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Abstract

We set out to design and implement a proof of concept laser turret. This turret would have
two modes of operation. One would be a manual mode that allows users to direct the laser
through use of a cursor and fire when ordered. The other mode would automatically identify
and fire upon one of possibly several moving bodies in its field of vision. This was complicated
by the fact that a motion detection algorithm capable of differentiating between multiple
targets in hardware, using a static camera, is a problem lacking a widely accepted solution.
This complication was further exacerbated by memory and timing constraints that we faced,
caused by the physical limitations of the FPGA. Through the use of changed-pixel data and
dual-pass histograms, we were able to produce a system that could reliably distinguish and
highlight a moving target. Further refinement and testing with more reliable equipment is
still necessary.
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1 Overview

The purpose of the this device is to fire upon moving bodies that enter a target area.
Alternatively, a user may override automated targetting and manually fire upon priority
targets. In order to facilitate installation and troubleshooting, the turret is connected to a
graphical interface which provides users with multiple data overlays.

In this preliminary design, the turret is constructed of two directly-joined servo motors, one
per degree of freedom, and a laser pointer. The horizontal motor controls the azimuth of the
laser pointer. Directly afixed to the rotating platform of the horizontal motor is the vertical
motor, which controls the elevation of the laser. The laser pointer attached to the platform
of second motor is used to define and display the orientation of the turret.

The turret has two modes of operation: manual and automatic. In either mode, the module
generates a target pixel, which is mapped to a particular azimuth and elevation through look
up tables. These angles are then sent to the servo motor controls, which direct the laser
pointer to highlight the target. In manual mode, this pixel is selected through use of the
cursor.

In automatic mode, the target pixel is chosen by a multi-module video-processing algorithm.
Video frames from the camera are stored in the ZBTs and used to generate a change map:
a two color image, in which white pixels mark pixels that have changed from the previous
frame, and black pixels mark unchanged locations. This map is then used to compile vertical
and horizontal histograms, which are then used to calculate the center of a particular box of
interest, which becomes the target pixel.

Figure 1: Turret Block Diagram
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2 Description

2.1 Motion Tracking (Stephanie)

The motion tracking algorithm is excecuted in two passes: A histogram of changed pixels in
each column of a frame is constructed using changemap data streaming in from the Video
Processing module, then searched for a span rich in entries over a threshold number of pixels.
The center of this span becomes the x-coordinate of the target pixel. The edges of this span
are reported to another histogram module, which calculates a histogram of changed pixels
per row, but only counts pixels that fall within the span of interest. This histogram is
also searched to find a high-activity region, which determines the y-coordinate of the target
pixel. Excluding pixels outside the x-span of interest in the second histogram prevents other
moving bodies in the camera’s few from winning the second search, thus causing the turret
to aim at the x-coordinate of one body and the y-coordinate of an another.

2.1.1 Column Histogram (vertical histogram)

inputs: hcount, vcount, clk, pixel
output: data

Because data streams in row by row, summing up by columns requires as many accumulator
locations as the width of the image. These were implemented using a dual-port 640x9 BRAM
with one read-only port and one write-only port. The value for each column was stored in
the BRAM using the column’s hcount as an address. The read-only port always provides the
current histogram value for the current hcount, both to module-internal logic and to other
modules through data output.

For the first line of each frame, the memory is cleared by storing 1 or 0 for white or black
pixels in the changemap at the location corresponding to the current hcount. During the
frame, a pixel from the change-map stream is read in and added to the sum accumulating
for the current column retrieved from the BRAM the preivous cycle. The next cycle, the
new sum is stored in the BRAM at the same location.

2.1.2 Row Histogram (horizontal histogram)

inputs: hcount, vcount, clk, pixel, start, finish, request
outputs: data

Unlike the other histogram module, this module can use a single accumulator location (a
bus of 10 registers) , and also accepts a start-pixel and end-pixel input to narrow the area of
the frame it sums over, taken from col finder. Each entry in the histogram is stored for one

6



frame in a single-port 480x10 BRAM, addressed by the line’s vcount number. During the
frame, the memory is written to, storing histogram data. Outside the frame, the memory
outputs the histogram data for whichever row is requested at the request input.

