
FPGA Hunt

Syed Ahmed, Pete Kruskall, Yuetian Xu

December 15, 2007

1 Introduction

FPGA Hunt is a throwback to the games of yore. Much like the seminal game
Duck Hunt, FPGA Hunt is a light gun controlled reflex-testing game where one
must shoot objects that fly through the air. FPGA Hunt, however, introduces
a modern twist onto the old game. In addition to a wide array of potential
targets, each with their own personality and game effects, FPGA Hunt takes
the 2D Duck Hunt engine and evolves it into a 2.5D engine, allowing what
are typically static elements on the screen to become dynamic 3D elements,
immersing the user in a semi-realistic environment. Furthermore, allow users to
shoot the dog that used to mock them when they missed the duck. In the next
few sections, we will explore how the zapper, game logic, and graphics modules
worked together to make this gaming experience possible.

2 Zapper Overview - Syed Ahmed

The zapper we obtained for this project was the EMS TopGun. This zapper
uses LED lights placed around the screen to determine the orientation of the
device. A tiny camera at the end of the zapper is able to detect the LEDs
and with some calibration, determine which portion of the screen the zapper
is pointed at. The software that comes with the zapper allows for the user
to control the PC’s mouse with the device. When the trigger is pressed, the
software interprets this as a mouse click. From there, a java program determines
the mouse’s coordinates and sends the information to the labkit via the serial
port. The zapper module then interprets the data from the serial port and sends
information related to the zapper’s x and y position to the game logic module.

2.1 Zapper Logic: PC Output

The process of interpreting the PC’s mouse coordinates and sending the infor-
mation to the labkit via the serial port is completed entirely with java program-
ming. The program first analyzes the computer’s hardware to determine which
communication ports are available. Depending upon the ports that are avail-
able, java displays a window to the user to allow him or her to select the port

1



they wish to use. After the user has selected their desired port, the program
initializes the port and prepares for output. It then creates a blank 800 × 600
pixels window that encompasses the entire screen (when the screen resolution
is 800 × 600). This window detects the coordinates for the mouse whenever it
detects a mouse click. The software then sends a six digit number through the
serial port. The first three digits relate to the x position, while the last three
relate to the y position. This can be done indefinitely or until the window is
closed by pressed Alt + F4.

2.2 Zapper Logic: Labkit Overview

The labkit receives the output from the PC through the RS-232 or serial port.
The zapper module is responsible for interpreting this data and determining the
information that it is carrying. The serial port sends a constant datastream of
ones until it receives an output from the PC. At this point, the stream becomes
zeroes for a period of time related to the baud speed of the port. This speed is
set through the java software on the PC and for the purposes of this project,
has been set to 115200. This means that every bit sent from the PC via the
serial port lasts for approximately 235 clock cycles when using a 27 MHz clock
on the labkit. After the initial start bit, the serial port then sends 8 bits related
to the first digit in the x position. This is followed by a transition phase that
consists of a ’1’ and a ’0’. The stream then moves on to the second digit in the
x position value, and proceeds in this manner until it reaches the final digit for
the y position value. Upon completing this final digit, it immediately returns
to a stream of ones until the next position signal is sent.

Figure 1: Sample Two Digit Serial Transmission Signal

2.3 Zapper Logic: Labkit: States

In order to facilitate the interpretation of the changing properties of the datas-
tream, the zapper module has various states that relate to the information
that it is currently analyzing. When the datastream is sending a continuous
stream of ones, the zapper remains in a “no communication” state. In this state
it only seeks to ensure that all the timers and expiration signals are reset or
turned off. When the zapper module detects the start bit, it transitions to the
“start sequence” state. In this state, the module simply counts the number of
clock cycles it takes a 27 MHz clock to count one bit from the serial port (which

2



happens to be approximately 235 with a baud speed of 115200). Instead of
counting to this number, the module counts to a number slightly below it (ap-
proximately 220) to insure that all subsequent recordings are from the correct
value, and then transitions to the next state, “x digit 1”. In this state, and all
other states referring to a digit, the module has two timers, a macroscopic timer
and a microscopic timer. The macroscopic timer is responsible for determining
when the module has finished reading the 8 bits concerning the digit. This timer
is responsible for triggering the expiration signal that transitions the module to
the next state. The microscopic timer is responsible for determining which bit
in the 8-bit sequence the module is currently reading. This will be discussed
further later in the report.

