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Abstract

The digital theremin and synthesizer simultaneously plays external music and generates tones while display-
ing a visualization of the sound being produced. The tones generated depend on the positions of the users
hand in front of a camera, with one hand controlling pitch and the other adjusting the volume. The system
takes an external analog audio input, overlays an audio stream generated by the user and applies filtering
effects as selected by the user via keyboard. The theremin features a variety of filters and effects along
with multiple tones that the user can select from. The visualization features three distinct modes for both
internal and external audio and depends on the pitch and rhythm of the outputted audio stream. The final
product is a user-friendly and fun musical instrument which allows people with limited musical knowledge
to “play along” with or improvise on top of musical tracks of their choice, while enjoying an entertaining
visual display.
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Chapter 1

Overview

The goal of the Digital Theremin Synthesizer and Visualizer is to mimic the feel of a real analog theremin,
while allowing integrated features to a degree which wouldn’t be possible in an analog system. The Digital
Theremin is supposed to be a multipurpose instrument, which allows a player to perform over a backing
track of his choice, while providing entertaining visualizations which correspond to the music. In designing
the instrument, we wanted seamless and lagless interaction between the video input and the audio output.
And we wanted a real time visualizer which would respond fluidly to the background music. The design is
laid out as shown in Figure 1.1.

The video input system is designed to replicate the experience of playing the Theremin. Neither hand
has to physically touch anything to make music. The user wears a red glove on his right hand and a blue
glove on his left hand. The right hand, which is detected in the Cr color space, is used to determine the
pitch of the note being played, on a programmable scale between 90 and 1023 Hertz. This module includes
a linear to exponential conversion lookup table, which takes linear increases in the x-coordinate of the hand
and converts it to exponential increases in frequency. The left hand is detected in the Cb color space and is
used to control the mixing volume of the theremin.

The video module outputs a frequency and a volume, which are fed into the audio module. The audio
module uses a lookup table to generate a tone at that frequency. The system features the ability to produce
multiple tones for different audio effects. The user can enable and disable higher frequency harmonics of the
root tone, as well as produce either a major or minor chord based around the selected frequency. The system
can generate both a sine tone and a violin tone, which was sampled from a live recording. The system also
includes a variety of time-domain effects: chorus, flanging, reverb and delay.

The audio stream is fed into a 1024 bucket streaming FFT, which constantly fills a ram with the output
frequency information. This data is the basis for the visualization module, which features three main ‘modes’
of visualization. It features a ‘fire’ mode, which is represented by bars corresponding to frequencies, a ‘circle’
mode, which is a circle which responds to beats, and ‘line’ mode, which draws lines corresponding to notes
which are held for a while in a piece of music.

A user interfaces the Digital Theremin through a computer keyboard. The number keys correspond to
the video effects, while the letters shown in Table 1 correspond to audio effects. The audio effect buttons
function as toggles while the video effect buttons change the display based on the button pressed. After the
user provides the system with keyboard input, the LED display flashes the current mode before sliding the
text off screen.

Throughout development, our team worked together on code, logic and ideas in each of the sections of
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the project. Although we collaborated on each part, we divided up the work to complete the project in a
reasonable manner with the least amount of overlap possible. The person in charge of each section of the
project wrote the description of it.

Audio Effects Video Effects
C Chorus 1 Internal Off
D Delay 2 Internal Fire
F Flanging 3 Internal Circles
R Reverb 4 Internal Lines
N Chords 5 External Off
M Major/Minor Toggle 6 External Fire
T Second Harmonic 7 External Circles
Y Third Harmonic 8 External Lines
U Fourth Harmonic 9 Camera
I Fifth Harmonic 0 Camera Toggle (Y/Cr/Cb)
V Violin

Table 1.1: Keyboard Control Guide
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Figure 1.1: Top Level Block Diagram
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Chapter 2

Description

2.1 Video Processing (Alexander Spicer)

The video input serves as the primary interface to our theremin system. Our goal was to create a streamlined
interface which resembles an analog theremin, but returns quantized digital values for the right and left hand
position. We decided on using a simple camera system to detect the horizontal (x) and vertical (y) coordinates
of two independent blue and red objects in the camera’s field of view. The red input is a weighted average of
the x-positions of the pixels on the screen over a certain chrominance and luminance threshold. This value
is passed into a frequency calculation module, which allows the frequency to be centered around any value
in the range of 10 bits (0-1024) and for any range constraints to be set on the frequency output. The blue
input is calculated the same was as the red one, and is scaled in the range of 0-400. It is used to control the
volume of the theremin relative to the background music.

The data flow through the system is as shown in Figure 2.1.