For each line in the frame, when hcount is equal to the current value of start, the value in the
accumulator registers is cleared by moving the current pixel value into it. Every clock cycle
until hcount is equal to finish, the total in the accumulator is incremented by the current
changemap pixel value. At hcount == finish + 1, the current total in the accumulator is
written into the BRAM at the location addressed by the current vcount.

2.1.3 Window-of-Interest Finders (row finder, col finder)

inputs: clk, hcount, vcount, data, TH, MAX GAP
outputs: start, finish, center

The two finder modules (col finder, row finder) search histogram data with the same single-
pass algorithm. The algorithm searches for the highest scoring ‘window’, a region of high-
value histogram lines that are separated by no more than MAX GAP lines.

One line of a histogram is read into the module per clock cycle during a pass. During the
pass, the module is either searching for a window or extending a window. Six parameters
(best start, best finish, best score, cur start, cur finish, cur gap) are reset to zero at the
beginning of each pass. If the first line of histogram data exceeds TH, the significance
threshold, cur score is initialized to one and the module enters the searching state. Otherwise,
cur score is initialized to 1 and the module enters the extending state.

When searching, the histogram data for the current line is compared to TH. If the data is
greater than TH, the current line is recorded as cur start and the module enters the extending
state. Otherwise, it proceeds to the next line in the histogram.

In the extending state, if the current data is greater than TH, cur finish is updated to
the current line number, cur score is incremented by one, and the module moves onto the
next line. Otherwise, cur gap is incremented, or if cur gap is already equal to MAX GAP,
the window is closed: the module returns to the searching state, and if cur score exceeds
best score, best score, best start, and best finish are replaced by cur score, cur start, and
cur finish.

At the end of a pass, if the module is currently extending a window and cur score exceeds
best score, cur start and the maximum possible line number are pushed into start and finish.
Otherwise, best start and best finish are pushed into start and finish. Center is calculated
by averaging start and finish.

Col finder processes histogram data during the first line of the vsync period, processing one
line per clock cycle. Row finder processes histogram data as it becomes available, one line
of the histogram per line displayed on the screen, during the hsync period.
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2.2 Pixel-to-Angles LUT (anglesLUT) (Stephanie)

inputs: x, y, reset
outputs: x pulse, y pulse

The LUT mapping horizontal and vertical coordinates to angles is simply two asynchronous
ROMs. The azimuth and elevation for each x and y coordinate were calculated according to
the following principles:

If V is half the viewing angle of the camera in either the horizontal direction, X is half of
the width of the camera’s field of view in pixels, and x is the distance between a point P on
the camera image and the vertical midline of the image, then the angle V’ which connects
the camera’s location to P can be determined with the following equation:

tan V ′

tan V
= x

X

Figure 2: Schematic Representation of Pixel to Angle Calculation

If P is on the left side of the image, then the azimuth (with 0 at the far left side of the image)
is V - V’. If P is on the right side of the image, then the azimuth is V + V’.

An analogous calculation can be performed in the vertical direction to obtain the elevation
of any point in the image. Angles were stored in the ROM as pulse-widths rounded to the
nearest µs. (See Figure 4)

2.3 Video Capture (Eli)

inputs: clk, reset, tv in ycrcb
outputs: ycrcb, f, v, h, data valid

The webcam used in this project transmits a 640x480 resolution interlaced image at a rate
of 30 frames per second. This data is captured by the adv7185 module and fed into an
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NTSC decoder, which converts the data into a 30-bit YCrCb value, a horizontal sync signal,
a vertical sync signal, and a field sync signal which is used to deinterlace the video. The
field sync is used as the low-order bit for the vertical position of the current pixel, due to
the design of interlaced video. Of the 30 bits of YCrCb data sent out by the decoder, only
8 bits of luminance data are used, in order to allow the storage algorithms to pack multiple
pixels of data into each memory location, which results in a greyscale image being displayed.