The next state that the module goes to is the transition state. Once again,
in this state the module only counts the number of clock cycles it takes for
two bits to pass before transitioning the system to a state related to the next
digit. In this manner, the state transitions continue, from a digit state to a
transition state, until the module reaches the final y digit. When it has finished
reading this final digit, the module enters its “transmit data” state. In this
state, the module sets the x and y position outputs to their new values and
turns the “zapped” signal on. The output for the x and y position will remain
constant until the value is changed, but the “zapped” signal will only last for
as long as the module remains in the “transmit data” state. Since the gaming
logic works every 1/60th of a second, the zapper module is set to remain in the
“transmit data” state for that long.

Figure 2: State Transition Diagram

3



2.4 Zapper Logic: Macroscopic Timings

There are four macroscopic timers running within the zapper module. The first
timer, “counter1” is responsible for measuring the length of time for which the
zapper module will be reading the start bit from the serial port. The second
timer, “counter 2”, is responsible for determining when the module is no longer
reading a digit. The next timer, “counter3”, counts for the amount of time that
the serial port is outputting the transition one and zero bit. The final counter,
“counter4”, last for 1/60th of a second and is responsible for measuring the
period of time for which the zapped signal will be outputted for.

2.5 Zapper Logic: Microscopic Timing

When the zapper module is in a state where it is reading a digit, it must read the
values from the serial port and store them into appropriate registers. In order
to this, a mini timer has been implemented that will count to approximately
235 (the length of time that one bit from the serial port is maintained) and then
increment a position counter by 1. Depending on which digit is being read, the
position counter will be used to store the value in its appropriate register. Once
the module has finished reading all the positions for a given digit, each store
integer will be placed in it appropriate position in a 4 bit value. When all of the
digits for a given number have been recorded, the values will be multiplied by
the appropriate value and stored in a 10 bit register. For example the number
762 will first be recorded as three separate numbers: a seven, a six, and a two.
These numbers will then multiplied by the appropriate value and summed to
digitally represent the number 762: (7× 100) + (6× 10) + (2× 1).

2.6 Testing

The Zapper module was tested using the Logic Analyzer. When a signal was
sent from the Java software on the PC, an output was displayed on the moni-
tor indicating what the coordinates of the mouse position were. The x and y
position outputs from the labkit’s zapper module were displayed on the Logic
Analyzer and this value was compared to the value on the PC to determine the
modules accuracy. This process was repeated multiple times to ensure consis-
tently correct behavior.

2.7 Integration Testing

When the zapper was first connected to the gaming logic, the hit margin was
increased to a very high level to ensure that the “zapped” signal was functioning
correctly. The hit margin was then slowly decreased so as to verify the accuracy
of the zap.

4



2.8 Recommendations for Future Designers

Future programmers should look into creating a module that can read and
interpret any output from the serial port and then verify whether that output
makes sense or not. In the manner that the zapper module was implemented
for this project, the output from the PC must be precisely what the zapper
module expects for it to be. Otherwise, the zapper will completely misinterpret
the signal. With a more robust module, this can be avoided.

3 Game Logic - Yuetian (Peak) Xu

The game logic module takes the inputs from the zapper module and changes
the state of the objects which are outputted to the graphics module. The inputs
are the trigger, the x position, and the y position of the shot being fired. The
objects outputted to the graphics module are bit strings which are the object
type, object status, object x location, object y location, and the object depth
concatenated together.

3.1 Timing

There are several clock speeds that are used throughout this system. The input
from the light gun is transmitted over serial which is one speed, most of the
modules ran at 27MHz, the graphics portion ran at 65MHz, and the game logic
runs at 60Hz. The timing problems were handled by having signals being held
as levels.

Our functional spec became that the zapper module would hold each trigger
pull received high for at least 1/60 of a second, and output x and y position as
levels until it changes. Similarly, the game logic module will constantly output
the various object bit strings as levels that change at most 60 times a second to
the game logic module. These design decisions enabled things to work together
without worrying about timing too much. A small divider module was also
made to generate a 60Hz clock signal from the 27Mhz signal.

3.2 Main Game Logic

This module is the main logic unit. This module’s design is primarily a finite
state machine to select which stage the game is currently in. In each stage, all
of the shootable objects have their own finite state machines.

The original design contained a provision for both background and fore-
ground objects. However, we soon realized our definitions for both objects
utilized common bit string formats. Similarly, the compile times got very high.
Thus, we chose to merge the two and just support 8 objects total. We also
originally envisioned having an environment list which would store all of the
different objects in memory and act as an intermediary between game logic and

5



graphics. Implementationally, it was more convenient to have game logic mod-
ule store internal memories ofthe status of various objects. Thus, it was decided
that we would hook up the game logic and graphics modules directly.

