r < 6; r=1r + 1)
begin

old chessboard[c] [r] <= EMPTY;

new chessboard([c] [r] <= EMPTY;
end
end

// set up main pieces on chessboards

old chessboard[0] [0] <=
{ROOK, WHITE, UNMOVED} ;

old chessboard[1][0] <=
{KNIGHT,WHITE, UNMOVED};

old chessboard[2] [0] <=
{BISHOP,WHITE, UNMOVED};

old chessboard[3][0] <=
{QUEEN, WHITE, UNMOVED} ;

old chessboard[4][0] <=
{KING,WHITE, UNMOVED} ;

old chessboard[5] [0] <=
{BISHOP,WHITE, UNMOVED} ;

old chessboard[6] [0] <=
{KNIGHT,WHITE, UNMOVED};

old chessboard[7] [0] <=
{ROOK, WHITE, UNMOVED} ;

83

old chessboard[0] [7] <=
{ROOK, BLACK, UNMOVED} ;

old chessboard[1][7] <=
{KNIGHT, BLACK, UNMOVED} ;

old chessboard[2] [7] <=
{BISHOP, BLACK, UNMOVED} ;

old chessboard[3][7] <=
{QUEEN, BLACK, UNMOVED} ;

old chessboard[4][7] <=
{KING, BLACK, UNMOVED} ;

old chessboard[5] [7] <=
{BISHOP, BLACK, UNMOVED} ;

old chessboard[6] [7] <=
{KNIGHT, BLACK, UNMOVED} ;

old chessboard[7][7] <=
{ROOK, BLACK, UNMOVED} ;

new_ chessboard[0] [0] <=
{ROOK, WHITE, UNMOVED} ;

new_ chessboard[1] [0] <=
{KNIGHT,WHITE, UNMOVED} ;

new_ chessboard[2] [0] <=
{BISHOP,WHITE, UNMOVED} ;

new_ chessboard[3] [0] <=
{QUEEN, WHITE, UNMOVED} ;

new_ chessboard[4] [0] <=
{KING,WHITE, UNMOVED};

new_chessboard[5] [0] <=
{BISHOP,WHITE, UNMOVED} ;

new_chessboard[6] [0] <=
{KNIGHT,WHITE, UNMOVED} ;

new_chessboard[7] [0] <=
{ROOK, WHITE, UNMOVED} ;

new chessboard[0] [7] <=
{ROOK, BLACK, UNMOVED} ;

new chessboard[1] [7] <=
{KNIGHT, BLACK, UNMOVED};

new chessboard[2] [7] <=
{BISHOP, BLACK, UNMOVED} ;

new_ chessboard[3][7] <=
{QUEEN, BLACK, UNMOVED} ;

new chessboard[4] [7] <=
{KING, BLACK, UNMOVED} ;

new chessboard[5] [7] <=
{BISHOP, BLACK, UNMOVED} ;

new_ chessboard[6] [7] <=
{KNIGHT, BLACK, UNMOVED};

new chessboard[7][7] <=
{ROOK, BLACK, UNMOVED} ;

end
else
begin

// state actions

// (at the end of players turn/at the
start of new players turn,

// new chessboard = old chessboard)

if (state == S _DISPLAY MOVE)

begin
if (negedge cvsync)
begin
// empty
out from-square
new chessboard[from col] [from row] <= EMPTY;
// move
piece to to-square
// if pawn
has reached an end-row, promote to queen
if
((old chessboard[from col] [from row] [4:2] == PAWN)
&&
((player == WHITE && to_row == 7) ||
begin
end
else
begin
end
// 1if a
piece is being captured, place it in the appropriate player's
// list of
captured pieces (and signal, internally, that a piece has
// been
captured)
if
((new_chessboard[to col] [to row] != EMPTY) &&
(player *~ new chessboard[to col][to row] [1]))
begin
end
state <=

next state;
end
end

85

(player ==

new chessbc

new chessbc

if (player
beg
end
else
beg
end

pilece capttu

else if (state == S REJECT MOVE)

begin
if (negedge cvsync)
begin
// revert
the affected squares
new_chessboard[to _col] [to row] <=
old chessboard[to _col][to_row];
new chessboard[from col] [from row] <=
old chessboard[from col] [from row];
// if a
piece was captured, remove it from the
//
appropriate player's list of captured pieces
if
(piece captured)
begin
end
piece captured <= 0;
state <=
next state;
end
end
else if (state == S _ACCEPT MOVE)
begin
if (negedge cvsync)
begin
old chessboard[to col] [to _row] <=
new chessboard[to col] [to row];
old chessboard[from col] [from row] <=
old chessboard[from row] [from col];
piece captured <= 0;
player <=
~player;
state <=
next state;
end

end

86

if (player
beg
end
else
beg
end

// transition actions

else if
state == S WAIT FOR NEW CMD) &&
S_CHECK_MOVE))
begin
end
else
begin
end

end
end

always @ (posedge clock 65mhz)

((state ==

S_WAIT FOR CMD ||

(next state ==

mc_command <= command;
mc_start <= 1;
mc_color <= player;
state <= next state;

mc_start <= 0;
piece captured <= 0;
state <= next state;

begin
// only update the strings when cvsync is low
if (negedge cvsync)
begin
if (state == S WAIT FOR CMD)
begin
string 1 <=
(input mode[player]) 2
"SAY A COMMAND
"
"TYPE A COMMAND ";
string 2 <= "[FROM-SQUARE
TO-SQUARE] ";
end
else if (state == S WAIT FOR NEW CMD)
begin
string 1 <=
(input mode[player]) 2

