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Abstract
Two of the more interesting applications possible with the 6.111 Labkit are 

video processing and 2D game systems. Our project integrates both of these 
ideas to create an interactive game experience which uses a video camera to 
generate most of the game input. Our design is composed of a 2-part system: a 
2D graphics engine with video game logic and a video processing module to 
generate control signals for the video game.

The graphics system design will use sprites to draw both an arbitrary set of 
sprites to the screen along with the system’s interpretation of the cursor position. 
Through this architecture, we will duck-hunt clone complete with the original 
sprites. The video processing module will be responsible for generating a set of 
coordinates for the cursor based on the position of a dot of red laser light in the 
camera image. This module will serve as the light gun from the original duck-hunt 
game, the object of the game will be to position the cursor over the flying duck, 
and then pull the trigger to shoot the duck.
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3) Overview
The most important rule of thumb for organizing a technical description is ``Describe the whole 
before the parts''. This rule is based on the assumption that the device which you are describing is 
unknown to the reader and that a general view of the purpose and construction is needed before 
the details can be understood. 
With this rule in mind, start your 6.111 report with an overview of the purpose, use and design of 
the device, what a user does with it and how he or she would do it. Describe in general the 
subsystem organization of the device. Emphasize those internal features which implement the 
main user-visible features. 

Our Duck Hunt game will function similarly to the Duck Hunt of the original NES. A laser 
aimed at a computer screen will function as the "gun" and a camera will be used to locate this 
laser and a red dot will be displayed by the game at its location. The player will also be able to fire 
the gun by pressing the enter button on the lab kit. The computer screen will display a gaming 
environment similar to that of the original Duck Hunt. Animated ducks will fly across the screen 
one at a time and the score will also be displayed in the upper left hand corner of the screen.

Our implementation of the Duck Hunt game consists of two major parts: the video output to 
the screen which will be handled by Rachel Bainbridge and the input from the camera that locates 
the laser pointer which will be handled by Dan Southern.

Figure 1 – System Overview

3.1) Game Logic and Sprite Graphics System (Rachel 
Bainbridge)

The video output for the duck hunt game is sprite-based system done in four bit color. The 
game logic is in charge of handling duck movement, score count, shot count, and checks if a duck 
has been hit by the player when the gun is fired. For the ducks and for the background tree and 
bush sprites, the original duck hunt sprites were used, with some minor color alterations. Two 
more sprites were specially made for the score and shot counters (as the original game sprites 
were not available), that are similar in appearance to the originals and function similarly as well. 
The duck will fly around the screen and flap its wings, and change the way it faces when it 
changes x direction. The player can hit a button to fire their laser pointer gun, and if they are 
within the bounds of the duck sprite, they will kill the duck and it will twirl gracefully to the ground, 
and they will receive a point for that duck. However, the player is limited to three shots per duck, 
as indicated by the shots display, and if they do not hit it by the time it has bounced on the top of 
the screen it will fly away and they will not receive a point for that duck. The game logic consists 
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of one module that runs on the pixel clock (65MHz) and miraculously needed no pipelining. The 
sprites also all run on the pixel clock and rely on the same basic code. My original goals were to 
have working game logic, background and animated duck sprites, and some kind of score keeping 
mechanism. I actually got implement an interesting score sprite and a shot sprite that kept track 
of the user's ammo.   

3.2) Video Processing (Dan Southern)
One of the main goals of our project is to create a system which can interpret where a user is 
pointing with a laser pointer on a user interface. This ability has a variety of meaningful 
applications. We thought that one that worked well in the context of a two-part 6.111 project was 
to utilize the cursor information as an input to a game to replace the cursor. By aiming the laser 
pointer at a control surface, the user is moving the cursor to a desired position much in the same 
way we move the pointer using the mouse on a computer.

The basic idea of the system is that a video camera will capture the image of the control surface 
(the surface at which we are pointing the laser pointer) and store it in a frame buffer on the Labkit. 
This data will be analyzed in order to determine where in the image the laser pointer dot is 
located. This information is translated into a set of coordinates which are then passed on to an 
arbitrary system that can make use of this cursor data.

Analysis of the video data occurs so rapidly that to a user of the system, the response will feel 
instant, and a user watching the position of the cursor on the output display should have no 
problem controlling the cursor as this control is very similar to the visual feedback involved in 
moving the pointer on a computer.

4) Description

2



4.Game Logic and Sprite Graphics System 

Figure 2 – Video and Game Logic Block Diagram

4.1.1) Sprite Module (Rachel Bainbridge)
To being making a sprite ROM in four bit color, one must first start with a sprite image (almost any 
format that paint can open will do). Then image can be opened in an image processing program 
(paint worked best for me, even better than Photoshop which was causing my sprites to come out 
weird colors mostly likely due to strange color mapping) and then save the image as a 16 color 
bitmap image (there are several options ranging between monochrome and 24-bit true color for all 
kinds of sprites you could want to do). Paint will then tell say some color image data may be lost if 
you save in this format. This warning is fine, as the shape of sprite will be preserved but some of 
the colors may change, because they were not available in the 4-bit color palette. One can then 
change the colors as one wants using the available colors and save the image. Then using MATLAB 
code borrowed from older projects, the bitmap can be converted into a .coe file to be used as the 
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initial loading file for the BRAM. When one creates the BRAM it is important to remember to load 
the file and to make sure the read only option is selected (unless you plan on doing later 
alterations to the BRAM in with the circuit.) The width of the ROM should be the number of bits per 
pixel (four in this case) and the depth should be the total number of pixels in the image (width of 
the sprite multiplied by the height). The address of the information for the sprite will then go from 
zero to the depth and output a value with the number of bits specified by width. For animated 
sprites, one can create one ROM with multiple sprites on it and simply cycle through them by 
making sure they are all the same size and then adding the depth of one sprite to the starting 
address when one wants to change the current sprite.  