One of the design concerns is that we would not want to have objects such
as geese be spawned more than once. The way I handled this was via spawn
states where the necessary objects are initialized and the state variable is uncon-
ditionally updated to become the next state. This way, we would never spend
more than a single clock period in any given state. While this design was great
initially, it turned out to be less than stellar for more complicated logic such as
having geese only spawn when the dog is near etc. In order to make sure the
geese wouldn’t spawn more than once, I added some registers that kept track of
whether a particular goose has spawned during this stage. This worked similarly
and provided some additional flexibility. This enabled behavior such as the dog
patrolling the ground and rousing nearby geese.

Another issue is the matter of making sure that a sprite would appear for
a certain amount of time. If the goose being shot, the dog laughing at you, or
the dog holding up shot geese passed too quickly, one would miss out on the
cool animation. The solution to this was to use the in game timer. Though
originally planned to be part of a more FPS approach or to add more difficulty
where one would fail the level if not completed within a certain time limit, this
is now used for measuring the time. I had a few registers around which would
store the time when the state was first entered. For example, if the goose fell to
the ground, it would set the state of the dog to be that of holding up the dead
goose. At the same time, it would store the system time into the dog animation
time counter. If the time is now more than a certain number of seconds beyond
when the dog first started holding up the dead goose, the dog would transition
to the appropriate next state and disable the timer.

This function was made into an idiom in the game logic module and used
very frequently so as to enable dog/goose interactions. For example, if the goose
reaches the top of the screen and escapes, the dog would come out and taunt
you by laughing. If you kill the goose and it falls to the ground, the dog would
show up with a goose and hold it up for some time. In addition, it allowed us
to show the animations for both the goose and dog being shot.

Another interesting feature was the fact that I would store a half way point
for what the midway point of the dog and goose is when the goose is shot. As
soon as the goose is shot, the dog jumps in that direction. Before it passes
through the halfway point, it will go up into the air. After the halfway point, it
will start dropping. This enables it to make a cool looking arc through the air
for the jump.

The triggers for transition onto the next game stage is simply a check to
see if the score has surpassed some threshold. This threshold is proportional
to all the geese spawned so far. We currently award one point for each goose
killed. If you should happen to miss a goose, don’t despair and reach for the
reset button. Due to the fact that the ability to shoot the dog is considered an
important feature, we actively encourage violence towards the dog. Shooting
the dog will also net you one point. This makes it especially tempting to shoot

6



the dog while it is laughing at you for missing a target.
In the interest of providing variable difficulty levels and perhaps tricking your

friends, a set of switches was added to adjust the hit margin. By hit margin,
we mean how much far outside of the target sprites you can shoot and still have
the shot count as a hit. This is necessary as the laser pointer on the light gun is
not perfectly accurate and can be off by as much as 80-100 pixels off at certain
points due to parallax problems. We made it configurable in increments of 8
between 0 and 128. At 128, it’s quite possible to blow multiple geese out of the
air simultaneously. At 0, it’s virtually impossible to score a hit. This feature
was fairly simple to implement and entertaining to use on one’s unsuspecting
friends.

3.3 Testing

A unit testing module was set up fairly early on for the game logic module to
allow for testing independent of the zapper and graphics modules. This is the
most important for the game logic module due to the need to depend upon both
other modules.

On the input side, a simple switch was wired to be the trigger and the target’s
x and y coordinates were fed to what the zapper’s output x and y coordinates
were with a variable offset controlled by other switches. This allowed for testing
whether the trigger logic worked properly.

On the output side, the blob modules from lab 5 were used to show the po-
sition of the various sprites on the screen. The color of the rectangles reflected
the type of object it was. This was quite successful at making sure movement
code worked properly without depending upon the graphics module. This as-
pect was used well beyond when the graphics module was first integrated as it
greatly reduced compile times and enabled faster debugging turn around time.
Unfortunately, The status of the object was not easy to reflect and this test
suite thus didn’t quite fulfill the highest potential it could have had. One of the
primary limitations was the number of colors available which could have been
used to reflect not only object type but status as well.

3.4 Integration Process

The integration with graphics module was fairly smooth judging from the rela-
tively simple specifications. We both agreed to hook up our modules together
directly. Furthermore, use of level signals made things easy. We had slight
miscommunication where we had opposite orders for concatenating the various
values: type, status, x position, y position, and depth together to form the bit
string. This led to the object teleporting around the screen. This was fairly
simple to figure out.

The integration with the zapper module wasn’t quite as smooth due to some
timing issues. We soon decided to use a level pulse scheme much like the graphics
module and things worked out fine. Also, the game logic and graphics both ran
at 1024×768 resolution while the zapper ran at 800×600 resolution. For this, a

7



conversion factor had to be applied. For some reason, the proper ratio of 32/25
couldn’t be used due to some Verilog limitation. I had to settle for 41/32 which
was a very good approximation.

