
Digital Turntable Setup
Documentation

Nathan Artz, Adam Goldstein, and Matthew Putnam

Abstract
Analog turntables are expensive and fragile, and can only manipulate the speed of music without

independently changing its pitch. Additionally, hardware and software for matching beats between

songs are expensive and hard to use. The Digital Turntable Setup avoids these pitfalls by

implementing frequency- and speed-adjusting features, along with beatmatching and echo and

reverb effects, on a standard FPGA. The system’s behavior has been tested with music at multiple

sampling rates.

Table of Contents

List of Figures
 3

Overview
 1

Objective
 1

Goals
 1

Solution
 1

Description
 2

Overall Design
 2

Input Methods (Adam Goldstein)
 3

Turntable Input (Adam Goldstein)
 3

Knobs (Adam Goldstein)
 5

Keyboard (Matthew Putnam)
 5

Sound Router (Adam Goldstein)
 6

Phase Vocoder (Adam Goldstein)
 9

Fixed Size Resampler (Adam Goldstein)
 11

Memory (Nathan Artz)
 16

Record Mode (Nathan Artz)
 16

Playback Mode (Nathan Artz)
 17

Write to Flash Mode (Nathan Artz)
 18

Dual Read from Flash Mode (Nathan Artz)
 20

Addresser (Adam Goldstein)
 21

Beatmatcher (Adam Goldstein)
 24

Audio Effects (Matthew Putnam)
 27

Echo (Matthew Putnam)
 27

Reverb (Matthew Putnam)
 28

Testing and Debugging
 29

Input Methods (Adam Goldstein)
 29

Sound Router (Adam Goldstein)
 30

Addresser (Adam Goldstein)
 31

Beatmatcher (Adam Goldstein)
 31

Memory (Nathan Artz)
 31

Audio Effects (Matthew Putnam)
 32

Conclusions
 34

Acknowledgements
 34

List of Figures

1. 	 Overall design of the Digital DJ Setup	 2

2. 	 Operation of the Turntable Input	 4

3. 	 Signals through the Sound Router	 7

4. 	 Operations of the Sound Router	 8

5. 	 States of the Sound Router	 9

6. 	 Operation of the Phase Vocoder	 11

7. 	 States of the Phase Vocoder	 12

8. 	 Upsampling with the Fixed Size Resampler	 13

9. 	 Downsampling with the Fixed Size Resampler	 15

10. High-level user memory diagram	 16

11. Record modules	 17

12. Utilization of a ZBT RAM slot	 18

13. Write to flash FSM	 18

14. Flash memory allocation	 19

15. Timing of ZBT/flash copy	 20

16. Memory module visualization in write-to-flash mode	 21

17. Dual flash read FSM	 22

18. States of the Beatmatcher	 26

19. FFT debugging	 30

20. Addresser debugging	 32

21. Beatmatcher debugging	 32

Overview

Objective
The Digital DJ Setup attempts to provide features to help a DJ play two tracks of music while

adjusting the pitch and speed in various ways to make the music more danceable or fun to listen

to.

Goals
The goals of the system are:

• To record two tracks of music and play them back either one at a time or together

• To adjust the pitch of music, either live or recorded, with a knob

• To implement a “turntable” whose rotational speed determines the pitch or speed of the music

• To adjust the pitch of music at standard harmonic intervals using a computer keyboard

• To match the beats of two songs, slowing down or speeding up one as necessary

• To add echo and reverb effects to music

• To record the results of mixing into storage to make it possible to layer mixes

Solution
The proposed system achieves the above goals through use of a modular hardware design. The

system uses sophisticated memory architectures to record tracks as they arrive from an audio

input, and to store them permanently in flash memory. Additionally, the memory architecture allows

music to be recorded to memory as it is played back, making it easy to iteratively record several

layers of music on top of each other.

Additionally, the design makes it possible for the user to choose whichever human interface he

prefers; since all human interfaces output a sampling ratio, they require no internal changes to be

switched from being used to adjust speed (resampling in the time domain) to being used to adjust

pitch (resampling in the frequency domain).

The pipelined nature of the design allows effects like echo and reverb to be added to the “chain” of

audio samples traveling through the system, smoothly integrating them with other effects like pitch-

and beat-matching.

Digital DJ Setup Documentation
 1

Description

Overall Design
The Digital DJ Setup comprises several interacting subsystems (Figure 1). First are the human

interfaces, including a knob, a turntable, and a computer keyboard. These produce sampling ratios

that can be used to adjust the pitch or speed of music.

Second is the pitch-adjusting subsystem, encapsulated in the Sound Router, that provides near-

real time transposition of music.

Third are the Beatmatcher and Addresser, which let the user input the speeds of two different

songs and have the song playback speed matched.

Digital DJ Setup Documentation
 2

Pitch Knob

Turntable

Keyboard

Beatmatcher

Selector
(conceptual)

Sound Router

Pitch sampling ratio

Sound in

Addresser

Pitch-adjusted sound out

Time sampling ratio

Selector
(conceptual)

Time sampling ratio

Time sampling
ratio

Force override

Memory

Address

Speed-adjusted sound out

Figure 1: The overall design of the Digital DJ Setup. In practice, the “selectors” were not included; rather, the modules
on the left were wired directly to the desired modules on the right.

Fourth is the memory subsystem, which handles the details of recording music and playing it back.

The final subsystem handles audio effects like echo and reverb, applied to the output of all the
previous subsystems. All of these subsystems and their interactions are described below.

Input Methods (Adam Goldstein)
There are a number of ways of inputting settings into the system to change pitch, playback speed,

and volume.

Turntable Input (Adam Goldstein)

One of the primary ways to input speed or pitch information into the system is using a “turntable”—

a motor connected to a rotary encoder with a protruding plate. The Turntable Input module makes

it possible to set a reference speed for the turntable. Later, when the turntable is spun faster or

more slowly, Turntable Input produces a sampling ratio of two four-bit numbers that will cause the
Addresser to change playback speed proportionally to the change in the turntable’s rotational

speed. (For instance, if the turntable were spun 50% more slowly than its reference speed, the

sampling ratio would be 2/1, so playback would proceed at 50% its normal speed.)

In addition, Turntable Input determines the direction in which the encoder is spinning, and

produces an output (clockwise) that represents the direction of rotation. This can be connected

directly to the Addresser’s read forward input to ensure that changing the direction of turntable

rotation produces a corresponding change in the direction of playback.

Turntable Input works by counting the number of clock cycles that elapse in the periods between

changes in the encoder’s output (see Design Decision 1). To mitigate the effect of outliers and

glitches, average cycles per period keeps a constantly running average of the number of cycles
from the last four periods.

When set reference is asserted high, Turntable Input loads average cycles per period into reference

cycles per period to store the speed of rotation during the turntable’s reference state.

Separately, to calculate the sampling ratio,

Turntable Input attempts to simplify the

fraction of average/reference cycles per

period by oscillating between two values

of calculating sampling:

• When calculating sampling is 0, the

module loads the current value of

average cycles per period into
upsample possibility, and the current

value of reference cycles per period into

Digital DJ Setup Documentation
 3

Design Decision 1

To make the system as general as possible, I made

the sampling ratio output entirely dependent on
changes in the value of input val, a two-bit input,

rather than the specific operation of the encoder

used in this system. The input val input can be

connected to switches (which is how I tested the

module before receiving the encoder), an encoder,

or any other device that changes voltage over time.

downsample possibility. Then the module sets calculating sampling to 1.