"INVALID COMMAND, SAY A COMMAND "

"INVALID COMMAND, TYPE A COMMAND ";

TO-SQUARE] ";
end
else if (state
begin
or REJECT MOVE ",
DOWN BUTTON ",
end
else
begin

string 2 <= "[FROM-SQUARE

S DISPLAY MOVE)
string 1 <= "ACCEPT MOVE

string 2 <= " UP BUTTON

string 1 <= "";

87

string 2 <= "";
end
player string <= (player) ? "WHITE"
"BLACK";
end
end

// link flattened representation of chessboard to
// multidimensional array of chessboard
// and flattned representation of captured pieces
// list to array representation
integer co;
integer ro;
integer in;
always
begin
for (co = 0; co < 8; co = co + 1)
begin
for (ro = 0; ro < 8; ro = ro + 1)
begin

flattened chessboardl ((8*co+ro+l) *5-1)-:5] =
new chessboard[co] [ro];

end
end
for (in = 0; in < 16; in = in + 1)
begin
flattened white captures[((in+l)*3-1)-:3]
= white captures[in];
flattened black captures[((in+l)*3-1)-:3]
= black captures[in];
end
end
endmodule

Appendix L: Move Checker

// yozo

module move checker (
input clock 65mhz,
input reset,
input start,
input color,
input [11:0] command,
input [64*5-1:0] flattened chessboard,
output reg done,
output reg valid);

localparam [2:0] KING = 3'dé6;
localparam [2:0] QUEEN = 3'd5;
localparam [2:0] ROOK = 3'd4;
localparam [2:0] BISHOP = 3'd3;
localparam [2:0] KNIGHT = 3'd2;
localparam [2:0] PAWN = 3'dl;

88

localparam WHITE 1'bl;
localparam BLACK = 1'bO0;

localparam MOVED = 1'bl;
localparam UNMOVED = 1'b0;

localparam [4:0] EMPTY = 5'b0;

// multidimensional array representation of chessboard

reqg [4:0] chessboard [7:0]1[7:0];

// link flattened representation of chessboard to
// multidimensional array of chessboard
integer c;
integer r;
always @ (*)
begin
for (¢ = 0; ¢ < 8; ¢c==c¢c + 1)
begin
for (r = 0; r < 8;
begin

chessboard[c] [r]

flattened chessboardl[((8*c+r+1)*5-1)-:5];

r

r + 1)

end
end
end
reqg [2:0] piece;
reg [2:0] from col;
reg [2:0] from row;
reg [2:0] to_col;
reg [2:0] to_row;
wire signed [3:0] delta col = to col - from col;
wire signed [3:0] delta row = to row - from row;
wire [3:0] mag delta col = (delta col[3]) ? ~delta col + 1
wire [3:0] mag delta row = (delta row[3]) ? ~delta row + 1

reg isc start;
wire isc_done;
wire isc _valid;

intermediate square checker isc(clock 65mhz, isc start,

flattened chessboard,

from col, from row, to col, to row, delta col,

isc_done, isc valid);

reg started; // indicates that checking has begun
reg waiting; // indicates that move checker is waiting for result

from intermediate square checker

always @ (posedge clock 65mhz) begin
if (reset)
begin
done <= 0;
valid <= 0;
started <= 0;

delta row,

delta col;
delta row;

89

waiting <= 0;
isc_start <= 0;

end
else if (waiting)
begin
if (isc_done)
begin
done <= 1;
valid <= isc_valid;
started <= 0;
waiting <= 0;
isc_start <= 0;
end
else
begin
done <= 0;
valid <= 0;
isc_start <= 0;
end
end
else if (started)
begin
if ((chessboard[from col] [from row] [1] == color)
&6& // piece belongs to current player
!'(to_col == from col && to_row ==
from row)) // from-square is not the same as to-square
begin
case (piece)
KING:
begin
if
((mag delta col == 1 && mag delta row == 0) ||
(mag_delta col == 0 && mag delta row == 1) ||
(mag delta col == 1 && mag delta row == 1))
begin
end
else
begin
end
done <= 1;
started <=
0;
end
KNIGHT:
begin
if
((mag delta col == 2 && mag delta row == 1) ||
(mag delta col == 1 && mag delta row == 2))

90

valid <= (c

valid <= 0;

begin
valid <= (c

end
else
begin
valid <= 0;
end
done <= 1;
started <=
0;
end
PAWN :
begin
if
((mag _delta col == 0) // one square advance
&&
((color == WHITE && delta row == 1) ||
(color == E
begin
valid <= ct
end
else 1if
((mag_delta col ==0) // two square advance
&& ((color
(c
begin
// check tt
valid <= (|
end
else if
((mag delta col == 1) // capture
&& ((color
(c
begin
// check tt
// and that
valid <= (|
end
else
begin
valid <= 0;
end
done <= 1;
started <=
0;
end
QUEEN :
begin

