Optical Input Targeting
Game
By:

Daniel Southern
Rachel Bainbridge



Overview

Sprite-Based 2D game system running g sessesseccse

a game similar to Duckhunt

Detects position of laser pointer light in
image

Gun is fired when trigger is pulled, game
checks if cursor position overlaps duck
position

Game logic keeps track of score, other
game parameters

bbbt

QOO OO0
SCORE




Components

* Sprite-Based 2D Game System
— Rachel’s part

* Video Processing Cursor Locator
— Dan’s part

Video Input
From Camera>

Video Processor

Cursor

Gun ﬂrigger

Location

» 2D Sprite System

& Game Logic

Video Output
>




Sprite-based Game System

* Modules:
— One module for each type of sprite

— Sprite’s addresses put into muxes to make sure ducks
are drawn on top of the background and that trees are
drawn on top of the sky

— Game logic keeps track of score and duck
movement/death and outputs score in an ASCII display



X (10 bits)

Game System Block Diagram

hcount (10 bits)
. " BG BG_address
t (9 bits
veount ( 9 bits) |
hcount (10 bits) bush_address>
veount ( 9 bits)
P> Bush tree_address
>
hcount (10 bltS) score_addresi
t (9 bit
veount ( 9 bits)

Tree cursor_addiess
hcount (10 bits) duck_address
veount ( 9 bits)

P> Score

Score

hcount (10 bit

veount (9 bits)

y (10 bits)

shot

Game Logic

cursor_x (10 bits)

cursor_y (10 bits)

> Cursor

duck_x (10 bits)
duck_y (10 bits)
dead

Hcount (1

VY VY

O

Duck

bits) Vcount (10 bits)

sprite_priority

Pixel Out

R G B

ROM_address
| >

ROM




Sprite Module

*Inputs are the x and y coordinates for the current pixel
being drawn on the screen, and changes of location for the
sprite (for background sprites always 0)

*Duck module requires a special input indicating whether

address 16 bits

Sl x 10bits
the duck is alive or dead .
Sprite module figures out if it has output for the pixel, and y 10bits R
outputs the memory address at which it can be found ,

new_x 10 bits
*Module will be duplicated and given the correct >
parameters depending on which sprite it is handling new_y 10 bits
*Addresses from the modules go into a series of muxes in
order to figure out which address should be used ot
ol T -

SPRITE

v



Game Logic

*Inputs are x and y coordinates from
cursor locator and the button used for
the trigger

of trigger is pressed compares duck
coordinates to cursor coordinates and
finds if duck was hit

*Keeps track of duck movement and

status (alive or dead) and outputs the
location and status to the duck sprite
module so it knows what to draw

*Keeps track of score and outputs it to
module in charge of ASCII display

x 10 bits

dead

y 10bits

trigger

A 4

A 4

GAME
LOGIC

10 - bits

10 - bits

10 - bits

10 - bits

7 - bits

Yy v vy v Y

duck_x

duck_y
cursor_x

cursor_y

score



Sprite ROM

* Rom contains all sprite
images

o 3 2-bit wide B-Rams
— One for each color
— 2-bit R, G, B colors

* Need approximately 216
locations

Read Address

(16-bit)

ROM




Video Processing Module

* Locates cursor position in video input frame

 Qutputs the coordinates of the cursor in the video
output frame



Single Pixel (YCrCb) pl

-

Camera

Single Pixel

(YCrCh)

Single Pixel (YCrCb)

Input
Frame Buffer

Read Address

ADV7185 to Frame Write Address
Buffer Interface d
Max X Max Y

MaxX -
Parameters Maxy

X'CoTim Y'C%dinate -~

YCrCh to HSV
Converter

L 1 ]

Pixel Analyzer:
Pixel Filter
Center of Mass
Calculator

X Coordinate Y Coordinate

Input Coord. to
Ouput Coord.
Converter

Pixel
Analyzer



ADV7185 to Frame Buffer
Write Interface

*Reads new pixel information from the ADV7185
Ch, Cr, Y data is read serially in a specific order

*Module stores them until a set of three values that describe one pixel
Is ready

*Generates write addresses, write enable signals for Frame Buffer module

Write Enable (1-bit)

-hi Y (8-bit
peafeady 80— ADV7185 To Frame S
Pixel Info (10-bit) Buffer Interface coeot)
Cr (8-bit)

>

Write Address (18-bit)




Input Frame Buffer

sI[mplemented in ZBT memory

Capacity for 1 Frame at ~ 640x480 pixels, 24-bits/pixel
*Size: .9MB (Labkit has 4MB)
Bandwidth : .9MB * 60Hz = 54MB/s write rate

*Read rate will be <= write rate

*Frame buffer fits easily on one 512K x 36 ZBT memory

Single Pixel

(YcbCr)
24-bit

Write Address

18-bit

Input

Frame Buffer

Single Pixel (YcbCr)
24-bit

Read Address
18-bit



YCrCb to HSV Pixel Converter

*Pixel processing is inherently easier in the HSV color space
*ADV7185 on Labkit only outputs video in YCrCb format
*lterates through pixels from frame buffer

Converts to the HSV color space

Max X (10-bit) Max Y (10-bit)
; > YcrCb to HSV >
> Converter .
<Read Address (18-hit)




Pixel Filter

Determines whether a pixel is part of the cursor image
*Parameters will be hard-coded if possible
*Otherwise, implement a calibration functionality

«Change these values while the system is running

H (8-bit) Pixel Filter
S (8-bit . .
(8-bit) R Parameters: Match (1-bit)
V (8-bit) *Min/Max H Value >
> eMin/Max S Value
*Min/Max V Value




Center of Mass Calculator

*Takes a weighted average over the pixels that match

*Qutput changes after all pixels in frame are analyzed.

*Reset calculation upon processing pixel at (0, 0)

A new cursor position appears at the output of the module for every

frame of video (60Hz)

Match (1-bit
atch (1-bit) . Center of Mass

Pixel X (10-bit) Calculator
Pixel Y (10-bit)

Cursor X (10-bit)

Cursor Y (10-bit)




Input Coordinate to Output Coordinate
Converter

Transforms between pixel locations in the
input and output image

Complexity/Sophistication level will depend

) X Coordinate Y Coordinate
on the progress of the project 10-bit 10-bit
— Which factors to take into account?
e Rotation Input Coord. to
Ouput Coord.
* Scale Converter
o Skew

X' Coordinate Y' Coordinate
e efc. 10-bit 10-bit



Additional Features to be Implemented

as Time Allows
* More sophisticated Input / Output transformation
* More complex game behavior
— Levels, multiple ducks, limited number of shots

* More complex Pixel Filtering
— Dynamic relative luminosity detector
— Averaging over several frames