• When calculating sampling is 1, if the top bit of either possibility register is 1, the module

loads the top four bits of upsample possibility into upsample and the top four bits of downsample
possibility into downsample. Then the module sets calculating sampling to 0.

• When calculating sampling is 1, if the top bit of both possibility registers are 0, the

module left-shifts each possibility by one bit and tries again.

The process is illustrated in Figure 2.

To determine the direction of rotation, the Turntable Input pays attention to the specs of the

specific encoder model used (Clarostat 600EN-128-C24), which says that a change going forward

Digital DJ Setup Documentation
 4

X X X X X

31 30 29 28 27Upsample Possibility:

X X X

26 25 24 ...

X X X X X

31 30 29 28 27Downsample Possibility:

X X X

26 25 24 ...

Calculating Sampling: 0

Average Cycles Per Period: 32'd353_530_647 = 32'b0001_0101_0001_0010_0111_0011_0001_0111

Reference Cycles Per Period: 32'd858_993_461 = 32'b0011_0011_0011_0011_0011_0011_0011_0101

0 0 0 1 0

31 30 29 28 27Upsample Possibility:

1 0 1

26 25 24 ...

0 0 1 1 0

31 30 29 28 27Downsample Possibility:

0 1 1

26 25 24 ...

Calculating Sampling: 1

0 0 1 0

31 30 29 28 27Upsample Possibility:

1 0 1

26 25 24 ...

0 1 1 0

31 30 29 28 27Downsample Possibility:

0 1 1

26 25 24 ...

Calculating Sampling: 1

0 0

0 1 0

31 30 29 28 27Upsample Possibility:

1 0 1

26 25 24 ...

1 1 0

31 30 29 28 27Downsample Possibility:

0 1 1

26 25 24 ...

Calculating Sampling: 1

0 00 0

Upsample: 4'd5 Downsample: 4'd12

Figure 2: From top to bottom, the operation of the Turntable Input during and after the transition of calculating
sampling from 0 to 1. The resulting ratio (5/12) is an approximation of the original ratio (353,530,647/858,993,461), and
in this example only differs by only 1.2%.

in the series [2, 3, 1, 0, 2, 3, 1, 0, . . .] represents clockwise rotation, and a change going

backward in the series represents counterclockwise rotation.

Finally, for debugging purposes, Turntable Input includes an additional output, speed changed,

which represents whether the turntable has changed speed by more than 1/16 of its original value.

Knobs (Adam Goldstein)

One of the most intuitive interfaces for a music setup is a knob. In this system, there are two

modules that interface with a rotary encoder to make it behave like a knob: Volume Knob (for

adjusting the volume of output music, naturally), and Speed Knob (for adjusting the speed or pitch

of music). The two modules are described below.

Volume Knob (Adam Goldstein)

The Volume Knob module has a single purpose: to output an 8-bit number representing the

volume at which music should be playing. Volume Knob starts by outputting 8d’128, and increases
or decreases its volume output when it detects a certain number of encoder output transitions.

(The code for doing this is extremely similar to the transition- and direction-detecting code of

Turntable Input.)

To change the responsiveness of the Volume Knob, other modules can use the sluggishness input.

For example, when sluggishness is 4, the Volume Knob will only increment the volume output by 1

when the encoder signals that it has turned counterclockwise with four transitions.

To prevent wraparound errors, Volume Knob hard-limits volume at 0 when the knob is being turned

counterclockwise and 255 when the knob is being turned clockwise.

Speed Knob (Adam Goldstein)

The Speed Knob module, like Turntable Input, outputs a four bit-over-four bit sampling ratio that
can be used for changing playback pitch or speed. Unlike Turntable Input, however, Speed Knob

outputs its value based on the position of the rotary encoder relative to some reference position,

not its speed relative to some reference speed.

For simplicity, the Speed Knob limits itself to outputting ratios with 8 in either the numerator or

denominator, resulting in 15 possible outputs (15/8, 14/8, . . . 8/8, . . . 8/14, 8/15).

At the low level, Speed Knob works nearly identically to Volume Knob, detecting the occurrence

and direction of encoder output transitions to determine changes to the module’s outputs. Like

Volume Knob, Speed Knob also prevents overshooting by hard-limiting the ratio at 15/8 and 8/15.

Keyboard (Matthew Putnam)

The keyboard module takes input from the keyboard and produces the ratio of pitch frequencies
that those keys are separated by. We had originally intended to use a MIDI keyboard for this, but all

Digital DJ Setup Documentation
 5

new keyboards use a USB interface instead of the serial DIN 5/180° connector, making this

impossible. Instead, we used a standard PS/2 keyboard and pretended that keys along the home
row were the white keys of a musical keyboard, and the appropriate keys along the top row were

the black keys. Using the 'a' through ';' keys as C and E respectively, we were able to represent 17

chromatic keys.

To interpret the raw incoming keyboard data, we used a keyboard driver provided by the course

staff from the fall 2005 website. The module "ps2_ascii_input" takes in the system clock and reset

signals and the PS/2 interface signals and outputs the ASCII code of the last key pressed and a

ready signal for new data. This is slightly wasteful, as it means we are first converting raw key

codes into ASCII values, and then converting that into pitch information, when we could be

translating straight from key codes. However, using ASCII makes the signals easier to understand.

When the user presses two legal keys in succession, the module outputs a ratio in the form of a 4-
bit numerator and denominator that represents the ratio (using just intonation) of those pitches.

Because pitches are logarithmically spaced, this ratio is simply a function of how many half-steps

are between them and is independent of their absolute location on the keyboard. Thus, the way

this is calculated is by mapping the keys to the numbers 0-16 in order, taking the difference, and

looking up the ratio in a ROM. Additional logic checks whether the input interval is ascending or

descending and inverts the ratio if necessary. It should be noted that by limiting the output size to 4

bits, the ratios for a half step and a minor ninth are approximated. Those ratios are very dissonant,

however, and would likely never be used.

If any invalid key is pressed, then the internal state of the module is reset. That is, if one key has

been pressed and the module is waiting for the second, this will be forgotten and the module will
be listening for the first key again. The purpose of this is to allow the user to cancel the ratio

selection and start over.

Sound Router (Adam Goldstein)
The highest-level module for changing pitch is the Sound Router (SR), which takes an incoming

music stream and outputs a frequency-adjusted version of the same stream (Figure 3).

The Sound Router works with 512 samples of music at a time: buffering the input samples as they

arrive, processing the input samples with the Phase Vocoder once all 512 have been buffered,

buffering the processed samples, and outputting the processed samples one at a time (Figure 4).

In this way, the SR produces a pitch-adjusted version of the input, at the expense of introducing an
approximately 512-sample delay (see Design Decision 2).

The full Moore machine diagram for the Sound Router is shown in Figure 5. The states are as

follows:

Digital DJ Setup Documentation
 6

• Pre-reset. This is the start state of the SR, and the state it returns to after completing a full load-

process-unload sequence. Here the buffers are reset and the Phase Vocoder is instructed not to

perform any transformations.

• Start. This state indicates the SR is

waiting to be told to load an input

sample (with the load data signal). In the

meantime, this state caches each input

sample so it isn’t gone if the Sound

Router jumps to Load to Pre.