2.1.1 Video Input

Our video input system is based on the ZBT ram display module provided by the 2005 6.111 lab staff.
The camera stream is received through the labkit’s composite in port and processed through a number of
staff provided modules which decode the signal into a YCrCb video stream. The Luminance information is
then stored in a frame buffer in ZBT ram, which is read back and output to the screen. The Cr and Cb
information are processed in a similar way, but are never stored to memory.

Two modules, weighted avg and weighted avg red, take the incoming Cb and Cr data streams respectively.
The weighted avg reg module scans through the data stream, looking at the values of field, vsync, and hsync,
and only allow valid data pixels to be included in the calculations. As the screen refreshes, every pixel that
has a Chroma Red above 164 and a Luminance below 128 (basically a dark red color) is declared as red.
Its x value is added to a running total and a counter increases by one for every pixel found. At the end of
the screen refresh, these two values clocked into registers while the process starts again. The output of the
weighted avg red module is a 10-bit value, which, on each screen refresh, corresponds to sum of x coordinates

number of red pixels .
The blue module works in exactly the same fashion, using y coordinates and only selecting pixels with a

Chroma Blue greater than 140.
Because the screen’s coordinate system is in the fourth quadrant, the blue coordinate is subtracted from

544, which is the effective maximum blue value due to random noise as the hand moves towards the bottom
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Figure 2.1: This block diagram shows the basic flow of information through the video processing logic

of the screen. This volume is passed to the audio and visualizer module.

2.1.2 Frequency Conversion

In order to give the user more control over the range and precision with which they can play notes, we pass
these raw pixel values through a frequency conversion module. This lets the user set the center and range
of frequencies they can play on the theremin screen through a slightly convoluted procedure. When switch
7 is on, the user can use switches 6 down to 0 to select the top 7 bits of a 10 bit frequency range. When
they press the third button, the device synchronously programs this value. If switch 7 is off, the switches
allow the user to select the top 7 bits of the frequency range and program it in the same way. After this
procedure, the screen is programmed to play any note between center − range and center + range.

The conversion system is equipped with a ‘lowpass’ filter, which will not move the output frequency unless
there has been a more than 3 pixel jump in the hand’s x coordinate. Due to random noise associated with
the camera input, this was a decent tradeoff between stability and a continuous spectrum of notes. After an
update is triggered by the movement of a hand, a new frequency output is calculated. This is calculated as
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(center− range) + (x∗range)
512 , where x is the current x coordinate of the pitch hand. The volume is assigned

with less calculations, and is provided by 544− y.
This output is fed through a lookup table, which effectively scaled the output to achieve the goal of

linearity - every octave is equally spaced.

2.1.3 Building and Debugging

I used the template for displaying video provided by the staff as the template for my design. The system
uses a ZBT-ram frame buffer for storing and displaying luminance data. The display mechanism remains
untouched, and the screen outputs a grayscale picture to a subsection of the screen when camera mode is
selected. As a debugging tool and as a visual aid, we overlay a vertical red line and a horizontal blue line
on the screen to show where the center of mass of the red and blue pixels currently lie. Also included in the
final system is a Chroma Red and a Chroma Blue display mode, where all pixels above the thresholds are
shown and all other pixels are blacked out.

This part of the project was easy to debug, since we could visually and numerically view the outputs of
the system and monitor if they are giving the expected behavior.

While constructing the system, the first serious design choice was simply deciding what color threshold
we should use for the pixels. While the system was still being designed, the cutoffs were programmable
quantities, so we could experiment with different thresholds. The final choice for cutoff is a compromise
between getting rid of random noise and picking up enough pixels of the glove to get a good quality average.

The first build of the video system had a nasty lag in tracking. It took about a second for the screen to
follow your hand, and when it did, it was very jerky. To solve this, we regenerated the Coregen dividers
with a 1 clock latency instead of an 8 clock latency. These dividers were massive resource hogs and perfectly
smoothed out the hand movements, but still had a 1 second delay. The red line would perfectly track the
glove exactly one second after the hand moved. It took a while to sort out this bug, but we solved it by
removing the divider’s clock enable, which was essentially causing the divider to run off of a 48 KHz sample
rate.

During the construction of the project, the x position of the red hand was linearly correlated to the pitch
of the note. Due to the log2 scale of frequency to pitch, this means the user has to move their hand further to
transition between notes at higher frequencies. Our original plan was to include a module which ’linearized’
the hand movement, but the ability of the FPGA to calculate a logarithm in that range turned out to be
pretty limited. Instead, we just included a look up table, which scaled the linear pixels values (0 through
1023) to a logarithmic scale between 90 and 1023, ensuring that every octave is evenly spaced. In hindsight,
we should have included subpixel precision for the frequencies to allow a more continuous scale. After we
had assembled our project, we found that moving your hands one pixel at higher frequencies often moves
the sound by two or three hertz, which begins to sound choppy.