91

if

(((mag_delta col == * mag delta row == 0) ||
(mag_delta col == mag delta row))
&&
((chessboard[to _col] [to_row] == EMPTY) *
begin
end
else
begin
end
end
BISHOP:
begin
if
((mag_delta col == mag delta row)
&&
((chessboard[to col] [to _row] == EMPTY) ||
begin
end
else
begin
end
end
ROOK:
begin
if
((mag_delta col == * mag delta row == 0)
&&
((chessboard[to col] [to row] == EMPTY) ||
begin
end
else
begin

92

A

(color C

isc_start <

waiting <=

done <= 1;
valid <= 0;
started <=

(color ©~ ct
isc_start <

waiting <=

done <= 1;
valid <= 0;
started <=

(color *~ ct
isc_start <

waiting <=

done <= 1;
valid <= 0;

end
default:
begin
0;
0;
end
endcase
end
else
begin
done <= 1;
valid <= 0;
started <= 0;
end
end
else if (start)
begin
piece <=
chessboard[command[11:9]] [command([8:6]][4:2];
from col <= command[11:9];
from row <= command[8:6];
to col <= command[5:3];
to row <= command[2:0];
done <= 0;
valid <= 0;
started <= 1;
waiting <= 0;
isc_start <= 0;
end
else
begin
done <= 0;
valid <= 0;
started <= 0;
waiting <= 0;
isc_start <= 0;
end
end
endmodule

// checks to see if there are any pieces along the line,
// striaght or diagonal, from the from-square to the

does not to-square, as module was originally
// intended to do checking for castling as well

module intermediate square checker (

// to-square;

input
input
input
input
input

clock

start,

[64*5-

[2:0]
[2:0]

65mhz,

1:0] flattened chessboard,
from col,
from row,

end

done <= 1;
valid <=

started <=

93

started <=

input
input
input
input
output
output

localparam [4:

[2:0] to_col,

[2:0] to_row,

signed [3:0] delta col,
signed [3:0] delta row,
reg done,

reqg valid);

0] EMPTY = 5'b0;

// multidimensional array representation of chessboard
reqg [4:0] chessboard [7:0]1[7:0];

// link flattened representation of chessboard to
// multidimensional array of chessboard

integer c;

integer r;

always @ (*)
begin

for (¢ = 0; ¢ < 8; ¢c==c¢c + 1)
begin
for (r = 0; r < 8 r =1r + 1)
begin
chessboard[c] [r]

flattened chessboardl[((8*c+r+1)*5-1)-:5];

end
end
end
reqg [2:0] col;
reqg [2:0] row;
reg started;
always @ (posedge clock 65mhz)
begin
if (started)
begin
if (col == to_col && row == to_row)
begin
done <= 1;
valid <= 1;
started <= 0;
end
else 1f (chessboard[col] [row] == EMPTY)
begin
col <= (delta col < 0) ?
col - 1 : (delta col == 0) ? col : col + 1;
row <= (delta row < Q) ?
row — 1 : (delta row == 0) ? row : row + 1;
end
else
begin
done <= 1;
valid <= 0;
started <= 0;
end
end
else if (start)
begin

94

done <= 0;

valid <= 0;

started <= 1;

col <= (delta col < 0) ? from col -1

(delta col == 0) ? from col : from col + 1;
row <= (delta row < 0) ? from row - 1
(delta _row == 0) ? from row : from row + 1;
end
else
begin

done <= 0;
valid <= 0;
started <= 0;
end
end
endmodule

‘timescale 1ns / 100ps
module test();

localparam [2:0] KING = 3'd6;
localparam [2:0] QUEEN = 3'd5;
localparam [2:0] ROOK = 3'd4;
localparam [2:0] BISHOP = 3'd3;
localparam [2:0] KNIGHT = 3'd2;
localparam [2:0] PAWN = 3'dl;

localparam WHITE = 1'bl;
localparam BLACK = 1'bO0;

localparam MOVED = 1'bl;
localparam UNMOVED = 1'b0;

localparam [4:0] EMPTY = 5'b0;

reg [4:0] chessboard [7:0]1[7:01;
reg [64*5-1:0] flattened chessboard;

// link flattened representation of chessboard to
// multidimensional array of chessboard

integer c;

integer r;

always @ (*)

begin
for (¢ = 0; ¢ < 8; ¢c==c¢c + 1)
begin
for (r = 0; r < 8 r =1r + 1)
begin
flattened chessboardl[((8*c+r+1)*5-1)-:5] = chessboard[c] [r];
end
end
end
reg clk;
initial

begin

clk = 0;
forever #7 clk = ~clk; // 14 ns period clock
end

reg reset;

reg start;

reqg color;

reg [11:0] command;

wire done;

wire valid;

move checker mc(clk, reset, start, color, command,
flattened chessboard, done, valid);

integer co;
integer ro;

initial
begin
Sdisplay ("Setting up board with pieces...");
for (co = 0; co < 8; co = co + 1)
begin