Figure 3 – Animated Living Duck Sprite in 4-bit Color

4.1.2) Lookup Table Module (Rachel Bainbridge)

The color palette used in this project was 4-bit color and so a look up table was needed. 4-
bit color is not true color, that is the bits do not correspond directly to RGB values, but rather is 
indexed color, in which a certain value corresponds to a predetermined color. The look up table 
module takes an input of a 4-bit pixel value and outputs an 8-bit for each red, green and blue 
value to be used by the xvga module to create the output the screen. The pixel value is simply 
stuck into a giant case statement that behaves like combinational logic. Depending on the value of 
pixel one of sixteen colors will be output. 

4.1.3) Stationary Sprite Module (Rachel Bainbridge)

There are two sprites in our Duck Hunt implementation which are stationary background 
sprites. These are the bush and tree sprites. Each has its own BRAM which stores it pixel data and 
parameters specifying its height, width, and location. The inputs to the module are hcount, vcount 
and the pixel clock, and the output is the pixel data the sprite has for the current location. If 
hcount and vcount are within the sprite, that is if hcount is between the sprite's beginning x 
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location and end location, which is simply the beginning x location added to the sprites width 
comma, and the same is true of vcount, except with the y locations, then the pixel output is 
assigned to the output from the ROM and the address is incremented by one. If the current hcount 
and vcount are outside the sprite, then address is assigned zero - it is basically reset- and the pixel 
output is also given a zero (transparent). Implementing more stationary sprites is as easy as 
adding more location parameters and modifying the if statement to include the new locations.

Figure 4 - Reading Pixel Data from a ROM

4.1.4) Divider Module (Rachel Bainbridge)

The Divider module is used to time the flapping of the duck. It increments a counter once 
each clock cycle until it reaches one fourth of 65 million and then it sets an enbl signal high and 
resets the counter to zero. The module basically counts out one fourth of a second, which is an 
easy time to count and a speed at which the duck flapping looks smooth. 

4.1.5) Duck Sprite Module (Rachel Bainbridge)

The Duck Sprite Module is much more complex than it's stationary counter parts, because 
the sprite itself must move while the whole thing moves around the screen. The module takes as 
inputs the x and y of its current location, hcount and vcount, the pixel clock, its x orientation and 
the dead signal, and outputs its pixel data for the current x y coordinate. The module has 
parameters specifying the width and height The duck sprite module has two BRAMs, one for dead 
ducks and one for live ducks. There are three versions of the live duck, to create a duck that 
appears to be flapping and two versions for the dead duck, to create a duck that appears to be 
spinning to the ground. The sprites are laid out vertically in the ROM one after another, and are all 
identical in size. The basic reading from the ROM is the same for both dead and live ducks, except 
that the dead duck code has been modified so that dduck_no has only two values. For both 
versions duck_no has the starting address in the ROM for the current duck that is being displayed 
on the screen. If hcount and vcount are between and the current x, y of the duck and x added to 
the width and y added to the height, then the pixel output is given dout and the address is 
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increased, otherwise it is given zero. Every time the enable signal from the divider module goes 
high, the duck_no is increased by 900 (or wraps around back to zero if it is at the highest possible 
starting address) in order to get to the next duck in the ROM (in this case ducks are 30 pixels by 
30 pixels, for a total of 900 locations needed for each duck). Switching ducks creates, the 
flapping/twirling motion. For the flying ducks, the same ROM was used for ducks flying both left 
and right. In order to switch the orientation of the duck, one must read from the end of the row 
first. In order to do this two variables, line and pix were used. Pix begins at zero and increments up 
to the width of the sprite and is then reset to zero while line is incremented. Line starts at one less 
than the width of the sprite and increments by the width of the sprite every time pix reaches the 
width of the sprite. The address to be read from the ROM is then assigned to duck_no plus line 
minus pix, which will effectively read a mirror image of what is in the ROM. If hcount and vcount 
are outside the sprite, then line is reset to one less than the width and pix is reset to zero.  

4.1.6) Score and Shots Sprite Module (Rachel Bainbridge)

The Score and Shots modules are stationary sprite modules that take extra inputs and 
function quite similarly. The score module takes a four-bit input score in addition to vcount, 
hcount, vclock, and outputs a pixel for the score display and shots takes the additional two-bit 
input shots. The Score and Sprite modules are both hand-made sprites that have shapes that 
represent either bullets or ducks. The shots sprite has three circles representing the bullets that 
the player is using and the score sprite has four duck shapes that represent the ducks the user is 
shooting at. When a duck is hit, it is white, when it is missed it is black. When a shot is used, it is 
black, the remaining bullets are white. Each white object corresponds to a bit in register (three bits 
for the shots and four bits for the ducks), and these bits are anded bit wise with white pixel and so 
if the bit is zero the object is black and if the bit is one the object is white. In order to determine 
where the object is the module makes use of parameters (d1, d2, etc.) that mark where the one 
object ends and the next begins. The output of the rest of the sprite is exactly the same as the 
bush and tree sprites. 

