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Grab the Ninjas! is an interactive video game in which players attempt to grab ninjas and drop
them, thereby killing them and also avoid ninja stars thrown by the ninjas. A camera will detect
player’s finger motions and transfer these onto the display. Ninjas will randomly appear on
screen and move around. If a player makes a grabbing motion and the fingers are close to the
ninja, the ninja will be grabbed and will be moved around at will. Whenever ninja stars hit the
player fingers, the player will lose health, shown by a health bar. The game ends when the
player loses all health. A two player version will also be implemented.
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l. Overview

Our game, Grab the Ninjas is a simple concept designed to test skills we have learned
from previous labs in 6.111. The game consists of a person trying to grab ninjas and drop them,
thereby killing them. A camera shines on the fingers of the player and translates a finger image
onto the screen. Game figures such as the ninja are overlaid on top of this image for interaction.
The ninjas have artificial intelligence and can shoot at the fingers. The game will be
implemented as both a two player game, where the other player uses the buttons on the labkit
to control a ninja, and a one player game, where all ninjas are controlled by Al.

The project was divided into two main parts. Chuan Zhang was responsible for all video
portions of the project. This involved retrieving color video from an NTSC Video camera, storing
the video to a ZBT SRAM, retrieving the video from a ZBT SRAM, filtering the video and running a
detection algorithm to detect fingers, and finally overlaying pixels from the Game Logic portion
onto the camera image.

Giovanni Reveles was responsible for all game logic portions of the project which
involved storing and displaying animated ninjas on the screen using ROMs. Having the ninjas
animate based on different commands asserted as well as throwing of a projectile star on
command. The game module also has states that control the ninja differently whether he has
been grabbed or is jumping etc. As well as programming the Al module and have a simple
autonomous ninja as well as a ninja controlled by a second player and a health display module
controlling the health.

Il. Video Modules (Chuan)

A. Video Overall Design

The overall design of the Video portion was a stream of data. The block diagram is
shown below. Digital data is stored in the ZBT and then retrieved from it. Filtering translates the
YCrCb pixel to an RGB pixel. Other graphics from the game module are layered on top of these
pixels until a final pixel value is given to the SVGA. Finger Detection modules run in parallel with
the color filtering to detect the finger location.
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Figure 1 Video Module Block Diagram



B. Color Video

An NTSC video camera was used to capture the fingers. NTSC stands for National
Television System Committee and refers to a particular analog encoding of the data. An
ADV7185 Decoder chip converts the analog data into 30 bit digital data. 10 bits are allotted for
Y, or luminance, Cr, or red chrominance, and Cb, blue chrominance. The most significant 6 bits
of Y,Cr, and Cb are saved and the least significant two bits are thrown away. The encoding
scheme was borrowed from Rebecca Arvanites and Cristina Domnisoru.

The display used is an SVGA with a 800 x 600 resolution. Ideally, pixel data coming in
from the decoder could be fed to the SVGA directly. Unfortunately, this is not possible because
of timing issues. The SVGA runs on a 40 Mhz clock whereas the camera and decoder run on a 27
Mhz clock. Camera inputs could not keep up with SVGA requests for information.

We utilized the labkit’s built in ZBT SRAM’s to act as a buffer. Data from the camera
would be written to the RAM. Data from the ZBT would be read out to the SVGA. Because the
camera takes longer to write one full frame to the ZBT than the SVGA takes to read one full
frame, the SVGA would simply read one frame more than once. Each ZBT on the labkit contains
512,000 words 36 bits wide. With our 18 bit encoding, we can fit 2 pixels per word. Because
800*600 is only 480,000, we can fit two frames at any one time in the ZBT RAM. This encoding
works because the SVGA can read one frame while the video data is being written to another
frame. After a frame is written, the two frames can switch reading and writing.

Previous code interfacing the video to the ZBT and the SVGA to the ZBT was created by
Isaac Chung. Three main modules facilitate the use of the ZBT as a buffer. The ntsc2zbt module
takes in as input the video data from the decoder. It also takes in three signals: f (even or odd
row), v (vsync) and h (hsync). The ntsc2zbt module calculates an address for the video data
based on which frame is used, and f, v, and h. Logically, pixel data would come into the ZBT
from the Decoder in order left to right and then top to bottom. However, the camera instead
outputs every even row first and then every odd row. The ntsc2zbt waits until data for two
pixels have come in before changing the word in accordance with our encoding scheme. A write
enable signal is also outputted from the ntsc2zbt module. The ntsc2zbt module also
synchronizes the data coming in, latching it twice to reduce the probability of metastability.

From the ntsc2zbt module, the address, write enable, and the data are hooked to the
zbt 6111 module. The zbt_6111 module is a layer of abstraction which interfaces with the
physical lines of the ZBT. The zbt_6111 module takes in read and write data, read and write
address, and write enable. It also outputs data read.

The vram_display module is another pre-written module which interfaces the SVGA with
the zbt_6111 module. The vram_display module takes in hcount and vcount and calculates an
address to send to zbt_6111. The module also takes in the word read from the ZBT and outputs
it to the SVGA over two clock cycles because each word contains two pixels.

The previous code was developed for black and white video. Therefore, each word of
the ZBT stored 4 8 bit luminance values. To modify the code for color, small changes were made
to the addressing of ntsc2zbt and vram_display.

C. Color Filtering Algorithm
To distinguish the fingers from the surrounding environment, two colors were chosen

for each finger to detect. A piece of an orange glove was cut off and worn on the index finger.
A piece of a yellow glove was cut off and worn on the thumb. These colors were chosen



because they represent extremes in Chrominance space, thus distinguishing them from the
surrounding environment. Yellow has a very low Cb value and Orange has a very high Cr value.