After all of these modifications, we found that the camera input tracked a user’s hand almost flawlessly
and made for a very playable system.
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2.2 Audio Synthesis and Processing (Daniel Rodgers)

The audio subsystem is responsible for processing and creating all of the audio and effects available to the
user of the theremin. It takes in a frequency value provided by the video processing subsystem, and generates
a base tone at that frequency. The system can generate either pure sine tones or violin tones, and is able
to switch between the two on the fly. A number of other options are available as well, such as major and
minor chords calculated from the base tone and the addition of harmonic tones. The volume of the tones
being generated is also controlled by the video processing subsystem. Once the basic sound has been chosen
by the user four audio effects can be enabled, individually or all at once, to alter and enhance the sounds
being created by the theremin. These effects are chorus, flanging, reverb, and delay. The theremin audio
can also be combined with an external audio source which has been sampled by the ac97 chip on the labkit.
The audio subsystem is capable of switching between outputting the combination of the theremin audio or
simply passing the external audio directly through. Every effect and audio filter in the audio subsystem
is controlled by global enables that are set by the user via keyboard input. The audio system consists of
seven modules, which will be discussed below. The modules are: a slightly modified version of lab4audio, a
tone generator, modules for each of the effects (chorus, flanging, reverb, delay), and a module responsible
for combining the internal and external audio streams. A block diagram showing the connections between
these modules is below. Please note that enables for each module are not shown, as well as the ac97 ready
signal, which each module takes as an input.

2.2.1 lab4audio

The lab4audio module used by the audio system is essentially the same as the one provided for use during
lab 4. However, it has been modified to support stereo input and output. In addition, the audio streams for
each channel have been increased to 10-bits from their original 8. This change was made to prevent clipping
on the sampled external audio.

2.2.2 Tone Generator

Inputs: clock 27mhz, ac97 ready, frequency[9:0], chords enable, chords enable, major enable, second enable,
third enable, fourth enable, fifth enable, violin enable
Outputs: theremin, theta small, theta current

The tone generator module takes the current frequency from the video processing subsystem and uses
this value to create the theremin audio. The user is able to select which tone is generated by using the
keyboard to enable or disable various effects. The tone generator takes in numerous enables and uses them
to determine what the theremin audio will sound like. The audio is produced by the tone generator at a
rate of 48,000 samples per second.

The most basic tone that can be created is a sine wave at the current frequency. In order to create this
sine wave, the module uses a look-up table which takes an 8-bit theta value and outputs the appropriate
sine value. The value of theta is increased every sample (indicated by the ready signal going high) by an
amount determined by the current frequency. The increase in theta is calculated by shifting the frequency
value left by 16 (to increase the precision), then dividing by 48,000. This increase is calculated constantly,
so any change in the frequency is heard almost immediately. This results in a very pure single note, and can
be seen by Figure 2.3(a), the FFT analysis of a sine wave generated by the audio subsystem.

The tone generator is also capable of producing violin tones, using essentially the same method that is
described above. The single exception is that rather than using a look-up table containing sine values, one
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Figure 2.2: Audio Processing Block Diagram

with the appropriate values for a violin waveform was created by sampling a violin recording using Matlab.
The same theta is used as the input to this lookup table, and the user is able to switch between the violin
tone and the sine tone. The violin tone is richer than the pure sine wave, and this can be seen visually be
observing the FFT analysis of the violin tone provided in Figure 2.3(b).

In addition to creating the basic tones at the given frequency, the tone generator can add harmonics at 2,
3, 4, and 5 times the frequency of the base note. These are created with more lookup tables, only their theta
values increase at a more rapid rate. These can be added to the output sound at any time with a simple
keystroke on the keyboard. The effect of adding these harmonics can be seen in Figure 2.3(c), a photograph
of the FFT analysis of the theremin audio with harmonics enabled.

The last thing the tone generator is capable of doing is generating chords based off of the base frequency.
Again, these are created by adding extra tones at different frequencies, but here the tones are at different
multiples of the base frequency depending on whether major chords or minor chords have been selected.
Enabling chords greatly increases the richness of the audio, as shown in Figure 2.3(d).
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The audio stream output by the tone generator is 8 bits. The output is determined by evaluating the
current status of the enables. If chords are turned on, then the output audio is the current chord. Otherwise
the output is the sum of the main tone and the harmonics that are enabled. When two or more tones are
added together, they are shifted right by the appropriate number to prevent overflow in the output audio
stream.

