Galaxian Revolution:
| nter active Arcade Shooting Game

6.111 Fall 2006
Final Project Report

Team #27
Danh (Danny) Vo and Weijie (Jeff) Yuan

Mentoring TA:
Javier Castro

Abstract:
Galaxian Revolution represents a coalescence afitissic arcade game Galaxian and a
novel hand motion based controller scheme. Thegraovolves the design and
implementation of three different module blocksleo processor to detect hand motion
and translate into game commands, the game Iaglf which governs the flow of
gameplay, and finally the display output to the itmn The successful integration of
these independently designed blocks is also aalraemponent of the project. Through
five weeks of planning, designing, implantationd amtegration, the project is fully
functional and can be enjoyed by adults and childrfeall ages.

Table of Contents

1 Introduction

2 System Overview

3 Video Processor (Danny Vo)
3.1 Object Detector
3.2 Object Position History
3.3 Game Input ----------==--==-mmmum-
3.4 Testing and Debugging

4 Game Logic (Jeff Yuan) -----------------
4.1 Main Game LogiC ----------------
4.2 Collision Detection --------------
4.3 Timer
4.4 Ship Object
4.5 Bullet Object
4.6 Alien Object -----------=--=--=m=---
4.7 Game FSM-----------mmmmmemmeee
4.8 Titlescreen and Endscreen
4.9 Background Image --------------
4.10 Score Display
4.11 Testing and Debugging

5 Display Output (Danny Vo)

5.1 Testing and Debugging
6 Conclusion
7 Acknowledgements -----------------------

b

0 00 ~N O 01

10
10
11
11
11
13
14
14
15
15

16
17

18

18

Table of Figures

Figure 1: Galaxian Game Logo

Figure 2: Screenshot of Galaxian
Figure 3: Overall Block Diagram

Figure 4: Video Processor Block Diagram --
Figure 5: Demonstration of Median Filter ----

Figure 6: Routing With and Without Area Constrait--------------=-==--=-==-mm---

Figure 7: Game Logic Block Diagram --------

Figure 8: Alien FSM State Transition Diagram -——---------------=-moemnmmemmo-
Figure 9: Game FSM State Transition Diagram -———--------=-=-=---=----m-mn---

Figure 10: Game Title Screen

Figure 11: Game End Screen

Figure 12: In Game Screen
Figure 13: Display Output Pipeline Diagram

1. Overview
Galaxian is a classic arcade game released by Namco
1979. The game features a horde of aliens creature @ l?ﬁ
which attempts to destroy a spaceship controllethby
player. The player can shoot bullets at the alieran Figure 1: Original logo of the
attempt to exterminate them. A novel feature efgame Galaxian game
is that periodically, aliens swoop down from their
formation and make kamikaze attacks at the playiis. Galaxian was a huge success

for Namco and spawned a large number of sequelsidimg Galaga (1981), Gaplus
(1984), and Galaga '88 (1987).

For our project, we aimed to implement a version of 1UP HIGH SCORE
Galaxian on the FPGA board. While keeping theitspir _ =
of the game in mind, we did not intend to copy the . T o
design of the game exactly. In addition, we warnted '
combine this classic game with an innovative cdlgro
scheme where the ship can be controlled by theepky
hand motion. This allows for a more interactivel an
exciting gaming experience.

To reach the goals stated above, we designed our
project to include three main blocks. The video
processing block handles the signal from the camera
which detects the player's hand motion and converts s -

into commands such as “move left”, “move right” and Figure 2: Screenshot of Galaxian
“fire bullet”. The game logic is responsible faeating arcade gante

the game itself, including the graphics, the sing#igsics in the game, and the
progression of the game itself. Finally, the videdput block takes video signal
generated from the game logic and outputs it testheen.

The following sections in this document detail tlesign of the system, the process of
implementation and debugging, and the end resultiisfproject. Possible improvements
to the design process and the system are alsosdstat the end of the document.