Figure 2 Camera with Colored Fingers

The color filtering algorithm processes pixels as hcount and vcount from the SVGA retrieves
them. For orange, the orange color_filter module would determine whether the 6 bit Cr value is
below a certain threshold. If valid, the module would output a blue pixel into the video stream.
If not valid, the module would output a white pixel. Similarly, for yellow, the yellow color_filter
module determines whether the 6 bit Cb value is above a certain threshold. If valid, the module
would output a yellow pixel into the video stream. If not valid, the module would output white.
Each module also asserts a valid_pixel pulse corresponding to the color. For example, the
orange color_filter module asserts the valid_orange pulse and the yellow color_filter module
asserts the valid_yellow pulse. These pulses allow the fingerdetect module to detect
concentrations of yellow or orange representing fingers.

Because the output of the color_filter module feeds into the fingerdetect algorithm,
clean data is needed to ensure successful finger detection. A variety of physical methods were
used to reduce noise where noise is defined as both false positives, detecting orange or yellow
that is not from the fingers, or a false negative, not detecting a finger region as orange or yellow.
First, the focus on the camera was turned as low as possible. This creates a blurring effect,
ignoring small amounts of noise. Secondly, bright light was shown onto the fingers, thus
increasing their luminance with respect to other data. Ideally, all luminance data is contained in
the 6 bit Y data. However, if luminance is low, then Cr and Cb data will also be affected. An
example is that no Cr and Cb data can be obtained if the room is totally dark. Thus, by
illuminating the fingers, the probability of a false negative is reduced. Finally, thresholds are
chosen which minimize false positives and false negatives. Because this threshold can change
dramatically with lighting or time of day, the labkit buttons were used to program the
thresholds without recompiling.



D. Finger Detection Algorithm

Each color_filter module is connected to an instance of the fingerdetect module. After
the color_filter filters out all pixels except for those of the desired color, the fingerdetect
module detects fingers in real time. The fingerdetect module receives valid_orange or
valid_yellow pulses from the respective color_filter module. A high valid_pixel signal means the
pixel corresponding to the current hcount and vcount passes the color threshold. Instead of
doing center of mass calculations, a model real-time finger detection algorithm was developed.
A detailed diagram followed by a description is shown below.
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Figure 3 Finger Detection Algorithm

Pixels arrive from the ZBT from left to right and then top to bottom. Given the
sequential arrival of pixels, we choose to use two parallel finite state machines. The first finite
state machine is responsible for detecting whether a particular row has a high concentration of
valid pixels. This corresponds to a finger begin on that row. To implement this, at every hcount
and vcount, the finite state machine examines the valid_pixel signal. If it recognizes a string of
10 consecutive valid_pixels, the finite state machine believes it is on a row where the finger is
and stores the horizontal position temporarily and a fldetect signal is raised high. At the end of
every row, the finite state machine is set to the original searching mode again. If the finite state
machine fails to find 10 consecutive valid_pixels, then the fldetect signal stays low and the
horizontal position is not overwritten.

A parallel finite state machine attempts to detect 10 consecutive valid rows. 10
consecutive valid rows would correspond to a region of high density both in width and in height,
which would most likely be a finger. The implementation is slightly different than the first finite



state machine. Everytime the vcount changes, the second finite state machine examines the
fldetect signal. If it sees 10 consecutive signals, then it believes it has reached a high density
area and enters a second state. In this second state, the finite state machine attempts to detect
10 consecutive low fldetect signals. This corresponds to the end of the high density region
heightwise. If 10 consecutive low fldetect signals are found, the vertical location is stored as
the finger’s vertical location. The horizontal position stored from the last valid row is stored as
the finger’s horizontal location.

The approach used has advantages in that it does not use a complicated divider. Also, it
naturally detects the bottom tips of the fingers regardless of their size. This would not be
possible using a center of mass approach. The disadvantages of this approach are that the
detection algorithm is sensitive to noise. Noise can both increase the possibility of false
positives, where valid signals are detected at locations other than a finger, or false negatives,
when no string of 10 consecutive valid signals can be found near an actual finger. The previous
section addresses methods used to reduce noise.

E. Contact and Squeeze Detection Algorithm

After the finger_detect module detects the location of the fingers, the contactdetect
and squeezedetect modules determine whether a squeeze is being asserted. The contact
module takes in the horizontal locations of the orange finger and the yellow finger. If the two
locations are within a certain threshold, the contact signal is asserted. Else, the contact signal is
not asserted. The squeeze signal detects a change in the contact signal. A rising edge of the
contact signal signals the squeeze signal to go high for % of a second. The % of a second was
created by making a timer which was counted down from 5 million each clock cycle. The
squeeze and contact signals are fed to the ninja modules to determine grabbing behavior.

F. Video Overlay

Our game contained many sources of images which needed to be integrated into a final
image. The system we chose for video overlay was a simple parallel overlay scheme depicted in
the diagram below.

Firstly, the color_filter module processes the camera data. If the pixel passes the
threshold test, the module outputs a certain color, (orange pixels — blue; yellow pixels — yellow).
The two signals from the two color_filter modules are concatenated to make a combined image.
Because the fingers can never intersect in space and distinctly different colors are used for each
color_filter module, the outputted pixel will either be blue, yellow, or white.

Additional modules are layered on top of the color_filter module in series. The addhand
module draws blocks around the location of the fingertips based on their detected location.
This module takes in hcount, vcount, the hand location, and the pixel from color_filter. It
checks to see if hcount and vcount are within a certain range of the hand location. If true, it will
replace the incoming pixel with a blue pixel. If false, it will allow the incoming pixel to pass
through.

Next, an adddot module adds dots representing the ninja stars. It takes in the location
of the ninja stars and the current hcount and vcount. If the hcount and vcount are within a
certain range, the pixel outputted is a specific color, blue. Otherwise, the incoming pixel is
allowed to pass through.