(a) Sine Input (b) Sine Input with all harmonics

(c) Violin Input (d) Violin Input with Chords Enabled

Figure 2.3: Different Audio Effects Displayed on the Visualizer

2.2.3 Chorus

Inputs: clock 27mhz, ac97 ready, frequency[9:0], theta increase[11:0], theremin in[7:0], violin enable, chorus
enable, switches, reprogram
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Outputs: theremin out [7:0]
The chorus module adds a chorus effect to the input theremin audio stream and outputs the modified

audio. A chorus effect is intended to recreate the sensation of hearing similar sounds coming from multiple
sources, such as in a choir or chorus. This effect is simulated in this module by adding a slightly pitch shifted
version of the original tone and slowly changing the difference in pitch [1].

The chorus module has two lookup tables for both sine and violin waveforms, and it uses these to generate
the tones which are added to the input. The theta values for these lookup tables increase by the same
amount as the original tone since the chorus module takes in the current increase in theta as calculated by
tone generator. This happens every ac97 ready signal, in the same way it does in the tone generator module.
However, if an internal counter has reached its max value, then the theta value for one set of lookup tables
increases faster by some amount and the theta value for the other increases slower by some amount. The
counter max and the amount of increase or decrease are programmable by the user to provide the best sound
possible. This occasional increase or decrease in theta serves to modify the pitch of these tones by effectively
increases or decreasing their frequency. When chorus is enabled, the pitch modified versions of the sine or
violin tone are added to the original tone. Otherwise the original tone is passed through unmodified.

2.2.4 Flanging

Inputs: clock 27mhz, ac97 ready, current theta[11:0], theremin in[7:0], violin enable, flange enable
Outputs: theremin out [7:0]

The flanging effect occurs when to identical signals are mixed together but with a very slight and gradually
changing time delay [2]. The flanging module accomplishes this by taking in the current value of theta as
provided by the tone generator and then modifying it slightly every ac97 ready signal by added a “theta mod”
value to it. This slightly modified theta value is then sent to lookup tables for violin and sine tones and
their tones are added to the input theremin tone. Since the signals produced by the tone generator are all
periodic, this has the same effect as adding a delayed copy. Theta mod is increased every 100 samples until
it hits a maximum value, then it is decreased every 100 samples until it hits a minimum value and the cycle
repeats. By varying the offset from the original signal, the module effectively increases and decreases the
overall delay of the two signals.

2.2.5 Reverb

Inputs: clock 27mhz, ac97 ready, theremin in[7:0], reverb enable
Outputs: theremin out [7:0]

The reverb module uses a dual port ram that can store up to half a second of audio data in order to make
copies of the input delayed by a half second, a quarter of a second, an eighth of a second, and a sixteenth of
a second and add them to the original signal. This creates the effect of multiple reverberations coming at
the listener at once.

The delays are pulled from the ram by using a state machine that takes advantage of the fact that the ac97
ready signals come very infrequently in comparison to the 27mhz clock. Once the ready signal is received,
the state machine moves out of its waiting state and starts extracting a different delay every rising edge of
the 27mhz clock by modifying the read address based on the current write address. Once all the delays have
been saved to registers 8 clock cycles later, the state machine returns to waiting for the next ready signal to
repeat the process again.

The delayed signals are added back into the main signal with their amplitude reduced to of its original
value.
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2.2.6 Delay

Inputs: clock 27mhz, ac97 ready, theremin in[7:0], delay enable
Outputs: theremin out[7:0]

The delay module is a very simple ram that saves 2 seconds of audio and constantly adds the delayed
version of the audio to the incoming version. The module consists of a dual port ram that saves the incoming
audio. The read and write addresses are increased by one every ac97 ready signal and start at values such
that the read address is always 2 second behind the write address. The output of the ram is then added to
the input audio at a reduced amplitude.

2.2.7 Audio Combiner

Inputs: clock 27mhz, ac97 ready, from ac97 data l [9:0], from ac97 data r[9:0], theremin in [7:0], volume
[9:0], theremin enable
Outputs: to ac97 data l [9:0], to ac97 data r [9:0]

The audio combiner module is responsible for adding the sampled external audio to the generated internal
audio and sending the result back to the lab4audio module to be played over speakers. It does this by scaling
the external audio up by 512, and the internal audio up by a calculated volume. This calculated volume
comes from the volume generated by the video processing subsystem. Since the volume received by the video
processing subsystem is simply the average y position of the blue hand, we subtract this value from 544 so
that a y position closer to the top of the screen gives a higher volume.

The two scaled copies of each audio source are then added together whenever the ac97 ready signal goes
high. The theremin is added to each channel, left and right, and the result is shifted right by 9 to prevent
overflow. If the user wishes, the theremin can be disabled, and the external audio will be passed directly
through.

