
6.111 Final Project – Morrissey, Li, Wong

6.111 Introductory Digital Systems Laboratory – Fall 2007

Digital Sonar – Project Checkoff List
Bryan Morrissey, Zhen Li, Brian Wong

Bryan Morrissey – Hardware Interface and Data Acquisition System

Non-Verilog Tasks:

● Output Pulse Amplifier

● Delta-Sigma Interface Circuitry (12 Channels)

● Ultrasonic Transducer Arrays: Transmit Array, Receive Array

Verilog Modules:

● FSM for interface control logic

○ output pulse trigger

○ subsystem timing

○ threshold control

○ ready/wait signals for other blocks

● Output Pulse Generator

○ optional variable timing, variable pulse width (number of 40kHz cycles per pulse)

● ADC and Data Acquisition Logic

○ Sync and Feedback latches

● Waveform reconstruction

○ converting 1-bit 27MHz signal into multi-bit 1MHz signal

○ Initial LPF and DC bias compensation

● IIR High Pass Filter – low-order filter for DC component blocking

● FIR Low Pass Filter – block 1MHz sampling/quantization/aliasing noise

● Zero crossing detector – convert multi-bit signal to one-bit signal

○ Optional feature – adjust threshold to compensate for stronger/weaker reflections

● BRAM Data Buffer – 12-bit x 32K

○ buffer 1-bit datastream from 12 receiver channels

○ store up to 32,768 samples at 1MHz sample rate (30Hz refresh rate: 33.3 ms/cycle)

○ one read port for signal analysis block

○ one write port (optional read/write to access raw data for debugging)

● Optional Components (If time allows)

○ RS-232 serial interface to access raw data

1/4

6.111 Final Project – Morrissey, Li, Wong

○ Alternate video display mode to visualize raw transducer data

Zhen Li – Signal Analysis System

Basic Functions:

● Wave Package Detector

○ Read bit stream from BRAM and determine the boundaries of reflected wave packages
appropriately

○ Input: BRAM, start; output: (t1, t2) (can be shown on LED displayer), done

● Direction Sweeper

○ Read a single wave package and extract the angle information (inter-receiver delay dt)
from it.

○ Input: BRAM, (t1, t2) from Wave Package Detector, start; output: dt (can be shown on
LED displayer), done

● Coordinate Retriever

○ Calculate distance r and angle cos(theta) from t1, t2, dt; then convert the coordinates
into (x,y)

○ Divider and square-root modules can be checked separated

○ Input: t1, t2, dt, start; output: (x,y) (can be shown on LED displayer), done

● Parameter Manager

○ Normal mode: provide coefficients (a1,b1,a2,b2)

○ Calibration mode: calibrate coefficients (a1,b1,a2,b2) from a set of (t1, t2, dt)'s

○ Input: t1, t2, dt, start; output: (a1,b1,a2,b2) (can be shown on LED displayer), done

● Controller

○ Signal each block to start, and receive done flag from each block

○ Communicate with the other two systems

○ Input: start signal from Hardware Interface and Data Acquisition System, a set of done's
from each internal block; output: done signal for Display and User Interface System, and
a set of start's for each internal block (can be shown on LED displayer)

Improvements (if time permits...):

2/4

6.111 Final Project – Morrissey, Li, Wong

● Width of objects

○ Direction Sweep extracts the width (tw) of the peak, and Coordinate Retriever estimates
the width of the object from (t1, t2, dt, tw)

○ Calibration on the width calculation

○ It's a modification of Direction Sweep, Coordinate Retriever, and Parameter Manager.

● Multi-object Recognition

○ Retrieve more than one object from one wave package, i.e. at the same distance r

○ It's a modification of Direction Sweeper, Coordinate Retriever

Brian Wong – Display and User Interface System

Data processing

● Double-buffering (if necessary)

○ Use ZBT or BRAM to double-buffer XVGA resolution screen output

● Motion detection module (if time permits)

○ Ability to filter out incoming noise to produce a stable object location

○ Use memory to record object location history

○ Use location history to produce object average speed estimation every second

● Object representation module

○ Represent object with different speed and color

○ Ability to track object and hold consistent coloring for each object in range

○ Change object size or color based on distance from sensor or object movement

User interface

● Sonar scope layout module

○ Create Java program to convert sonar scope layout into .COE bitmap

○ Initialize data into labkit memory unit (ZBT or BRAM)

○ Draw sonar layout as background on XVGA screen

3/4

6.111 Final Project – Morrissey, Li, Wong

● Text display module

○ Display angle and distance estimation data for each object

○ Display speed estimation data for speed vector

○ Display basic system setup such as scan rate and audio pulse frequency on screen

○ Able to float text to the side of each object

● Vector generation module (if time permits)

○ Take object movement estimation and draw vector

○ Change proportional vector size based on the speed magnitude

○ Locate object vector intelligently next to object in range

● Sound generation module (if time permits)

○ Generate sonar detection indicator sound if objects are detected in range

○ Generate warning siren if object is too close to sensor or is moving in certain direction
or speed exceeds threshold

● Sweeping sonar line module

○ Generate a sonar scope sweeping line that rotates around the scope center

○ Create an alpha-bending effect such that there is a trailing edge on screen

○ Interact with sound generation module to produce a sonar “ping” when line intersects
with an object on screen (if time permits)

Testing and Debugging

● Calibration module

○ Provide a simple interface for calibration sonar sensor

○ Display calibration data on screen

Improvements

● Motion recording module (if time permits)

○ Record object location in memory

○ Provide basic playback mode for to display object movement on screen

4/4