A parallel stream processes data from the ninja modules. The addninja module receives
an 8 bit pixel input from the ninja_display module and hcount and vcount. If this data is not



black or 0, an 18 bit version is outputted. If the data is black, the incoming pixel is allowed to
pass through. Pixel data is transferred from the ROM’s which store the ninja animation. Each
separate ninja is overlayed on top of each other. The health display and background are then
overlayed on top of the ninja pixels. At the end, an if statement displays the second stream if
the data is not white. If the data is

white, the pixel sent to the SVGA is the data from the first stream.
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Figure 4 Video Overlay
G. Video Overlay: Timing Issues

An original video overlay scheme showed all items being overlaid on top of each other in
series. However, timing issues arise because not all computation can be done within one clock
cycle. The propagation delay, or the longest path of all the data was too large. Glitches
appeared on the display. The traditional remedy for such a problem is to pipeline the video
stream. The video stream is divided into two stages. Registers divide these two stages and
store data between one stage and the next. Each individual stage now takes one smaller clock
cycle.

Because the timing issues were discovered very late, a simpler method described above
was used. This method traded an abundant resource, computational space for a scarce resource,
time. An analogy can be taken in an assembly line. Our previous method was to have one
assembly line that would be very long. It is too long to produce one unit of good per clock cycle.
Pipelining allows us to do only half the work per clock cycle but on twice the number of goods.
In our solution, we use two parallel assembly lines of half length each to produce the good in
the desired time.



I1l. Game Logic Modules

A. Game Logic Module Overview

The Game Logic module is in charge of everything involving the display and control of
the ninja. This involves having a module control the x and y position of the ninja on screen
based on commands and states for all the commands. Actually displaying the ninja correctly and
have it be animated to react to appropriate commands is in another module. Also, the ninja was
to by autonomous by implementing simple Al that allowed the first player user to grab it and
have its behaviors change. The ninja can throw projectiles, so it’s necessary for the projectile to
appear and be thrown accordingly as well as the display and decrements of the player health. It
is also to determine whether the ninja is currently being grabbed and handles the game state
accordingly. A block diagram in the following page shows the overall flow of the game logic
module and all sub-modules that were worked on and implemented.
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B. Enables

Enables was in charge of outputting pulses after certain amounts of time. It was in
charge of the throwSwitch pulse and the walkSwitch pulse which would indicate when the
animation frame of a ninja should change. These were then used by the ninja display as
indication to change the current frame and output frames based on these timings which
effectively displayed the animation. Since the throwing animation FSM used both throwSwitch
and walkSwitch to time its animation both were fed into the star display module as well. It also
output a one hertz signal which was going to be used to implement a timer for the game as a
whole.

The module had three internal counters that handled the three different timings of walk
throw and one hertz. Although walk and hertz started and continued indefinitely, the throw
counter didn’t. The module also took as input the throw command so that the throw counter
would not start counting until a throw command had been detected. This made sure that the
throw animation lasted just as long and looked the same at every throw command.

C. Ninja Control

The ninja control module was in charge of changing the ninja’s position by outputting
the 10-bit-wide new or default x and y values and abilities based on control inputs. These
coordinates point to the upper-left corner of the ninja ‘square’. As explained in the
ninja_display module, each ninja ‘frame’ was 104 x 106. The controls were up, down, left, right,
and throw and were inputs. Both left and right moved the ninja in those directions respectively.
An up command would make the ninja jump, and if left and right were asserted also, it would
jump and move in those respective directions. Another control involved whether the ninja was
grabbed or not, and this was asserted internally in the module using inputs contact (input to
squeezedetect module), squeeze and unsqueeze (generated by the squeezedetect module). The
module also kept track of internal states making sure that if the ninja was grabbed, it couldn’t
throw ninja stars. The jump and grabbing internal states were sub FSMs that would not allow
the ninja to do anything else until the sub-process was completed.

1. vsync

First and foremost, the ninja control module needs to know how frequently we are
changing frames. The control is in charge of changing the ninja position, and it needs to be
changed after a frame on the screen has been outputted. The position can’t be changed at
every clock cycle for obvious reasons, the human eye would be unable to see anything, and it
would greatly affect the display of the ninja on the actual screen. Our design involves displaying
at a 800 x 600 pixel resolution which requires a 40 MHZ clock an xvga module modified
accordingly. The then appropriate xvga vsync signal (asserted LOW) indicates when the screen
has been scanned through (at 60 Hz). When the vsync signal is asserted, it remains asserted for
several clock cycles before being unasserted and the next frame begins to be scanned through.
A simple FSM was used to keep track of whether we had just had the vsync signal asserted and if
it was the same one from the cycle before or a few cycles. It then outputs a pulse just before
the next frame is scanned and all of the changes made to the ninjas position are not made until
this signal is detected. This was done by detecting the state at every clock cycle, and if it was
not the state where a new vsync signal was detected, the x and y values that were sent out



remained the same, otherwise it would move the ninja in the appropriate direction. In this way,
the ninja’s position would remain the same until it was the correct time to change positions (at
the start of a new frame).

2. Moving

Moving left and right are fairly self explanatory, move the ninja left or right at a
constant speed, that is change the x value by the same number every frame as long as the
command was asserted. Initially jumping was handled in a similar fashion, change the
coordinates by the same value at every frame up and then after a certain height threshold down,
again handled by an FSM where once the coordinates reached the floor (or close enough), the
next y value would be the default y value and it would be able to continue. The jumps could be
asserted using a small pulse since after asserting an up, the internal jump state would continue
to be in this state regardless of whether up is still asserted and the control would then continue
to change x and y accordingly to the jump command. This was incidentally the ninja control
module version we used in the final project demonstration. The result was then a constant
velocity trajectory which was slightly unrealistic. A newer version of ninja control implemented
a more realistic in the air motion displaying and changing the vertical y coordinate with negative
gravity acceleration. The approach to this will be talked about shortly.