4.1.7) Duck Hunt Game Logic Module (Rachel Bainbridge)

The Duck Hunt Game Logic is very similar to the pong game logic from lab five. The module 
takes inputs from the pixel clock - vclock, hcount, vcount, hsync, vsync, blank, and outputs the 
game's hsync, vsync, and the pixel to be written to the screen. The duck moves once per frame. 
The frame pulse is created by taking vsync and negating it and delaying it one clock cycle by 
putting it in a register. A pulse is then assigned to the current vsync negated and anded with the 
negated register. Similarly, a bullet pulse is created for when the user presses the fire button, but 
this pulse must be high for one frame. The value of shot is put into a register when pulse is high to 
delay it a frame and then anded with the negated value to create the bullet pulse. The duck 
travels in diagonal lines around the screen and bounces off the sides and top. It does not bounce 
off the bottom, but rather a specified height from the bottom of the screen called HORIZON 
leaving space for the shots and score counters. The duck's speed is set with the register pspeed, 
which does not vary for this game. The duck's current location are stored in one x and one y 
register. The duck is moved by subtracting or adding pspeed to the x and y coordinates of the 
duck. The duck's current direction is stored in two one bit registers. Every frame, the bits are 
concatenated and put into a case statement to determine which way the duck will move. A one 
indicates the pspeed must be subtracted to the corresponding coordinate and a zero indicates that 
pspeed must be added. If the duck hits the lower bound, it's current position must be reset to 
pspeed minus one, so that its position does not roll around to a higher coordinate and cause odd 
things to happen. The duck will also leave the game and a new one will be released if the duck 
bounces more than three times on the top edge of the screen. The game logic keeps track of how 
many times the ducks has hit the top of the screen by incrementing a register bounces each time 
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the duck's y direction changes from up to down. If it hits the top and bounces is equal to three 
then it flies off the top of the screen, the score bit corresponding to the current duck is set to zero, 
and a new duck is started. A new duck will also be started if the duck is shot by the player. Every 
time the player fires the gun the xy coordinate of the cursor which comes in from Dan's half of the 
project is compared with the duck xy coordinate. If the cursor is within the duck (a 30 by 30 
square) then the duck is killed and dead goes high and the score bit corresponding to the current 
duck is set to one. When the duck is dead it only has negative y velocity and it falls at the same 
speed it flaps until it hits the horizon, and then a new duck is released. A register called totalducks 
keeps track of the total number of ducks the player has gone through. On reset or a new duck, the 
xy coordinates and direction of the duck are also set back to the originals. However, on reset score 
and totalducks are set to zero, while on a new duck, the score is untouched and totalducks is 
incremented by one. The game logic also decides which pixel is displayed from the pixels being 
output from the individual sprite modules. If a duck pixel is being output for the square, then it will 
be the one output to the screen, otherwise either the score, shot, bush or tree pixel will be output 
(the four can be or'd together as it is assured they will never overlap because they are stationary). 

4.2) Video Processing System (Dan Southern)
The following block diagram represents an overall view of the video processing system. Data is 
streamed in the NTSC decoder on the Labkit in the upper left corner. The data is propagated 
through into the frame buffer. The Frame Buffer Reader reads the data into the pixel analyzer, 
which consists of several operations on each pixel. The system's ultimate output is a set of (X, Y) 
coordinates which are subsequently passed into the Game Logic module.
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Figure 5 – Video Processing Block Diagram

4.2.1)Frame Buffer Reader (Dan Southern)
In order to determine the location of the laser pointer in the camera image, the system must 
iterate through the image to examine each pixel. To this end, the Frame Buffer Reader module 
generates control signals that are fed to the Frame Buffer to read each pixel and present it to the 
next stage of pixel analysis.

There are several intricacies to this process, we have to work around two other modules that also 
interface with the frame buffer while handling the 2 clock cycle delay in the ZBT ram's behavior. 
The other two modules accessing the frame buffer are the XVGA module generating pixel output 
data and the Frame Buffer Writer module which writes data coming in from the camera in real 
time. Both of these applications cannot wait to access the frame buffer in the way that this module 
can, since they are subject to other external timing constraints which prevent them from waiting 
for access to the ZBT. 

Therefore, the Frame Buffer Reader module is only allowed to access the Frame Buffer when 
neither of the other two modules are accessing it. This is implemented through a signal passed 
into the Frame Buffer Reader module called Read_Success which indicates whether the module 
was able to add it's frame buffer operation to the queue or whether one of the other modules 

8

Frame BufferADV7185 to Frame
Buffer Interface

YcbCr to HSV
Converter

Pixel Analyzer

Input Coord. to
Ouput Coord.