• Load to Pre. This state, only occupied

for a single cycle, indicates that the SR

has just been told to load an input

sample to the input (or “pre”) buffer. If

the current sample is the 512th, the
Sound Router jumps to Ready to Load

to PV. Otherwise, the SR jumps back to

Start to wait for another sample.

• Ready to Load to PV. This state tells

the Phase Vocoder that it should

prepare to accept samples for

Digital DJ Setup Documentation
 7

Sound Router

Phase Vocoder

input data[15:0]

load data

unload data

upsample[3:0]

downsample[3:0]

bypass PV

output data[15:0]

Circular
Buffer

Circular
Buffer

Forward
FFT

Re Im

Fixed-size Resamplers

Re Im

Inverse
FFT

Read
Buffer

Process Write
Buffer

Figure 3: The flow of signals through the Sound Router and included modules.

Design Decision 2

Originally, I had envisioned a method of producing

the output stream that would only introduce a
single-sample delay to the input. The idea was that

the most recent 512 input samples would be stored

in a circular buffer, and each time a new sample

arrived, the entire input buffer would be pitch-

adjusted. Then the last of the 512 pitch-adjusted

samples would become the output of the Sound

Router.

This mechanism didn’t work during testing in

MATLAB, and I had insufficient signal-processing

knowledge to diagnose the reason.

The “Circular Buffer” modules (which are just used

as regular FIFO buffers) are a holdover from this ill-

fated experiment.

Digital DJ Setup Documentation
 8

2 ...X X

0 5111Slot:

Write

Phase Vocoder
(Inactive) X ...X X

0 5111Slot:

Read

2 X

2 ...4 X

0 5111Slot:

Write

Phase Vocoder
(Inactive)

X ...X X

0 5111Slot:

Read

4 X

2 ...

0 5111Slot:

Write

Phase Vocoder
(Inactive)

X ...X X

0 5111Slot:

Read

3 X
4 3

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Loading) X ...X X

0 5111Slot:

Read

3 X2

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Loading) X ...X X

0 5111Slot:

Read

3 X4

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Loading)

X ...X X

0 5111Slot:

Read

3 X3

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Unloading) 5 ...X X

0 5111Slot:

Write

3 X5

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Unloading)

5 ...4 X

0 5111Slot:

Write

3 X4

2 ...4 3

0 5111Slot:

Read

Phase Vocoder
(Unloading)

5 ...4 8

0 5111Slot:

Write

3 X8

7 ...4 3

0 5111Slot:

Write

Phase Vocoder
(Inactive)

5 ...4 8

0 5111Slot:

Read

7 5

Processing

Begin Phase Vocoder Operations

End Phase Vocoder Operations

Load data

Load data

Load data

Load data

Unload data

Unload data

Unload data

Unload data

Figure 4: Top to bottom: the operations of the sound router. Red marks a changed value or the source of the change.

processing. When the Phase Vocoder is ready, it asserts PV ready for data, and the SR jumps to
Load to PV.

• Load to PV. In this state the SR delivers all 512 buffered input samples to the Phase Vocoder for

processing. When the Phase Vocoder is done and ready to output the processed samples, it

asserts PV samples out, at which point the SR jumps to Load to Post.

• Load to Post. In this state the SR collects the 512 processed samples and stores them in the

output buffer.

Note that a sample is being output from the SR during all these states; another module can read

the output sample at any time via the output data bus. The other module indicates it wants to read

the next output sample by asserting unload data.

Finally, to make it easy to compare processed and unprocessed sound, the Sound Router module

has a bypass PV input that, when asserted high, short-circuits the input to the output. When

connected to a button or switch, this feature makes it possible to rapidly compare the processed

and unprocessed version of, for example, a song’s chorus.

Phase Vocoder (Adam Goldstein)

The Phase Vocoder (PV) handles the mechanics of the frequency manipulation for the Sound

Router. The Phase Vocoder works with discrete 512-sample chunks of music, rather than

continuous streams like the Sound Router (Design Decision 3).

Digital DJ Setup Documentation
 9

Pre-reset

all registers = 0

Start

cached input sample
= input data

Load to Pre

pre buffer data in =
cached input sample

samples loaded++

should load pre buffer
= 1

Ready to Load to PV

should load pre buffer
= 0

samples loaded = 0
start loading PV = 1

Load to PV

start loading pv = 0,
should unload pre

buffer = 1

input data PV = pre
buffer data out

Load to Post

samples loaded = 0,
should load post

buffer = 1,
samples unloaded++,
post buffer data in =
output data PV[15:0]

else

else

always load data

samples loaded == 511

PV ready for data
PV samples
out coming

else

else

samples unloaded == 511

else

Figure 5: The states of the Sound Router module.

The central idea of the Phase Vocoder is

to take a set of consecutive music
samples and a frequency scaling ratio,

and to output a same-length set of

consecutive music samples whose

frequencies have been scaled as

requested.

The PV achieves this by taking the Fourier

transform of the incoming samples,

resampling both the real and imaginary

parts of the transformed frequencies using

Fixed Size Resamplers, and outputting the
inverse Fourier transform of the resampled

frequencies, as shown in Figure 6. The PV

uses a 512-long Fourier Transform

module produced using CoreGen.

The full Moore machine diagram for the Phase Vocoder is shown in Figure 7. The states are as

follows:

• Pre-reset. This state is where the module begins. Upon getting a reset signal, the PV jumps to
Start.

• Start. Here the Phase Vocoder indicates to the FFT module that it’s ready to input data. When

the FFT module replies with ready for data high, the PV jumps to Load FFFT.

• Load FFFT. Here the PV loads the 512 time-domain samples into the FFFT module to have it do

a forward FT. When the FFT module has been done for 7 clock cycles (the number necessary to

satisfy timing specifications for the FFT module), the PV jumps to Unload from FFFT.

• Unload from FFFT. In this state the PV writes the real and imaginary outputs from the forward

FT to a pair of Fixed Size Resamplers. Once the FFT module has returned the last transformed

sample, the PV jumps to the Process state.

• Process. Here the PV asks the Fixed Size Resamplers to upsample or downsample the

frequencies provided by the forward FFT. Once the Fixed Size Resamplers are done, the PV

jumps to Start Load for IFFT.

• Start Load for IFFT. Here the PV reconfigures the FFT module to perform an inverse FT. The PV

then waits for a ready for data signal from the FFT module, at which point the PV jumps to Load
for IFFT.

Digital DJ Setup Documentation
 10

Design Decision 3

Originally, I had intended to make the “Phase

Vocoder” module a true phase vocoder—a module
that actively attempted to prevent distortion and to

increase frequency accuracy by examining the

phase of the transformed input samples.

Due to the long amount of time it took to learn how

to work with the FFT module and the rapidly

diminishing time remaining on the project, I decided

to try the more straightforward spectral manipulation

described here. To save hunting down and renaming

dozens of signals and abbreviations, however, the

“Phase Vocoder” module retained its name, even
though it would be more accurately described as a

spectral resampler.

• Load for IFFT. In this state the PV loads the FFT module with the frequencies provided by the

Fixed Size Resamplers. Once the FFT module indicates it’s finished with an early done signal, the

PV jumps to Unload from IFFT.

• Unload from IFFT. Here the

PV indicates to other

modules with the samples

out valid signal that the data

on the FFT out real bus is the

inverse-FT’ed samples

produced by the FFT

module. The Sound Router,

for example, uses this data

to load its post-processing
buffer so the SR can

continue to output a

frequency-adjusted stream of

samples. Once the FFT

module is done outputting its

inverted samples, the PV

jumps back to Pre-reset.