3. Grabbing/getting grabbed

The way that grabbing worked was through the squeezedetect module. In testing,
‘contact’ was assigned to b0, and the hand x and y coordinates were the coordinates of the
mouse cursor. In the project, ‘contact’ was asserted by the two blobs on the finger tips coming
closer than a certain threshold value. The squeezedetect module made sure that the squeeze
assertion was made within 1/4 of a second so that the potential bug of asserting squeeze well
away from the ninja and simply sweeping in such that the ninja would attach itself to the hand is
avoided. After that stage, the grabbed logic makes sure that the hand x and y are within the
range of the box before asserting grabbed signal. Once a grabbed signal is asserted, GSTATE
(the internal grab state) goes in to a JUST_GRABBED state where as long as the grabbed signal
remains high, the state will remain the same. The control then keeps track of the hand x and y
were at the previous clock cycle (mx_old, my_old) using registers and computes a differential
signed value that will be used to add to the current value so that the ninja x and y change by the
same amount as the hand x and y changed. The result is the ninja gets ‘grabbed’ and is forced
to be moved by the hand as long as grabbed remains true. Once grabbed goes LOW, the state
changes and the ninja should fall to the ground if it is not there already. Again, movement in the
vertical axis was at constant speed initially for an earlier ninja control module. When assigning x
and y values, the module gave priority to the state cases based on grabbed, so a ninja will
always be grabbed even if say, right is asserted while this happens. Itisn’t until GSTATE returns
to its initial state that the ninja is allowed to move again (or do anything else for that matter).
The module doesn’t allow the ninja_x and ninja_y values to handle other commands if the grab
state isn’t one where the ninja isn’t being grabbed.
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The dotted lines indicate the states that would’ve been implemented with a fully fledged regenerating Al module.

4, Outputs

Outputs to the ninja display as already mentioned are the x and y values for the ninja
animation, as well as command, face, and GSTATE. Command is output to the ninja display
module to let it know what command is currently being executed. In the ninja control module,
the command registers (there are 6 commands so command is 3-bits) are assigned in an always
block, meaning they’ll be valid at the next clock cycle. The internal FSMs which handle jumping
and grabbing for the ninja change based on what value command seems to be taking. This
keeps both the display and the control on the same page regarding which command is currently
being processed. This way the ninja displays only appropriate animations based on commands
that are being processed in the control. Face keeps tabs on which way the ninja is facing. When
checking which command to process the module keeps track of which of left or right commands
have been processed by assigning face a value at each case. Face is output to the star display
module and to the ninja display module so they can handle the animations accordingly. Star
display only shoots the star in the direction that the ninja is facing and likewise, the displayed
frame should be facing whichever of left or right were processed last. The GSTATE which was
mentioned before is the state register bus for the grab states that are processed in the module.
Originally this was not meant to be sent out, but for Al and regeneration purposes, it was
convenient to have those modules behave according to the current state grab had and give it
the same level of priority in case the ninja happened to be in a grabbed state. Additionally, the
frame that the ninja outputs when it is grabbed should remain until the final state of Grab.



5. Jumping/Falling with gravity

For simplicity, initially falling or jumping in the air was made at a constant rate. When
the ninja was let go after being grabbed its y value would fall at the constant rate of 6 pixels per
frame (since the bottom of the screen is the higher value, 6 was added to the current y).
Jumping would have the ninja rise (by subtracting) at 6 pixels/frame and after it’s y value
surpassed a certain threshold, it would begin it’s return to the floor (by adding) at the same 6
pixels/frame rate. To model gravity, the rate at which the ninja fell needed to change at a
constant rate. This can be achieved by having a counter and adding this value in along with the
value of 6 pixels at every frame. That method turns out to be incredibly high since frames
refresh at 60 Hz on the screen. The way it was implemented for jump was using a start_index
bit which goes high whenever in jumping mode, that is based on the internal jump state,
start_index was asserted high whenever the jump state changed to indicate there was a jump
and remained high until the final state of the jumping process. A counter which was called
jump_index was then made to start counting when start index was HIGH, and set to zero in any
other case. A seperate bit jump_v_inc checked if jump index reached a certain value (which
turned out to be about a quarter of a second in clock cycles) and if it was, it would go HIGH for
one clock cycle. This would then set the jump_index counter back to zero and would make a
separate counter jumpCount go up by one. The end result was the jumpCount went up by one
every 1/4 of a second. When handling jumps, jumpCount was then added in addition to the
constant pixel value and the states were changed to just check whether the y value had
returned to (or close enough) to the floor. The figures in the following page show the
waveforms for the jump logic in the ninja control. They were wired to the outputs when
implementing and debugging the system and demonstrate how the jumping scheme works. In
the simulation, a vsync wave form was generated to help visualize the transitions.
Mathematically, the infinitesimal length of time van be viewed as 25ns (1/60Hz) since that is as
fast as we can change the velocity to meet the display constraints. The constant value that we
change y by can then be viewed as the dy/dt, since we make this change every at every frame
refresh. The jumpCount is the resultant change dy/dt will have at every frame so it can
represent acceleration. When tested, the ninja demonstrated a quadratic trajectory when
jumping. A similar method was used for the grabbing stage when letting go and when tested,
the ninja also accelerated to the floor.
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C. Ninja Display

The Ninja Display was in charge of outputting the ninja pixel based on control
commands and face. The position of the ninja was determined by the control and also fed into
the ninja display. The throwSwitch and walkSwitch signals from the enables module were also
inputs to handle when animation frames should change. The grab state from ninja control was

also an input to handle the grabbing display and make sure the modules were on the same page
regarding grabbing.
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Figure 11 Editing the Ninja Frames

There were 6 ninja display frames that were mapped from PGM (portable grey map)
files to COE files using the pgm2coe.py script. The COE files were used as init files for ROMs
using the Xilinx Core Generator for single port Block RAMs. Initially the size of the ninjas were
155 x 142, and as we found, there wasn’t enough BRAM to map more than 3 ninja frames at this
size since the COE file stores an 8-bit gray value. They were resized to 104 x 106 and they fit in
the BRAM in this new size. There were three frames for walk, two frames for throw and one
frame for grabbed as shown above. The frame for grabbed turned out to be smaller than the
other frames but not by a lot. They [the ROMs] were all instantiated in the module and were
constantly being addressed so that there was always a valid pixel value for each animation state.



The logic in the display determined which was the correct pixel to display based on the
command received and the grab state from the control module.