2.2.8 Fast Fourier Transform

The FFT is the central to of all of the system’s visualizations. The goal was to get a frequency space
representation of the waveform which updated frequently enough to accurately detect and display drum
beats and other interesting sounds. After experimenting with larger FFTs, we settled on a 1024 sample
streaming FPGA, which outputs new frequency data approximately every 21ms. Since the FFT was only
taking in real streaming audio, we were automatically able to truncate half the output due to redundancy,
and we settled on displaying the lowest 128 buckets of information, which afforded us more than enough
ability to display frequencies in a normal musical spectrum.

We clocked the FFT with a clock enable from the ac97 chip, which went high whenever a new sample was
available. This caused the FFT to shift out data every 21ms, which allowed us more than enough time to
perform any calculations on the output data we wanted before storing it into ram, sorted by bucket number.
We decided to store the magnitude of the frequency information, which involves squaring the two outputs,
adding them together, and then performing a square root. We used a slightly modified version of Terman’s
FFT code to perform the square root, since it seemed more reliable than the Core generated IP.

This system took quite a few days to get working, due to problems with the square root module and
arithmetic logic. There was half a week when our system, which had no visible bugs, was not displaying
valid FFT data. Instead it displayed bars of varying random heights. We tried to debug this, to no
avail. Finally, through random luck, we found that the system only worked when we changed our math
to continuous assign statements, and we just gave the logic enough time to trickle through. The logic had
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previously been divided into multiple steps, with each operation occurring between concurrent clock ticks.
I would attribute this to one of the operations needing more than 37ns to complete.

The FFT data is stored in a dual port block ram as 10-bit magnitudes, which are freely read out by the
visualizer module. The dual ports are clocked at separate frequencies, which provides the transition between
the 27 MHz audio processing and the 65 MHz video processing.

2.2.9 Testing/Debugging

Testing of the audio subsystem was performed by simulating frequency and volume values by assigning them
to the switches on the labkit. In this way we were able to ensure that the subsystem worked over a wide
range of frequencies and was able to scale the volume as we wished. However, this did not simulate the
effect of the frequency value changing very rapidly and often, as it does when using the actual hand input.
As a result, when the two subsystems were combined, it was discovered that chorus would not work as it
was originally envisioned, with the max and min values that the theta values were increased or decreased by
being scaled with frequency. In order to do this we had originally been dividing the incoming frequency value
and then changing the max. However, when frequency changed very quickly strange sounds were introduced
to the audio stream. To combat this, we let the user program a static maximum value.

Most problems encountered by the audio subsystem were not technical, but rather questions of how to
create an effect and make it sound good. Many approaches to chorus and flanging were tried before settling
on the ones discussed here, but none gave the sound effect anticipated or as well as desired. The final
versions discussed here were simply the last and best sounding versions tried, though they are not ideal by
any means.
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2.3 Visualizer (Jeffrey Chang)

The visualizer module provided all the functionality required in drawing visual effects on a VGA-connected
monitor for both internal (Theremin-simulated) and external (fed in from an mp3 player or microphone)
audio streams. Data from the internal audio stream was generated from the video processing module,
modified by the audio effects module, and then passed to the visualizer module. Data from the external
audio stream was directly passed to the visualizer module after being fed in through the ac97 and processed
by the FFT.

Other inputs to the visualizer module included keys 1-8 on the attached keyboard, which were used to
enable and select amongst the various visualization modes. The visualizer module outputted 24 bits of pixel
color information to the VGA connector of the labkit, which was connected to an external LCD monitor.
The monitor and VGA output was set to a resolution of 1024 x 768 pixels. The visualization display always
showed a vertical blue bar and a horizontal red bar on the left and bottom sides of the screen, respectively.
These were used to show, in real-time, the hand positions of the simulated-Theremin user. The majority
of the screen displayed the actual audio visualization, which could toggle between three separate modes.
Each of these three modes could be enabled for the internal and external audio streams simultaneously, and
independently.

Figure 2.4 below shows a top-level block diagram of the entire visualizer module, with all inputs and
outputs. It also shows the various sub-modules that were implemented. For clarity, Table 2.3 lists and
describes each of the inputs to the main visualization module.

Input Description Number of bits
vclock 65 MHz clock 1
reset high-enabled reset signal 1
hcount horizontal index of current pixel 11 bits, unsigned
vcount vertical index of current pixel 10 bits, unsigned
hsync XVGA horizontal sync signal 1
vsync XVGA vertical sync signal (falling edge occurs @ 60 Hz) 1
blank XVGA blanking 1
external audio left iPhone/microphone audio input, left speaker 10 bits, signed
external audio right iPhone/microphone audio input, right speaker 10 bits, signed
internal audio Theremin audio input magnitude (mono) 8 bits, signed
internal audio volume Theremin audio input volume 10 bits, unsigned
theremin frequency Theremin audio input frequency value 10 bits, unsigned
mode select external used to select visualization mode for iPhone/mic audio 2 bits, unsigned
mode select internal used to select visualization mode for Theremin audio 2 bits, unsigned
dpdata holds FFT data (in BRAM) 10 bits, unsigned
dpaddr used to select FFT data being accessed (from BRAM) 10 bits, unsigned
hand x x coordinate of horizontally moving hand 10 bits, unsigned
hand y y coordinate of vertically moving hand 10 bits, unsigned

