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Abstract
Analog turntables are expensive and fragile, and can only manipulate the speed of music without 

independently changing its pitch. Additionally, hardware and software for matching beats between 

songs are expensive and hard to use. The Digital Turntable Setup avoids these pitfalls by 

implementing frequency- and speed-adjusting features, along with beatmatching and echo and 

reverb effects, on a standard FPGA. The system’s behavior has been tested with music at multiple 

sampling rates.
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Overview

Objective
The Digital DJ Setup attempts to provide features to help a DJ play two tracks of music while 

adjusting the pitch and speed in various ways to make the music more danceable or fun to listen 

to.

Goals
The goals of the system are:

• To record two tracks of music and play them back either one at a time or together

• To adjust the pitch of music, either live or recorded, with a knob

• To implement a “turntable” whose rotational speed determines the pitch or speed of the music

• To adjust the pitch of music at standard harmonic intervals using a computer keyboard

• To match the beats of two songs, slowing down or speeding up one as necessary

• To add echo and reverb effects to music

• To record the results of mixing into storage to make it possible to layer mixes

Solution
The proposed system achieves the above goals through use of a modular hardware design. The 

system uses sophisticated memory architectures to record tracks as they arrive from an audio 

input, and to store them permanently in flash memory. Additionally, the memory architecture allows 

music to be recorded to memory as it is played back, making it easy to iteratively record several 

layers of music on top of each other.

Additionally, the design makes it possible for the user to choose whichever human interface he 

prefers; since all human interfaces output a sampling ratio, they require no internal changes to be 

switched from being used to adjust speed (resampling in the time domain) to being used to adjust 

pitch (resampling in the frequency domain).

The pipelined nature of the design allows effects like echo and reverb to be added to the “chain” of 

audio samples traveling through the system, smoothly integrating them with other effects like pitch- 

and beat-matching.
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Description

Overall Design
The Digital DJ Setup comprises several interacting subsystems (Figure 1). First are the human 

interfaces, including a knob, a turntable, and a computer keyboard. These produce sampling ratios 

that can be used to adjust the pitch or speed of music.

Second is the pitch-adjusting subsystem, encapsulated in the Sound Router, that provides near-

real time transposition of music.

Third are the Beatmatcher and Addresser, which let the user input the speeds of two different 

songs and have the song playback speed matched.
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Figure 1: The overall design of the Digital DJ Setup. In practice, the “selectors” were not included; rather, the modules 
on the left were wired directly to the desired modules on the right.



Fourth is the memory subsystem, which handles the details of recording music and playing it back.

The final subsystem handles audio effects like echo and reverb, applied to the output of all the 
previous subsystems. All of these subsystems and their interactions are described below.

Input Methods (Adam Goldstein)
There are a number of ways of inputting settings into the system to change pitch, playback speed, 

and volume.

Turntable Input (Adam Goldstein)

One of the primary ways to input speed or pitch information into the system is using a “turntable”—

a motor connected to a rotary encoder with a protruding plate. The Turntable Input module makes 

it possible to set a reference speed for the turntable. Later, when the turntable is spun faster or 

more slowly, Turntable Input produces a sampling ratio of two four-bit numbers that will cause the 
Addresser to change playback speed proportionally to the change in the turntable’s rotational 

speed. (For instance, if the turntable were spun 50% more slowly than its reference speed, the 

sampling ratio would be 2/1, so playback would proceed at 50% its normal speed.)

In addition, Turntable Input determines the direction in which the encoder is spinning, and 

produces an output (clockwise) that represents the direction of rotation. This can be connected 

directly to the Addresser’s read forward input to ensure that changing the direction of turntable 

rotation produces a corresponding change in the direction of playback.

Turntable Input works by counting the number of clock cycles that elapse in the periods between 

changes in the encoder’s output (see Design Decision 1). To mitigate the effect of outliers and 

glitches, average cycles per period keeps a constantly running average of the number of cycles 
from the last four periods.

When set reference is asserted high, Turntable Input loads average cycles per period into reference 

cycles per period to store the speed of rotation during the turntable’s reference state.

Separately, to calculate the sampling ratio, 

Turntable Input attempts to simplify the 

fraction of average/reference cycles per 

period by oscillating between two values 

of calculating sampling:

• When calculating sampling is 0, the 

module loads the current value of 

average cycles per period into 
upsample possibility, and the current 

value of reference cycles per period into 
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Design Decision 1

To make the system as general as possible, I made 

the sampling ratio output entirely dependent on 
changes in the value of input val, a two-bit input, 

rather than the specific operation of the encoder 

used in this system. The input val input can be 

connected to switches (which is how I tested the 

module before receiving the encoder), an encoder, 

or any other device that changes voltage over time.



downsample possibility. Then the module sets calculating sampling to 1.

• When calculating sampling is 1, if the top bit of either possibility register is 1, the module 

loads the top four bits of upsample possibility into upsample and the top four bits of downsample 
possibility into downsample. Then the module sets calculating sampling to 0.

• When calculating sampling is 1, if the top bit of both possibility registers are 0, the 

module left-shifts each possibility by one bit and tries again.

The process is illustrated in Figure 2.

To determine the direction of rotation, the Turntable Input pays attention to the specs of the 

specific encoder model used (Clarostat 600EN-128-C24), which says that a change going forward 
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Figure 2: From top to bottom, the operation of the Turntable Input during and after the transition of calculating 
sampling from 0 to 1. The resulting ratio (5/12) is an approximation of the original ratio (353,530,647/858,993,461), and 
in this example only differs by only 1.2%.



in the series [2, 3, 1, 0, 2, 3, 1, 0, . . .] represents clockwise rotation, and a change going 

backward in the series represents counterclockwise rotation.

Finally, for debugging purposes, Turntable Input includes an additional output, speed changed, 

which represents whether the turntable has changed speed by more than 1/16 of its original value.

Knobs (Adam Goldstein)

One of the most intuitive interfaces for a music setup is a knob. In this system, there are two 

modules that interface with a rotary encoder to make it behave like a knob: Volume Knob (for 

adjusting the volume of output music, naturally), and Speed Knob (for adjusting the speed or pitch 

of music). The two modules are described below.