2.4 Video Storage (Eli)

inputs: clk, vclk, fvh, dv, din, sw
outputs: ntsc addr, ntsc data, ntsc we

Once the image is decoded, the 8 bits of data preserved (the high-order bits of luminance)
are sent, along with a 3-bit control signal created by amalgamating the horizontal, vertical
and field sync signals from the decoder, to an addressing and packing module, ntsc2zbt.

This module uses the fvh control signal along with the clock generated by the camera to
generate column and row registers, tracking the location of the current pixel’s data. The
column, row and sync signals are then synchronized with the system pixel clock, and every
time a new pixel is read in, it is added to a 32-bit cache. Every four input cycles (enough
time to fully fill the cache with new pixel data) an output address is updated, assigned using
the column and row (disregarding the two low-order bits of the column figure, as four pixels
of data is stored to each address) and the 36-bit data output signal(four 0s followed by the
cache) is also updated.

Both of the two ZBTs available on the labkit take the data output from ntsc2zbt as their
write data, and are write-enabled once every four cycles of the pixel clock (accomplished by
tying their behavior to the lowest 2 bits of hcount). When write-enabled, the ZBTs use the
address outputted by ntsc2zbt, but when reading the two ZBTs behave differently. One still
take the write address to provide the comparison pixel used to generate the change map,
while the other taking an address similar in format to the one generated by ntsc2zbt, but
based off hcount and vcount, generating the image that is processed and displayed to the
screen.

2.5 Changemap Generation and Storage (Eli)

inputs: clk, new write, old read
output: changemap write, bram addr

The change map used by the motion-detection algorithm is generated by a comparison
performed once every four pixel cycles as data is put in memory. On an early cycle, the
data at the current write address is read out of the second ZBT (dedicated to producing
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Figure 3: Block Diagram of Video Processing and Changemap Generation

the change map) and latched to a 36-bit register. When the ZBTs are write-enabled, the
data being written is similarly latched, producing two 36-bit registers containing the values
of four pixels at two intervals separated by one thirtieth of a second. A constant calculation
checks each of the four pixels stored to determine whether the new or old value is larger, and
then once per four cycles the smaller value is subtracted from the larger for each pixel, and
the result compared to a fixed threshold. A 4-bit change map register is updated to contain
1 if the corresponding pixel changed more than the threshold and 0 if it did not.

Once the change map data is latched, it is written to a BRAM, using the same addressing
scheme as the ZBTs. The BRAM is only write-enabled on one of the four cycles during
which change map is held constant to allow time for the data to be read out by the modules
that implement the motion detection algorithms.

2.6 Display (Eli and Jacky)

inputs: vcount, hcount, vr pixel, hhist start, hhist finish, hhist center, hhist data, vhist start,
vhist finish, vhist center, vhist data, mode pixel, mode2 pixel, mouse pixel, acquired pixel,
dist pixel
outputs: red pixel, green pixel, blue pixel, gui pixel

The first ZBT, meanwhile, writes once every four cycles into a similar 36-bit register, but
must produce an output every cycle (to be displayed) rather than every four cycles. To
this end, the register is latched at the beginning of each 4-cycle block and on each cycle a
different byte of data is unpacked and passed as the argument vr pixel. vr pixel provides the
base luminance value of the camera at each location, and it is then passed into a bit-wise
or along with another 8-bit number that is merely 8 copies of a single value, ’red’ ’green’
or ’blue’, to produce three separate values: red pixel, green pixel and blue pixel (either the
value of vr pixel or else set to maximum value), which are given to the GUI for final sprite
overlays.
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Each color is used to provide one or two pieces of information. In basic mode a blue box one
pixel wide is generated around the ’target of interest’ box provided by the motion-detection
algorithm (in the form of vhist start, vhist finish, hhist start and hhist finish) and a pair
of red lines one pixel wide running vertically and horizontally intersect at the target point
(provided by vhist center and hhist center).

Two overlays can be enabled through switches (their contribution to red and green is logically
anded with the value of the switch): a change map overlay that highlights changing pixels
in green, and a histogram overlay that shows the outputs of the horizontal and vertical
histograms along the sides (implemented simply by checking whether the distance to the
bottom and right-hand edges of the screen is less than the current horizontal and vertical
histogram data being received).