Table 2.1: List of inputs to the visualizer module, which was instantiated once in the top-level labkit file

15



Figure 2.4: Block diagram of visualizer module. Various sub-modules were used for the internal and external
visualizations, as well as to display sprites on the screen (hand position bars, circles, and lines
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2.3.1 Design

Fire Mode
This visualization mode was intended to simulate the music visualization feature that is present in Winamp,

the media player designed and distributed by Nullsoft [3]. Fire Mode makes extensive use of the data provided
by the FFT. Frequencies values vary horizontally across the width of the screen, with low frequencies on
the left and high frequencies on the right. At each horizontal position, a vertical bar is displayed which
corresponds to the magnitude of that particular frequency in the audio stream at that particular moment in
time. Colors vary across the entire rainbow spectrum (ROYGBIV), with red on the left side and violet on
the right side. Finally, a “falling tips” effect was implemented by placing a small (one pixel in height) white
bar at the top of each of the larger multicolored bars. These tips would “fall” downward with an acceleration
of their own, which was slower than the dropping off of the larger multicolored bars. The resulting effect
was visually pleasing, as not only did the jumping multicolored bars correspond with the frequencies and
beats heard in the audio stream, but the falling tips gave a physical, time-delayed effect to the motion.

Figures 2.5(a) and 2.5(b) show the Fire Mode visualization displaying a few stationary frequencies, and a
few moving (increasing) frequencies, respectively.

(a) At this particular moment in time, a low frequency with high
magnitude is being detected, as well as a mid-range and a high-
range frequency.

(b) This photo shows the Fire visualization displaying three fre-
quencies which were increasing over time. Falling tips can be seen
trailing behind the vertical bars that dropped off.

Figure 2.5: Fire Mode

The implementation of Fire Mode, which will be discussed in more detail below, did not require any
additional sub-modules. However, both Line Mode and Circle Mode utilized separate sub-modules which
treated horizontal lines and circles as sprites. These sub-modules will be discussed in their respective
Implementation sections.
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Line Mode (or “Rainbow Ladder” Mode)
This visualization mode was relatively simple, compared to the other two modes. Data from the FFT

was once again used, this time to detect frequencies whose magnitude was above a certain threshold value
(manually set in the Verilog code, but easily tweaked). Visually, frequencies varied from the bottom of
the screen to the top of the screen, with low frequencies displayed near the bottom. For frequencies where
the magnitude was above the threshold value, a horizontal line stretching the full width of the screen was
displayed. However, not all frequency values were checked, as nearby frequencies were skipped when an
above-threshold one was detected (more information on this is provided in the Implementation section).
The colors of the lines varied over time - specifically, they toggled across a spectrum which began with
green, and then moved through blue, red, and yellow, with intermediate shades in between. Figure 2.6
below shows this mode in action with a relatively low frequency being detected.

Figure 2.6: A horizontal line, orange in color, is displayed near the bottom of the screen in response to a
low frequency with sufficient magnitude.

Circle Mode (or “Kaleidoscope Mode”)
In this visualization mode, frequency values varied radially from the center of the screen. Separate circles

were displayed (centered approximately in the center of the visualization display area), and the circles’ radii
corresponded with the frequency values they represented. The internal logic was similar to that of Line
Mode, since only frequencies above a certain magnitude threshold were displayed. The purpose of this
visualization mode was to enable rough beat detection and provide visual feedback which was symmetrical
around the center of the screen and resembled that of an actual subwoofer or speaker (if one imagines the
circular driver in front). While I originally planned to utilize the magnitude value of the audio input stream
itself, the magnitude values of the individual frequencies (obtained from the FFT) were sufficient to provide
accurate beat detection and an enjoyable visual display.

The color of the circles displayed varied somewhat randomly, as the RGB values were set in a manner
which depended on the particular horizontal and vertical positions of the pixels. The resulting visualization
contained an interesting combination of blue, violet, aqua, green, and pink hues. Figures 2.7(a) and 2.7(b)
below show the circle mode at two different points in time in a song.
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(a) At this particular moment, the audio stream contained many
low frequencies, but not that many mid-to-high range frequencies.

(b) Here, a few mid-range frequencies are being detected, while
the number of low frequencies has diminished.