2. System Overview
The system is divided up into three main blocke f&gure 3). The video processor
block contains code which interfaces with the vidamera to get the relevant pixels. It
also uses various algorithms to detect the desiogett, and track its velocity and
position. The video processor is designed andemphted by Danny Vo. The game
logic contains all the images, rules, and intecaxtiwhich make the game operate. Jeff
Yuan is responsible for the design and implemeonati the game logic. Finally, the

! Image © Namco, 1979
2 Image courtesy of Wikipedia (http://en.wikipediaywiki/Galaxian)

video output module takes the image informatiomfthe game logic and efficiently
outputs to the display. This block is implemenbgdanny Vo.

Between the video processor and the game logisédeztor which allows the game to be
controlled by either the video processor inputadakit buttons. This allows for multiple
ways of controlling the game. It also was helpfulesting and debugging the
connections between the different modules.

vram_pixell[17:@1] ship_controll2:@] game_input_ship_controll2:a1 gpixell2:@]

n . ghsync
veount[9:8] videa processor ship_speed[10:0] game logic gusync Lco

£ gblank

heountl1@: @] game_input_ship_speed(108:@1]

button

-
Q
<

k)
o
]
<
a
pu)
3
[}

Figure 3: Overview of system logic blocks

. Video Processor
The main purpose of the video processor is to pethe control input for the game logic
block. The video processor interprets the usautinpthe following setting:

The user holds an orange ball in his or her hank the ball in the view of the
video camera. As the hand is moved from leftgbitror vice versa, the video
processor calculates the velocity and the direaticthe ball. From this
information, the video processor provides appraer@@ntrol inputs for the game
logic block.

In order to process the ball’'s movement, the vigiexessor must be provided with
streams of pixels from the video camera. The dodmost of the camera interfacing
modules is based on those written by the 6.111 shafarticular, thedv7185init®
module is used as the driver for the video decoddentsc_decode* module takes in a
stream of LLC data from thexdv7185init and generates the corresponding pixels in
YCrCb format. These pixels are then written irite ZBT ram by thatsc_to_zbt
module and read out by thieam display module. The video processor then takes in
these pixel values from theeam display and processes them.

Some minor modifications have been made to the lesduentioned above. In
particular, thentsc_to zbt module is changed to extract an 18-bit value ftben30-bit
YCrCb value provided by thetsc_decode. Then thentsc_to_zbt writes two 18-bit
YCrCb values which correspond to two adjacent gixaio each row of the ZBT ram. In

% The adv7185init module is written by Nathan Ickes
* The ntsc_decode module is written by Javier Castro

addition, thevram_display module was changed to take into account of thietiiat two
adjacent pixels are stored in the ZBT ram.

The video processor block consists of three modol@sct_detector, object_pos_history

and thegame_input. Theobject_detector module takes in the pixel value from the
vram_display and provides the current pixel position of thengaball to the

object_pos history. Theobject pos history module keeps a record of the pixel position
of the orange ball. From these recoatgect _pos history calculates the velocity and
direction of the ball. It then computes the appiaip control inputs and passes that to
thegame_input module. Thegame_input module makes the final decision before passing
the control inputs to the game logic block. Theioonnection between these three
modules can be seen in figure 4.

heount[1@:@] object_yl9:0] game_control [2:@]1 ship_control[2:@]

object_detector abject_pos_history game_ i nput

voount [9:i@] velocity_=[1@2:@]

uran_pixel [17:8] object [16:0] EleTt e ForEh el

Figure 4: Block diagram for video processor

3.1 Object Detector

The main idea in detecting an object is to lookpgxels which belong to the object and
calculate the center of mass from these pixelds détection algorithm examines the
incoming pixel values and sums up the vertical lamgizontal pixel positions that satisfy
a threshold test. At the end of the framigect_detector triggers a divider to take the
average of these vertical and horizontal sumsltulzde the center of mass. In the case
of detecting an orange ball, thisject_detector module looks for pixels that characterize
the ball's color based on its threshold test. Thisshold test is a comparison to see if a
particular pixel falls within a range of allowedlapvalues. If this is the case, this pixel
is recognized as being part of the ball. This eaofgvalues depends on which color
space the threshold test is operating on.