Volume Knob (Adam Goldstein)

The Volume Knob module has a single purpose: to output an 8-bit number representing the 

volume at which music should be playing. Volume Knob starts by outputting 8d’128, and increases 
or decreases its volume output when it detects a certain number of encoder output transitions. 

(The code for doing this is extremely similar to the transition- and direction-detecting code of 

Turntable Input.)

To change the responsiveness of the Volume Knob, other modules can use the sluggishness input. 

For example, when sluggishness is 4, the Volume Knob will only increment the volume output by 1 

when the encoder signals that it has turned counterclockwise with four transitions.

To prevent wraparound errors, Volume Knob hard-limits volume at 0 when the knob is being turned 

counterclockwise and 255 when the knob is being turned clockwise.

Speed Knob (Adam Goldstein)

The Speed Knob module, like Turntable Input, outputs a four bit-over-four bit sampling ratio that 
can be used for changing playback pitch or speed. Unlike Turntable Input, however, Speed Knob 

outputs its value based on the position of the rotary encoder relative to some reference position, 

not its speed relative to some reference speed.

For simplicity, the Speed Knob limits itself to outputting ratios with 8 in either the numerator or 

denominator, resulting in 15 possible outputs (15/8, 14/8, . . . 8/8, . . . 8/14, 8/15).

At the low level, Speed Knob works nearly identically to Volume Knob, detecting the occurrence 

and direction of encoder output transitions to determine changes to the module’s outputs. Like 

Volume Knob, Speed Knob also prevents overshooting by hard-limiting the ratio at 15/8 and 8/15.

Keyboard (Matthew Putnam)

The keyboard module takes input from the keyboard and produces the ratio of pitch frequencies 
that those keys are separated by. We had originally intended to use a MIDI keyboard for this, but all 
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new keyboards use a USB interface instead of the serial DIN 5/180° connector, making this 

impossible. Instead, we used a standard PS/2 keyboard and pretended that keys along the home 
row were the white keys of a musical keyboard, and the appropriate keys along the top row were 

the black keys. Using the 'a' through ';' keys as C and E respectively, we were able to represent 17 

chromatic keys.

To interpret the raw incoming keyboard data, we used a keyboard driver provided by the course 

staff from the fall 2005 website. The module "ps2_ascii_input" takes in the system clock and reset 

signals and the PS/2 interface signals and outputs the ASCII code of the last key pressed and a 

ready signal for new data. This is slightly wasteful, as it means we are first converting raw key 

codes into ASCII values, and then converting that into pitch information, when we could be 

translating straight from key codes. However, using ASCII makes the signals easier to understand.

When the user presses two legal keys in succession, the module outputs a ratio in the form of a 4-
bit numerator and denominator that represents the ratio (using just intonation) of those pitches. 

Because pitches are logarithmically spaced, this ratio is simply a function of how many half-steps 

are between them and is independent of their absolute location on the keyboard. Thus, the way 

this is calculated is by mapping the keys to the numbers 0-16 in order, taking the difference, and 

looking up the ratio in a ROM. Additional logic checks whether the input interval is ascending or 

descending and inverts the ratio if necessary. It should be noted that by limiting the output size to 4 

bits, the ratios for a half step and a minor ninth are approximated. Those ratios are very dissonant, 

however, and would likely never be used.

If any invalid key is pressed, then the internal state of the module is reset. That is, if one key has 

been pressed and the module is waiting for the second, this will be forgotten and the module will 
be listening for the first key again. The purpose of this is to allow the user to cancel the ratio 

selection and start over.

Sound Router (Adam Goldstein)
The highest-level module for changing pitch is the Sound Router (SR), which takes an incoming 

music stream and outputs a frequency-adjusted version of the same stream (Figure 3).

The Sound Router works with 512 samples of music at a time: buffering the input samples as they 

arrive, processing the input samples with the Phase Vocoder once all 512 have been buffered, 

buffering the processed samples, and outputting the processed samples one at a time (Figure 4). 

In this way, the SR produces a pitch-adjusted version of the input, at the expense of introducing an 
approximately 512-sample delay (see Design Decision 2).

The full Moore machine diagram for the Sound Router is shown in Figure 5. The states are as 

follows:
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• Pre-reset. This is the start state of the SR, and the state it returns to after completing a full load-

process-unload sequence. Here the buffers are reset and the Phase Vocoder is instructed not to 

perform any transformations.

• Start. This state indicates the SR is 

waiting to be told to load an input 

sample (with the load data signal). In the 

meantime, this state caches each input 

sample so it isn’t gone if the Sound 

Router jumps to Load to Pre.

• Load to Pre. This state, only occupied 

for a single cycle, indicates that the SR 

has just been told to load an input 

sample to the input (or “pre”) buffer. If 

the current sample is the 512th, the 
Sound Router jumps to Ready to Load 

to PV. Otherwise, the SR jumps back to 

Start to wait for another sample.

• Ready to Load to PV. This state tells 

the Phase Vocoder that it should 

prepare to accept samples for 
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Figure 3: The flow of signals through the Sound Router and included modules.

Design Decision 2

Originally, I had envisioned a method of producing 

the output stream that would only introduce a 
single-sample delay to the input. The idea was that 

the most recent 512 input samples would be stored 

in a circular buffer, and each time a new sample 

arrived, the entire input buffer would be pitch-

adjusted. Then the last of the 512 pitch-adjusted 

samples would become the output of the Sound 

Router.

This mechanism didn’t work during testing in 

MATLAB, and I had insufficient signal-processing 

knowledge to diagnose the reason.

The “Circular Buffer” modules (which are just used 

as regular FIFO buffers) are a holdover from this ill-

fated experiment.
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processing. When the Phase Vocoder is ready, it asserts PV ready for data, and the SR jumps to 
Load to PV.

• Load to PV. In this state the SR delivers all 512 buffered input samples to the Phase Vocoder for 

processing. When the Phase Vocoder is done and ready to output the processed samples, it 

asserts PV samples out, at which point the SR jumps to Load to Post.