The way the ROMs were addressed depended on the face. The same ROM was used for
both left and right faces of the same frame, there were just differences in the way the ROM was
being addressed. Two different addresses were then computed at each clock cycle, addr, and
addrREV and two different instantiations were made of each frame, one reading it with addr,
and one with addrREV so that a valid pixel value for each frame was always ready. For addr
(right face), the addressing worked as follows: 1. Reset to zero if hcount and vcount are both O,
2. If hcount and vcount are at a location where a ninja pixel should be displayed, increment the
address by one. 3. Then if the address exceeds the maximum address value (104 x 106 = 11024),
set it back to zero. This addressing scheme worked and kept the code simple so this was the
addressing scheme that was used. A formula depending on the x, y, hcount, and vcount values

could be used to determine the address for right face. Using, addr = (VC - y)(W ) +(hc - X) ,

where vc and hc are vcount and hcount, x and y the ninja coordinates and W the width of the
frame (104). This way, the address is only increased when it is in the valid range of the ninja and
won’t increment otherwise. For the left face, such a formula was used since trying to
implement it another way proved to be more difficult and complex. The formula used was

addrREV = (v, —y)W +((W -1)—(h. - X)) For the reverse address, we basically needed

the last pixel in the current horizontal line first and count backwards, then at the next line,
increment the starting point and count backwards again. The same valid range was used even
though there would be technically a valid address everywhere, so the logic which determines
which pixel to output also checks for the valid ninja range before outputting a ninja pixel.

The ninja frames were designed to not have any white pixels inside of where there was
a ninja and to have white pixels outside the ninja but inside the 104 x 106 block. In order to
display just the ninja pixels, the display logic could simply filter out any white pixels detected
when determining whether to output a ninja pixel or a pixel of another module.

As mentioned before, the walkSwitch and throwSwitch timing pulses fed from the
enables modules indicated when to switch the animation frames for respective ninja commands.
Internal FSMs were used to determine which animation stage we were in for both the walk and
the throw commands and they switched states based on the pulses. Logic was also used with
the states and the face to determine which face to output for each command, and finally, at the
end using the command input, face and whether hcount and vcount were in the valid range, the
correct frame pixel was outputted.

E. Star Display

The star display was in charge of outputting a small star projectile at the location of the
ninjas hand and moving as if the ninja had thrown it based on the throw command. It took as
inputs the same timing pulses from the enables module as well as the face and location of the
ninja to time the animation and appearance of the star correctly. It also takes in as input the
GSTATE from the control in order to disable the star from displaying if the ninja happens to be
grabbed.
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Figure 12 Star Internal FSM

The internal FSM was designed so that a second throw could not happen unless the
throw command was de-asserted. This way a new throw command needed to be made every
time a new star was to be displayed. The throw command could also be a small pulse such that
once the star had been thrown it would remain on the screen. When the star wasn’t to be
displayed its location was simply put off the screen. Parameters were used to determine where
to initially place the star. The coordinates were taken from the ninja picture just under where
the hand displays. This location was different based on whether the ninja was facing right or left.
A target bit was also taken as an input to determine whether the star would be sent out flying
strictly horizontally or at an arbitrary angle. The module then would display, and change the
stars x and y coordinates accordingly. The star x and y values are inputs to the health display
module (as well as the hands x and y) to determine whether there has been a collision and
would result in making the health go down.
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F. Health Display

The health display module is basically a blob that has an internal health value that is
decreased based on whether there has been a collision between a star that has been thrown
and a certain range from the hands x and y values. It is a bar of height determined by a
parameter internally and outputs red/green pixels based on whether hcount is greater, less than
or equal to the current health value. Its width is also determined by an internal parameter.



G. Ninja Al

Before adding Al, the ninja on screen was controlled entirely by the user using the labkit
buttons. The Al module was modeled after a user asserting such commands based on timing
and states of the system. Since the ninja control handled the jumping states, a jump_DONE bit
was output from the ninja control to the Al module to indicate when a jump had finished and
another command could be asserted. Likewise for the throw, since the star display handled the
stars position, throw_DONE and stop_throw outputs from the star display were fed into the Al
module to indicate when the star had gone off the screen (indicating that the Al should stop
outputting a throw command) and when the throw process had finished. These new signals
were used to trigger the changing of states if the respective command had been issued. That is
for example once the Al was in the state where a jump is asserted, it then waits for the
jump_DONE signal before moving on to the next state.

Regardless of any behavior the Al module is output, priority needs to be given to
whether or not the ninja is being grabbed. The GSTATE from the ninja control is also set as an
input to the Al module so that the module can determine if the ninja is being grabbed, and
output no commands. When assigning different states for distinct behaviors, the Al module first
checks whether the ninja is being grabbed, and assign appropriate states for being grabbed for
the different behaviors. The ninja’s were to be removed from the screen and set to be
regenerated after a certain time. The counts were triggered based on whether that state had
been reached after being grabbed.

The first Al that was implemented was the one that | called “GOOMBA”. Like in the
Mario game, the goomba walks back and forth until it bumps into something, then turns around.
Likewise the ninja behavior walks in one direction until it gets out of range, then walks in the
other direction. This was very simple behavior and was implemented first to show that the Al
module works and effectively it did. The GOOMBA states also handled whether the ninja was
being grabbed and output no commands when those states were reached. Each command up,
down, left, right, and throw were assigned separately and output to the ninja control. This
behavior was displayed in the demo.

A similar strategy was used when trying to implement more complicated Al, although
the results were still buggy and unstable. Debugging issues and possible reasons for more
complex Al not working in their entirety will be talked about in the debugging section. As long
as grabbing states were given the appropriate priority, all commands sent out to ninja control
were tested and confirmed to work. There were problems between state transitions to
different commands when synthesizing, but some during simulation (which assumed all
transition signals would be valid and asserted at correct timing since they were stimulated in the
test bench) displayed correct state transitions based on the signal assumptions. So more
complicated Al states were attempted and although some of the transitions between states
were successful, there were many bugs in bounding the ninja on the screen, asserting the next
command, etc.
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IV. Testing and Debugging

A. Video Modules (Chuan)

By far most of the time on this project was spent on testing and debugging. The general
approach was to begin with Isaac Chung’s pre-built code for black and white video and to add
effects incrementally. This method worked in general and allowed me to succeed in adding
small pieces efficiently and relatively error free. | achieved color video and filtering capability
relatively early.