3.5 Advice for Future Implementations

One thing that we found very useful during integration with the graphics module
was to abstract out a set of parameter for the object types and object statuses
which are shared between our modules. Using the include directive to add these
to both works well and made synchronization considerably easier.

Another recommmendation is to always use trigger and hold to produce
level signals for inter module communication. These are far more forgiving with
regard to different clock rates etc.

4 Graphics - Pete Kruskall

Figure 3: Block Diagram for Graphics Components Showing just one Object
Module

The graphics collection of modules serves to take information on the state
of the objects from the Game Logic Unit and to convert them into graphical
information to display on a VGA screen.

4.1 Master Sprite

To keep the design simple, sprites are implemented using a master sprite bitmap,
which contains each animation frame in one memory system. An example master
sprite image is shown in figure 4. When communicating information about pixel
colors from various sprites, rather than communicate actual colors, we choose
to communciate between modules using the position of the pixel in this master
sprite image.

8



Figure 4: Master Sprite image from Version 1 of FPGA Hunt

4.2 Shootable Object

A shootable object represents any object displayed on screen whose state is
communicated from the GLU. It effectively maintains state, including position,
status, depth (for layering sprites), and type of object– all by maintaining a
persistent connection to the GLU.

A shootable object’s job is to return to the Graphics module indicators as to
whether or not the given object has a candidate pixel to be drawn on the screen.
This is accomplished by sending the Graphics module 3 pieces of information
per screen pixel: a pixel position for the master sprite, a depth value, and an
indicator as to whether or not this object actually has a sprite pixel at the
requested location.

To get this information, each shootable object maintains an instance of each
of the types of objects allowed in the game (whose types are listed in figure 4.3),
but only requests information from that which matches the Shootable Object’s
type field.

The Shootable Object module forwards the screen pixel requested by the
VGA unit to the object instance that the Shootable Object is supposed to
represent.

4.3 Object Modules

Each object module serves to convert screen coordinates to coordinates in the
master sprite image. It accomplishes this by taking in a coordinate denoting
the requested pixel in terms of local object space (0,0 being the upper left hand
corner of the object), as well as a number indicating the status of the object
(i.e., which direction it may be facing). By summing hard-wired master-sprite
locations and local object space coordinate requested, the Object modules return
coordinates in the master sprite which correspond to the pixel requested.

Each object module also stores it’s own height, and knows to assert a signal
’NOTHING’ if the pixel requested is beyond its dimensions.

9



Binary ID Type
0001 Goose
0010 Red Goose
0011 Blue Goose
0100 Dog
0101 Tree
0110 Cloud

Table 1: Object Types and their Respective Bit String IDs

4.3.1 Goose / Red Goose / Blue Goose

There are 3 separate object modules to represent geese in our game. The only
difference between the three is color; however, rather than recolor one sprite
collection, we chose to use 3 different collections, each already colored differently,
to represent the different colors. Each goose object has a myriad of status values
that can be asserted to change the look of the goose. Besides status values to
denot flying in all 8 directions of the compass rose, the goose object also allows
passing a ’goose-shot’ status, as well as a ’goose-falling’ status. Some directions
of flight were not represented in the master sprite file. For instance, for a goose
to be able to fly south (down), we mirrored the y-image of the sprite when
sending back master sprite coordinates to the Shootable Object module.

4.3.2 Dog

The dog, from the original Nintendo game, is stored as its own shootable ob-
ject. Like the goose object, the Dog allows for status values that determine its
direction. We limited the Dog’s directions to east and west. However, we allow
for many different animation states, including: a simple “walk-and-sniff”, for
when the dog is searching for fallen geese; a jumping animation, for when the
dog is grabbing a goose; a laughing dog animation, as well as two stationary
images for when the dog has found respectively one and two geese. Much like
the Goose module, we mirror sprite images for certain status value s to allow
for directionality in animation.

4.3.3 Tree

The tree, unlike the Dog or Goose modules, does not have any animations. How-
ever, a different problem comes up for the Tree object. The sprite we had avail-
able for the Tree object was comparable in size to the Dog and Goose sprites,
which did not appear realistic when placed on screen. As such, we decided to
scale up the image when it was rendered on the screen. To accomplish this, the
Tree module is told not to assert the ’nothing’ signal unless the local coordinate
requested is more than (SCALE FACTOR ∗ SIZEX , SCALE FACTOR ∗
SIZEY ). When returning the master sprite coordinate, we divide by the scale

10



factor to simply stretch pixel values over a SCALE FACTOR∗SCALE FACTOR
number of pixels. This created a grainy appearance which could have been reme-
died by an antialiasing filter. As division can only occur with powers of 2, we
chose a scale factor of 4 for the Tree module.