Figure 2.7: Circle Mode

2.3.2 Implementation

The overall visualizer module utilized a pixel pipeline to pass pixel data from one sub-module to the next.
Specifically, the visualize gen ext module, which displayed external visualizations depending on which mode
had been selected by the keyboard, was given an initial pixel input of black background pixels. The pixels
outputted from this module were passed as input to the visualize gen int module, which also displayed
visualizations according to the mode that had been selected. The pixels outputted from visualize gen int were
then given to display h bar, whose output was given to display v bar. Finally, the output from display v bar
was wired to the pixel bits that were fed to the VGA display. Thus, the horizontal and vertical hand position
bars were purposely rendered on top of the visualizations being displayed.

The modules displaying the vertical and horizontal hand position bars were fairly straightforward. Each
bar was 24 pixels in width and their length depended on the values being inputted. I included logic to display
white tick marks on the horizontal bar along the bottom of the screen, one pixel wide, at the locations which
corresponded to specific frequencies equaling musical notes (two scales of A through G, not including flats
and sharps). These values were obtained from a table found using Google Image Search [4].

Implementation of the various visualization modes varied a bit depending on the particular mode. I now
discuss implementation details and subtleties for each of the three modes.

Fire Mode
This mode was implemented by cycling through the applicable range of memory address values of a BRAM

which contained the FFT data (specifically, values 0 through 128). This range was adequate for visualizing
frequencies which occurred in speaking, whistling, our Theremin simulator, or music audio found in typical
songs. The memory values were reset and incremented along with the value of hcount in such a way that
they were continually cycled through, while the beginning of the FFT data (very low frequencies) would
correspond to an hcount value of zero (the left side of the screen), and the end of the FFT data being
examined (high frequencies) would correspond with the right side of the screen. Of course, the height of the
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vertical bars at any given time depended on the value in the BRAM for that particular frequency. This was
obtained by looking at dpdata, since dpaddr already depended on the value of hcount.

One of the tricky parts to implement was the rainbow spectrum of colors across the width of the screen.
Since I was feeding RGB values to the VGA, it was not as straightforward to generate a rainbow spectrum
(compared to if I had used YUV). However, I was able to do it with only a handful of nested if/else statements
and by consulting the Microsoft Paint application. Essentially, a pleasing continuous rainbow spectrum can
be generated by starting with pure red (R:G:B = 255:0:0), and then doing the following:

• Increase green value until pure yellow is reached (255:255:0)

• Then decrease red value until pure green is reached (0:255:0)

• Then decrease green and increase blue value until pure blue is reached (0:0:255)

• Then increase red value until pure violet is reached (255:0:255)

To implement this, I calculated the values that each third of the pixel output needed to be depending
on their particular hcount value so that the entire spectrum was displayed as hcount varied between 0 and
1023. Some of the calculations involving static arithmetic operations on hcount were hard-wired so as to
avoid repeated computation time.

Finally, the “falling tip effect” used a separate BRAM to store the locations and downward “velocities”
of 128 different tips. At each vsync falling edge, the height (location) of each of the tips would be compared
to the height of the vertical bar for that frequency. A rising bar would push the tip upward, setting the
height back to a great value (and the velocity back to zero). A bar that had fallen in height would not
affect the tip directly, but instead, the tips height would be decreased according to its current velocity
value, while the velocity value would be increased (slightly) for next time. By increasing the velocity value
by three pixels each time, we achieved a reasonable, visually pleasing downward “acceleration.” As a final
note, although I originally used an array of 128 registers to store and change the tips’ height and velocity
values, this did not work for some reason. When a 128-location BRAM was used instead, with the same
calculations and logic, the effect performed quite impressively.

Line / “Rainbow Ladder” Mode
The Rainbow Ladder visualization mode utilized a separate draw horizontal line module, which took as

input (along with other VGA-related values) the particular frequency for which a horizontal line needed to
be drawn. At every falling edge of vsync, a different frequency value was simply passed into the sub-module
and the corresponding line was drawn.

To obtain these frequency values, dpaddr (the memory address for the BRAM containing the FFT data)
was continually cycled through, and dpdata (the magnitude value for a particular frequency) was compared
to a parameterized threshold value. If the magnitude did not exceed the threshold, the subsequent value of
dpaddr would be used next time. However, if the magnitude did meet the threshold, the frequency value
to be passed in to the sub-module was set accordingly (after appropriate scaling), and dpaddr was skipped
ahead by a few values. The reason for doing this was to have a small amount of visual space between
lines being displayed, and particularly to detect “peaks” in the frequency magnitude levels more accurately.
Scaling was done so that frequency values typically produced by the audio inputs would end up displaying
on the screen, since it has a vertical resolution of 768 pixels.