Originally, theobject_detector module was implemented to detect green LEDs in the
RGB color space. The detection algorithm lookedigels which have the green value
greater than a threshold value of 251. Howeveés,ghrticular scheme performed poorly
due to two main reasons: high sensitivity to naisd low robustness to changes in the
environment. In order for the detection to woHe tamera must face downward to
avoid the ceiling lights or any surface reflectlmetause they also have green value
greater than the threshold value. Furthermorecaimeera must be blurred to reduce the
amount of noise produced not only by the surroundrenment but also by the LEDs
themselves. The sensitivity to noise is mostlphe=d by implementing a median filter
(discussed below). The low robustness to changtgienvironment has its roots in the
RGB color space, which does not separate brightregolor. In other words, as one
increases or decreases the green value, the begghts simultaneously increased or

decreased. Thus to the detection algorithm, angc&® is no different than a ceiling
light. This problem is overcome by doing detectimthe YCrCb color space.

To reduce the sensitivity to noise, a median fiseused. Specifically, as the
object_detector receives a pixel which passes its threshold itestquires that the four
previous pixels also satisfy the test. If thisdition is met, thebject_detector adds the
vertical and horizontal pixel positions of the goais second and third pixels (hence the
median). This allows thebject_detector to avoid noises which generally have less than
four consecutive pixel values that can pass thestiold test. Figure 5 illustrates this
point. In this example, the median filter recogsizhat on row 15, five consecutive
pixels pass the threshold test. It then adds ¢ngcal and horizontal pixel position of
pixel 1 and pixel 2. Row 17 contains two conse@ipixels which pass the threshold
test. These are rejected as noise by the mediian fi

Row 17

ball noise

Figure 5: A median filter is used to reduce noiselject detection. Pixels in row 15 pass throtingh
median filter since there are more than four comsee pixels which pass the threshold test. Orother
hand, the two pixels in row 17 are rejected byrtteslian filter.

The low robustness issue is solved by switching@oCb color space and a better
threshold test. YCrCb color space separates lorggistand color. Specifically, Y value
contains all information about the brightness phdicular pixel. The new threshold test
is composed of testing all three color value: Y, &@rd Cb: the@bject_detector has three
ranges of value for Y, Cr, and Cb. A pixel is rgoized as belonging to the ball only
when its Y, Cr, and Cb values fall within the cepending threshold range.

3.2 Object Position History

Theobject_pos_history keeps tracks of the pixel position of the orangk @nd
calculates its velocity every four frames. Thisdule does not use signed number. It
outputs to the game logic block the velocity of badl, along with a game control signal

which denotes which action the user is currentlygueing: left, right or shoot. The
shoot action is triggered when an upward veloditgve a certain threshold is detected.

3.3 Game Input

Thegame input processes the output of tbigiect_pos_history module. It restricts the
horizontal velocity to be within a certain randeor instance, if the user gives a velocity
that is too fast for moving a ship, then tigne _input module acknowledges the user’s
command but it reduces the velocity before inpat thto the game logic block. So this
module effectively imposes an upper bound on thi®ua output signals from the video
processor to the game logic.

3.4 Testing and Debugging

Since the system is driven at 65 MHz, the timingstraint is particularly tight such that
a long signal path could cause the propagatiorydelaxceed 15ns, the period of the
clock. This would cause the pixel data from theeea to not be written correctly to the
ZBT. Such a routing problem was discovered dutivegintegration phase of the project.
It was made obvious by the fact that the video carmeage was correctly displayed on
some compilations and not others, while the codechanged very little.

ZBT | T e |

dafa ; '.'E' .Ii'.":.':' R |

e —= | I ' é'. ,:' |
address S R |
location ! L1 . I
i 1]

| |
i€ ' | |

without area constraint with area constraint

Figure 6: Comparison of project component placemarthe board, with and without an area constraint.