• Load to Post. In this state the SR collects the 512 processed samples and stores them in the 

output buffer.

Note that a sample is being output from the SR during all these states; another module can read 

the output sample at any time via the output data bus. The other module indicates it wants to read 

the next output sample by asserting unload data.

Finally, to make it easy to compare processed and unprocessed sound, the Sound Router module 

has a bypass PV input that, when asserted high, short-circuits the input to the output. When 

connected to a button or switch, this feature makes it possible to rapidly compare the processed 

and unprocessed version of, for example, a song’s chorus.

Phase Vocoder (Adam Goldstein)

The Phase Vocoder (PV) handles the mechanics of the frequency manipulation for the Sound 

Router. The Phase Vocoder works with discrete 512-sample chunks of music, rather than 

continuous streams like the Sound Router (Design Decision 3).
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The central idea of the Phase Vocoder is 

to take a set of consecutive music 
samples and a frequency scaling ratio, 

and to output a same-length set of 

consecutive music samples whose 

frequencies have been scaled as 

requested. 

The PV achieves this by taking the Fourier 

transform of the incoming samples, 

resampling both the real and imaginary 

parts of the transformed frequencies using 

Fixed Size Resamplers, and outputting the 
inverse Fourier transform of the resampled 

frequencies, as shown in Figure 6. The PV 

uses a 512-long Fourier Transform 

module produced using CoreGen.

The full Moore machine diagram for the Phase Vocoder is shown in Figure 7. The states are as 

follows:

• Pre-reset. This state is where the module begins. Upon getting a reset signal, the PV jumps to 
Start.

• Start. Here the Phase Vocoder indicates to the FFT module that it’s ready to input data. When 

the FFT module replies with ready for data high, the PV jumps to Load FFFT.

• Load FFFT. Here the PV loads the 512 time-domain samples into the FFFT module to have it do 

a forward FT. When the FFT module has been done for 7 clock cycles (the number necessary to 

satisfy timing specifications for the FFT module), the PV jumps to Unload from FFFT.

• Unload from FFFT. In this state the PV writes the real and imaginary outputs from the forward 

FT to a pair of Fixed Size Resamplers. Once the FFT module has returned the last transformed 

sample, the PV jumps to the Process state.

• Process. Here the PV asks the Fixed Size Resamplers to upsample or downsample the 

frequencies provided by the forward FFT. Once the Fixed Size Resamplers are done, the PV 

jumps to Start Load for IFFT.

• Start Load for IFFT. Here the PV reconfigures the FFT module to perform an inverse FT. The PV 

then waits for a ready for data signal from the FFT module, at which point the PV jumps to Load 
for IFFT.
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Design Decision 3

Originally, I had intended to make the “Phase 

Vocoder” module a true phase vocoder—a module 
that actively attempted to prevent distortion and to 

increase frequency accuracy by examining the 

phase of the transformed input samples.

Due to the long amount of time it took to learn how 

to work with the FFT module and the rapidly 

diminishing time remaining on the project, I decided 

to try the more straightforward spectral manipulation 

described here. To save hunting down and renaming 

dozens of signals and abbreviations, however, the 

“Phase Vocoder” module retained its name, even 
though it would be more accurately described as a 

spectral resampler.



• Load for IFFT. In this state the PV loads the FFT module with the frequencies provided by the 

Fixed Size Resamplers. Once the FFT module indicates it’s finished with an early done signal, the 

PV jumps to Unload from IFFT.

• Unload from IFFT. Here the 

PV indicates to other 

modules with the samples 

out valid signal that the data 

on the FFT out real bus is the 

inverse-FT’ed samples 

produced by the FFT 

module. The Sound Router, 

for example, uses this data 

to load its post-processing 
buffer so the SR can 

continue to output a 

frequency-adjusted stream of 

samples. Once the FFT 

module is done outputting its 

inverted samples, the PV 

jumps back to Pre-reset.

Fixed Size Resampler 

(Adam Goldstein)

The Fixed Size Resampler 
(FSR) is the module that does 

the work of shifting frequencies 

for the Phase Vocoder. It is 

called “fixed size” because it 

turns a set of 512 input 

samples into a set of 512 

output samples, as distinct 

from an infinite-length 

resampler like the Addresser 

(described later) that outputs 
new values forever.

The FSR uses an algorithm I 

developed independently 
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frequencies of the original signal may be cut off, as represented by dotted 
impulse in the stretched-frequency graph.



(although I imagine an algorithm like it is fairly standard for doing quick-and-dirty resampling). The 

algorithm is somewhat different when upsampling versus downsampling; both varieties are 
discussed below.

Upsampling with the Fixed Size Resampler (Adam Goldstein)

The resampler has three registers within its control: the position of the read pointer in the pre-

resampling memory (data in read pointer, or DIRP), the position of the write pointer in the post-

resampling memory (data out write pointer, or DOWP), and surplus, a signed variable (starting value 

0) that keeps track of how close the resampler is to incrementing DIRP.

In addition, the resampler knows the sampling ratio (represented as a ratio of the integers 

upsample and downsample), as well as the difference between them (difference).

Figure 8 shows the algorithm in action. Each clock cycle, the resampler does the following:
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Figure 8: From top to bottom, the operation of the Fixed Size Resampler with a sampling ratio of 7/3. By the end, the 
first three items from the read buffer are stretched across the first seven slots in the write buffer.



• Add 1 to DOWP. The resampler is writing a set of samples serially, so each cycle it should be 

writing to a new output position.

• If surplus < downsample: The resampler writes the memory at DIRP to the memory at DOWP, 
and increases surplus by difference.

• If surplus ≥ downsample: The resampler writes 0 to the memory at DOWP, and reduces suplus  

by downsample.(See Design Decision 4.)

• If 0 ≤ (the new value of surplus) < downsample: The resampler increments DIRP by 1.

Using this method, after processing each set of x input values with a sampling ratio of y/x, the 

output buffer will contain the original signal stretched into y slots.