// place a pawn in every column in rows 1 and 6
chessboard[co] [1] <= {PAWN,WHITE, UNMOVED};
chessboard[co] [6] <= {PAWN,BLACK,UNMOVED};
// empty every square between rows 2 and
6 (inclusive)

for (ro = 2; ro < 6; ro = ro + 1)
begin
chessboard[co] [ro] =
EMPTY;
end
end

// set up main pieces

chessboard[0] [0] = {ROOK,WHITE, UNMOVED};
chessboard[1] [0] = {KNIGHT,WHITE,UNMOVED};
chessboard[2] [0] = {BISHOP,WHITE,UNMOVED};
chessboard[3][0] = {QUEEN,WHITE,UNMOVED};
chessboard[4] [0] = {KING,WHITE,UNMOVED};
chessboard[5] [0] = {BISHOP,WHITE,UNMOVED};
chessboard[6] [0] = {KNIGHT,WHITE,UNMOVED};
chessboard[7] [0] = {ROOK,WHITE, UNMOVED};
chessboard[0] [7] = {ROOK, BLACK, UNMOVED};
chessboard[1][7] = {KNIGHT,BLACK,UNMOVED};
chessboard[2][7] = {BISHOP,BLACK,UNMOVED};
chessboard[3][7] = {QUEEN,BLACK,UNMOVED};
chessboard[4][7] = {KING,BLACK,UNMOVED};
chessboard[5][7] = {BISHOP,BLACK,UNMOVED};
chessboard[6] [7] = {KNIGHT,BLACK, UNMOVED};
chessboard[7][7] = {ROOK,BLACK,UNMOVED};

Sdisplay ("Finished setting up board...");

#14
command = {3'd2,3'dl,3'd2,3'd3};
color = WHITE;

96

start = 1;
#14
start = 0;

$display("Pawn C2 to C4 is wvalid?");

#14
command = {3'd3,3'd7,3'dl,3'd5};
color = BLACK;

start = 1;

#14
start = 0;
$display ("

// #14
// command
// color =
// start =
// #14
// start = 0;

= {000010000011};
BLACK;
1

’

// S$display ("No-piece A3 to A4 is valid?");

end

always @ (posedge clk)

begin
if (done)
Sdisplay ("Valid: %b", valid);
end
endmodule

Appendix L: Chessboard Drawer
module chessboard drawer (

input clock 65mhz,

input [10:0] x,

input [9:0] vy,

input [10:0] hcount,

input [9:0] wvcount,
output reg [23:0] pixel);

localparam BOARD WIDTH = 64*8;

localparam LIGHT = 24'hFF CE 9E;
localparam DARK = 24'hDl 8B 47;

reg signed [11:0] norm hcount;
reg signed [10:0] norm vcount;

always @ (posedge clock 65mhz)
begin
norm hcount <= hcount - x;
norm vcount <= vcount - y;
end

always @ (posedge clock 65mhz)
begin

if ((norm hcount >= 0 && norm hcount < BOARD WIDTH)

'Queen D8 to B6 is wvalid?");

&&

97

end

endmodule

(norm vcount >= 0 && norm vcount < BOARD WIDTH))

begin
if (norm hcount[6] ” norm vcount[6])
begin
pixel <= LIGHT;
end
else
begin
pixel <= DARK;
end
end
else
begin
pixel <= 24'h0;
end

Appendix M: Chess Pieces Drawer

module chess pieces drawer
input

(
clock 65mhz,

input [10 0] x,

input [9:0] vy,

input [10 0] hcount,

input [9:0] wvcount,

input [64*5 1:0] flattened chessboard,
input [16*3-1:0] flattened white captures,
input [16*3-1:0] flattened black captures,
output [23:0] pixel);

// chess parameters

localparam
localparam
localparam
localparam
localparam
localparam

localparam
localparam

[2:0] KING = 3'do6;
[2:0] QUEEN = 3'd5;
[2:0] ROOK = 3'd4;
[2:0] BISHOP = 3'd3;
[2:0] KNIGHT = 3'd2;
[2:0] PAWN = 3'dl;
WHITE = 1'bl;

BLACK = 1'b0;

// 8-bit pixel value for transparent color

localparam

[7:0] TRANSPARENT = 8'h03;

// grid and board parameters

localparam
localparam
localparam
localparam
localparam
localparam
localparam
PAD WIDTH;
localparam

BOARD WIDTH
GRID WIDTH
PAD WIDTH = 64%1;
HEIGHT = 64*8;
BOARD L EDGE
BOARD R _EDGE =
BLACK L EDGE

64*8;
64*2;

GRID WIDTH + PAD WIDTH;
BOARD I, EDGE + BOARD WIDTH;
GRID WIDTH + PAD WIDTH + BOARD WIDTH

BLACK R _EDGE = BLACK L EDGE + GRID WIDTH;

98

// array representations of chessboard and pieces
// captured by white and black

reqg [4:0] chessboard [7:0]1[7:0];

reg [2:0] white captures [1:0][7:0];

reg [2:0] black captures [1:0][7:0];

// convert from flat representations to array
// representations
integer c;
integer r;
integer 1i;
integer j;
always @ (*)
begin
for (¢ = 0; ¢ < 8; ¢c==c¢c + 1)
begin
for (r = 0; r < 8 r =1r + 1)
begin
chessboard[c] [r] =

flattened chessboardl[((8*c+r+1)*5-1)-:5];

end
end
for (i = 0; 1 < 2; i =1+ 1)
begin

for (3 = 0; 3 <8; J =73 + 1)
begin
white captures([i] []]
flattened white captures[((i+2*j+1)*3-1)-:3];
black captures[i][]]
flattened black captures[((i+2*3j+1)*3-1)-:3];
end
end
end

// normalized hcount and vcount and delayed copies
reg signed [11:0] norm hcount;

reg signed [10:0] norm vcount;

reg signed [11:0] norm hcount dl;
reg signed [10:0] norm vcount dl;
reg signed [11:0] norm hcount d2;
reg signed [10:0] norm vcount d2;