After combing through various Xilinx manuals, a hd was discovered that would
allow the mapping of components on the board todmstrained within a certain area.
This allowed for a more concentrated placemenbaimonents to be near the ZBT, thus
eliminating the problem of having long path witlghipropagation delays. After
applying this area constraint, the system condistebtained good results on every
compilation. To illustrate this point, figure 6ais the difference between a layout
obtained without using a constraint and one whigddua constraint. As one can see,

without using an area constraint, Xilinx ISE justdomly “optimizes” the placement of
components all over the FPGA chip. After applyiihg error constraint, the placement is
limited to the bottom left hand corner of the chipse to the location of the ZBT.

4. Game Logic

The game logic block is responsible for creatirgdhtual game play. It instantiates all
the sprites seen on screen, and interprets us&otorio actions that are reflected on the
screen. The game logic block (shown in figuresgamposed of about ten modules
which perform a variety of tasks. The main modgkeme_logic.v) exists as a foundation
from which all other modules are instantiated aonected together. Then there are the
game objects modules (ship.v, bullet.v, alien.\d allen_formation.v) which represent
the objects that appear directly the game. Intamidithese modules perform calculation
for the location of the objects in each frame. gdime object modules are connected to
the collision detector (collision.v), which repodasy collisions to the game logic. A
game FSM module (game_fsm.v) coordinates the seguaractions in the game,
including when certain automatic actions of aliarestriggered. Finally, there are
modules (startscreen.v, endscreen.v and backgnuntich are responsible for loading
stored image from ROMs onto the screen.

alien_chargel15:41]

reset_ship
game_madel[2:@]
enable

start_calc

target_x[10:41]

target_ylL9:41]
enable
start_charge|
start_calc

alien alien_rghl2:0[

game fsm

start_x[1@:@1] cgl_bullet_alienl[3:@]
start_yl9:41]
cantrallf2:41] bulllet_rghlf2:91

start_calc LI R cal_alien_shiplC3:@1]

callide

wsj otbol aweb

ship_current_x[10:@1,yL9:@

contrall2:01]

ship
start_calc ship_nghl2:a1]

speedl10:41]
enable

title screen
backgraund
ending screen

[P:2]2pow—2web

input from video processar rgbl2:01

vga output

ouhsyb
ouhsnb
1ue1gb

[p:2112x1db

Figure 7: Block diagram for game logic

4.1 Main Game L ogic

The main game logic module (game_logic.v) is respme for instantiating all other
modules of the game logic and facilitating the sigronnections between them.
Specifically, the ship, bullet, and alien (16 imstes of it) modules are instantiated. They
are connected together with the collision deteathiich is also instantiated in this
module. The game logic module also gathers togdieesprite output (3-big RGB
signal) from each game object, and combines thgether into a single video output
signal (a more in depth discussion of this is pregesection 5).

Contained within the main module is a minor FSMathilirects individual modules to
perform their respective calculations on specifick cycles. The FSM makes one pass
through the following states (in order) during ttetical blanking period in each frame:

* S_NONE: latches in the value from the user inputiicd (either labkit button or
video processor).

» S _UPDATE_SHIP: sends a signal which triggers the stodule to begin
calculation of its position in the next frame. @Mdisables the ship if it is found to
be colliding with another object.

« S _UPDATE_BULLET: sends a signal which triggers indlet module to begin
calculating its position in the next frame.

» S_UPDATE_ALIEN: sends a signal to all the alien mied, which triggers their
calculation of position in the next frame. Alssalles any aliens which are
found to be colliding with another object.

« S_DELAY: self loops in this state for 3 cycles giwe alien modules sufficient
time to finish its calculations.

« S _END: reset back to the first state, and termsatiecalculation for the current
frame.

4.2 Collision Detection

Game objects often collide into one another inghme, and these collisions must be
accurately detected. There are two types of cofissthat are considered in the game, a
bullet (fired by the ship) colliding with an alieand an alien (while in kamikaze attack
mode) colliding with the ship. This module perfarpair-wise comparisons between
bullets and all aliens, along with ship and akkas in order to detect when both of these
objects are trying to write to the same pixel. €ach pair of game objects, their 3-bit
RGB values are added, to produce a 4-bit sumheliost significant bit of this sum is 1,
then a collision is considered to have happeneitier@ise, no collision is detected. The
reason this scheme works is because all game slijage RGB values such that when
two try to occupy the same pixel, their sum wouldduce a “1” in the most significant
bit.