The display module takes the data output from the ZBTs and overlays sprites. The code
uses the mouse-tracking module to get the pixel for the cursor and the char string display
module from the course staff[?, 4] The char string display module has been modified in order
to produce font half the size of the original module. The user interface uses user input to
determine the mode of the turret and chooses what words to display based on that input.
The mode of the turret determines when the fire signal should actually be propogated, and
when the fire signal is considered valid, the bottom righthand text on the screen switches
from “Acquiring Target” to “Firing.” In either mode, the distance is displayed in hex on the
lower lefthand corner of the screen. In order to display the distance, the module takes the
output of the fake range module and passes it to the ASCII converter. That output is then
passed to char string display. Also in either mode, the top righthand corner of the display
informs the user of what mode the turret is currently in.

2.7 Mouse Tracking (Jacky)

inputs: vclock, reset, hcount, vcount, hsync, vsync, blank, manual p, ps2 clock, ps2 data
outputs: phsync, pvsync, pblank, pixel, x loc, y loc, click x, click y, button p

The mouse tracking module takes input from the PS2 mouse and calculates an x-y coordinate,
where it overlays a cursor sprite. It also saves and outputs the location of the last button
click from the mouse, along with one bit enable indicating if the mouse is clicked, the current
mouse location, a 3-bit pixel value, and the syncs and blanking for the VGA signal.

In order to process data from the PS2 mouse, the module uses the ps2 mouse xy module
provided by the course staff[?, 2] The cursor sprite was created using the target module.
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2.8 Target (Jacky)

inputs: x, hcount, y, vcount, button p, manual p
output: pixel

The target module takes the x-y location of the mouse, the hcount and vcount, button p,
and whether the turret is in manual or automatic fire mode. It returns a 3-bit value for each
pixel, indicating its color. The module also has three parameters: WIDTH, HEIGHT and
COLOR. The WIDTH and HEIGHT are by default set to 5, making the cursor 10-pixels by
10-pixels, and the default COLOR is red.

The module first checks which mode the device is in. If the device is in automatic fire mode,
the module produces a 10-pixel by 10-pixel white box in order to indicate to users that the
mouse has no affect on the behavior of the device.

If the turret is in manual fire mode, the module then checks the state of the button press,
using button p. If the button is depressed, the module produce a red 10-pixel by 10-pixel
box containing red 6-pixel by 6-pixel box, which then contains a single red pixel that is
exactly over the current position of the mouse. If the button is not depressed, the module
produces a targetting crosshair, consisting of a red 10-pixel by 10-pixel box with a 18-pixel
by 18-pixel cross centered on the current position of the mouse.

2.9 Divider (Jacky)

inputs: clk, start timer
output: enable

By default, the divider converts the 25MHz master clock to a signal called enable at a
frequency that is set by the user. The divider is reset every time start timer is asserted so
the first enable signal after the timer starts is exactly one period after the timer’s started.
The divider has a parameter DELAY, which changes the period (and thus the frequency) of
the enable. Its default sets the enable frequency to a 1HZ signal that is asserted once every
25,000,000 cycles.

2.10 Timer (Jacky)

inputs: start, enable, clk, value
outputs: count, expired

The timer takes a 4-bit time parameter and counts down that number of seconds. It ini-
tializes its internal value when start timer is asserted and asserts the expired signal when
the countdown reaches one. The count then halts until it is reinitialized when start timer is
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asserted again.

This FSM consists of four states: S RESET, S 0, and S 01. The RESET stateloads the value
for the counter and waits for start timer to be asserted. The FSM then moves to the S 0,
where the number is decremented every time the enable signal from the divider is asserted.
When the internal counter reaches zero, the expired signal is asserted and the state is moved
to S 01. After one clock cycle, the FSM returns to the S RESET state to await the next
start timer. The default state of the timer is S RESET.

2.11 ASCII Converter (Jacky)

input: number
output: ascii

The ASCII converter takes a 4-bit number and converts it to a 8-bit ASCII value. The 4-bit
input is passed to a case statement, which outputs the appropriate ASCII value.

2.12 Servo Interface (Jacky)

inputs: position, clk
outputs: range, fire, servo

The servo motors use pulse-width modulation to control their rotation. The angle of rotation
correlates with the length of the pulse in microseconds according to the image in Figure 4
below.