// calculate normalized hcount and vcount and rom address
reg [11:0] addr;
always @ (posedge clock 65mhz)
begin
norm hcount <= hcount - x;
norm vcount <= vcount - y;
norm hcount dl <= norm hcount;
norm vcount dl <= norm vcount;
norm _hcount d2 <= norm hcount dl;
norm vcount d2 <= norm vcount dl;
addr <= {norm vcount[5:0],norm hcount[5:0]};
end

wire
wire
wire
wire
wire
wire

wire
wire
wire
wire
wire
wire

[
[
[
[
[
[

[
[
[
[
[
[

B N N N N Y

B N N N

O O OO oo

O O OO oo

white king out;
white queen out;
white rook out;
white bishop out;
white knight out;
white pawn out;

black king out;
black queen out;
black rook out;
black bishop out;
black knight out;
black pawn out;

// instantiate roms for piece sprites

white king wk(clock 65mhz, addr, white king out);
white queen wqg(clock 65mhz, addr, white queen out);
white rook wr(clock 65mhz, addr, white rook out);
white bishop wb(clock 65mhz, addr, white bishop out);

white knight wkn(clock 65mhz, addr, white knight out);

white pawn wp(clock 65mhz, addr, white pawn out);

black king bk(clock 65mhz, addr, black king out);
black queen bg(clock 65mhz, addr, black queen out);
black rook br(clock 65mhz, addr, black rook out);
black bishop bb(clock 65mhz, addr, black bishop out);

black knight bkn(clock 65mhz, addr, black knight out);

black pawn bp(clock 65mhz, addr, black pawn out);

// column and row of chessboard that corresponds with normalized hcount

and vcount
[2:
[2:

wire
wire

wire
wire
wire

// select which rom to get 8-bit pixel info from

[2:
[2:
[2:

0]
0]

0]
0]
0]

col = norm hcount d2[8:6] - 3;
row = 7 - norm vcount d2[8:6];
white col = norm hcount d2[8:6];
black col = norm hcount d2[8:6] -

grid row = norm vcount d2[8:6];

reg [7:0] piece pixel;

always @ (posedge clock 65mhz)
begin

&&

4;

if ((norm hcount d2 >= 0 && norm hcount d2 < GRID WIDTH)

(norm vcount d2 >= 0 && norm vcount d2 < HEIGHT))

begin

black king out;

black queen out;

black rook out;

black bishop out;

case (white captures|[white col] [grid row])

KING:

QUEEN:

ROOK:

BISHOP:

piece pixel <=
piece pixel <=
piece pixel <=

piece pixel <=

100

piece pixel

piece pixel

KNIGHT:

black knight out;
PAWN :

black pawn out;
default:

piece pixel <= TRANSPARENT;
endcase
end
else if ((norm hcount d2 >= BOARD L EDGE &&

norm_hcount d2 < BOARD R EDGE) &&

<=

<=

(norm vcount d2 >= 0 && norm vcount d2 <

HEIGHT))
begin

case (chessboard[col] [row] [4:1])

{KING, WHITE} :
white king out;

{QUEEN, WHITE} :
white queen out;

{ROOK, WHITE} :
white rook out;

{BISHOP,WHITE} :
white bishop out;

{KNIGHT,WHITE} :
white knight out;

{ PAWN, WHITE} :
white pawn out;

{KING,BLACK} :
black king out;

{QUEEN, BLACK} :
black queen out;

{ROOK, BLACK} :
black rook out;

{BISHOP,BLACK} :
black bishop out;

{KNIGHT,BLACK}:
black knight out;

piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel
piece pixel

piece pixel

{PAWN, BLACK} :
black pawn out;
default:
piece pixel <= TRANSPARENT;
endcase
end
else if ((norm hcount d2 >= BLACK L EDGE &&

norm _hcount d2 < BLACK R EDGE) &&

(norm vcount d2 >= 0 && norm vcount d2 <

HEIGHT))
begin

case (black captures([black col] [grid row])

KING:
white king out;

QUEEN:
white queen out;

ROOK:
white rook out;

BISHOP:

white bishop out;

piece pixel
piece pixel
piece pixel

piece pixel

<=

<=

<=

<=

101

white knight out;

white pawn

out;

TRANSPARENT;

end

// upconvert 8-bit pixel value to 24-bit value

endcase
end
else
begin

KNIGHT:

PAWN :

default:

piece pixel <=
piece pixel <=

piece pixel <=

piece pixel <= TRANSPARENT;

end

assign pixel =

{piece pixel[7:5],5'b0,piece pixel[4:2],5'b0,piece pixel[1l:0],6'b0};

endmodule

Appendix N:

Text Drawer

module text drawer (
input clock 65mhz,

RIGHT EDGE BOARD = LEFT EDGE BOARD + BOARD WIDTH;

input [10:0] hcount,

input [9:0] wvcount,

input [5*%8-1:0] player string,

input [32*8-1:0] string 1,

input [32*8-1:0] string 2,

input [6*8-1:0] kb string,

output [23:0] pixel);
localparam CENTER SCREEN X = 512;
localparam CHAR HEIGHT = 24;
localparam CHAR WIDTH = 16;
localparam TOP_ MARGIN = 32;
localparam BOTTOM MARGIN = 64;
localparam PADDING = 8;
localparam SQUARE SIZE = 64;
localparam BOARD WIDTH = 64 * 8;
localparam LEFT EDGE BOARD = 64 * 4;
localparam
localparam

localparam

localparam
localparam

TOP_EDGE BOARD = TOP MARGIN + CHAR HEIGHT + PADDING +
CHAR HEIGHT;
BOTTOM EDGE BOARD = TOP EDGE BOARD + BOARD WIDTH;