An alternative scheme that was considered involakohg the RGB values of all pairs of
objects and passing them through an AND gateotti bf these objects are trying to
write to the same pixel, the result of the AND @iem would be a “1.” The reason this
scheme was not used was due to the need to optirmzabe method above, only the
highest bit of each addition is inspected. Buhis implementation, each bit of the result

10

must be implicitly checked. The different in perfance is probably not too great, but
the simpler and more optimized solution was chaseninimize the chance that a timing
issue would occur.

4.3 Timer

Because many of the modules in the game logicdriggtions after a certain delay, it is
desirable to have a timer module which can courtolgpme number. The timer, when
enabled, counts up from O to the value set asdhenpeter TIMEMAX. Upon reaching
this value, the timer asserts #pired signal and resets its counter. Because the system
clock runs at 65Mhz, it would be unreasonableitgér the count on the rising edge of
the system clock. Instead, the count is increnteateevery new frame. This allows a
much smaller register to be made in order to keegobunt. This utility module is used
by the alien module, game_fsm module, and othéfkile each of these modules can
create its own custom timer, it is much more eétito refactor this code into a single
module.

4.4 Ship Object

The ship object (ship.v) is responsible for outipgtthe sprite of the ship in 3-bit RGB.
The module reads the color information for the sppte from a ROM which contains
the color information. Because the ship has only foame (no animation), only a single
ROM is needed.

The ship module also calculates the position dfip & any given frame. It does so by
taking in the input from the controller signal, amdving left or right accordingly. The
speed of movement (in pixels per frame) is spetifig the speed signal. This value is a
constant if the controller being used is the labkittons. However, if the controller used
is the video processor, the speed can actuallyaeegrding to the speed with which the
player moves his hand.

4.5 Bullet Object

The bullet object is responsible for outputtingpate for the bullet in 3-bit RGB.

Because the bullet object looks like a rectangldénoriginal game, it is simply rendered
in a similar fashion as the blob object from a pvas lab. The main idea is that a pixel

of a specific color is only displayed when hcoumd &count reach a specific bounded
range. This allows a sprite in the form of a squarrectangle to be formed on the screen.
The bullet also takes in tlwentrol signal, and enables itself when the “fire” command
detected from the signal. Whenever that happeesydllet moves upward from the
location it is fired, and either exits the top loétscreen, or collides with an alien.

4.6 Alien Object
Among the three game objects, the alien is probiddymost complex. Like trahip and
the bullet, the alien module (alien.v) outputs Bit3RGB signal for each hcount and

11

vcount for displaying its sprite. However, aliemsha three frame animation, so the
module must cycle between 3 ROM images, and retdftan each in turn. A timer is
created which counts from 0 to 2, and the three tralues are mapped to the three
different frames of animation. At each time traiosi of timer, the output of a different
ROM is set to the RGB output of the module.

current_y =
DEFALLT Y +
FPRECHARGE _RAMG

current_y = target_vy

enahle=0

s5_FRECHARGE

start_charge=1
current_y
"in range of"

S_FORMATION
DEFAULT_Y

Figure 8: State transition diagram for alien modaleen.v)

The alien module must also calculate the positiath@ alien object in each subsequent
frame. A simple FSM is used to keep track of whiehavior pattern the alien is
currently engaged in. As can be seen from the stansition diagram (figure 8), the
alien FSM operates in a cyclical fashion, with sk state (S_DEATH):

S _FORMATION: This is the starting state, where dlien moves back and forth
(to the left and then to the right) near the tophefscreen. All the aliens move in
a formation of sorts with all other aliens. Thaetxcoordinate of the alien is
calculated by a helper module (alien_formation¥is module takes in as
parameter the speed of the alien while in forma#éind the range of movement
(how many pixels to the left and right). It calatds the position of the alien from
these pieces of information. It is important tdenthat the calculation made by
the alien_formation module is persistent, meanivag talculation is made even
when the alien is not in the S_FORMATION statetraasition is made to the

S PRECHARGE state when the siggalt_charge goes high.