Figure 4: Servo Angles of Rotation [1]

The servo interface module takes as input a 12-bit position and the clock and outputs three
enables, called range, fire and servo respectively. The module first initializes the 12-bit
registers current and old position to 1500, which is the center position of the servo motors.
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The divider module is used with a DELAY of 25 in order to produce an enable signal every
microsecond, which is then passed to the timer. The 12-bit position input is checked to
ensure that it remains between 600 and 2400, since those are the limits of the pulse width
necessary to move the motors. If it is not, it sets current to 1500.

The output enable servo is determined on servo count, the microsecond enable from the
timer, by checking the current position against the current count on the timer. This produces
a signal that is the inverse of the desired enable signal of the servo motor. This signal is
then fed to a inverter on the circuit board, which is wired according to the schematic below:

Figure 5: Circuit Diagram for Servo Motors

After the expired signal is received from the timer module, the servo interface sets old position
equal to current and checks if they were equal. If not, the fire enable is set high. The module
also assigns range to expired.

2.13 Rangefinder (Jacky)

inputs: clk, up, down
output: distance

The rangefinder module went through two iterations based on unavoidable hardware prob-
lems. The first iteration was based on the assumption that would be able to obtain a
functional sonic rangefinder which could receive RS-232 serial signal and transmit the same.
The code for this module is in Appendix B.1 and is labelled “range.”

The range module takes the clock, an enable and a serial signal and outputs a 12-bit elevation,
a move enable and a serial signal called to range. A divider uses a DELAY of 25 to create
a microsecond enable signal that is used for all of the timers in the module. The enable
begins the first timer, which is set to count down the amount of time necessary to transmit
one byte using the RS-232 transmitter, and the first RS-232 transmitter, which sends the
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the first byte containing a 0, which is the address of the rangefinder[?, 3] When the expired
signal from the timer goes high, the second transmitter is enabled and begins sending the
command, in this case 84[?, 3] The range module then waits for a signal back from the
rangefinder. When a signal is detected, the second timer begins to countdown, and when its
expired signal is asserted, the distance is considered valid. This distance is then passed to
an angle look up table (unimplemented), which would output the correct elevation necessary
in order to compensate for the distance to the target.

Rather than using an actual rangefinder to measure the distance to the target, the fake range
module allows users to input an approximate distance in units of decimeters. The module
takes the clock, an up and a down signal, and outputs a 6-bit distance value. The default
distance is set to 20 dm, or 2m, and on the positive edge of the clock, the number would
increment or decrement based whether or not either of the buttons were pressed.

2.14 Master Servo (Jacky)

inputs: clk, x pulse, y pulse
outputs: horiz servo, vert servo, fire

The master servo module is a wrapper module that controls all signals to and from the servo
motors. It takes as inputs the clock and two 12-bit pulse lengths, one for each servo, and
outputs signals for each servo and a firing enable.

Because the movement of the servo motors is heavily dependent on the rangefinder and its
accompaning modules, this module also went through two different iterations. The first
iteration can still be seen in the vestigal code of the module.

In both iterations, module passes the relevant pulse width to the correct servo after adding
600, the base pulse width, to each, and takes the firing enable from the vertical servo to pass
on. The current iteration also simply adds the value output from fake range to the vertical
pulse, in order to allow users to affect elevation in order to compensate for the distance to
the target.

In the former iteration of this module, the range module was also instantiated, and a third
servo interface was added. This output to the vertical servo motor was determined by
comparing the old x and y values to the current ones. If they were found to be the same and
the enable signal from the rangefinder was asserted, the output to the vertical servo would
be the elevation needed to compensate for the distance to the target. Otherwise, the servos
would continue to actually track the target. Additionally, the only fire signal that would be
regarded was the one that came from the servo interface that actually dealt with the range
compensation.
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3 Testing

3.1 Motion Tracking

To observe the response of the histogram and finder modules to arbitrary inputs, the pong
game from lab 4 was adapted into a test rig. The increased XVGA resolution allowed both
a 640x480 input region to be displayed on screen simultaneously with graphical representa-
tion of the output from the histograms and the start/finish/center outputs from the finder
modules. Because hcount and vcount above 639 and 479 are treated as part of the hsync
and vsync period, operation of the modules was essentially unchanged.