CENTER WHITE GRID X =
CENTER BLACK GRID X

64 *

// text for headers

64 * 2;

14;

102

wire [2:0] hd pixel;
reg [5*8-1:0] hd string;
reg [10:0] hd x;
reg [9:0] hd y;
always @ (posedge clock 65mhz)
begin
if (vcount < TOP_EDGE BOARD - CHAR HEIGHT - (PADDING /
2))
begin
hd x <= CENTER SCREEN X - (CHAR WIDTH *
2) - (CHAR WIDTH / 2);
hd y <= TOP EDGE BOARD - CHAR HEIGHT -
PADDING - CHAR HEIGHT;
hd string <= player string;

end
else if (hcount < CENTER SCREEN X)
begin
hd x <= CENTER WHITE GRID X - (CHAR WIDTH
* 2) - (CHAR WIDTH / 2);
hd y <= TOP _EDGE BOARD - CHAR HEIGHT;
hd string <= "WHITE";
end
else
begin
hd x <= CENTER BLACK GRID X - (CHAR WIDTH
* 2) - (CHAR WIDTH / 2);
hd y <= TOP_EDGE BOARD - CHAR HEIGHT;
hd string <= "BLACK";
end
end

char string display hd(clock 65mhz, hcount, vcount,

hd pixel, hd string, hd x, hd y);
defparam hd.NCHAR = 5;
defparam hd.NCHAR BITS = 3;

// text for col letters and row numbers
wire [2:0] col row pixel;
reg [7:0] col row string;
reg [10:0] col row x;
reg [9:0] col row y;
always @ (posedge clock 65mhz)
begin
if (vcount < TOP EDGE BOARD || vcount >
BOTTOM EDGE BOARD)
begin
col row y <= (vcount < TOP EDGE BOARD) ?
(TOP _EDGE BOARD - CHAR HEIGHT) : BOTTOM EDGE BOARD;
if (hcount < LEFT EDGE BOARD +
SQUARE_SIZE)
begin
col row x <=
LEFT EDGE BOARD + (SQUAREileE / 2) - (CHARﬁWIDTH / 2);
col row string <= "A";
end
else if (hcount < LEFT EDGE BOARD +
(SQUARE SIZE * 2))
begin

103

col row x <=
LEFT EDGE BOARD + (SQUARE SIZE * 1) + (SQUARE SIZE / 2) - (CHAR WIDTH /
2);
col row _string <= "B";
end
else if (hcount < LEFT _EDGE BOARD +
(SQUARE_SIZE * 3))

begin
col row x <=
LEFT_EDGE_BOARD + (SQUARE_SIZE * 2) + (SQUARE_SIZE / 2) - (CHAR_WIDTH /
2);
col row string <= "C";
end

else if (hcount < LEFT EDGE BOARD +
(SQUARE SIZE * 4))

begin
col row x <=
LEFT EDGE BOARD + (SQUARE_SIZE * 3) + (SQUARE_SIZE / 2) - (CHAR_WIDTH /
2);
col row string <= "D";
end

else if (hcount < LEFT EDGE BOARD +
(SQUARE_SIZE * 5))

begin
col row x <=
LEFT EDGE BOARD + (SQUARE SIZE * 4) + (SQUARE SIZE / 2) - (CHAR WIDTH /
2);
col row string <= "E";
end

else if (hcount < LEFT EDGE BOARD +
(SQUARE SIZE * 6))

begin
col row x <=
LEFT EDGE BOARD + (SQUARE SIZE * 5) + (SQUARE SIZE / 2) - (CHAR WIDTH /
2);
col row_string <= "F";
end

else if (hcount < LEFT EDGE BOARD +
(SQUARE SIZE * 7))

begin
col row x <=
LEFT EDGE BOARD + (SQUARE SIZE * 6) + (SQUARE SIZE / 2) - (CHAR WIDTH /
2);
col row string <= "G";
end

else if (hcount < LEFT EDGE BOARD +
(SQUARE SIZE * 8))

begin
col row x <=
LEFT EDGE BOARD + (SQUARE SIZE * 7) + (SQUARE SIZE / 2) - (CHAR WIDTH /
2);
col row string <= "H";
end
else
begin

col row x <= 0;
col row string <= " ";