Downsampling with the Fixed Size Resampler (Adam Goldstein)

The resampler uses the same three 

registers when downsampling. The 

algorithm is different, however, as shown 

in Figure 9. Every clock cycle, the 
resampler does the following:

• Add 1 to DIRP. When downsampling, 

the resampler will by definition be 

writing fewer samples to output than it’s 

reading. As a result, the resampler can 

always advance to the next input 

sample before deciding whether to write 

it to output or not.

• If surplus < 0: surplus is increased by 
upsample.

• If surplus ≥ downsample: The 

resampler writes 0 to the memory at 

DOWP, and decreases surplus by 
downsample.

• Otherwise, if 0 ≤ surplus < 

downsample: The resampler writes the memory at DIRP to the memory at DOWP, and 

increases surplus by difference.

Using this method, the resampler skips writing a value to the output buffer when surplus is 0, which 

occurs 1-(upsample/downsample) of the time. (For example, for a sampling ratio of 3/4, the 
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Design Decision 4

Originally when upsampling, I had the Fixed Size 

Resampler repeat each pre-resampling magnitude 
at every corresponding post-resampling frequency. 

For example, if the original spectrum had the value 

magnitude(f) at frequency f, and the upsampling 

ratio was 2, the new spectrum would have value 

magnitude(f) at frequency 2f and 2f+1.

The result of this, however, was that the inverse-

FT’ed spectrum had many adjacent frequencies of 

the same magnitude, which led to some strange-

sounding music. I decided instead to only repeat 

original magnitudes at one new frequency when 
upsampling, and to put 0’s for the magnitude at 

others. In the example above, the frequenc at 2f 

would be magnitude(f), but the frequency at 2f+1 

would be 0.
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Figure 9: From top to bottom, the operation of the Fixed Size Resampler with a sampling ratio of 3/4. By the end, the 
first eight items from the read buffer are compressed into the first six slots in the write buffer.



resampler will skip writing 1/4 of input values to the output memory.)

Memory (Nathan Artz)
The high-level memory structure is illustrated in Figure 10.

Record Mode (Nathan Artz)

In record mode (Figure 11), data is sampled from the AC97 input jack and stored into the ZBT 

RAMs. Data comes in at 48 khz and then is down sampled and precision is removed; the final 

input is an 8-bit 6 khz sample. The down sampling is accomplished by simple storing one out of 

every 8 values from the AC97 input. Then, these samples are passed through a low pass filter to 

remove high frequency aliasing introduced in the down sampling process. After each sample is 

acquired, it is written into the ZBT ram using a special writing scheme we will now describe.

Each address in the ZBT Ram is 36 bits wide. Four 8-bit samples are stored at each ZBT RAM 
location, leaving the top four bits as 0’s. Thus, a write to the ZBT ram is accomplished after four 6 

khz samples are ready, and they are written into the slot such that the later samples are written into 
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Figure 10: The high-level user diagram of the memory system.



the lower order bits, and, likewise, the earlier samples are written into the higher order bits. Writing 

to the ZBT is simply a matter of asserting write enable equal to 1, providing a 19 bit address, and 
providing 36 bits of data; the data is written to the ZBT 2 clock cycles later, as it employs a delay 

for maximum throughput.

The ZBT RAMs were chosen to store the samples for a number of reasons. One, unlike b-rams, 

they provided a lot more space for input, namely, 4 megabytes. Second, they allowed for faster 

compilation times (as huge b-rams weren’t necessary to be built). Finally, other modules utilized b-

ram space, and thus we required some of the b-rams to be free for use of other modules.

Playback Mode (Nathan Artz)

In playback mode, data is read from the ZBT RAMs and sent to the AC97 output jack. The data 

operates on the 48 khz AC97 ready signal for output. When the no filter is employed, the data is 

sent 8 times every ready, i.e. 48 khz out. When the filter is employed, data is passed through the 
filter in a zero-expanded fashion and then sent to the AC97 out.

Each address in the ZBT RAMs holds four samples of 6kHz 8-bit audio (Figure 12). Playback 

involves reading one of these addresses four times, each time selecting the proper sample to play. 

The ZBT Rams reads are delayed by 2 clock cycles, and thus 2 clock cycles are given before data 

is sent to the AC97 out.
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Figure 11: This figure describes the modules for the recorder. See Terman, http://web.mit.edu/6.111/www/f2008/
index.html for more details.

http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html
http://web.mit.edu/6.111/www/f2008/index.html


Write to Flash Mode (Nathan Artz)

In this mode, four steps occur: clearing of lock bits, erasing proper locations, writing to the proper 
locations, reading back data and outputting to ac97 for verification (Figure 13). Any data in the ZBT 

RAMs is copied into a specified slot in the flash memory. The Flash memory consists of 16 

megabytes; the first four megabytes are allocated for song 1, the second four are allocated for 
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Figure 12: Utilization of a ZBT RAM Memory Slot.

Figure 13: Write to Flash FSM.



song 2, and the last eight are designated for the output of the after effects (filters, pitch adjusters, 

etc) modules (Figure 14). Flash memory addresses are 16 bits wide.

First, the lock bits on the flash memory are cleared, allowing writing to occur. This is accomplished 

by issuing a few special setup commands to the flash memory (see specification for details). 

The user indicates which song locations he/she wishes to write to using switch[1]. If switch[1] is 0, 

then address locations from 0 to (4megabytes / 16 bits - 1) will be written to, otherwise, if switch[1] 

is 1, addresses from (4 megabytes / 16bits) to (8 megabytes/16 bits – 1) will be written to, always 

starting with the first address. Once the user switches into write mode, the song number is 

immediately stored; thus, changing the song number in the middle of a write will have no effect, 

which keeps the operations stable.

Each Flash memory address is 16 bits wide; however, for simplicity, only one eight bit sample is 

stored into each flash memory location. This decision was so that playback would be easier, simply 
increasing the address by one to get the next sample. Thus, we can see from Figure 15 that flash 

address changes four times as quickly as zbt address. This is because each ZBT address is 36 
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Figure 14: Flash Memory Allocation.



bits, holding four 8-bit samples (the upper four bits are 0000), while only one 8-bit sample is stored 

in each flash address. Position within sample indicates which among the four samples in the ZBT 
data should be copied into the flash. We easily notice the correct operation by comparing the 

equivalent values of fwdata and of ZBT out, i.e. notice, for example, close to the blue line, how 

zbt_out_31to16 is 4847, and this is going into the flash, first 47, then 48, then likewise with 

zbt_out_15to0.