S_PRECHARGE: This is an intermediary state betw2efORMATION and

S _CHARGE. The alien moves downward for some nurabpixels

12

(parameterized in the module) before transitionmthe S CHARGE state. The
reason for this state is to prevent two aliens framming into each other.
S_CHARGE: In this state, the alien moves downwawsktd the player’s ship. It
tracks the player’s ship’s position, and attemgtsdilide into it. The vertical
speed of the alien is fixed, and the horizontakgpe limited to a maximum value.
This gives the player a reasonable chance to dkieidlien. Upon reaching the y-
coordinate of the ship, a transition is made toShRETURN state (assuming the
alien does not collide with the ship).

S _RETURN: This state indicates that the alien fwdteg past the position of the
ship in the y-direction, and is exiting the bottofrthe screen to reappear in
formation at the top. The desired coordinate lerdlien in formation is
calculated by the alien_formation module. Whenalwen gets close enough to
its formation position, it transitions back to tieFORMATION state.

S_DEATH: This state is reached when ¢hable signal of the alien goes low.
This indicates that the alien is killed. This staain be arrived at through any of
the other states. However, the only way to trasibut of this state is through a
system reset.

4.7 Game FSM

This module contains the major Finite State Maclmnge game logic block. It
determines which state of the game is currentliyecand also controls the exact
behavior of the artificial intelligence within tlggme mode. This module only interacts
with the game logic module, and only passes sigoaisat module. It is split off for
modularity and clarity. The FSM in the game_logiodule is a minor FSM, which
controls the updating of sprites on every framethls module, the FSM controls the
overall state of the game (refer to figure 9 f@momplete state transition diagram):

S_TITLE: This is the default state, and in thidestéhe title screen is displayed.
When the user presses buttons 1, 2, 3, or 4 olalblké, it transitions into the
S_ALIENFORMATION state.

S _ALIENFORMATION: This is the state that is actifioe the majority of time
when the game is active. In this state, the akiknsot charge the ship and
remain at the top of the screen. However, alibashave already started the
charge can return to formation in this stateransitions to the
S_ALIENCHARGE state after a specified amount ofetia timer module is used
here to do this).

S_ALIENCHARGE: When a transition is made to thestst one column of aliens
is ordered to charge the ship. This is done bdisgnon the appropriate
alien_charge signal. After this is done, it transitions baokile
S_ALIENFORMATION state.

S_SHIPDEATH: Whenever a collision occurs to theshitransition is made to
death state. Here, a comparison is made to skeerd are any more lives left for
the player. If there are no more lives, a traasits made to the S GAMEOVER
state. Otherwise, it goes to the S_SHIPINVINSIBit&te.

S_SHIPINVINSIBLE: This state is mainly a delay manlsm used to wait a few
seconds before reinstating the ship on screen.tiiftee module is used to create

13

this delay effect. The intention here is to gike player some amount of time to
be ready before the ship again appears on thernsche&ransition is made back to
the S_ALIENFORMATION state after a few seconds elag.

* S _GAMEOVER: In this state, the end game screers@alyed.

alien_count=0

timer_expired1=1

S_ALIEN
FORMATION

timer_expired2=1

ship_enable=0

S_SHIP
INVINSIBLE

ship_enable=0

livess>1

Figure 9: State transition diagram for game FSMr{gafsm.v)

4.8 Titlescreen and Endscreen:

The titlescreen and endscreen appear at the bagiand end of the game, respectively.
These modules are identical, except that they fread different ROMs. The image data
is read from ROMs which contain information for th28 by 192 pixel display. Each
address in the ROM is mapped to 16 pixels on theesc Since the game resolution is
512 by 768, each hcount and vcount is right shifte@ to obtain map into the correct
address on the ROM.

4.9 Background I mage:

This module is similar to the titlescreen and englsc in that it reads image information
from a ROM with 128 by 192 pixels. However, somarenwork is necessary to create
the scrolling effect in the background. This i:ddy maintaining a register with an
offset value. This voffset value is incremented atgular interval (for example every 60

14

frames) and added to vcount. This makes the baakgrimage appear to shift, and
create the intended scrolling effect.