Converter

Pixel
Analyzer

Data Stream

8-bit
Row, Col

10-bits  each

Single Pixel (YcrCb)

20-bit

Camera

Y Coordinate
10-bit

X Coordinate
10-bit

X' Coordinate
10-bit

Y' Coordinate
10-bit

H value
8-bit

S Value
8-bit

V Value
8-bit

Output Data (YcbCr)
72-bit Read Address

18-bit

Max X
10-bit
Max Y
10-bit

Frame Buffer Reader

Single Pixel (YcbCr)
72-bit

Single Pixel (YcbCr)
24-bit

Frame Buffer
Writer

Write Enable

Write Data
72-bits

Write Address
19-bit



performed a frame buffer operation in that clock cycle. If another module did access the frame 
buffer, such that the Read_Success signal is false, then the Frame Buffer Reader Module waits and 
halts its pipeline until it is able to queue a read command into the Frame Buffer.

By engineering this module to handle arbitrary delays in access to the Frame Buffer, the timing 
constraints on the XVGA and Frame Buffer Writer modules are significantly reduced. The 
performance of this module is affected by the fact that it has effectively the lowest priority when 
accessing the frame buffer; however, this function is the least time critical. A user of the system is 
unlikely to notice any performance degradation as long as the module is able to iterate through 
the frame buffer at about 20Hz. This level of performance should be achievable since the Frame 
Buffer Writer accesses the Frame Buffer relatively rarely, and the XVGA module accesses it exactly 
1 out of every 4 clock cycles. The module will iterate through the frame buffer much faster than 
this at a rate slightly less than ¾ * 65MHz / (1024 * 768) ≈ 62Hz as a worst case figure since the 
dimensions of the NTSC image will be less than 1024x768.

The image is read out of the frame buffer starting in the upper left corner, which corresponds to 
the pixel address (0, 0). The module iterates first across each column and the down to the next 
row until it has reached the max values programmed in for the size of the image with this 
particular camera. The camera produced a usable image size of approximately 720 pixels wide by 
460 pixels high, so the Frame Buffer reader module only iterated through the first 720 columns 
and 460 rows of the frame buffer. Figure 6 shows the order in which pixels are read from the 
frame buffer.

Figure 6 – Frame Buffer Access Order

Figure 7 below details the connection specification of the Frame Buffer Reader Module. The 
module is synchronized with the 65MHz system clock (clock_65mhz), has connections for 
interfacing with the frame buffer (ZBT_Data, Read_Address), and an interface for presenting data 
to the Pixel Analyzer module in a form that is easily dealt with. The pixel information is output on 
Read_Data, the pixel coordinates are output on Read_X and Read_Y, and the New_Frame signal 
indicates that analysis of a new frame should be started because the end of the frame buffer has 
been reached.

Type Name Bus 
Width

Description

Input reset 1 FSM should return to default initial state when high

Input clock_65mhz 1 System clock input to synchronize with Main FSM

Input ZBT_Data 72 Input from the read port of the Frame Buffer

Input Read_Success 1 High Value indicates that the module was able to queue a read 
on the Frame Buffer.

Output Read_Address 19 The Address to read from the Frame Buffer
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Output Read_Data 72 The data from the frame buffer corresponding to the coordinates 
(Read_X, Read_Y)

Output Read_X 11 X Coordinate of the current pixel being output by the module

Output Read_Y 10 Y Coordinate of the current pixel being output by the module

Output New_Frame 1 High Value indicates that this clock cycle starts us iterating 
through the Frame Buffer again from the start

Figure 7 – Frame Buffer Reader Wiring Specification

4.2.2) Frame Buffer Writer (Dan Southern)
This module is derived from an example on the course website, however I have made significant 
modifications to the source, including addition of handling the color data, reworking the timing of 
access to the frame buffer (the original version wrote to the frame buffer 4 times as much as was 
necessary), and handling frame buffer access collisions.

The Frame Buffer Writer module serves as the interface between the NTSC decoder on the Labkit 
and the frame buffer. As Data is streamed from the NTSC decoder, this module aggregates it into 
packets describing individual pixels before generating the control signals to write the data packets 
into the frame buffer.

The pixels are output from the NTSC decoder on the Labkit as a sequence of luminance, or the Y 
component, and chrominance, the Cr and Cb components. The data that is presented serially on 
the output data bus of the decoder chip, with each Y component sharing a Cr and Cb data point 
with a neighboring Y component. The data stream takes on the following format:

Y Cr Y Cb Y Cr Y Cb Y Cr...
As soon as the Frame Buffer Writer module has collected four Y data points and a set of two each 
of Cr and Cb data points, a packet of data is complete and the information is ready to be written 
into the frame buffer. This includes generating the address where the data will be written, 
outputting the pixel data on the frame buffer interface, and asserting the write enable signal. This 
process may take more than one clock cycle, as the XVGA module is given higher priority for 
accessing the frame buffer. If the module attempts a write while the XVGA module is reading the 
frame buffer, the module will be informed of this by receiving a high value on its Write_Failed 
input. In this situation the module will perform the write again in the next cycle, in which case it is 
guaranteed to succeed since the XVGA module accesses the frame buffer at most every 4th clock 
cycle and the Frame Buffer Write Module has the next highest priority for frame buffer access.