A highest address is remembered after the two ZBT RAMs are written to. This highest address is 

used to know how much to write in the flash. This speeds up erasing, writing, and reading times. 

Thus, we write only to the highest address + offset in the flash memory. When we have finished 

writing, we start from the beginning write address and read back each address from the flash 

memory. Each time read data comes back, the AC97’s ready timing signal is used to time when to 

send data so that the user can verify that the data was correctly written. Once finished, ‘passed’ is 
displayed on the fluorescent hexadecimal display (Figure 16).

Dual Read from Flash Mode (Nathan Artz)

In this mode, the module inputs two address offsets from the two addresser modules, and outputs 

the respective data from the flash memory. The way this works is first, a reset pulse is sent to each 

addresser modules to reset their initial address offsets to zero. Next, a  6khz clk out is ‘turned on’, 

which tells the addressers to request addresses every 6 khz. Then, the module enters into a Finite 

State Machine (Figure 17) that follows the following steps:
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Figure 15: This figure is a timing diagram demonstrating the process to copy data from the ZBT Ram into the flash. 
First, a user switches into ‘Write to Flash mode’, signaled by the ‘trigger on flash write’ signal above next to the red line. 
The Flash address changes four times as fast as the ZBT address because each ZBT address holds four samples, 
while each flash address only holds one. Position within sample demonstrates the location within each ZBT address to 
read from. Fwdata is the data being written to the flash, and ZBT_outAtoB represents the data coming out of the ZBT 
memory from bits A to B.



Addresses are expected to arrive to the Memory Module one clock cycle after 6khz enable is high. 

Once both addresses have been read and data is gathered, this data is sent simultaneously to 
each addresser modules on the same clock cycle. This data is also sent to the AC97; switch[1] 

selects data from the first addresser to be output to the AC97, however, if switch[2] is 1, then both 

outputs are sent to the AC97 out simultaneously in the form of adding the signals together – which 

produces the effect of two songs playing on top of each other. 

This user control with the switches was done to aid in the beat matching. When beat matching, the 

user must be able to set the beats of the songs individually, and then listen to the beat matched 

output. The selection scheme with switches allows the user to do just that. Samples are sent every 

6 khz, at a constant rate guided by the 6khz enable clock. If samples need to be sent faster, this 

clock can be changed.

Addresser (Adam Goldstein)
Another of the main features of the system is the ability to play songs back at different speeds. This 

is a feature that’s useful to the Turntable Input (so spinning the disc make the song play back 
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Figure 16: Memory Module Visualization in Write to Flash Mode.



faster) and the Beatmatcher (which slows down or speeds up the one song to match the speed of 

the other).

The Addresser’s job is fairly straightforward: it takes a sampling ratio and a direction of playback, 

and, upon request, outputs the next address to read from memory. The relevant signals for the 

Addresser are:

• Upsample and downsample. These provide the desired sampling ratio, and can adjust during 

playback without causing the Addresser any trouble. Since the Addresser works in the time 

domain, providing a sampling ratio greater than one slows down the music playback and its pitch 

(as opposed to the Phase Vocoder, which works in the frequency domain, where providing a 

sampling ratio greater than one raises the pitch and keeps music playback the same).

• Read forward. This signal indicates whether the Addresser should be increasing (1) or 

decreasing (0) the addresses it provides, to read forward or backward in memory, respectively.
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Figure 17: Dual Flash Read FSM.



• Override address and force override. These provide a mechanism for forcing the Addresser 

to jump to a particular address in memory. When force override is asserted high, the Addresser 

outputs override address and begins providing new addresses from that address.

• Get next address. This input is asserted for a single cycle whenever another module wants a 

new address to look up. A cycle later, the new address appears on address out, and remains 

there until the the next time get next address is asserted.

The Addresser is different from the Fixed Size Resampler in that the Addresser must provide a new 

address each time one is requested, rather than resampling from a fixed-size input to a fixed-size 

output. As a result, the Addresser uses a slightly different algorithm from the FSR, described in 

detail below.

Upsampling with the Addresser (Adam Goldstein)

The Addresser uses a surplus register (just like the FSR) to keep track of when to jump to 

outputting the next address. Each time get next address is asserted, the Addresser does the 
following:

• If surplus ≥ downsample: surplus is reduced by downsample.

• If surplus < downsample: surplus is increased by difference.

• If 0 ≤ (the new value of surplus) < downsample: output address is incremented (or 

decremented, if read forward is 0) by 1.

An example of the values of the Addresser’s signals over time are shown in Table 1.

Downsampling with the Addresser (Adam Goldstein)

When downsampling, the Addresser will always skip ahead by at least one address each time get 

next address is asserted. To keep track of how much to jump ahead, the Addresser uses two 

registers:

• Least multiple of up to get down. This long-named register is equivalent to 

ceiling(downsample/upsample), and is an approximate measure of how any addresses the 
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Table 1: The Addresser’s signals over successive assertions of get next address, with a sampling ratio of upsample/
downsample = 5/4 (so difference = 1) and a starting value of 47. Read forward is 1. Repeated addresses are in red.

Assertion 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Address Out 47 48 49 50 51 51 52 53 54 55 55

Surplus 0 1 2 3 4 0 1 2 3 4 0

New Surplus 1 2 3 4 0 1 2 3 4 0 1



Addresser should advance each step. In order to avoid using a divider module, the least multiple 

of up to get down value is calculated by iterating over all possible values from smallest to largest 
until a satisfactory value is found each clock cycle.

• Imperfects count. This register keeps track of the number of times an address has been output 

that isn’t exactly in line with the sampling ratio. For example, if the Addresser were resampling by 

3/4 with a starting value of 30, the “perfect” output would be [30, 31.33, 32.67, 34], but will 

instead be [30, 31, 32, 34] due to rounding. The intermediate values—31 and 32—are called 

“imperfect” because they’ve been rounded. The imperfects count register is cumulative, and 

would thus be 1 when address out was 31 and 2 when address out was 32.