6.111 Edition

Danny Vo
Jeff Yuan

Image (c) Nameo 1979
Figure 10: Title screen, as Figure 11: End screen, as displayedrigure 12: In game screenshot,
displayed on the LCD on the LCD as displayed on LCD display

4.10 Score Display

This module is creates the text for the score candtlives remaining. The only major
component for this module is the binary-coded detimodulé. Binary-coded decimal
encodes a digit by using four-bit binary numbeor &le, the decimal number 127
would be represent as 0001 0010 0111. dHae_string_display module is also used
along with a font ROM to retrieve the correct cluéees to display. These are all
obtained from the 6.111 website.

4.11 Testing and Debugging:

The game logic portion of the project was debuggathly by generating the code and
outputting it onto the screen. Because most ofithdules in this block have a visual
component, it was quite straightforward to cheekcbrrectness of the verilog code by
inspecting the pixels on the monitor. The 16 cbi@raalpha-numeric display on the
labkit was also used to verify the values of cerg@agnals.

One serious problem discovered during testing wasiages displayed onto the screen
appeared to have some pixels shifted. After somwestigation, the cause of the glitch
was discovered to be a delay in the readout ofl pix@rmation from the ROM. The
calculation necessary to compute the address &oling from a ROM took one whole
cycle. In addition, it took another cycle to rdemm the BRAM. In total, there was a

two cycle delay from when an output for a particydxel is needed, to when the data

® This module is taken from Binary to BCD conversigmoject on http://www.opencores.org.

15

can be read out. This caused certain pixels ghifeed from the end of one pixel line to
the beginning of the next. While it was possilléniplement a prefetching mechanism
to calculate the address of pixels two cycles ahi¢adhs overly complex and proved to

be unnecessary. The “quick and dirty” solution weasimply modify the image stored in
the ROM so that at the left and right end matchesblor of the background. This way,
when a reading offset occurred, it was not notiteeab

Another problem encountered in the design processiwthe collision detection module.
At first, it appears that collisions that happepnadhe screen were never detected.
However, after some investigation using a logidya&, it was apparent that the
collision detector did not “detect” on the righock cycles. The collision detector was
only active during the vertical blanking period ¥ehtollisions happened at values of
hcount and vcount before the blanking period. Atités discovery, the solution to the
problem proved to be relatively easy.

5. Video Output
The video output block is responsible for outpuftinsingle 3-bit RGB signal which is
sent to the LCD display. All the code for this dkaactually resides in the game_logic
module. This is due to the fact that the videgatiblock must takes in RGB signals
from many different modules in the game_logic. §hts operation is directly coupled
with the output of many game logic modules. Thsedssion of its operation is separated
into a separate section for clarity.

One of the major problems with this is the striictihg constraint. The system is driven
at 65 MHz which restricts all the computations éodompleted within 15ns.
Additionally, there are 21 different modules outgiiterent 3-bit RGB signals. Thus, if
these signals are naively connected to a giant “@d®& and the video output is taken
from the resulting signal, glitches would defimjtelccur on the LCD display.

To eliminate these glitches and to create a smiowdige, a more sophisticated technique
must be used. The original plan was to use ddudhee buffer architecture: create two
BRAM, one is used for writing and one is used fepthying to the LCD. Double frame
buffer architecture allows the system to writeseggxvhich are displayed in the next
frame to one of the BRAM while the displaying isdeng from the other one. This
avoids the issue of changing the data while disptayThe original plan as stated above
was to create two BRAM with 3-bit width and 3933582*768) bit depth BRAM.
However, Xilinx logic core generator did not alléins, even though in theory there are
enough BRAM: the XCV2V6000 contains 144 BRAM and2K bits total while the
above architecture requires 2359K bits total. Arobption was to use the ZBT ram as a
frame buffer. However, due to the difficulty imiihg with the ZBT, and the fact that one
ZBT is already being used for video processing ithea was also rejected.