Fixed Size Resampler

(Adam Goldstein)

The Fixed Size Resampler
(FSR) is the module that does

the work of shifting frequencies

for the Phase Vocoder. It is

called “fixed size” because it

turns a set of 512 input

samples into a set of 512

output samples, as distinct

from an infinite-length

resampler like the Addresser

(described later) that outputs
new values forever.

The FSR uses an algorithm I

developed independently

Digital DJ Setup Documentation
 11

Time (samples)

A
m

p
lit

u
d

e
A

m
p

lit
u

d
e

Frequency (Hz)

A
m

p
lit

u
d

e

Frequency (Hz)

A
m

p
lit

u
d

e

Time (samples)

512

512

512

512

Forward FT

Resample in
Freq. Domain

Inverse FT

Figure 6: The operation of the Phase Vocoder. The input samples are
Fourier-transformed, resampled in the frequency domain, and inverse Fourier-
transformed to get a new time-domain signal with the scaled frequencies of
the original. (The imaginary portions of the Fourier transformed samples, not
shown here, are also resampled, and are incorporated into the inverse
Fourier transform operation so as to stretch phases with their corresponding
frequencies.) Note that if the frequencies are upsampled, the highest
frequencies of the original signal may be cut off, as represented by dotted
impulse in the stretched-frequency graph.

(although I imagine an algorithm like it is fairly standard for doing quick-and-dirty resampling). The

algorithm is somewhat different when upsampling versus downsampling; both varieties are
discussed below.

Upsampling with the Fixed Size Resampler (Adam Goldstein)

The resampler has three registers within its control: the position of the read pointer in the pre-

resampling memory (data in read pointer, or DIRP), the position of the write pointer in the post-

resampling memory (data out write pointer, or DOWP), and surplus, a signed variable (starting value

0) that keeps track of how close the resampler is to incrementing DIRP.

In addition, the resampler knows the sampling ratio (represented as a ratio of the integers

upsample and downsample), as well as the difference between them (difference).

Figure 8 shows the algorithm in action. Each clock cycle, the resampler does the following:

Digital DJ Setup Documentation
 12

Pre-reset

forward FFT = 1
should start FFT = 0

Start

should load
resampler data = 0

should process
resampler data = 0,
should start FFT = 1

Load FFFT

FFT in (real, imag.) =
(input data, 0)

if (done or has been
done) cycles since

done++

Unload from FFFT

resampler data in
(real, imag.) = FFT

out (real, imag.)

Process

forward FFT = 0

should process
resampler data = 1,

should load
resampler data = 0

Start Load for IFFT

should start FFT = 1

Load for IFFT

forward FFT = 0,
should unload

resampler data = 1,
FFT in (real, imag.) =
resampler data out

(real, imag.)

Unload from IFFT

forward FFT = 1

should load
resampler data = 0,

should process
resampler data = 0

reset ready for data

cycles since done == 7

FFT out index == 511

resampler done
processing real

ready for data

ready for data

early done

else

else

else

else

else

elseelse

else

Figure 7: The states of the Phase Vocoder module.

Digital DJ Setup Documentation
 13

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 X X X X

0 1 2 3 4

DOWP

Write Buffer:...

X X X

5 6 7

Surplus: 0

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 X X X

0 1 2 3 4

DOWP

Write Buffer:...

X X X

5 6 7

Surplus: 4

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 X X

0 1 2 3 4

DOWP

Write Buffer:...

X X X

5 6 7

Surplus: 1

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 0 X

0 1 2 3 4

DOWP

Write Buffer:...

X X X

5 6 7

Surplus: 5

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 0 7

0 1 2 3 4

DOWP

Write Buffer:...

X X X

5 6 7

Surplus: 2

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 0 7

0 1 2 3 4

DOWP

Write Buffer:...

0 X X

5 6 7

Surplus: 6

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 0 7

0 1 2 3 4

DOWP

Write Buffer:...

0 0 X

5 6 7

Surplus: 3

9 4 7 5

Read Buffer: 0 1 2 3

DIRP

9 0 4 0 7

0 1 2 3 4

DOWP

Write Buffer:...

0 0 5

5 6 7

Surplus: 0

...

...

...

...

...

...

...

...

Figure 8: From top to bottom, the operation of the Fixed Size Resampler with a sampling ratio of 7/3. By the end, the
first three items from the read buffer are stretched across the first seven slots in the write buffer.

• Add 1 to DOWP. The resampler is writing a set of samples serially, so each cycle it should be

writing to a new output position.

• If surplus < downsample: The resampler writes the memory at DIRP to the memory at DOWP,
and increases surplus by difference.

• If surplus ≥ downsample: The resampler writes 0 to the memory at DOWP, and reduces suplus

by downsample.(See Design Decision 4.)

• If 0 ≤ (the new value of surplus) < downsample: The resampler increments DIRP by 1.

Using this method, after processing each set of x input values with a sampling ratio of y/x, the

output buffer will contain the original signal stretched into y slots.

Downsampling with the Fixed Size Resampler (Adam Goldstein)

The resampler uses the same three

registers when downsampling. The

algorithm is different, however, as shown

in Figure 9. Every clock cycle, the
resampler does the following:

• Add 1 to DIRP. When downsampling,

the resampler will by definition be

writing fewer samples to output than it’s

reading. As a result, the resampler can

always advance to the next input

sample before deciding whether to write

it to output or not.

• If surplus < 0: surplus is increased by
upsample.

• If surplus ≥ downsample: The

resampler writes 0 to the memory at

DOWP, and decreases surplus by
downsample.

• Otherwise, if 0 ≤ surplus <

downsample: The resampler writes the memory at DIRP to the memory at DOWP, and

increases surplus by difference.

Using this method, the resampler skips writing a value to the output buffer when surplus is 0, which

occurs 1-(upsample/downsample) of the time. (For example, for a sampling ratio of 3/4, the

Digital DJ Setup Documentation
 14

Design Decision 4

Originally when upsampling, I had the Fixed Size

Resampler repeat each pre-resampling magnitude
at every corresponding post-resampling frequency.

For example, if the original spectrum had the value

magnitude(f) at frequency f, and the upsampling

ratio was 2, the new spectrum would have value

magnitude(f) at frequency 2f and 2f+1.

The result of this, however, was that the inverse-

FT’ed spectrum had many adjacent frequencies of

the same magnitude, which led to some strange-

sounding music. I decided instead to only repeat

original magnitudes at one new frequency when
upsampling, and to put 0’s for the magnitude at

others. In the example above, the frequenc at 2f

would be magnitude(f), but the frequency at 2f+1

would be 0.

Digital DJ Setup Documentation
 15

2 X X X

Read Buffer: 0 1 2 3

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 X X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 X X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 X X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 6 X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 7 X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 7 X

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

2 3 7 9

Read Buffer: 0 1

DOWP

2 3 4 5 6

0 1 2 3 4

DIRP

Read Buffer: ...

7 8 9

5 6 7

...

...

...

...

...

...

...

...