The main problems | ran into had to do with my finger detection algorithm not working.
The finite state machines | used originally were highly complex and small errors would break it.
Instead of making use of simulation, | would recompile the code and see if images appeared on
the screen. This cost me lots of time. In the end, | achieved success by drawing out a detailed
state transition diagram. | then recoded the file over and over until it worked.

Another piece which required lots of testing and debugging was the interaction
between the fingerdetect algorithm and the physical factors. The algorithm developed above is
very sensitive to noise. Thus, a lot of time was spent tweaking the thresholds of the detection
algorithm. An experimental optimum was reached after trying many different glove colors and
surface types, trying many different lighting conditions and camera focus settings. The difficulty
also originated from the interconnectivity of the physical factors and the software factors. The
performances of both were tied to each other and an individual optimum did not necessarily
lead to the overall optimum. At first, these thresholds were hardwired into the file and each
testing and debugging took many minutes.

B. Game Logic Modules (Giovanni)

We had decided to use an 800 x 600 display in order to maximize the camera display
and not have the ninjas display on screen too small. We needed a 40 MHz clock and a modified



xvga module that asserted the hcount, vcount, hsync, vsync, and blank values at the correct
bound parameters.

Since the hand grabbing mechanism involving the camera might not be ready in time, |
used the ps2_mouse file available on the fall 2005 website to use the mouse through the ps2
port, display a cursor for it and use that as the inputs for the hands. Although | changed the
timing parameters to match the 40 MHz clock that we were using for our project, on the ps2
interface modules, the mouse still only worked about half of the time. | spent a day trying to
figure out why, and then later decided that it was not important to spend time trying to make
the mouse work. When it would work, | would use it to provide with movable hand x and y
coordinates and simulate grabbing with the click of a button. In this way | was able to test the
grabbing states and ninja display in action.

The First thing that was implemented was the ninja display module. The ninja pictures
were edited, transferred to COE and to ROMs. So the first bugs were with the addressing
scheme. It was easiest (although time consuming) to test by synthesis and actually displaying
the ninja frames. It was very easy to see if there were addressing errors since the ninja would
not look ok. The problems that were run into were problems with timing, or wrong
computation of address meaning that the arithmetic for computing the address was wrong. The
same address scheme was used for all ROMs so this only needed to be debugged and fixed once,
then we knew that the others would behave in the same way with the exception of the grabbed
frame which was a different size but it only differed in address bounds on height and width and
not on how the address was computed.

Next to test and implemented was animation. The enables module was easy to write
since we did a similar one in lab3 with the one hertz enable. Again, simulation cannot read from
a ROM so the best way to test whether the animations worked were to look at them. It proved
to be somewhat time consuming trying to fix state transitions in regards to faces and addressing
and having to re-synthesize every time to make sure that everything worked, but the debugging
process was fairly straight-forward. After synthesis and viewing of the behavior of the
animations, | could identify where the problems were and look in likely places that caused those
problems. A simple control module controlled behaviors for left, right and standing still first to
make sure that the ninja changed face states and kept them, as well as made animated motions
only when left or right requests were asserted. The animation for throw was also implemented
in this same manner and got it working when synthesized.

The star display module came next. Again, face and position of the ninja were critical to
making the star appear in the correct location. | had the star change states according to how
the display changed animations using the same throwSwitch and walkSwitch signals. The star
display could be simulated in modelsim and that’s how it was debugged as shown in some of the
diagrams. | hooked the internal states to the outputs and observed the waveforms. There were
a few transition issues (as well as assumptions that throwSwitch and walkSwitch were asserted
correctly, but since they are the same signals that change the animations, if the animations work,
so will the star state transitions) but they were identifiable and after enough time was invested,
the bugs were fixed and phased out. A case | initially ignored was the grabbing case. It wasn’t
handled correctly and we discovered that after being grabbed, the star would still generate a
star being thrown on the screen, the decision to include the GSTATE as an input to the star
display module was then made and we could keep track on when the ninja had been grabbed
and limit the appearance of the star accordingly.

The ninja control module involved extensive debugging, and reevaluation of case
priority. The first case was making sure that no changes occurred unless we had the new vsync
pulse that was talked about in the ninja control module. Anything faster than that would be too



fast and would not output the desired results correctly. Certain cases were not easy to see
where the problem was other than it wasn’t applying the desired changes. In one case, on the
transition between the end of a grab and the default grab state, the logic that assigned x, y, and
face would only check if the grab state was back to the original before checking for movement
signals so the ninja would not move at all since initially it’s at the original grabbing state, so
everything remained still. Jumping was also difficult to implement. One major bug that was
evident was when after asserting a jump, in order to indicate that the ninja has reached the
floor, the logic checks if it surpass the default y boundary on the next transition. Instead of
simply assigning the next y as default, it proceeded to the next state, but assigned the value of y
that surpassed the default y and as a result the ninja was displayed only from his ankles and
above.

After a certain period of time when synthesizing was getting very long, | decided to start
a new project and use blobs that were the size of the ninja instead. By this time | had confirmed
that all the animations worked to satisfactory levels so moving to blobs to try to decrease
synthesis time seemed like a good way to go.

The ninja Al | would say was the hardest thing to implement. Although the very early
simple goomba Al worked fairly soon after trying to implement it, trying to implement Al that
was slightly more complex proved to be very difficult. The state transitions depend on many
other inputs that although the Al was testable using tesbenches in Modelsim, doesn’t work
exactly the same when synthesized. The reason is when using testbenches, all inputs are
generated by the user and assumed to be correct. If there are slight variations on the inputs by
the other modules during synthesis, it could cause the Al FSM to just hang there waiting for the
signal. A huge problem I ran into was keeping the ninja on the screen. Using a similar
mechanism of bounce back with the goomba, | tried to have it output different commands, but
gave priority to the x going out of bounds and having the ninja move to another state so that it
would move in the opposite direction and found that there were cases where it would still go
out of bounds. Another strategy | was trying to implement was a “chicken” strategy where the
ninja moved away from the hand x position at all times. Again, the bounding problem persisted
and ended up bounding the ninja outside of the screen instead of inside. | think if given another
week or so of debug time, some pretty cool Al could’ve been implemented.