3.2 Pixel-to-Angle LUT

To test the accuracy of the LUTs, the turret was placed into manual mode, the laser dot
aligned with the onscreen cursor by rotating the servo setup, and the quality of tracking
visually assessed by moving the mouse around the screen.

3.3 Video Processing

The basic modules for capturing and displaying video data were prebuilt and available from
the code repository on the 6.111 web page, so they required relatively little debugging and
were fairly transparent. The overlay displays were created largely to aid debugging, although
they were kept in the final version as they seemed useful tools. The change map overlay was
the most useful debugging tool for the video processing portion of the design, and it tested
for successful operation of both ZBTs, the change map generation, and the BRAM.

3.4 Memory

The hex display could be hooked up to various parameters to allow intermediate-level testing,
but as most signals varied at either 30hz or 25Mhz, the display was primarily useful only
for testing whether two signals were equivalent and seeing if a given signal was changing at
all. The hex display was used to test the two ZBTs and the change map BRAM by feeding
the addressing variables and the data inputs and outputs. While this couldn’t provide data
slow enough for us to read, it made it clear when addresses were failing to change or data
wasn’t being written or read at all.
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3.5 Mouse Tracking and Display

For the display, testing and debugging was relatively simple, as expected. It was easy,
visually to tell if there were display problems. For the mouse, it was important to check the
cursor at the edges of the screen. Additionally, the current location and the location of the
last click were connected to the hex display in order to ensure that the module was tracking
correctly. Outputting the distance on the bottom lefthand corner of screen also allowed for
debugging of the range module.

3.6 Servo Interface

Testing the fuctionality of the servo motors was a bit more difficult. We initially used the
eight switches on the labkit to manually control the pulse width to the motors. Connecting
the oscilloscope to the input of the servos allowed us to check what was being sent and tell
if the pulses actually increased or decreased as the switches changed. A similar method was
used when debugging the faulty rangefinder, allowing us to see what was being transmitted
and received by the RS-232 modules. We also created ModelSim testbenches for the unused
RS-232 receiver and transmitter.

4 Conclusion

In this project we designed and prototyped a proof of concept motion tracking turret. The
turret could reliably follow moving objects across its field of vision and was able to select a
single target from multiple moving bodies. The graphical user interface provided a reasonable
amount of feedback to users that would aid in understanding the current state of the device.

While our proof of concept was quite successful, the system has room for much improvement.
The servo motors would benefit greatly from having a noise filter to reduce erractic motion.
A self-correcting targetting algorithm in place of the fixed angle tables would greatly improve
the accuracy of the turret because we would no longer be affected the servo motor set up
deviating from ideal assumptions. We would also greatly benefit from a higher quality camera
that would have reduced noise and fewer artifacts in regions of high contrast. The last thing,
regarding hardware, that could have been improved, would be a functional sonic rangefinder
and calcuations for real firing solutions.

The other area in which this design could have been improved would be the addition of
more user customizable options. The turret would be more effective if our user interface
allowed customization of the threshhold values. Additionally, a mechanism to allow users to
assign more weight to targets nearer the cursor on the screen. This would allow user more
control over what was targetted in the automatic firing mode, and would reduce the turret’s
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tendency to jump between targets.
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Appendices

A Testing Code

A.1 Motion-Tracking Test Rig (Stephanie)

A.2 RS-232 Transmitter Testbench (Jacky)

When we were still expecting to use the actual rangefinder, and with it the RS-232 trans-
mitter, we created a testbench to check its functionality.

module transmit_tb;

// Inputs

reg clk;

reg transmit;

reg [7:0] data;

// Outputs

wire serial;

// Instantiate the Unit Under Test (UUT)

RS232_transmit uut (

.clk(clk),

.transmit(transmit),
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.data(data),

.serial(serial)

);

initial begin

// Initialize Inputs

clk = 0;

transmit = 0;

data = 0;

forever #20 clk = ~clk; // 40 ns per cycle clock (25Mhz)

end

initial begin

transmit = 0;