The following is a complete list of the connections to the Frame Buffer Writer Module. It's inputs 
are basically the set out of outputs from the NTSC decoder module, other than the control signals 
Write_Failed and Write_Completed which coordinate access to the frame buffer with other 
modules.
Type Name Bus 

Width
Description

Input clock_65mhz 1 FSM should return to default initial state when high

Input Video_Clock 1 System clock input to synchronize with Main FSM

Input fvh 3 A concatenation of the field, vsync, and hsync signals

Input data_valid 1 High indicates data is ready to be read from ADV7185

Input Yin 8 Luminance value from ADV7185

Input Crin 8 Cr chrominance value from ADV7185

Input Cbin 8 Cb chrominance value from ADV7185

Output ZBT_Write_Address 19 Address to write to in the frame buffer

Output ZBT_Write_Data 36 Packet of information to put in one cell of the frame buffer
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Output ZBT_Write_Enable 1 High value indicates the module is ready to write to the frame 
buffer

Input Write_Failed 1 High value indicates that the frame buffer was busy when we 
tried to write, and we should try to write again in the next cycle

Input Write_Completed 1 High value indicates that data was successfully written into the 
frame buffer in the last clock cycle.

Figure 8 – Frame Buffer Writer Wiring Specification

4.2.3) Frame Buffer (Dan Southern)
The implementation of this module is based on the ZBT interface borrowed from the course 
website.

The frame buffer stores a single NTSC frame of data in order to facilitate asynchronous data 
accumulation processing. By reading video data into the frame buffer, other modules are granted 
access to the entire image at any time. The data in the frame buffer will always be a mixture of 
two video frames as the contents of the buffer are updated; however, for this application we can 
assume that the image data is continuous enough across a couple of video frames that this will 
not affect the performance of the system in any way.

The Frame buffer is implemented as the two ZBT's concatenated together, with each pixel in the 
NTSC image receiving one byte in each ZBT ram, or 2-bytes total. Since the ZBT ram is 36-bits 
wide, or 72-bits wide using both, this allows us to store 4 pixel of data in each location in the ZBT 
ram. As it turns out, we can get away with storing only 2-bytes per pixel since adjacent pixels 
share some color information such that on average each pixel is only 2-bytes. Although there are 
actually 3 values that describe each pixel, a set of 8 values can approximately describe 4 pixels. 
We accomplish this by storing a set of chrominance (Cr, Cb) bytes for every two pixels in one of 
the ZBT rams while storing each pixels individual Luminance (Y) byte in the other ZBT ram.

In Figure 9 shown below, we can see that one ZBT ram (on the left) stores only luminance (Y) data 
for each pixel. Each location in the ZBT is outlined in a thick black line, so there are 4 pieces of 
luminance data stored in each location in the ram. The other ZBT ram stores chrominance data 
that is shared between two pixels. The coordinates of the pixels with which the data is associated 
with is indicated in parenthesis.

Figure 9 – Frame Buffer Data Configuration

The frame buffer is implemented in Verilog as a pair of interfaces to the ZBT rams, which share an 
address port, and write enable signal. The write and read data are the concatenation of the the 
two 36-bit connections. The set of connections to the frame buffer is straightforward. The module 
takes an address, and Write Enable signal and (optionally, if the write enable is high) data to write. 
The following figure outlines all of the connections to the module.
Type Name Bus Width Description

Input clock_65mhz 1 Ram clock

Input ZBT_Enable 1 Low value causes RAM to “sleep”, we tie this value to high since we 
constantly access the ram
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Input ZBT_Write_Enable 1 A high value enqueues a write operation. The data at the write port 
and the address are clocked in. The write will happen two cycles 
later

Input ZBT_Address 2 The address at which the operation on the ram will take place, 
whether it be a read or write

Input ZBT_Write_Data 72 Data that will be written at the address specified if 
ZBT_Write_Enable is set high

Output ZBT_Read_Data 72 Selects which timer parameter to drive onto the timer_value output 
pins

Figure 10 – Frame Buffer Wiring Specification

4.2.4) Pixel Analyzer (Dan Southern)

As the pixel data is sequentially read from the frame buffer by the Frame Buffer Reader Module, 
the Pixel Analyzer module examines each pixel in order to determine whether it matches the 
description of the cursor pixel. In this case we can distinguish the cursor pixels both from their 
relatively high luminosity and from their color. Red pixels with an above average luminosity are 
considered to be part of the cursor.

There are several methods employed to make the distinction between cursor pixel and non-cursor 
pixels. The Pixel Analyzer module contains another module which converts the YCrCb video data 
from the frame buffer into other color spaces which are more easily worked with, specifically the 
RGB color space and the HSV color space. The module which performs the conversion is 
documented below.

There are several strategies that can be employed here: we can put the data through the 
converter, which is pipelined, and deal with the pipeline delay in order to analyze the data in 
either the RGB or HSV color spaces. This method should theoretically lead to the most accurate 
cursor detection. Another strategy is to accurately detect areas of the image with a discontinuous 
spot of high luminosity, which may be sufficient without any color detection.

After experimenting with several combinations of the methods mentioned above, I found that 
against a white background, which is the least optimal environment, searching for relative 
luminosities proved to be the best method. The best solution would be to parameterize this 
module such that one could easily adjust the requirements for matching pixels to the cursor, 
however I left the module optimized for the application at hand with the following functionality.