4.3.4 Cloud

The cloud represents another object which, like the tree, needed to be resized
to appear natural in the environment. The cloud was scaled by the same factor
as the tree, and though we ended up not using it in the full implementation of
FPGA hunt, was verified to work through graphics module testing.

4.4 Graphics Module

The graphics module takes in data from each of the object instantations, and
on each tick of the vga pixel clock, chooses the color of the current pixel. If no
object exists at the current pixel, a background color is selected based on the
y-coordinate of the pixel. Low y-coordinates receive a blue color (representing
the sky), and high y-coordinates receive a brown color (the ground).

Because reading from the sprite memory is a relatively slow process (requir-
ing one full clock cycle), we do not perform any memory reads until the last
possible moment. As such, the Graphics and Object modules only communicate
using pixel coordinates. To further increase the number of reads we can do, we
use a dual port BRAM to store the master sprite information.

At each clock tick, the graphics module determines the top two objects by
depth and checks their pixel color values to ensure that the pixel color does not
represent a transparent pixel.

4.4.1 Color Keying

To keep track of the two highest objects at any pixel, at each clock cycle, we
iterate through each of the eight objects, maintaining at each step the two
highest objects up to that point. By the end of the iteration, in two separate
registers, we maintain the master sprite pixel coordinates of the two highest
objects, and use these for color key calculations and color selection.

Color keying is performed to excise the solid color around each of the rect-
angularly shaped sprites. Once the sprite coordinates are stored for the two
most prominent objects, we query the memory for both pixels in question, and
determine which should be drawn. If the top most object, at the current pixel,
is supposed to be transparent, the second highest object’s pixel is drawn to
screen. If the second highest object’s pixel is also meant to be transparent, the
pixel color is left as the background color.

This implementation of color keying has a weakness in that it only maintains
two layers of color key information. Because color keying is in essence an itera-
tive process, blocking assignments are needed for the logic to work correctly. To
ensure that an answer is complete by the next tick of the pixel clock, we chose

11



to limit the number of layers we kept track of for color keying, keeping in mind
that there are few situations in duck hunt for which there are more than two
objects overlayed on one pixel.

4.5 Testing

To test the entire graphics module, a Graphics Test Suite module was created,
which served to connect FPGA controls (switches, buttons, etc) directly to the
inputs for Shootable Object modules. Correct operation was verified visually.

Verifiying color keying required an example situation in which two different
shootable objects were directly overlayed with one another, allowing the depth
of one object to be directly controlled by user input.

4.5.1 Integration Testing

As the only required integration was that with the GL unit, there was little
possibility for error in connecting each of the 8 connections between the two
units. However, due to a lack of communication in specification, when we finally
connected the GL and Graphics unit, we witnessed what can only be called
schizophrenic behavior. A couple of iterations later, as well as mutual assurance
that each of our modules passed our own tests, we were able to figure out that
we had both miscommunicated which data value resided in the most significant
bit. A quick fix later, and all was working.

Most other problems were avoided by defining globally the parameters we
planned to use for status values, object types, and other constants that were to
be used by multiple modules.

4.6 Recommendations For Future Designers

Those wishing to implement a sprite system as I’ve described above would be
wise to quickly verify correct operation of their BRAM memory files. Converting
a 24 bit color bitmap to a 16 color COE file took a lot of work and error checking,
as many of the scripts published on the internet are not entirely error-proof.

On the other hand, it is very easy to make a small mistake and attribute it to
3rd party applications, when it really is your own fault. We had a fully working
implementation with all of the original sprite animations, when we decided to
add on a few new objects. I had figured that by increasing the width of the
sprite, that little more had to be done to ensure correct operation. However, by
increasing the width, I also needed to modify the method of access for data in
the BRAM (as we multiply our y coordinate by the width of the image at one
point to access the data).

Working with 16 colors helped greatly in debugging this problem, as we were
able to read the memory file line by line to verify the correct data was stored,
and that the error was likely to lie in the verilog code itself.

12



5 Conclusion

With all three elements working together, we were able to produce a fully func-
tioning and compelling game. Our game successfully took the coordinates from
the zapper, interpreted them to determine which creature was being shot (or
not) and displayed this on the screen. It also successfully determined and dis-
played other actions related to gameplay such as dog-geese interactions as well
as graphical elements such as occlusion.

13