Surplus: 2

Surplus: 1

Surplus: -1

Surplus: 0

Surplus: 1

Surplus: 2

Surplus: -1

Surplus: 0

X X

X X

X X

5 X

5 X

5 6

5 6

5 6

4 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

Figure 9: From top to bottom, the operation of the Fixed Size Resampler with a sampling ratio of 3/4. By the end, the
first eight items from the read buffer are compressed into the first six slots in the write buffer.

resampler will skip writing 1/4 of input values to the output memory.)

Memory (Nathan Artz)
The high-level memory structure is illustrated in Figure 10.

Record Mode (Nathan Artz)

In record mode (Figure 11), data is sampled from the AC97 input jack and stored into the ZBT

RAMs. Data comes in at 48 khz and then is down sampled and precision is removed; the final

input is an 8-bit 6 khz sample. The down sampling is accomplished by simple storing one out of

every 8 values from the AC97 input. Then, these samples are passed through a low pass filter to

remove high frequency aliasing introduced in the down sampling process. After each sample is

acquired, it is written into the ZBT ram using a special writing scheme we will now describe.

Each address in the ZBT Ram is 36 bits wide. Four 8-bit samples are stored at each ZBT RAM
location, leaving the top four bits as 0’s. Thus, a write to the ZBT ram is accomplished after four 6

khz samples are ready, and they are written into the slot such that the later samples are written into

Digital DJ Setup Documentation
 16

Figure 10: The high-level user diagram of the memory system.

the lower order bits, and, likewise, the earlier samples are written into the higher order bits. Writing

to the ZBT is simply a matter of asserting write enable equal to 1, providing a 19 bit address, and
providing 36 bits of data; the data is written to the ZBT 2 clock cycles later, as it employs a delay

for maximum throughput.

The ZBT RAMs were chosen to store the samples for a number of reasons. One, unlike b-rams,

they provided a lot more space for input, namely, 4 megabytes. Second, they allowed for faster

compilation times (as huge b-rams weren’t necessary to be built). Finally, other modules utilized b-

ram space, and thus we required some of the b-rams to be free for use of other modules.

Playback Mode (Nathan Artz)

In playback mode, data is read from the ZBT RAMs and sent to the AC97 output jack. The data

operates on the 48 khz AC97 ready signal for output. When the no filter is employed, the data is

sent 8 times every ready, i.e. 48 khz out. When the filter is employed, data is passed through the
filter in a zero-expanded fashion and then sent to the AC97 out.

Each address in the ZBT RAMs holds four samples of 6kHz 8-bit audio (Figure 12). Playback

involves reading one of these addresses four times, each time selecting the proper sample to play.

The ZBT Rams reads are delayed by 2 clock cycles, and thus 2 clock cycles are given before data

is sent to the AC97 out.

Digital DJ Setup Documentation
 17

Figure 11: This figure describes the modules for the recorder. See Terman, http://web.mit.edu/6.111/www/f2008/
index.html for more details.

http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html

Write to Flash Mode (Nathan Artz)

In this mode, four steps occur: clearing of lock bits, erasing proper locations, writing to the proper
locations, reading back data and outputting to ac97 for verification (Figure 13). Any data in the ZBT

RAMs is copied into a specified slot in the flash memory. The Flash memory consists of 16

megabytes; the first four megabytes are allocated for song 1, the second four are allocated for

Digital DJ Setup Documentation
 18

Figure 12: Utilization of a ZBT RAM Memory Slot.

Figure 13: Write to Flash FSM.

song 2, and the last eight are designated for the output of the after effects (filters, pitch adjusters,

etc) modules (Figure 14). Flash memory addresses are 16 bits wide.

First, the lock bits on the flash memory are cleared, allowing writing to occur. This is accomplished

by issuing a few special setup commands to the flash memory (see specification for details).

The user indicates which song locations he/she wishes to write to using switch[1]. If switch[1] is 0,

then address locations from 0 to (4megabytes / 16 bits - 1) will be written to, otherwise, if switch[1]

is 1, addresses from (4 megabytes / 16bits) to (8 megabytes/16 bits – 1) will be written to, always

starting with the first address. Once the user switches into write mode, the song number is

immediately stored; thus, changing the song number in the middle of a write will have no effect,

which keeps the operations stable.

Each Flash memory address is 16 bits wide; however, for simplicity, only one eight bit sample is

stored into each flash memory location. This decision was so that playback would be easier, simply
increasing the address by one to get the next sample. Thus, we can see from Figure 15 that flash

address changes four times as quickly as zbt address. This is because each ZBT address is 36

Digital DJ Setup Documentation
 19

Figure 14: Flash Memory Allocation.

bits, holding four 8-bit samples (the upper four bits are 0000), while only one 8-bit sample is stored

in each flash address. Position within sample indicates which among the four samples in the ZBT
data should be copied into the flash. We easily notice the correct operation by comparing the

equivalent values of fwdata and of ZBT out, i.e. notice, for example, close to the blue line, how

zbt_out_31to16 is 4847, and this is going into the flash, first 47, then 48, then likewise with

zbt_out_15to0.

A highest address is remembered after the two ZBT RAMs are written to. This highest address is

used to know how much to write in the flash. This speeds up erasing, writing, and reading times.

Thus, we write only to the highest address + offset in the flash memory. When we have finished

writing, we start from the beginning write address and read back each address from the flash

memory. Each time read data comes back, the AC97’s ready timing signal is used to time when to

send data so that the user can verify that the data was correctly written. Once finished, ‘passed’ is
displayed on the fluorescent hexadecimal display (Figure 16).

Dual Read from Flash Mode (Nathan Artz)

In this mode, the module inputs two address offsets from the two addresser modules, and outputs

the respective data from the flash memory. The way this works is first, a reset pulse is sent to each

addresser modules to reset their initial address offsets to zero. Next, a 6khz clk out is ‘turned on’,

which tells the addressers to request addresses every 6 khz. Then, the module enters into a Finite

State Machine (Figure 17) that follows the following steps:

Digital DJ Setup Documentation
 20

Figure 15: This figure is a timing diagram demonstrating the process to copy data from the ZBT Ram into the flash.
First, a user switches into ‘Write to Flash mode’, signaled by the ‘trigger on flash write’ signal above next to the red line.
The Flash address changes four times as fast as the ZBT address because each ZBT address holds four samples,
while each flash address only holds one. Position within sample demonstrates the location within each ZBT address to
read from. Fwdata is the data being written to the flash, and ZBT_outAtoB represents the data coming out of the ZBT
memory from bits A to B.

Addresses are expected to arrive to the Memory Module one clock cycle after 6khz enable is high.

Once both addresses have been read and data is gathered, this data is sent simultaneously to
each addresser modules on the same clock cycle. This data is also sent to the AC97; switch[1]

selects data from the first addresser to be output to the AC97, however, if switch[2] is 1, then both

outputs are sent to the AC97 out simultaneously in the form of adding the signals together – which

produces the effect of two songs playing on top of each other.

This user control with the switches was done to aid in the beat matching. When beat matching, the

user must be able to set the beats of the songs individually, and then listen to the beat matched

output. The selection scheme with switches allows the user to do just that. Samples are sent every

6 khz, at a constant rate guided by the 6khz enable clock. If samples need to be sent faster, this

clock can be changed.

Addresser (Adam Goldstein)
Another of the main features of the system is the ability to play songs back at different speeds. This

is a feature that’s useful to the Turntable Input (so spinning the disc make the song play back

Digital DJ Setup Documentation
 21

Figure 16: Memory Module Visualization in Write to Flash Mode.

faster) and the Beatmatcher (which slows down or speeds up the one song to match the speed of

the other).