(The last ref address register is a holdover from a previous system and isn’t used by the algorithm.)

The algorithm for downsampling has two varieties. If least multiple of up to get down is exactly 

equal to downsample/upsample, the Addresser increments address out by least multiple of up to 

get down each time a new address is requested. This produces precisely the expected output; for 
example, with a sampling ratio of 1/5 and a starting value of 40, the output would be [40, 45, . . .].

When downsample isn’t a multiple of upsample, each time get new address is asserted:

• If imperfects count = upsample - 1: The output address is incremented (or decremented, if 

read forward is 0) by downsample. Then imperfects count is reset to 0.

• Otherwise: The output address is adjusted by least multiple of up to get down - 1 in the correct 

direction (see Design Decision 5).

An example of the downsampling algorithm is shown in Table 2.

Beatmatcher (Adam Goldstein)
One of the coolest features of the system is the Beatmatcher, which lets the user input the beat of 

a “reference” song and a “floating” song. On demand, the Beatmatcher can then automatically 
adjust playback of the floating song to match the beat of the reference song.

The Beatmatcher is a fairly intricate system, but its operation is similar in several important ways to 

other modules. The components of the Beatmatcher are described below.
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Table 2: The Addresser’s signals over successive assertions of get next address, with a sampling ratio of upsample/
downsample = 9/12 (so least multiple of up to get down = 2) and a starting value of 232. Read forward is 1.

Assertion 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Address Out 232 233 234 235 236 237 238 239 240 244 245

Imperfects Count 0 1 2 3 4 5 6 7 8 0 1



Determining the relative speed of the two beats (Adam Goldstein)

Like the Turntable Input, the Beatmatcher must output a sampling ratio based on the speed ratio 
between the reference beat speed and floating beat speed. With this, the Beatmatcher can adjust 

the speed of the floating song to roughly match the speed of beats of the reference track.

The Beatmatcher achieves this by listening to the pressed input (typically connected to a button), 

and counting the number of cycles that 

elapse between button presses. The 

Beatmacher then keeps a running 

average of the last eight periods between 

button presses (average cycles per 

period).

Like the Turntable Input, when set 
reference is asserted high (due to a 

button being pressed, for example), 

average cycles per period is stored in 

reference cycles per period. This way, the 

Beatmatcher can compare the speed of 

the reference beats to the beats of the 

floating song (“floating beats”).

Extrapolating future beats (Adam 

Goldstein)

If the Beatmatcher only changed the 
speed of the floating song to match the 

speed of the reference song, however, 

there would be two problems. First, the 

beats would likely not be aligned from the 

start since there was nothing to make 

them line up; the beats of the floating 

song would instead come a roughly fixed 

delay before or after the beats of the 

reference song.

Second, though, the fixed-precision of the 
sampling ratio would mean that the 

songs’ speeds would likely not be 

perfectly aligned. As a result, the floating 

song’s beats would shift over time with 
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Design Decision 5

Why does the Addresser sometimes increment the 

address by least multiple of up to get down - 1, 
instead of just least multiple of up to get down? The 

examples below illustrate.

There are two ways of producing new addresses for 

a sampling ratio of, for example, 7/9, if for simplicity 

the goal is to make the algorithm only have to 

increment by one of two possible values.

One approach is to increment the address by 1 for 6 

consecutive requests, and then increment by 3 on 

the seventh request (e.g. [{19,} 20, 21, 22, 23, 24, 

25, 26, 27, 28] → [20, 21, 22, 23, 24, 25, 28]).

The other approach is to increment the address by 

2 for 6 consecutive requests, and then decrement 

by 2 on the seventh request (e.g. [{19,} 20, 21, 22, 

23, 24, 25, 26, 27, 28] → [20, 22, 24, 26, 28, 30, 

28]).

Although the second method stays closer to the 

“perfect” values for this resampling ratio and 

requires a smaller adjustment at the end 

(decrementing by 2 instead of incrementing by 3), I 

decided against using it (or choosing between the 

two methods based on which was closer to perfect) 
because the second method can require jumping 

back in addresses, which would sound like 

unwanted skipping. This is why the Addresser 

jumps by least multiple of up to get down - 1 rather 

than least multiple of up to get down.



respect to the reference beats, making the beat matching even less effective.

To solve these two problems, the Beatmatcher predicts future beats for each song based on the 
beats that have already been entered. Then, each reference beat, the Beatmatcher forces the 

floating song to jump to the appropriate address to makes sure the two songs are aligned again.

The Beatmatcher calculates future beats by counting from 0 up to average cyles per period and 

reference cycles per period. Each time the Beatmatcher finishes a count, it inverts the appropriate 

signal: either floating beat or reference beats, respectively.

Doing the matching (Adam Goldstein)

When should start matching is asserted high, the Beatmatcher initiates the processes necessary to 

match the beats. The sampling ratio is constantly being output on the upsample and downsample 

busses (which feed directly into the Addresser for the floating song). Therefore, the only signals the 

Beatmatcher needs to generate separately are to explicitly override the address of the Addresser to 
make the floating song jump to a particular sample. The relevant outputs are force floating override 

and override floating address, which connect directly to the Addresser’s force override and override 

address inputs (see above).

These signals change as part of a state machine, shown in Figure 18. The states are as follows:
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Start Wait for Floating 
Transition

last floating input 
address = floating 

input address

Hold Current 
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force floating address 
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Figure 18: The states of the Beatmatcher module.



• Pre-reset. Here the Beatmatcher sets force floating override to 0, to ensure that the Addresser 

can play back music normally. Additionally, the Beatmatcher initializes last overridden floating 

address with 0; later, this register will keep track of the playback address where the floating song 
last jumped to match the beat.

• Start. This state exists to wait for the user to assert should start matching, at which point the 

module jumps to Wait for Wait for Floating Transition.