#104_167; // wait the amount of time it takes for one bit to go through

transmit = 1;

data = 84;

#1_145_834;

end

endmodule

A.3 RS-232 Receiver Testbench (Jacky)

Similarly to the transmitter, we created a testbench for the RS-232 receiver when we expected
to use it with the rangefinder.

module receive_tb;

// Inputs

reg serial;

reg clk;

// Outputs

wire [7:0] data;

wire started;

// Instantiate the Unit Under Test (UUT)

RS232_receive uut (

.serial(serial),
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.clk(clk),

.data(data),

.started(started)

);

initial begin

// Initialize Inputs

serial = 1;

clk = 0;

forever #20 clk = ~clk;

end

initial begin

serial = 1; // idle

#104_167;

serial = 0; // start

#104_167;

serial = 0; // bit 1

#104_167;

serial = 1; // bit 2

#104_167;

serial = 0; // bit 3

#104_167;

serial = 1; // bit 4

#104_167;

serial = 0; // bit 5

#104_167;

serial = 0; // bit 6

#104_167;

serial = 0; // bit 7

#104_167;

serial = 0; // bit 8

#104_167;

serial = 1; // stop 1

#104_167;

serial = 1; // stop 2

end

endmodule
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B Unused Code

B.1 Range (Jacky)

module range (input clk, enable, serial,

output reg [11:0] elevation, output move, output reg to_range);

wire micro, second, receiving, request;

wire [7:0] distance;

reg low_byte = 0;

wire to_range1, to_range2, to_range3;

divider #(.DELAY(25)) microsecond (.clk(clk), .start_timer(enable),

.enable(micro));

timer one_message(.clk(clk), .start(enable), .enable(micro),

.value(1250), .expired(second));

RS232_transmit sender(.clk(clk), .transmit(enable), .data(0),

.serial(to_range1));

RS232_transmit sender2(.clk(clk), .transmit(second), .data(84),

.serial(to_range2));

RS232_receive receiver (.serial(serial), .clk(clk), .data(distance),

.started(receiving));

timer receive_message(.clk(clk), .start(receiving), .enable(micro),

.value(1250), .expired(move));

always @(*) to_range <= (to_range1 && to_range2);

always @(posedge clk) begin

if (low_byte && move) elevation[7:0] <= distance;

else if (~low_byte && move) elevation[16:0] <= distance;

else elevation <= elevation;

if (move) low_byte = ~low_byte;

end

// waiting for the LUT ...

//always @(posedge clk) begin

// if (move) begin

// end

//end
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endmodule // range

B.2 RS-232 Transmitter (Jacky)

The RS-232 transmitter was never used because it was implemented for use in the discarded
range module. It took as inputs the clock, an enable signal labelled transmit, and an 8-bit
data signal to send. Its output was a 1-bit signal.

The module has a divider with a DELAY of 2604, which will assert an enable called baudtick
at a 9600 baudrate. RS232 transmit consists of twelve states, one for each bit it sends as
well as the idle state. The module waits in the idle state, transmitting a 1, until it receives
the enable signal. At this point, it moves to the start state, and transmits a 0. At this point,
it changes states every time baudtick is asserted. There are eight data states, during which
the module transmit the corresponding data bit. The last two states are stop1 and stop2,
during which the transmitter sends two 1’s as stop bits. It then returns to the idle state to
await another enable signal.

module RS232_transmit (input clk, transmit, input [7:0] data,

output reg serial);

wire baudtick;

divider #(.DELAY(2604)) baudrate (.clk(clk), .start_timer(0),

.enable(baudtick));

parameter idle = 11;

parameter start = 0;

parameter data1 = 1;

parameter data2 = 2;

parameter data3 = 3;

parameter data4 = 4;

parameter data5 = 5;

parameter data6 = 6;

parameter data7 = 7;

parameter data8 = 8;

parameter stop1 = 9;

parameter stop2 = 10;

reg [3:0] state, next_state;

reg [10:0] to_send;

always @(*) begin

case(state)

idle: next_state = (transmit) ? start : state;