In the end, a pipelining solution was chosen. IRp® increases latency in exchange for

high throughput. In other words, it allows the gartation, which originally has a
propagation delay greater than one clock periotetdivided into smaller computation

16

over several clock cycles. Since glitches in tispldy are caused by incomplete
computation within one clock cycle, pipelining wdwdffectively eliminate these glitches.

In the video output block, a 7-stage pipeline ipliemented for each of red, green and
blue channel. Figure 13 illustrates the green clbpipeline. The red and blue channel
pipeline architecture is analogous to the green énethermore, vsync, hsync, and blank
signal are also pipelined so that when a pixel ®m# of the pipeline stage, they still
match with their original vsync, hsync and blangmnsil. In addition, the pipeline stages
also implement priority in pixel overlay. Thereedwo different layers: the background
and the game components layer. The game compdagatdakes precedence over the
backgrounds. This function is implemented by thdtiplexers as can be seen in figure 9

below.
alien_rgb[1] j_E
alien_rgb[4] ;|

alien_rgb[7] i
alien_4_g
alien_rgb[13]
alien_6_g
alien_rgb[19]
alien_8_g
alien_rgb[25]
alien_10_g
alien_rgb[31]
alien_12_g
alien_rgb[37]
alien_r
alien_rgb[43]
alien_rgb[47]
ship_rgb[1]
bullet_rgb[1]

ILr‘_‘

_)_E]_ green5_0 blue5_0 red5_0

background
behind game

DT e

e

;|_ display_gamescreen

B
Al
=

TYYTY

—
ameinfo_display_r >| >| |4;|_ .
Igi)go[l]f _display._| gb[l]j_E :D_E;I_ gpixel[1]
background[1] E] E] E] E] E;"
startscreen(1] H H H H H =
endscreen[1] >| |4>| |4>| |4>| |4>| |4;|_

display start

screen or display_startscreen
O
sync [} [} [} [} [} [} [sync
" 24 24 24 24 24 24 L=
e e U “ U Pl

Figure 13: Diagram for the 7-stage pipeline useddeo output block

5.1 Testing and Debugging

Due to the presence of the pipeline in the gamee |aguns on different vsync, hsync

and blank then the video processor. Thus a setfeofiwhich vsync, hsync and blank to
output to the LCD is required to correctly dispthg game logic and the video processor.

17

Originally, the system vsync, hsync and blank took the value of the ZBT hsync,
vsync and blank: the ZBT hsync, vsync and blankeveksiayed by three clock cycles to
synchronize with the ZBT. However, due to the regjuent for selecting between the
ZBT and the game logic hsync, vsync, and blankZBB€ hsync, vsync and blank were
delayed by two clock cycles instead. At the tlulack cycle, depending whether the
system were displaying the game logic or the ZB&,dystem hsync, vsync and blank
would take on the corresponding hsync, vsync aadkobvalue.

6. Conclusion
Our final project attempted to integrate the clasgileo game Galaxian with motion
detection based controller scheme to create a a@wng experience. This system
involved the design and implementation of two n@mponents and the integration of
these parts to form a functional system.

Given an opportunity to repeat this project experee significantly more time would be
devoted to planning out the modules before staitmglementation. This would have
reduced the amount of time used to scrap existmpd@mentation and create something
new from scratch. Time management could also baea improved to space out the
work more evenly through the five week period. haligh the objectives for this project
were successfully implemented, the final weekdeite rushed.

While noting the possible process improvements aebthe project as a whole was a
tremendous success. This project allowed us terexce the whole design cycle of
idea generation, preliminary planning, coding, aghng, and integration. The valuable
lessons we learned here will undoubtedly proveliralae to us in our future careers.

7. Acknowledgements
We would like to acknowledge the following peopbe fheir ideas and contributions to
this project:
* Professor Terman — Numerous inspirations on gagie implementation, help in
debugging video processing code
» Javier Castro — Ideas on implementing pipeliniregphn debugging
e Cassie Huang — Inspiration on project idea
* Gim Hom — Answering numerous technical questionsyiding ample supply of
coffee
» Kevin Miu — Constructive criticism of game art, &eon collision detection

18