104

end
end
else
begin
col row x <= (hcount < CENTER SCREEN X) °?
LEFT EDGE BOARD - CHAR WIDTH : RIGHT EDGE BOARD;
if (vcount < TOP EDGE BOARD +
SQUARE_SIZE)

begin
col row y <=
TOP_EDGE BOARD + (SQUARE_SIZE / 2) - (CHAR_HEIGHT / 2);
col row string <= "8";
end

else if (vcount < TOP_EDGE BOARD +
(SQUARE SIZE * 2))

begin
col row y <=
TOP_EDGE BOARD + (SQUARE_SIZE * 1) + (SQUARE_SIZE / 2) - (CHAR_HEIGHT /
2);
col row string <= "7";
end

else if (vcount < TOP_EDGE BOARD +
(SQUARE_SIZE * 3))

begin
col row y <=
TOP_EDGE BOARD + (SQUARE SIZE * 2) + (SQUARE SIZE / 2) - (CHAR HEIGHT /
2);
col row string <= "6";
end

else if (vcount < TOP_EDGE BOARD +
(SQUARE SIZE * 4))

begin
col row y <=
TOP_EDGE BOARD + (SQUARE SIZE * 3) + (SQUARE SIZE / 2) - (CHAR HEIGHT /
2);
col row_string <= "5";
end

else if (vcount < TOP_EDGE BOARD +
(SQUARE SIZE * 5))

begin
col row y <=
TOP EDGE BOARD + (SQUARE SIZE * 4) + (SQUARE SIZE / 2) - (CHAR HEIGHT /
2);
col row string <= "4";
end

else if (vcount < TOP_EDGE BOARD +
(SQUARE SIZE * 6))

begin
col row y <=
TOP_EDGE BOARD + (SQUARE SIZE * 5) + (SQUARE SIZE / 2) - (CHAR HEIGHT /
2);
col row string <= "3";
end

else if (vcount < TOP EDGE BOARD +
(SQUARE SIZE * 7))
begin

105

col row y <=
TOP_EDGE_BOARD + (SQUARE_SIZE * 6) + (SQUARE_SIZE / 2) - (CHAR_HEIGHT /
2);
col row _string <= "2";
end
else if (vcount < TOP_EDGE BOARD +
(SQUARE_SIZE * 8))

begin
col row y <=
TOP_EDGE BOARD + (SQUARE SIZE * 7) + (SQUARE SIZE / 2) - (CHAR_HEIGHT /
2);
col row string <= "1";
end
else
begin
col row y <= 0;
col row string <= " ";
end

end
end
char string display col row(clock 65mhz, hcount, vcount,
col row pixel, col row string, col row x,
col row y);
defparam col row.NCHAR = 1;
defparam col row.NCHAR BITS = 1;

// text for body (from chess engine and keyboard input)

localparam TOP_BODY TEXT = BOTTOM EDGE BOARD + CHAR HEIGHT + PADDING;
localparam SPACE_24 — {u u,u u,u u,u u,u u,u u},.
wire [2:0] body pixel;

reg [32*8-1:0] body string;

reg [10:0] body x;

reg [9:0] body y;

always @ (posedge clock 65mhz)

begin
body x <= LEFT EDGE BOARD;
if (vcount < TOP_BODY TEXT + CHAR HEIGHT)
begin
body y <= TOP BODY TEXT;
body string <= string 1;
end
else if (vcount < TOP_BODY TEXT + (CHAR HEIGHT * 2))
begin
body y <= TOP _BODY TEXT + CHAR HEIGHT;
body string <= string 2;
end
else
begin
body y <= TOP_BODY TEXT + (CHAR HEIGHT *
2);
body string <= {"> ", kb string,
SPACE 241};
end
end

char string display body(clock 65mhz, hcount, vcount,
body pixel, body string, body x, body Vy);

106

defparam body.NCHAR = 32;
defparam body.NCHAR BITS = 5;

// combine pixel values

wire [2:0] pixel 3 bit = (hd pixel | col row pixel | body pixel);

// upconvert pixel values to 24 bits

assign pixel = {{8{pixel 3 bit[2]}},
{8{pixel 3 bit[1]
{8{pixel 3 bit[O0]

endmodule

107

Appendix O: Chess Graphics
module chess graphics (
input clock 65mhz,
input [10:0] hcount,
input [9:0] wvcount,
input hsync,
input wvsync,
input blank,
input [64*5-1:0] flattened chessboard,

input [16*3-1:0] flattened white captures,
input [16*3-1:0] flattened black captures,
input [5*8-1:0] player string,

input [32*8-1:0] string 1,

input [32*8-1:0] string 2,

input [6*8-1:0] kb string,

output reg chsync,
output reg cvsync,
output reg cblank,
output [23:0] cpixel,
input toggle);

// pixel values for "transparent" colors
localparam [7:0] X1 = 8'h03;

localparam [7:0] X2 = 8'h02;

localparam [23:0] TRANSPARENT 1 =
{X1[7:5],5'0b0,X1[4:2]1,5'00,X1[1:0],6'b0};
localparam [23:0] TRANSPARENT 2 =
{X2[7:5],5'b0,X2[4:2]1,5'00,X2[1:0],6'b0};

—— —

// general layout

localparam TOP_MARGIN = 32;
localparam BOTTOM MARGIN = 64;
localparam PADDING = 8;
localparam CHAR HEIGHT = 24;

// board layout

localparam BOARD WIDTH = 64 * 8;

localparam LEFT EDGE BOARD = 64 * 4;

localparam RIGHT EDGE BOARD = LEFT EDGE BOARD + BOARD WIDTH;
localparam TOP_EDGE BOARD = TOP MARGIN + CHAR HEIGHT + PADDING +
CHAR HEIGHT;

localparam BOTTOM EDGE BOARD = TOP EDGE BOARD + BOARD WIDTH;

// grids (of pieces that white and black have captured) layout
localparam TOP_EDGE GRID = TOP_ EDGE BOARD;

localparam LEFT EDGE WHITE GRID = 64;

localparam LEFT EDGE BLACK GRID 64 * 13;