The Addresser’s job is fairly straightforward: it takes a sampling ratio and a direction of playback,

and, upon request, outputs the next address to read from memory. The relevant signals for the

Addresser are:

• Upsample and downsample. These provide the desired sampling ratio, and can adjust during

playback without causing the Addresser any trouble. Since the Addresser works in the time

domain, providing a sampling ratio greater than one slows down the music playback and its pitch

(as opposed to the Phase Vocoder, which works in the frequency domain, where providing a

sampling ratio greater than one raises the pitch and keeps music playback the same).

• Read forward. This signal indicates whether the Addresser should be increasing (1) or

decreasing (0) the addresses it provides, to read forward or backward in memory, respectively.

Digital DJ Setup Documentation
 22

Figure 17: Dual Flash Read FSM.

• Override address and force override. These provide a mechanism for forcing the Addresser

to jump to a particular address in memory. When force override is asserted high, the Addresser

outputs override address and begins providing new addresses from that address.

• Get next address. This input is asserted for a single cycle whenever another module wants a

new address to look up. A cycle later, the new address appears on address out, and remains

there until the the next time get next address is asserted.

The Addresser is different from the Fixed Size Resampler in that the Addresser must provide a new

address each time one is requested, rather than resampling from a fixed-size input to a fixed-size

output. As a result, the Addresser uses a slightly different algorithm from the FSR, described in

detail below.

Upsampling with the Addresser (Adam Goldstein)

The Addresser uses a surplus register (just like the FSR) to keep track of when to jump to

outputting the next address. Each time get next address is asserted, the Addresser does the
following:

• If surplus ≥ downsample: surplus is reduced by downsample.

• If surplus < downsample: surplus is increased by difference.

• If 0 ≤ (the new value of surplus) < downsample: output address is incremented (or

decremented, if read forward is 0) by 1.

An example of the values of the Addresser’s signals over time are shown in Table 1.

Downsampling with the Addresser (Adam Goldstein)

When downsampling, the Addresser will always skip ahead by at least one address each time get

next address is asserted. To keep track of how much to jump ahead, the Addresser uses two

registers:

• Least multiple of up to get down. This long-named register is equivalent to

ceiling(downsample/upsample), and is an approximate measure of how any addresses the

Digital DJ Setup Documentation
 23

Table 1: The Addresser’s signals over successive assertions of get next address, with a sampling ratio of upsample/
downsample = 5/4 (so difference = 1) and a starting value of 47. Read forward is 1. Repeated addresses are in red.

Assertion 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Address Out 47 48 49 50 51 51 52 53 54 55 55

Surplus 0 1 2 3 4 0 1 2 3 4 0

New Surplus 1 2 3 4 0 1 2 3 4 0 1

Addresser should advance each step. In order to avoid using a divider module, the least multiple

of up to get down value is calculated by iterating over all possible values from smallest to largest
until a satisfactory value is found each clock cycle.

• Imperfects count. This register keeps track of the number of times an address has been output

that isn’t exactly in line with the sampling ratio. For example, if the Addresser were resampling by

3/4 with a starting value of 30, the “perfect” output would be [30, 31.33, 32.67, 34], but will

instead be [30, 31, 32, 34] due to rounding. The intermediate values—31 and 32—are called

“imperfect” because they’ve been rounded. The imperfects count register is cumulative, and

would thus be 1 when address out was 31 and 2 when address out was 32.

(The last ref address register is a holdover from a previous system and isn’t used by the algorithm.)

The algorithm for downsampling has two varieties. If least multiple of up to get down is exactly

equal to downsample/upsample, the Addresser increments address out by least multiple of up to

get down each time a new address is requested. This produces precisely the expected output; for
example, with a sampling ratio of 1/5 and a starting value of 40, the output would be [40, 45, . . .].

When downsample isn’t a multiple of upsample, each time get new address is asserted:

• If imperfects count = upsample - 1: The output address is incremented (or decremented, if

read forward is 0) by downsample. Then imperfects count is reset to 0.

• Otherwise: The output address is adjusted by least multiple of up to get down - 1 in the correct

direction (see Design Decision 5).

An example of the downsampling algorithm is shown in Table 2.

Beatmatcher (Adam Goldstein)
One of the coolest features of the system is the Beatmatcher, which lets the user input the beat of

a “reference” song and a “floating” song. On demand, the Beatmatcher can then automatically
adjust playback of the floating song to match the beat of the reference song.

The Beatmatcher is a fairly intricate system, but its operation is similar in several important ways to

other modules. The components of the Beatmatcher are described below.

Digital DJ Setup Documentation
 24

Table 2: The Addresser’s signals over successive assertions of get next address, with a sampling ratio of upsample/
downsample = 9/12 (so least multiple of up to get down = 2) and a starting value of 232. Read forward is 1.

Assertion 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Address Out 232 233 234 235 236 237 238 239 240 244 245

Imperfects Count 0 1 2 3 4 5 6 7 8 0 1

Determining the relative speed of the two beats (Adam Goldstein)

Like the Turntable Input, the Beatmatcher must output a sampling ratio based on the speed ratio
between the reference beat speed and floating beat speed. With this, the Beatmatcher can adjust

the speed of the floating song to roughly match the speed of beats of the reference track.

The Beatmatcher achieves this by listening to the pressed input (typically connected to a button),

and counting the number of cycles that

elapse between button presses. The

Beatmacher then keeps a running

average of the last eight periods between

button presses (average cycles per

period).

Like the Turntable Input, when set
reference is asserted high (due to a

button being pressed, for example),

average cycles per period is stored in

reference cycles per period. This way, the

Beatmatcher can compare the speed of

the reference beats to the beats of the

floating song (“floating beats”).

Extrapolating future beats (Adam

Goldstein)

If the Beatmatcher only changed the
speed of the floating song to match the

speed of the reference song, however,

there would be two problems. First, the

beats would likely not be aligned from the

start since there was nothing to make

them line up; the beats of the floating

song would instead come a roughly fixed

delay before or after the beats of the

reference song.

Second, though, the fixed-precision of the
sampling ratio would mean that the

songs’ speeds would likely not be

perfectly aligned. As a result, the floating

song’s beats would shift over time with

Digital DJ Setup Documentation
 25

Design Decision 5

Why does the Addresser sometimes increment the

address by least multiple of up to get down - 1,
instead of just least multiple of up to get down? The

examples below illustrate.

There are two ways of producing new addresses for

a sampling ratio of, for example, 7/9, if for simplicity

the goal is to make the algorithm only have to

increment by one of two possible values.

One approach is to increment the address by 1 for 6

consecutive requests, and then increment by 3 on

the seventh request (e.g. [{19,} 20, 21, 22, 23, 24,

25, 26, 27, 28] → [20, 21, 22, 23, 24, 25, 28]).

The other approach is to increment the address by

2 for 6 consecutive requests, and then decrement

by 2 on the seventh request (e.g. [{19,} 20, 21, 22,

23, 24, 25, 26, 27, 28] → [20, 22, 24, 26, 28, 30,

28]).

Although the second method stays closer to the

“perfect” values for this resampling ratio and

requires a smaller adjustment at the end

(decrementing by 2 instead of incrementing by 3), I

decided against using it (or choosing between the

two methods based on which was closer to perfect)
because the second method can require jumping

back in addresses, which would sound like

unwanted skipping. This is why the Addresser

jumps by least multiple of up to get down - 1 rather

than least multiple of up to get down.

respect to the reference beats, making the beat matching even less effective.