Within the draw horizontal line module itself, the initial color was set to green, and a temporary ‘counter
register was used to measure half-second time intervals, using the falling edge of vsync. The colors were set
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to appropriate shades within a green - blue - red - yellow spectrum according the value of the counter. The
horizontal line was drawn across the entire width of the screen, at a vertical height corresponding to the
frequency value, and with a vertical width of two pixels. Calculations involving vcount and the frequency
value were set up carefully in order to make sure the lines vertical positions were relative to the top of the
horizontal hand position bar, not from the bottom of screen (and while keeping in mind the value of vcount
increases downward from the top of the screen).

Circle / “Kaleidoscope” Mode
This mode also utilized a separate module, draw circle, which took as input a scaled frequency value.

To obtain these frequency values, the code cycled through the BRAM containing FFT data and compared
the magnitudes to a threshold value. Frequencies with a magnitude above the threshold were passed to
the draw circle module. As in Line Mode, the code skipped ahead a few frequency values when ones above
the threshold were detected, to enable moderately effective “peak” detection as well as providing a bit of
spacing between circles. The frequencies were also scaled so that the circles’ radii would range from 0 to
approximately 500. Otherwise, circles with radii significantly larger than 500 would not be visible on a
screen with a resolution of 1024 x 768 pixels.

To draw the circles themselves, the draw circle module used the inequalities x2 + y2 ≤ r2 and x2 + y2 ≥
(r − 3)2, where x and y are the appropriately calculated x and y coordinates centered on the middle of the
visualization area, and r is the desired radius of the circle. This resulted in circles of acceptable thickness. If
the comparison to r2 is solely used, only a few pixels actually display on the screen. To achieve a somewhat
randomized color scheme, various bits of hcount and vcount were concatenated to form the 24-bit pixel color
data.

2.3.3 Testing and Debugging

It was important to test the visualizer module as I went along, adding incremental functionality, in order
to make sure I did not realize I had a nonfunctioning system when integration with the other modules was
attempted. At first, I did much of my testing by manually inputting static values into the visualizer module
(e.g., setting the frequency value to 500, setting the audio volume to 200, etc.). Later on, I enabled certain
frequency values by pressing specific labkit buttons, in order to test specific visualization properties. I also
utilized buttons on the labkit to test changing register values (e.g., having the up/down buttons move the
vertical hand position bar, and having the left/right buttons move the horizontal hand position bar).

Some of the bugs which arose in initial coding phases involved visual artifacts which would appear on the
screen during visualization. I assumed these were being caused by clocking issues, and sought to minimize
computation whenever possible. Although I experimented with pipelining of the video, by being wise with
calculations (and also possibly due to rebooting/switching labkits), these unwanted visual artifacts were
eliminated.

Integration with the video processing and audio effects modules was not terribly difficult, as I had set
up my module to accept a single set of clearly defined inputs. We discovered that the FFT would often
output garbled, nonsensical data after a reprogramming of the FPGA. However, power cycling (rebooting)
the labkit always solved this problem. By the end of the project, I had formed a habit of always rebooting
the labkit before programming the FPGA with a new .bit file.

Some of the final bugs that needed to be ironed out involved variables overflowing due to registers being
declared with too few bits. This happened because we ended up deviating slightly from the original design
we had for the various audio signals, but it was easily fixed by increasing the register bit sizes. In hindsight,
this problem could have been avoided if I had simply overestimated the bit sizes of the variables needed from
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the start, instead of trying to be overly frugal with register sizes. Finally, the various frequency scaling and
magnitude threshold values needed to be tweaked once we had the entire system working. In the end, we
were able to find values resulting in visualizations that were appealing to the eye.
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Chapter 3

Conclusion

Our project provides a lot of integrated functionality in an end product we believe is fun to use and watch.
It successfully simulates a musical Theremin, by allowing the user to control pitch and volume by simply
moving their hands while wearing colored gloves. Our system is also able to apply a wide variety of audio
effects to the tones generated by the Theremin simulator. Effects such as a violin sound, reverberation,
chorus, harmonics, and even major and minor musical chords can be applied and enjoyed by the listener.
Finally, a number of visualization modes can be enabled, each of which display multicolored, dynamic,
real-time visualizations of the audio stream in a different way. The user can choose to visualize either
the Theremin-simulated audio or an external audio input stream or both simultaneously! For the tones
generated by the Theremin simulator, it is interesting to see the users hand motions and various audio filters
create a visual effect as well. For music coming from an external audio source such as an mp3 player, it is
tons of fun to sit back and watch a particular song generate characteristic images and shapes on the screen.
It is our hope that this project may inspire future students to create something which lies similarly at the
intersection of music, engineering, and visual art.
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Chapter 5

Appendix

View http://web.mit.edu/aspicer/Public/final/ for a copy of our source code.

Edit [12/15/07 2:08 PM]: Uploaded a new copy after the deadline just to change a mistake in the
title.
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