The module computes an average luminosity over the entire image by summing the luminosities 
of each individual pixel as the data is fed in. Once the module receives the signal that the end of 
the frame has been reached, we take the 8 highest order bits of the sum to represent the average 
luminosity. On top of this average, we can program in an additional threshold using the switches 
on the Labkit, and only pixels with luminosities higher than the sum of the average plus the 
threshold value are considered for the next stage of analysis. By setting a correct threshold value, 
we can achieve performance where only the cursor pixels are passed to the next stage of analysis. 
In this regard, spending extra time working on luminosity analysis paid off, as it was really 
irrelevant how the cursor pixels values would be averaged together. The module originally 
included a center of mass calculator for the pixels matching the description, however I was able to 
replace this with a trivial method of simply finding the pixel with the highest luminosity. During the 
analysis of each frame this highest value may change several times, so we only update the output 
coordinates of the module when the New_Frame signal is received.

The final output X and Y coordinate, which are subsequently passed on to the Game Logic, are first 
scaled appropriately so that each corner of the image corresponds to each corner of the VGA 
display. This conversion is basically an affine transformation of X from the range [0..720] to 
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[0..1024] and for Y from [0..450] to [0..768]. Both functions were approximated using excel, and 
then turned converted into a look up table module. The output (X, Y) coordinates of the Pixel 
Analyzer Module are ultimately connected to the output of this set of look up tables.

Type Name Bus Width Description

Input clock_65mhz 1 System clock

Input reset 1 Module reset signal, high value resets module

Input Read_Data 72 Pixel information from the Read Frame Buffer Module

Input Read_X 11 The X coordinate of the pixel information

Input Read_Y 10 The Y coordinate of the pixel information

Input Read_Success 1 Indicates whether the last read operation on the frame buffer was 
successful. If this signal is low, the pipeline is halted for one cycle

Input New_Frame 1 High value indicates that the Frame Buffer Reader has just 
presented this module with the last piece of information for the 
frame. The next values will be from the next frame. 

Input Threshold 8 This is a luminosity value above the average luminosity for which 
we consider pixels. This allows us to adjust the module performance 
for best results in many ambient light settings

Output X 11 The X coordinate of the cursor in the image

Output Y 10 The Y coordinate of the cursor in the image

Output Average_Brightness 8 The Average brightness of all pixels in the image. This is output to 
the LEDs for some visual feedback during operation.

Figure 11 – Pixel Analyzer Wiring Specification

4.2.5) YCrCb to HSV Converter (Dan Southern)

The purpose of this module is to take YCrCb pixel information at its inputs and output the 
corresponding RGB and HSV color space data. The design of this module posed many interesting 
design problems. In the calculations for the conversions, there are several division required and 
several multiplications as well. The process actually lends itself well to pipelining, as the 
transformation is carried out in several discrete operations over the 3 values. 

First the data is converted from the 3 8-bit Y Cr Cb values into three 10-bit R G B values. These 
intermediate results are also part of the output of this module, as we may want to generate RGB 
data for display with the VGA or for analysis of the pixel information in this color space. This step 
of the conversion includes only a single set of multiplications carried out in parallel and then two 
additions. Therefore this step will benefit only marginally from pipelining by separating the 
multiplications and additions into two stages. 

The next step, conversion from the RGB values into a Hue, Saturation, and Value is the more 
difficult and interesting problem. This conversion includes divisions by 8-bit values. Rather than 
implementing this division, I created a lookup table for the function f(x) = 256/x. In order to 
approximate the value a / b, we can multiply a * f(b), and then divide by 256 by shifting right 8 
bits. This method is precise enough for our purposes, and reduces the delay for this calculation 
down to about the delay of a multiply operation. 

This module takes as input the YCrCb pixel value and produces as output both an RGB value and 
an HSV value. The details of the connections to this module are outlined in the table below.
Type Name Bus Width Description

Input clock 1 System clock

Input Y 8 Y value of pixel to convert
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Input Cr 8 Cr chrominance of the pixel to convert

Input Cb 8 Cb chrominance of the pixel to convert

Output R 10 Red value of the pixel (on a 10-bit scale)

Output G 10 Green vale of the pixel (on a 10-bit scale)

Output B 10 Blue value of the pixel (on a 10-bit scale)

Output H 8 Hue value of the pixel

Output S 8 Saturation value of the pixel

Output V 8 The “Value” of the pixel

Figure 12 – YCrCb To HSV Converter Wiring Specification

4.2.6) NTSC Decoder
This module was borrowed from the course website. The purpose of this module is to read the 
output of the ADV7185 to grab the pixel data and coordinates. This data is then fed into the Frame 
Buffer Write Module to be aggregated and written into the frame buffer. This module also includes 
and interface to setup the ADV7185 into the correct mode when the Labkit is powered on.

4.2.7) Frame Buffer Display
This module was borrowed from the course website. This module reads the pixel information out of 
the frame buffer for use in outputting in the VGA data stream. This is primarily used for debugging 
purposes, as in the final product there is no need to output the image from the camera.

4.8) XVGA
This module was borrowed from the course website. This module generates the control signals for 
a 1024x768 VGA display.

5) Conclusions

5.1) System Integration
We experienced minimal problems integrating our two modules. We were able to develop 
independently until we each had achieved our desired functionalities. We were then able to simply 
combine our Verilog sources, and connect the output of the Video Processing Module (the cursor 
location) straight into the game logic. 