Aside from modelsim on the ninjaAl, star_display and ninja_control modules and
hooking up internal states and wires to outputs to see what was going on, the labkits led
displays were also useful. In particular the hex display (using the display hex v file found online
in the fall 2005 site) proved useful to hook up the Al state transitions to know what the ninja
was “thinking” and where it was transitioning. | used the LEDs to assert which command the Al
was outputting and this helped me figure out what was going on and where the ninja was
getting stuck, or try to determine when and where it went to certain states.



IV. Conclusion

A. Video Modules Conclusion
In conclusion, | had achieved all of the goals | stated on my checkoff list. | had reliable
finger detection. | could detect a squeeze and unsqueeze easily, and | could grab objects and
pick them up.

Figure 16 Game Screen w/out grabbing



Figure 17 Game Screen w/ grabbing

Overall the experience was difficult and rewarding. | am glad that we chose to do
something which involved video effects. This made the end result much more palpable. If there
was more time, | would have experimented with ways to make the finger detection even more
robust. The finger detection fades out around the edges because of uneven lighting.

If I had could do this project over, | would have picked my direction more carefully.
Many important design choices were made halfway through the project, in effect doubling the
amount of work performed. An example was deciding whether to filter fingers by RGB data
converted from YCrCb or filtering YCrCb data directly. Secondly, the initial plan was to use two
gloves which were of the same color. This required a complicated algorithm to distinguish
between two fingers of the same color. Also, when the fingers were close together, no
detection is possible. Danny Vo, a fellow 6.111 student gave me the idea of using different
colors for different fingers. Following this scheme from the beginning would have saved me a
lot of time because the fingerdetect module was the most difficult to make.

| would have started integration much earlier than Saturday before the due date. Many
problems cannot be discovered until the system as a whole is put together. An example is the
video timing issues which we luckily corrected.

Most importantly, | would have done more simulation in lieu of actual testing in this
project. Compile time increased from 1 minute in the beginning to over 4 minutes at the end.
Particularly at the beginning, | wasted a lot of time making small changes and then recompiling.
Towards the end, | began using switches and buttons to find optimal values for necessary
parameters without recompiling.



B. Game Logic Modules Conclusion

| feel that all of the basic functionalities were implemented and shown to have worked
well. Transitioning from blob to ninja wasn’t buggy or difficult and the animations the ninja
displayed remained the same. Moving from a mouse grab to a hand grab worked quite well also.
And the interface between the two worked very well. User controls versus Al worked, although
Al FSM behaviors had some problems, | think they could have worked if | had tried to implement
them sooner or had more time to debug. | would have definitely worked on Al with blobs
initially, even though | spent a large amount of time fixing addressing issues, | think some
complex Al would have been awesome to show. There was a lot of figuring how to do things on
my own instead of asking for help when | was working with the modules. Although I like figuring
things out on my own, asking for help on say addressing would have may cut time spent on
addressing the ninja and more time spent on Al. Lots of people display pictures in their projects
so there was no need to reinvent the wheel. | later had found that color pictures could be
mapped to COEs using MATLAB. Having colored ninjas would’ve made the project a little more
color friendly.
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// File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

// Modified: Chuan Zhang

//
L1177 7770707777777 7777777777 77777777777777777777777777777777777777777777
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to zbt(clk, vclk, fvh, dv, din, ntsc _addr, ntsc data, ntsc_we);
input clk; // system clock
input vclk; // video clock from camera
input [2:0] fvh;
input dv;
input [17:0] din;
output [18:0] ntsc_addr;
output [35:0] ntsc data;
output ntsc_we; // write enable for NTSC data

parameter COL_START = 10'd20;
parameter ROW_START = 10'd20;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 x 768 XGA display

reg [9:0] col = 0;

reg [9:0] row = 0;

reg [17:0] vdata = 0;

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced

reg even_odd; // decode interlaced frame to this wire
wire frame = fvh[2];

wire frame edge = frame & ~old_frame;

always @ (posedge vclk) //LLCl is reference
begin
old dv <= dv;
vwe <= dv && !fvh[2] & ~old dv; // if data valid, write it
old frame <= frame;
even_odd = frame edge ? ~even _odd : even_odd;

if ('fvh[2])
begin
col <= fvh[0] ? COL_START
('fvh[2] && !'fvh[l] && dv && (col < 1024)) ? col + 1 : col;
row <= fvh[1l] ? ROW_START :
('fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
vdata <= (dv && !fvh[2]) ? din : vdata;
end
end

// synchronize with system clock
reg [9:0] x[1:0],y[1:01;

reg [17:0] datall:0];

reg we[l:0];

reg eo[1:0];

always @ (posedge clk)

begin
{x[1],x[0]} <= {x[0],col};
{y[11,y[0]1} <= {y[0],row};
{data[l],data[0]} <= {data[0],vdata};
{we[l],we[0]} <= {we[0],vwe};
{eo[l],eo0[0]} <= {eo[0],even odd};
end

// edge detection on write enable signal

reg old we;
wire we_edge = we[l] & ~old_we;
always @ (posedge clk) old we <= we[l];



// shift each set of four bytes into a large register for the ZBT

reg [35:0] mydata;
always @ (posedge clk)
if (we_edge)
mydata <= {mydata[l17:0], datalll};

// compute address to store data in
wire [18:0] myaddr = {y[1][8:0], 1'b0, x[1]([9:1]};
// update the output address and data only when two bytes ready

reg [18:0] ntsc_addr;
reg [35:0] ntsc data;
wire ntsc we = (we edge & (x[1][0]==1"'b0));

always @ (posedge clk)
if ( ntsc_we )
begin
ntsc_addr <= myaddr; // normal and expanded modes
ntsc data <= mydata;
end

endmodule // ntsc_to_zbt

L1717 077 0777777077 777777777777777777777777717777777777777777777717777771777

//
//
//
//
//
//
//
//
//

File: zbt 6111.v
Date: 27-Nov-05
Author: I. Chuang <ichuang@mit.edu>

Simple ZBT driver for the MIT 6.111 labkit, which does not hide the
pipeline delays of the ZBT from the user. The ZBT memories have

two cycle latencies on read and write, and also need extra-long data hold
times around the clock positive edge to work reliably.