// instantiate chessboard

wire [23:0] chessboard pixel;

chessboard drawer cbd(clock 65mhz, LEFT EDGE BOARD, TOP EDGE BOARD,
hcount, vcount, chessboard pixel);

// delay chessboard pixel by 2 clock cycles
108

reg [23:0] chessboard pixel dl;
reg [23:0] chessboard pixel d2;
always @ (clock 65mhz)

begin

chessboard pixel dl <= chessboard pixel;
chessboard pixel d2 <= chessboard pixel dl;

end

// instantiate chess pieces
wire [23:0] chess pieces pixel;

chess pieces drawer cpd(clock 65mhz, LEFT EDGE WHITE GRID,
TOP_EDGE BOARD, hcount, vcount,

flattened chessboard,

flattened white captures,
flattened black captures,

chess pieces pixel);

// background for grid of pieces that white has captured

localparam LIGHT = 24'hFF CE 9E;
wire [23:0] white bg pixel;

blob white bg (LEFT EDGE WHITE GRID, hcount, TOP_EDGE GRID,

vcount, white bg pixel);
defparam white bg.COLOR = LIGHT;

// background for grid of pieces that black has captured

localparam DARK = 24'hDl 8B 47;
wire [23:0] black bg pixel;

blob black bg(LEFT _EDGE BLACK GRID, hcount, TOP EDGE_GRID,

vcount, black bg pixel);
defparam black bg.COLOR = DARK;

// draw text
wire [23:0] text pixel;

text drawer text(clock 65mhz, hcount, vcount, player string,
string 1, string 2, kb string, text pixel);

// put everything together
reg [23:0] chess pixel;
always @ (*)

chess pixel <= (chessboard pixel d2

begin
if ((chess pieces pixel == TRANSPARENT 1)
(chess pieces pixel == TRANSPARENT 2))
begin
text pixel |

black bg pixel | white bg pixel);
end
else
begin

chess pixel <= chess pieces pixel;

end
end

109

assign cpixel = (toggle) ? chess pieces pixel : chess pixel;

// delay hsync and vsync by 3 clock cycles to match
// delay of chess pieces graphics module

reg hsync dl;

reg vsync dl;

reg blank dl;

reg hsync d2;
reg vsync d2;

reg blank d2;

always @ (posedge clock 65mhz)

begin
hsync_dl <= hsync;
vsync_dl <= vsync;
blank dl <= blank;
hsync_d2 <= hsync dl;
vsync_d2 <= vsync dl;
blank d2 <= blank dl;
chsync <= hsync d2;
cvsync <= vsync_d2;
cblank <= blank d2;

end

endmodule

// blob module from lab5, modified to produce 24-bit pixel value
module blob
(parameter WIDTH = 128, // default width: 128
pixels
HEIGHT = 64*8, // default
height: 64*8 pixels
COLOR = 24'hFF FF FF) // default
color: white
(input [10:0] x, hcount,
input [9:0] y, vcount,
output reg [23:0] pixel);

always @ (x or y or hcount or vcount)

begin
if ((hcount >= x && hcount < (xX+WIDTH)) &&
(vcount >= y && vcount < (y+HEIGHT)))
pixel = COLOR;
else
pixel = O;
end

endmodule

110

Appendix P: MATLAB JPG to COE

function img2 = IMG2coe8 (imgfile, outfile)
Create .coe file from .jpg image

.coe file contains 8-bit words (bytes)
each byte contains one 8-bit pixel
color byte: [R2,R1l,R0,G2,G1,G0,B1,B0]
img2 = IMG2coe8 (imgfile, outfile)

img2 is 8-bit color image

imgfile = input .jpg file

outfile = output .coe file

Example:

img2 = IMG2coe8('loons240x160.jpg', 'loons240x160.coe');

A0 o A A A° O° A o o°

o

img = imread(imgfile);
height = size(img, 1);
width = size(img, 2);

s = fopen(outfile, 'wb'); %opens the output file
fprintf (s, '$s\n','; VGA Memory Map ');

fprintf (s, '$s\n','; .COE file with hex coefficients ');
fprintf(s,'; Height: %d, Width: %d\n\n', height, width);
fprintf(s,'%s\n','memory_initialization_radile6;');
fprintf (s, '$s\n', 'memory initialization vector="');

cnt = 0;

img2 = img;

for r=1:height
for c=1l:width
cnt = cnt + 1;
R = img(r,c,1);
G = img(r,c,2);
B = img(r,c,3);
Rb = dec2bin (R, 8);

Gb = dec2bin (G, 8);
Bb = dec2bin (B, 8);
img2 (r,c,1l) = bin2dec([Rb(1:3) '00000']);
img2 (r,c,2) = bin2dec([Gb(1:3) '00000']);
img2 (r,c,3) = bin2dec([Bb(l1:2) '000000']);
Outbyte = [Rb(1:3) Gb(1l:3) Bb(1l:2) 1;
if (Outbyte(l:4) == '0000")
fprintf (s, '0%X"',bin2dec (Outbyte)) ;
else
fprintf (s, '$X',bin2dec (Outbyte)) ;
end
if ((c == width) && (r == height))
fprintf (s, 'Sc',';");
else
if (mod(cnt,32) == 0)
fprintf (s, "$c\n', "', ");
else
fprintf (s, '%c', ', ")
end
end
end
end
fclose(s);

111