To solve these two problems, the Beatmatcher predicts future beats for each song based on the
beats that have already been entered. Then, each reference beat, the Beatmatcher forces the

floating song to jump to the appropriate address to makes sure the two songs are aligned again.

The Beatmatcher calculates future beats by counting from 0 up to average cyles per period and

reference cycles per period. Each time the Beatmatcher finishes a count, it inverts the appropriate

signal: either floating beat or reference beats, respectively.

Doing the matching (Adam Goldstein)

When should start matching is asserted high, the Beatmatcher initiates the processes necessary to

match the beats. The sampling ratio is constantly being output on the upsample and downsample

busses (which feed directly into the Addresser for the floating song). Therefore, the only signals the

Beatmatcher needs to generate separately are to explicitly override the address of the Addresser to
make the floating song jump to a particular sample. The relevant outputs are force floating override

and override floating address, which connect directly to the Addresser’s force override and override

address inputs (see above).

These signals change as part of a state machine, shown in Figure 18. The states are as follows:

Digital DJ Setup Documentation
 26

Start Wait for Floating
Transition

last floating input
address = floating

input address

Hold Current
Floating Sample

force floating address
= 1,

override floating
address = last

overridden floating
address

Wait for Reference
Transition

force floating override
= 0

Override

force floating override
= 1,

override floating addr.
= last overridden

floating addr. = (last
overridden floating
addr. + floating next

addr. period)

Pre-reset

force floating override
= 0

last overridden
floating address = 0

always
should start
matching

floating beat !=
last floating beat

reference beat !=
last reference beat

reference beat !=
last reference beat

always

else

else

elseelse

Figure 18: The states of the Beatmatcher module.

• Pre-reset. Here the Beatmatcher sets force floating override to 0, to ensure that the Addresser

can play back music normally. Additionally, the Beatmatcher initializes last overridden floating

address with 0; later, this register will keep track of the playback address where the floating song
last jumped to match the beat.

• Start. This state exists to wait for the user to assert should start matching, at which point the

module jumps to Wait for Wait for Floating Transition.

• Wait for Floating Transition. In this state, the Beatmatcher is waiting for a beat from the

floating song to happen. Once one occurs, the Beatmatcher jumps to Hold Current Floating

Sample. In the meantime, the Beatmatcher set the last floating input address register to the

current address coming out of the Addresser; this register stores the address of the last floating

beat in memory.

• Hold Current Floating Transition. Here, the floating song has just had a beat. In order to line

up the beats of the two songs, this state forces the floating song’s Addresser to hold its current

value—that is, to pause. Once the reference song has a beat, the Beatmatcher jumps to Wait for
Reference Transition.

• Wait for Reference Transition. In this state, the Beatmatcher withdraws its override of the

floating song’s Addresser, since the beats are now lined up. The Addresser then continues

playback normally (at the speed provided by upsample and downsample), until another reference

beat occurs, at which point the Beatmatcher jumps to Override.

• Override. In this state, occupied for a single clock cycle, the Beatmatcher has just noticed a

reference beat, so it instructs the floating song’s Addresser to jump to the address of its next

beat by adding the address of the last floating beat (last overridden floating address) to the

number of addresses the music system has requested between floating beats (floating next
address period).

The result of this process is that, if the two songs are of constant (but potentially different) speeds,

and the reference and floating beats are input perfectly aligned with the beats of the songs, the

Beatmatcher will slow down or speed up the floating song to the closest it can to match it to the

speed of the reference song, and ensure that even if they come slightly out of alignment, they’ll be

realigned every reference beat.

Audio Effects (Matthew Putnam)
Two audio effects were designed to work with audio of all sampling rates: echo and reverb. Both

effects are described below.

Echo (Matthew Putnam)

The echo effect is a simple repeat of past information that is added on top of the current audio

sample. The module takes as input the incoming sample and ready signal and outputs a new audio

sample with the echo effect added as well as the new ready signal for that sample.

Digital DJ Setup Documentation
 27

This module works by creating a large circular BRAM buffer and keeping an offset pointer to the

next location to write. When a new sample is ready, this sample is written to buffer[offset] and the
offset is incremented. Then, the sample at buffer[offset-delay] is read, and this stored sample is

added to the incoming sample. To prevent overflow, this sum is stored in a 9-bit register, and the

high 8 bits are passed to the output.

Since this module uses a lot of storage, an external BRAM module was used. This created some

timing issues with the BRAM's parameters. To prevent these issues, a small linear FSM was used

to control the stage of the calculation. The FSM was overly cautious, only doing one computation

per state, but since only a few computations are done per sample, and there are thousands of

clock cycles between samples, this excess was not a problem.

When the new sample is calculated, the new ready signal is asserted for one clock cycle. It's not

entirely necessary for subsequent modules along the data path to use the new ready signal, as
using the old one will only mean that the samples being read are one sample old. This only affects

the timing of the signal, not any computation being done on it, an is an unnoticeable delay.

Reverb (Matthew Putnam)

The reverb effect took many tries and many different approaches to get right. The initial idea was to

use convolution reverb using the same architecture as the FIR filter module from lab 4. The module

would convolve the incoming samples with the impulse response of a resonant room, recreating

what playing that sound in that room would sound like. This design has the promise of perfectly

mimicking the acoustic properties of any room, but is impractical because of the amount of data

needed. For it to work properly, a very high sampling rate is needed, and the audio samples need

to have enough bits to be accurately scaled. Neither of these were available.

The next idea was to approximate the impulse response as a series of impulses separated widely

by zeroes. This would drastically reduce the number of samples and arithmetic operations needed

at the expense of quality. For this, a BRAM was created that stored the last few thousand samples.

However, figuring out the correct delay between impulses and tuning the pulses' magnitudes was

incredibly difficult. If the pulses were just a little too large, the output was a distorted, robotic

sound. If they were too low, then the reverb couldn't be heard.

The third idea was to use feedback. For this, two basic building blocks were created. The first was

a comb filter, which delays the sample by some constant amount and has a feedback loop that

adds a scaled copy of the output back into the input. This has the effect of sound bouncing off a

single surface. The second module was an allpass filter, which is the same as the comb filter, but
includes an additional feed-forward loop with the negative of the gain from the feedback loop. The

effect of this module is that it smoothes the frequencies of the input. Various reverberators could

then be made by adding together several comb filter echoes and smoothing the sum with allpass

Digital DJ Setup Documentation
 28

filters. However, the problem with this approach was that because of digital logic's discrete nature,

the fractional feedback component continuously lost precision (and compounded the problem
when a truncated signal was further truncated), introducing lots of noise.

The final decision was to go back to the second idea, the reduced form of the convolution reverb.

A few days were taken to carefully calculate the ideal parameters, and the result was as good as 8-

bit, 6kHz (48kbps) audio is going to get. The signal is slightly distorted, but the reverberation is

clear.

