Project Proposal

Abstract

The project is similar to classic videogame side-sc)liwhere players use direction
keys and an action button to control a 2d characteugifrplataforms, dodging or killing
enemies and collecting items, using sprites and sprilisical and a scrolling
background. The game will progress through a series of sieggswith its time limit, to
be completed by reaching its end. Sounds will be triggereddlmasin-game events,
such as collecting an item or dying, also with the pasgitolr a continuous background
music.

Implementation — high-level block diagram

Microsequencer instructions ' Graphics
user input Processing VGA signal
—> < Unit
collision signal
y
audio trigger A
s Graphics
Audio ROM
Processing to AC97
Unit >

Audio
ROM

The game logic, outside graphic processing, tends torhe dample; it moves around
sprites in the screen, and triggers effects when aoikshappen, such as a collision of
the character with a tile representing the ground (tefall, kill the character
depending on the type of tile he fell on), collisiortltd character with a tile representing
an enemy (kill the character, or kill the enemykitithe projectile sprite and the
enemy), collision of the character with an item owpo-up (update score, update
variables allowing new actions). As such, a microsequeeeensfit to deal with the
game logic, as long as the graphics processing is movedtizeartogic block.

The microsequencer receives input from the user, asag/élbm sprite collisions. It will
receive a signal from a slow (tens of Hz) from ediaaare timer as well, as opposed to
trying to emulate time counting on its program, to aanttovement of sprites and in-
game time effects (such as a time limit).

The audio processing unit only receives control signata flee microsequencer, with ID
of the audio to be played. It will keep playing a backgroundiena loop, with up to 3
sounds being played simultaneously on its top. The souactefvill be stored in the



ROM as simple wave information; the background music tnigh sound synthesis, time
allowing.

The graphics processing unit receives and returns informatidve microsequencer. It is
responsible for displaying a background panorama, game infom{&tne remaining,
lifes remaining, score), as well as the sprites fergame itself. Some “blocks” of
impassable areas may be stored on local registergresesnt game entities such as the
floor, or the ceiling; collisions of sprites with tineare also notified, using a special
reserved ID for representing a “blocked” area. The GPalso responsible for managing
up to S sprites simultaneously in the screen, coordinatmcfwvegprite ID given by the
microsequencer is associated with which hardware spritiellgnoThe microsequencer
sends it informations such as creating, moving and desyyegrites, exchanging the
background or panning the screen.

Each sprite has each pixel represented by X bits: Rbited, G bits of green, B bits of
blue, L bits of layer, a bit of opacity and a bit of cadin. If two sprites take up the same
pixel in the screen and both have the bit of colli@ety a collision signal is emitted to
the microsequencer. Additional logic is employed to seadllision signal only when the
collision starts, as to not flood the microsequencén thiose signals before the sprites
can be moved.