• Wait for Floating Transition. In this state, the Beatmatcher is waiting for a beat from the 

floating song to happen. Once one occurs, the Beatmatcher jumps to Hold Current Floating 

Sample. In the meantime, the Beatmatcher set the last floating input address register to the 

current address coming out of the Addresser; this register stores the address of the last floating 

beat in memory.

• Hold Current Floating Transition. Here, the floating song has just had a beat. In order to line 

up the beats of the two songs, this state forces the floating song’s Addresser to hold its current 

value—that is, to pause. Once the reference song has a beat, the Beatmatcher jumps to Wait for 
Reference Transition.

• Wait for Reference Transition. In this state, the Beatmatcher withdraws its override of the 

floating song’s Addresser, since the beats are now lined up. The Addresser then continues 

playback normally (at the speed provided by upsample and downsample), until another reference 

beat occurs, at which point the Beatmatcher jumps to Override.

• Override. In this state, occupied for a single clock cycle, the Beatmatcher has just noticed a 

reference beat, so it instructs the floating song’s Addresser to jump to the address of its next 

beat by adding the address of the last floating beat (last overridden floating address) to the 

number of addresses the music system has requested between floating beats (floating next 
address period).

The result of this process is that, if the two songs are of constant (but potentially different) speeds, 

and the reference and floating beats are input perfectly aligned with the beats of the songs, the 

Beatmatcher will slow down or speed up the floating song to the closest it can to match it to the 

speed of the reference song, and ensure that even if they come slightly out of alignment, they’ll be 

realigned every reference beat.

Audio Effects (Matthew Putnam)
Two audio effects were designed to work with audio of all sampling rates: echo and reverb. Both 

effects are described below.

Echo (Matthew Putnam)

The echo effect is a simple repeat of past information that is added on top of the current audio 

sample. The module takes as input the incoming sample and ready signal and outputs a new audio 

sample with the echo effect added as well as the new ready signal for that sample.
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This module works by creating a large circular BRAM buffer and keeping an offset pointer to the 

next location to write. When a new sample is ready, this sample is written to buffer[offset] and the 
offset is incremented. Then, the sample at buffer[offset-delay] is read, and this stored sample is 

added to the incoming sample. To prevent overflow, this sum is stored in a 9-bit register, and the 

high 8 bits are passed to the output.

Since this module uses a lot of storage, an external BRAM module was used. This created some 

timing issues with the BRAM's parameters. To prevent these issues, a small linear FSM was used 

to control the stage of the calculation. The FSM was overly cautious, only doing one computation 

per state, but since only a few computations are done per sample, and there are thousands of 

clock cycles between samples, this excess was not a problem.

When the new sample is calculated, the new ready signal is asserted for one clock cycle. It's not 

entirely necessary for subsequent modules along the data path to use the new ready signal, as 
using the old one will only mean that the samples being read are one sample old. This only affects 

the timing of the signal, not any computation being done on it, an is an unnoticeable delay.

Reverb (Matthew Putnam)

The reverb effect took many tries and many different approaches to get right. The initial idea was to 

use convolution reverb using the same architecture as the FIR filter module from lab 4. The module 

would convolve the incoming samples with the impulse response of a resonant room, recreating 

what playing that sound in that room would sound like. This design has the promise of perfectly 

mimicking the acoustic properties of any room, but is impractical because of the amount of data 

needed. For it to work properly, a very high sampling rate is needed, and the audio samples need 

to have enough bits to be accurately scaled. Neither of these were available.

The next idea was to approximate the impulse response as a series of impulses separated widely 

by zeroes. This would drastically reduce the number of samples and arithmetic operations needed 

at the expense of quality. For this, a BRAM was created that stored the last few thousand samples. 

However, figuring out the correct delay between impulses and tuning the pulses' magnitudes was 

incredibly difficult. If the pulses were just a little too large, the output was a distorted, robotic 

sound. If they were too low, then the reverb couldn't be heard.

The third idea was to use feedback. For this, two basic building blocks were created. The first was 

a comb filter, which delays the sample by some constant amount and has a feedback loop that 

adds a scaled copy of the output back into the input. This has the effect of sound bouncing off a 

single surface. The second module was an allpass filter, which is the same as the comb filter, but 
includes an additional feed-forward loop with the negative of the gain from the feedback loop. The 

effect of this module is that it smoothes the frequencies of the input. Various reverberators could 

then be made by adding together several comb filter echoes and smoothing the sum with allpass 
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filters. However, the problem with this approach was that because of digital logic's discrete nature, 

the fractional feedback component continuously lost precision (and compounded the problem 
when a truncated signal was further truncated), introducing lots of noise.

The final decision was to go back to the second idea, the reduced form of the convolution reverb. 

A few days were taken to carefully calculate the ideal parameters, and the result was as good as 8-

bit, 6kHz (48kbps) audio is going to get. The signal is slightly distorted, but the reverberation is 

clear.

The module utilizes two ROMs, one storing a list of delays (measured in number of samples), the 

other storing a list of scaling factors as fractions of 1024. There is an index into these ROMs, and 

an 18-bit accumulator. When a new sample is ready, it is written to the buffer at the current offset, 

the offset is incremented, and the index and accumulator are zeroed. Then, on every clock cycle, 

the following things happen:

• The delay and scale are read out of the ROM using the current index

• The sample at buffer[offset-delay] is read and multiplied by the scale, and this product is 

added to the accumulator

• The index is incremented

When the index reaches the end of the samples, this process is halted, and accumulator[17:10] is 

passed to the output. Note that for the output to be in the right bits, the scale factors need to add 

up to 1024, or at least very close to it. As with the echo module, a new ready signal is asserted for 

one clock cycle.

Testing and Debugging
We tested most modules of the Digital DJ Setup independently before integrating them into the 
completed system. The system was loaded onto a Xilinx FPGA as part of a Labkit with a 16-

character hexadecimal display, making it possible to examine the states of various modules. The 

hardware constraint file and top-level module code for connecting inputs and outputs to the Digital 

DJ Setup were re-used from a past project.

Below are descriptions of the testing performed on each subsystem.

Input Methods (Adam Goldstein)

Testing the turntable and knob was very easy; both worked the first time I downloaded them to the 

FPGA and connected wires to the appropriate user inputs.