The module utilizes two ROMs, one storing a list of delays (measured in number of samples), the

other storing a list of scaling factors as fractions of 1024. There is an index into these ROMs, and

an 18-bit accumulator. When a new sample is ready, it is written to the buffer at the current offset,

the offset is incremented, and the index and accumulator are zeroed. Then, on every clock cycle,

the following things happen:

• The delay and scale are read out of the ROM using the current index

• The sample at buffer[offset-delay] is read and multiplied by the scale, and this product is

added to the accumulator

• The index is incremented

When the index reaches the end of the samples, this process is halted, and accumulator[17:10] is

passed to the output. Note that for the output to be in the right bits, the scale factors need to add

up to 1024, or at least very close to it. As with the echo module, a new ready signal is asserted for

one clock cycle.

Testing and Debugging
We tested most modules of the Digital DJ Setup independently before integrating them into the
completed system. The system was loaded onto a Xilinx FPGA as part of a Labkit with a 16-

character hexadecimal display, making it possible to examine the states of various modules. The

hardware constraint file and top-level module code for connecting inputs and outputs to the Digital

DJ Setup were re-used from a past project.

Below are descriptions of the testing performed on each subsystem.

Input Methods (Adam Goldstein)

Testing the turntable and knob was very easy; both worked the first time I downloaded them to the

FPGA and connected wires to the appropriate user inputs.

Keyboard (Matthew Putnam)

The keyboard input module was tested by displaying the current ASCII value, the difference (in
number of half steps) between the two keys pressed, and the resulting ratio on the 16-digit hex

display and visually verifying those values to be correct.

Digital DJ Setup Documentation
 29

Sound Router (Adam Goldstein)

Testing of the Sound Router was by far the most time-consuming part of my work on the project.
Originally, I ran into problems with the timing of the FFT module; because I was not waiting for the

requisite seven cycles after receiving a done signal from the FFT module, I would end up with

frequencies out of alignment, producing strange overtones (Figure 19).

Another time-consuming problem was the fact that the FIFO provided by Prof. Terman worked

differently with the FFT module in ModelSim and on the logic analyzer. After several days of
attempted diagnoses by the lab assistants, I gave up and wrote the memories myself.

Finally, I ran into a bizarre problem with ISE, where trying to synthesize the FSR module as originally

written would eat up more than 50% of the chip’s resources by allocating memories as registers

instead of LUTs, and lead to an order-of-magnitude slowdown in compile time. I was able to fix the

problem by replacing:

if ((surplus > 0) && (surplus >= downsample)) begin

 data_out_store[data_out_write_pointer] <= 0;
 ...

else if (surplus < 0) begin // We're downsampling

 ...

Digital DJ Setup Documentation
 30

Figure 19: During this test, I was inputting a signal that oscillated from 16’b1000_0000_0000_0000 to
16’b0111_1111_1111_1111 (signed) every clock cycle, then forward FT’ing it and inverse FT’ing the result. I expected
to recover the original signal, but because I was not waiting for enough cycles before unloading the FFT module,
frequencies got shifted, leading to the lower-frequency oscillation pictured here.

end

else begin

 data_out_store[data_out_write_pointer] <=
data_in_store[data_in_read_pointer];
 ...

end

With the following, equivalent expression:

if ((surplus > 0) && (surplus >= downsample)) begin

 // data_out_store[data_out_write_pointer] <= 0;
 ...

else if (surplus < 0) begin // We're downsampling

 ...

end

else begin

 // data_out_store[data_out_write_pointer] <=
data_in_store[data_in_read_pointer];
 ...

end

if (surplus >= 0)
 data_out_store[data_out_write_pointer] <= (((surplus > 0) &&
(surplus >= downsample)) ? 0 : data_in_store[data_in_read_pointer]);

Once I made this change, the improved compile time made it much easier to quickly test Sound
Router features that were working in ModelSim on the Labkit itself.

Addresser (Adam Goldstein)

Testing the Addresser in ModelSim was very easy; I simply provided it a sampling ratio and a signal

for get next address, and after a few minor tweaks got the output shown in Figure 20.

Beatmatcher (Adam Goldstein)

To test the Beatmatcher in ModelSim, I had to generate signals representing two different speeds

of someone pressing the button—one for the reference speed and one for the floating speed.

When I set them at a ratio of approximately 4 to 3, I got the output shown in Figure 21. Note that

as expected, once should start matching is asserted high, the system waits for the next transition

of floating beat, then forces an override of the output address until the next transition in reference
beat. The sampling ratio (12/9) is constantly provided so the Addresser knows what speed to play

at, and at reference beats, the override mechanism forces a new address into the Addresser for a

single cycle (far right of Figure 21).

Memory (Nathan Artz)

Please see the main Memory section.

Digital DJ Setup Documentation
 31

Audio Effects (Matthew Putnam)

The memory components of the echo and reverb modules were tested by running a test file on
them in ModelSim. For the test, some inputs were given and the signal waveforms were inspected

to see that the values were being stored at the correct locations. Upon this testing, some minor

timing bugs were found. These were caused because some internal registers were not zeroed on

reset. While the FPGA automatically zeroes out all registers on initialization, they were explicitly set

to be safe.

Digital DJ Setup Documentation
 32

Figure 21: The working output of the Beatmatcher in ModelSim.

Figure 20: The working output of the Addresser in ModelSim. Note that each assertion of get next address produces a
new address out value as expected.

The echo and reverb effects themselves were tested by using a modified version of lab 4 to input

and output actual audio samples through the AC97. We could then simply talk into the microphone
to observe the effect. The biggest issue was with tuning the scale values of the reverb module.

First, they have to add to very near 1024 so that the output is the right size. Second, they have to

decay with the right shape so that the effect sounds authentic. The delay values need to be close

enough together that the listener can't hear a discernible set of echoes, and far enough apart that

the effect had noticeable sustain. Also, if the impulses were very close together, the adding in of

signals at regular intervals would produce noise at a certain frequency. Usually, this signal had very

little power, but if too many impulses were used, this started to be heard.

Digital DJ Setup Documentation
 33

Conclusions

The mixing setup features a robust memory foundation, specialized mixing algorithms, and

innovative physical mixing components.

At a technical level, the memory modules are based on a series of different finite state machines,

smoothly reading and writing based on user input of different switch selections. Moreover, the

components were extremely successful in warping sounds in both the time and frequency domain.

First, a computer keyboard input, modeled as inputs to a piano, provided a unique method for

discretized warping based on the distance between different ‘notes’. Second, a rotating motor

allowed for continuous time and frequency changing via changes in speed, providing an excellent

“scratching” sound.

While lower quality than the maximum 48kHz sound rates available, 6kHz samples permitted

spectacular output from the echo and reverb modules decaying sound output. Integration of the

components, especially the beat matcher and address modules was highly successful due to
highly decoupled modules, which only were connected by two busses. Finally, the beat matching

module was the climax of the project by matching user-inputted beats to play two songs

synchronously at the same beat.

Initially, problems with writing the Flash memory on the fly occurred, and a revision in design was

created to use the ZBT as an intermediate. As stated, highly decoupled modules allowed for easier

integration in the long run.

The design could be improved in a number of ways. First, improving the sound quality through

both a higher sampling rate and higher precision in each sample would allow for a much cleaner

output. Second, possibly utilizing more b-rams in the reverb module would allow it to extend

further in time. Third, physical components such as the turntable could be implemented with a
smoother motor to improve the quality and consistency of playback.

Acknowledgements

We would like to extend our sincerest thanks to Gim, Alex, and Ben for their remarkable

helpfulness during our numerous brainstorming and bug-diagnosing sessions.

Digital DJ Setup Documentation
 34