Our integration went smoothly because our project was divisible into two very distinct pieces. The 
independent operation of both pieces, and coordination on which resources on the Labkit were 
available to each of us (I.e. ZBT Ram) resulted in the prevention of integration issues.

5.2) Testing and Debugging

5.2.1) Game Logic and Sprites (Rachel Bainbridge)
Testing the sprites was very easy, because there was visual feed back. In the beginning, when the 
sprites were not showing up on the screen at all, or just as noisy blue blobs, test ROMs were 
created and the address was specified by the lab kit switches and the output of the ROM was 
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wired up to be displayed on the led hex display. By changing the switches, one could see whether 
the correct information was on the ROM and the output was just being handled incorrectly, or that 
the ROM was not functioning properly or had the wrong information on it. Before actually using a 
sprite, the module was tested to see if it would output just a block of color to the screen in the 
specified place. Also the game logic was created and tested using a blob instead of a sprite from a 
ROM to see if it would work functionally without interference from the sprite.

5.2.1) Video Processing (Dan Southern)
Testing the video processing proved challenging at first until a had the system in a stable state 
where I was able to display video onto the screen. Once I had achieved a form of visual feedback, I 
was able to start working on testing various filter applied to the pixel data in order to get a visual 
sense of how accurately I could distinguish interesting pixels from the background image.

I used code borrowed from a past project to handle the complicated task of initializing the NTSC 
decoder on the Labkit and then interpreting its output. Although the code was already written, I 
found that it was necessary to develop an understanding of almost the entire process in order to 
make the modifications to the system I needed to make. I expanded the system to handle the 
chrominance data as well as just the luminance, and I had to implement a priority system for 
modules to access the frame buffer. This proved to be the single biggest challenge I encountered 
as an error in this process would generally disable all of the operations happening on the frame 
buffer so that I was stuck with just a blank screen, which made it difficult to diagnose the problem. 
The logic analyzer proved invaluable in this situation.

Overall I found that I was able to spend most of my time developing the modules rather than 
tracking down bugs, although I was forced to deal with strange behavior, where I would make a 
seemingly innocuous change to the source code (for example, something simple like renaming a 
variable) which would cause inexplicable behavior such as static in the video signal, or the hex 
display on the Labkit to stop working. I suspect that this was a product of how the hardware was 
organized on the Labkit which could vary from compile to compile, and would occasionally result in 
sub-optimal configurations.

5.3) Final Thoughts

5.3.1) Rachel's Final Thoughts
If I had to do this project over again, there wouldn't be much I would change. I planned ahead as much 
as I could and tried to add on very small bits at a time. Implementing the sprites separately from the 
game logic at first helped a lot too. If someone were to do a similar project I would tell them that the 
hardest part to do is make the sprites actually appear on screen.  

5.3.2) Dan's Final Thoughts
I enjoyed developing the video modules. The engineering problems were interesting, although it is 
somewhat frustrating to have to wait through the delay to compile code in order to test a bug fix. If 
faced with developing another project on the Labkit, I would spend more time setting up useful 
debugging facilities to eliminate as many extra compilation delays as possible. Also, I think I would 
develop my modules more independently in order to reduce the overall complexity throughout the 
module design process. This would have saved me some time, since were many more variables in my 
system than there could have been that only slowed down my debugging efforts.
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6) Appendices

Appendix A: Matlab BMP to COE code

function BMPtoCOE(image_name)
%Converts a 16 color bitmap image to a Xilinx .COE file
%Was written so students could use a FPGA to display images on a VGA
%monitor
%read bmp data in and display it to the screen
[imdata,immap]=imread(image_name);
image(imdata);
colormap(immap);
numpixels=numel(imdata);
%create .COE file
COE_file=image_name;
COE_file(end-2:end)='coe';
fid=fopen(COE_file,'w');
%write header information
fprintf(fid,';******************************************************************\n'
)
;
fprintf(fid,';**** BMP file in .COE Format *****\n');
fprintf(fid,';******************************************************************\n'
)
;
fprintf(fid,'; This .COE file specifies initialization values for a\n');
fprintf(fid,'; block memory of depth= %d, and width=4. In this case,\n',numpixels);
fprintf(fid,'; values are specified in hexadecimal format.\n');
%start writing data to the file
fprintf(fid,'memory_initialization_radix=16;\n');
fprintf(fid,'memory_initialization_vector=\n');
%convert image data to row major
newimdata=transpose(double(imdata));
%write image data to file
for j=1:(numpixels-1)
fprintf(fid,'%s,\n',dec2hex(newimdata(j)));
end
%last data value supposed to have a semicolon instead of a comma
fprintf(fid,'%s;\n',dec2hex(newimdata(numpixels)));
%clean shutdown
fclose(fid)

Appendix B: Look Up Table Verilog

////////////////////////////////////////////////////////////////////////////////////
//
// look up table for 4-bit RGB color
//
/////////////////////////////////////////////////////////////////////////////////////

module look_up_table (pixel, r, g, b);
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input [3:0] pixel;
output [7:0] r, g, b;
reg [7:0] r, g, b;

always@(*) begin
case(pixel)