start: next_state = (baudtick) ? data1 : state;
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data1: next_state = (baudtick) ? data2 : state;

data2: next_state = (baudtick) ? data3 : state;

data3: next_state = (baudtick) ? data4 : state;

data4: next_state = (baudtick) ? data5 : state;

data5: next_state = (baudtick) ? data6 : state;

data6: next_state = (baudtick) ? data7 : state;

data7: next_state = (baudtick) ? data8 : state;

data8: next_state = (baudtick) ? stop1 : state;

stop1: next_state = (baudtick) ? stop2 : state;

stop2: next_state = (baudtick) ? idle : state;

default: next_state = idle;

endcase // case(state)

end // always @ (posedge clk)

always @(posedge clk) state <= next_state;

always @(*) begin

to_send <= {2’b11, data[7:0], 1’b0};

if (state == idle) serial <= 1;

else serial <= to_send[state];

end

endmodule // RS232_transmit

B.3 RS-232 Receiver (Jacky)

Like the transmitter, the RS-232 receiver was never used because it was created for use in
the discarded range module. It took as inputs the clock and a serial signal, and outputs
an 8-bit data signal and an enable called started which indicates when a start bit has been
received.

The set up of the receiver is very similar to that of the transmitter. There is a timer with a
DELAY of 162 which asserts an enable at sixteen times the baudrate. The module consists
of twelve states, one for each bit it receives and the idle state. The idle state is the default
state, and the module moves to the start state when the sychronized signal goes low. The
low signal is the start bit, and after eight baud16tick enables, it moves to the data1 state.
There is a timer that counts down from sixteen, using baud16tick as its enable, and when
its expired signal, sixteen count is asserted, the module moves to the next state and the
incoming signal is sampled. The module returns to the idle state after the second stop bit
is received and remains there until it gets the next start bit. A ring buffer is used to store
the incoming data.

module RS232_receive (input serial, clk, output reg [7:0] data,
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output reg started);

wire baud16tick;

divider #(.DELAY(162)) baudclk (.clk(clk), .start_timer(0),

.enable(baud16tick));

reg [1:0] synced;

always @(posedge clk) if (baud16tick) synced <= {synced[0], serial};

parameter idle = 4’b0000;

parameter start = 4’b0001;

parameter data1 = 4’b1000;

parameter data2 = 4’b1001;

parameter data3 = 4’b1010;

parameter data4 = 4’b1011;

parameter data5 = 4’b1100;

parameter data6 = 4’b1101;

parameter data7 = 4’b1110;

parameter data8 = 4’b1111;

parameter stop1 = 4’b0010;

parameter stop2 = 4’b0011;

wire [14:0] baudcount;

reg [3:0] state, next_state;

reg [3:0] eight_count = 0;

reg timerp;

wire sixteen_count;

timer sixteen(.start(timerp), .enable(baud16tick), .clk(clk), .value(16),

.count(baudcount), .expired(sixteen_count));

always @(*) begin

case(state)

idle: next_state = (synced[1]) ? start : state;

start: next_state = (eight_count == 8) ? data1 : state;

data1: next_state = (sixteen_count) ? data2 : state;

data2: next_state = (sixteen_count) ? data3 : state;

data3: next_state = (sixteen_count) ? data4 : state;

data4: next_state = (sixteen_count) ? data5 : state;

data5: next_state = (sixteen_count) ? data6 : state;

data6: next_state = (sixteen_count) ? data7 : state;

data7: next_state = (sixteen_count) ? data8 : state;

data8: next_state = (sixteen_count) ? stop1 : state;

stop1: next_state = (sixteen_count) ? stop2 : state;

stop2: next_state = (sixteen_count) ? idle : state;
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default: next_state = idle;

endcase // case(state)

end // always @ (posedge clk)

always @(posedge clk) begin

if (state == start && baud16tick) eight_count <= eight_count + 1;

else eight_count <= 0;

timerp = (state != idle);

started <= (synced[1] && (state == idle));

if (baud16tick) state <= next_state;

if (baud16tick && sixteen_count && state[3])

data <= {serial, data[7:1]};

end

endmodule // RS232_receive
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