Keyboard (Matthew Putnam)

The keyboard input module was tested by displaying the current ASCII value, the difference (in 
number of half steps) between the two keys pressed, and the resulting ratio on the 16-digit hex 

display and visually verifying those values to be correct.
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Sound Router (Adam Goldstein)

Testing of the Sound Router was by far the most time-consuming part of my work on the project. 
Originally, I ran into problems with the timing of the FFT module; because I was not waiting for the 

requisite seven cycles after receiving a done signal from the FFT module, I would end up with 

frequencies out of alignment, producing strange overtones (Figure 19).

Another time-consuming problem was the fact that the FIFO provided by Prof. Terman worked 

differently with the FFT module in ModelSim and on the logic analyzer. After several days of 
attempted diagnoses by the lab assistants, I gave up and wrote the memories myself.

Finally, I ran into a bizarre problem with ISE, where trying to synthesize the FSR module as originally 

written would eat up more than 50% of the chip’s resources by allocating memories as registers 

instead of LUTs, and lead to an order-of-magnitude slowdown in compile time. I was able to fix the 

problem by replacing:

if ((surplus > 0) && (surplus >= downsample)) begin

 data_out_store[data_out_write_pointer] <= 0;
 ...

else if (surplus < 0) begin // We're downsampling

 ...
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Figure 19: During this test, I was inputting a signal that oscillated from 16’b1000_0000_0000_0000 to 
16’b0111_1111_1111_1111 (signed) every clock cycle, then forward FT’ing it and inverse FT’ing the result. I expected 
to recover the original signal, but because I was not waiting for enough cycles before unloading the FFT module, 
frequencies got shifted, leading to the lower-frequency oscillation pictured here.



end

else begin

 data_out_store[data_out_write_pointer] <= 
data_in_store[data_in_read_pointer];
 ...

end

With the following, equivalent expression:

if ((surplus > 0) && (surplus >= downsample)) begin

 // data_out_store[data_out_write_pointer] <= 0;
 ...

else if (surplus < 0) begin // We're downsampling

 ...

end

else begin

 // data_out_store[data_out_write_pointer] <= 
data_in_store[data_in_read_pointer];
 ...

end

if (surplus >= 0)
 data_out_store[data_out_write_pointer] <= (((surplus > 0) && 
(surplus >= downsample)) ? 0 : data_in_store[data_in_read_pointer]);

Once I made this change, the improved compile time made it much easier to quickly test Sound 
Router features that were working in ModelSim on the Labkit itself.

Addresser (Adam Goldstein)

Testing the Addresser in ModelSim was very easy; I simply provided it a sampling ratio and a signal 

for get next address, and after a few minor tweaks got the output shown in Figure 20.

Beatmatcher (Adam Goldstein)

To test the Beatmatcher in ModelSim, I had to generate signals representing two different speeds 

of someone pressing the button—one for the reference speed and one for the floating speed. 

When I set them at a ratio of approximately 4 to 3, I got the output shown in Figure 21. Note that 

as expected, once should start matching is asserted high, the system waits for the next transition 

of floating beat, then forces an override of the output address until the next transition in reference 
beat. The sampling ratio (12/9) is constantly provided so the Addresser knows what speed to play 

at, and at reference beats, the override mechanism forces a new address into the Addresser for a 

single cycle (far right of Figure 21).

Memory (Nathan Artz)

Please see the main Memory section.
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Audio Effects (Matthew Putnam)

The memory components of the echo and reverb modules were tested by running a test file on 
them in ModelSim. For the test, some inputs were given and the signal waveforms were inspected 

to see that the values were being stored at the correct locations. Upon this testing, some minor 

timing bugs were found. These were caused because some internal registers were not zeroed on 

reset. While the FPGA automatically zeroes out all registers on initialization, they were explicitly set 

to be safe.
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Figure 21: The working output of the Beatmatcher in ModelSim.

Figure 20: The working output of the Addresser in ModelSim. Note that each assertion of get next address produces a 
new address out value as expected.



The echo and reverb effects themselves were tested by using a modified version of lab 4 to input 

and output actual audio samples through the AC97. We could then simply talk into the microphone 
to observe the effect. The biggest issue was with tuning the scale values of the reverb module. 

First, they have to add to very near 1024 so that the output is the right size. Second, they have to 

decay with the right shape so that the effect sounds authentic. The delay values need to be close 

enough together that the listener can't hear a discernible set of echoes, and far enough apart that 

the effect had noticeable sustain. Also, if the impulses were very close together, the adding in of 

signals at regular intervals would produce noise at a certain frequency. Usually, this signal had very 

little power, but if too many impulses were used, this started to be heard.
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Conclusions

The mixing setup features a robust memory foundation, specialized mixing algorithms, and 

innovative physical mixing components.

At a technical level, the memory modules are based on a series of different finite state machines, 

smoothly reading and writing based on user input of different switch selections. Moreover, the 

components were extremely successful in warping sounds in both the time and frequency domain.

First, a computer keyboard input, modeled as inputs to a piano, provided a unique method for 

discretized warping based on the distance between different ‘notes’. Second, a rotating motor 

allowed for continuous time and frequency changing via changes in speed, providing an excellent 

“scratching” sound.

While lower quality than the maximum 48kHz sound rates available, 6kHz samples permitted 

spectacular output from the echo and reverb modules decaying sound output. Integration of the 

components, especially the beat matcher and address modules was highly successful due to 
highly decoupled modules, which only were connected by two busses. Finally, the beat matching 

module was the climax of the project by matching user-inputted beats to play two songs 

synchronously  at the same beat.

Initially, problems with writing the Flash memory on the fly occurred, and a revision in design was 

created to use the ZBT as an intermediate. As stated, highly decoupled modules allowed for easier 

integration in the long run.

The design could be improved in a number of ways. First, improving the sound quality through 

both a higher sampling rate and higher precision in each sample would allow for a much cleaner 

output. Second, possibly utilizing more b-rams in the reverb module would allow it to extend 

further in time. Third, physical components such as the turntable could be implemented with a 
smoother motor to improve the quality and consistency of playback.
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