4'b0000: begin b = 0; g = 0; r = 0; end // black
4'b0001: begin b = 0; g = 0; r = 132; end // red brown
4'b0010: begin b = 0; g = 132; r = 0; end // green
4'b0011: begin b = 0; g = 132; r = 132; end // brown green
4'b0100: begin b = 132; g = 0; r = 0; end // dark blue
4'b0101: begin b = 132; g = 0; r = 132; end // purple
4'b0110: begin b = 132; g = 132; r = 0; end // blue green
4'b0111: begin b = 132; g = 132; r = 132; end // dark grey
4'b1000: begin b = 198; g = 198; r = 198; end // light grey
4'b1001: begin b = 0; g = 0; r = 255; end // orange red
4'b1010: begin b = 0; g = 255; r = 0; end // vivid green
4'b1011: begin b = 0; g = 255; r = 255; end // yellow
4'b1100: begin b = 255; g = 0; r = 0; end // blue
4'b1101: begin b = 255; g = 0; r = 255; end // pink purple
4'b1110: begin b = 255; g = 255; r = 0; end // light blue 
4'b1111: begin b = 255; g = 255; r = 255; end // white 
default: begin b = 0; g = 0; r = 0; end // default black

endcase
end
endmodule

Appendix C: Score Sprite Module Verilog

///////////////////////////////////////////////////////////////////////////
//
// score sprite: generate score on screen
//
///////////////////////////////////////////////////////////////////////////

module score_sprite(hcount, vcount, clk, score, pixel);
parameter WIDTH = 90;
parameter HEIGHT = 60;
parameter MY_X = 900;
parameter MY_Y = 700;
parameter d1 = 32; parameter d2 = 44; parameter d3 = 56; //locations of the ends of 

different ducks 

input [10:0] hcount;
   input [9:0] vcount;

input [3:0] score;
input clk;

   output [3:0] pixel;

reg [3:0] pixel;
reg [12:0] addr;
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wire[3:0] dout;
score5400x4 scoreram1(addr, clk, dout);
always@(posedge clk) begin

if((hcount > (MY_X + WIDTH))&&(vcount > (MY_Y + HEIGHT)))
addr <= 0; 

 if((hcount >= MY_X && hcount < (MY_X+WIDTH)) &&
 (vcount >= MY_Y && vcount < (MY_Y+HEIGHT))) begin

if(dout == 15) begin
if(hcount < d1+MY_X) pixel = dout&{4{score[0]}};
else if(hcount < d2+MY_X) pixel = dout&{4{score[1]}};
else if(hcount < d3+MY_X) pixel = dout&{4{score[2]}};
else pixel = dout&{4{score[3]}};
end

else pixel = dout;

addr <= addr+1;
  end
  else pixel = 0;
end

endmodule

Appendix D: Duck Sprite Module

///////////////////////////////////////////////////////////////////////////
//
// duck sprite: generate tree on screen
//
///////////////////////////////////////////////////////////////////////////

module duck_sprite(x,y,hcount,vcount,clk,dead,orientation,pixel);
   parameter WIDTH = 30;      
   parameter HEIGHT = 30;     

   input [10:0] x,hcount;
   input [9:0] y,vcount;

input clk,dead, orientation;

   output [3:0] pixel;

reg [3:0] pixel;
reg[11:0] faddr;
reg[10:0] daddr;
reg[10:0] fduck_no;
reg[9:0] dduck_no;
reg[9:0] line = 30;
reg[4:0] pix;

wire[3:0] dout;
flyingducks2730x4 duckram1(faddr, clk, dout);

wire[3:0] ddout;
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deadducks1800x4 duckram2(daddr, clk, ddout);

wire enbl;
Divider duckdivider(clk, enbl);

   
   always @ (posedge clk) begin

if(dead) begin //duck is dead use dead duck sprites
faddr <= 0;  //return flying duck sprites to original state
fduck_no <= 0;

if (enbl) begin
if(dduck_no == 900) dduck_no <= 0; //increase duck number (starting 

addr) once per frame
else dduck_no <= 900;

end

if((hcount > (x + WIDTH))&&(vcount > (y + HEIGHT)))
daddr <= dduck_no; //last pixel reached, reset address

if ((hcount >= x && hcount < (x+WIDTH)) &&
(vcount >= y && vcount < (y+HEIGHT))) begin

daddr <= daddr + 1;
pixel = ddout;
end
else pixel = 0;

end

else begin //duck is alive use flying duck sprites

daddr <= 0;  // return dead duck sprites to orginal state
dduck_no <= 0;
if (enbl) begin

if(fduck_no == 1800) fduck_no <= 0; //increase duck number (starting 
addr) once per frame

else fduck_no <= fduck_no+900;
end
if((hcount > (x + WIDTH))&&(vcount > (y + HEIGHT)))begin

faddr <= fduck_no; //last pixel reached, reset address
line <= WIDTH-1;
pix<=0;
end

if ((hcount >= x && hcount < (x+WIDTH)) &&
(vcount >= y && vcount < (y+HEIGHT))) begin

if(orientation) begin //read from rom backwards (this is a bit tricky)
if(pix == WIDTH-1) begin line <= line + WIDTH; pix <= 0; end
else pix <= pix + 1;
faddr <= fduck_no + line - pix;

end
else faddr <= faddr + 1;
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pixel = dout;
end
else pixel = 0;

end
end

endmodule
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