LITDTT70000 7770770777077 707 7777707777777777777777777777777777777777777177777

//

Tke's simple ZBT RAM driver for the MIT 6.111 labkit

Data for writes can be presented and clocked in immediately; the actual
writing to RAM will happen two cycles later.

Read requests are processed immediately, but the read data is not available
until two cycles after the intial request.

A clock enable signal is provided; it enables the RAM clock when high.

LITDT170000 7770770777077 707 7777707777777777777777777777777777777777777177777

module zbt 6111 (clk, cen, we, addr, write data, read data,

ram _clk, ram we b, ram address, ram data, ram cen b);

input clk; // system clock

input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)

input [18:0] addr; // memory address

input [35:0] write data; // data to write

output [35:0] read data; // data read from memory

output ram clk; // physical line to ram clock

output ram we b; // physical line to ram we b

output [18:0] ram address; // physical line to ram address
inout [35:0] ram data; // physical line to ram data

output ram_cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wire ram cen b = ~cen;

// create delayed ram we signal: note the delay is by two cycles!
// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we delay;

always @ (posedge clk)
we delay <= cen ? {we_delay[0],we} : we delay;



// create two-stage pipeline for write data

reg [35:0] write data oldl;
reg [35:0] write data old2;
always @ (posedge clk)
if (cen)
{write data old2, write data oldl} <= {write data oldl, write data};

// wire to ZBT RAM signals

assign ram we b = ~we;

assign ram clk = ~clk; // RAM is not happy with our data hold
// times if its clk edges equal FPGA's
// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram address = addr;

assign ram data = we delay([l] ? write data old2 : {36{1'bZ}};

assign read data = ram data;

endmodule // zbt 6111
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// File: vram display.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

// Modified: Chuan Zhang
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module vram display(reset,clk,hcount,vcount,vr pixel,
vram addr,vram read data);

input reset, clk;

input [10:0] hcount;

input [9:0] wvcount;

output [17:0] vr pixel;
output [18:0] vram addr;
input [35:0] vram read data;

wire [18:0] vram addr = {vcount[9:1],1'b0,hcount[9:1]};

wire hc2 = hcount[0];

reg [17:0] vr_pixel;
reg [35:0] vr data latched;
reg [35:0] last_vr data;

always @ (posedge clk) begin
last vr data <= (hc2==1'b0) ? vr data latched : last vr data;
vr _data latched <= (hc2==1'bl) ? vram read data : vr_data latched;

end

always @(*) // each 36-bit word from RAM is decoded to 4 bytes
case (hc2)
1'bl: vr pixel = last vr data[l7:0];
1'b0: vr pixel = last vr data[35:18];
endcase

endmodule // vram display
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// FingerDetect Module

// Author: Chuan Zhang

//
//

This module takes in valid pixel, hcount, vcount and returns
the h and v of the finger
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module fingerdetect (reset, clk, valid pixel, hcount, vcount, h, v);

input reset, clk, valid pixel;
input [10:0] hcount;
input [9:0] vcount;

output [10:0] h;



output [9:0] v;
reg [10:0] h, htemp;
reg [9:0] v, vtemp;

// detection logic
reg [1:0] detectmode;
reg [11:0] hcounter;

reg [9:0] oldvcount;
reg rowdetect;

reg [1:0] vdetectmode;
reg [5:0] wvcounter;

always @ (posedge clk) begin
oldvcount <= vcount;

if (reset) begin
h <= 0;
v <= 0;
detectmode <= 2'b00;
hcounter <= 10;
oldvcount <= 0;

end
if (~reset) begin
if (vcount == oldvcount) begin
if (detectmode == 2'b00) begin
if (valid pixel) begin
if (hcounter == 0) begin

detectmode <= 2'b01;
hcounter <= 10;
htemp <= hcount;
rowdetect<= 1;

end
if (hcounter > 0) begin
hcounter <= hcounter - 1;
end
end
if (~valid pixel) begin
hcounter <= 10;

end
end
if (detectmode == 2'b0l) begin
if (valid pixel) begin
hcounter <= 10;
end
if (~valid pixel) begin
if (hcounter == 0) begin
detectmode <= 2'b10;
hcounter <= 10;
end
if (hcounter > 0) begin
hcounter <= hcounter - 1;
end
end
end
if (detectmode == 2'bl0) begin
end
end
if (vcount != oldvcount) begin

hcounter <= 10;
rowdetect<= 0;
detectmode <= 2'b00;



if (vcount !=580) begin

if (vdetectmode == 2'b00) begin
if (rowdetect) begin
if (vcounter == 0) begin

vdetectmode <= 2'b01;
vcounter <= 10;

end
if (vcounter != 0) begin
vcounter <= vcounter - 1;
end
end
if (~rowdetect) begin
vcounter <= 10;
end
end
if (vdetectmode == 2'b01l) begin
if (rowdetect) begin
vcounter <= 10;
end
if (~rowdetect) begin
if (vcounter == 0) begin
vdetectmode <= 2'b1l0;
h <= htemp;
v <= vcount;
end
if (vcounter != 0) begin
vcounter <= vcounter - 1;
end
end
end
if (vdetectmode == 2'b1l0) begin
end
end
if (vcount == 580) begin
vdetectmode <= 2'b00;
vcounter <= 10;
end

end
end

end

endmodule
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// Yellow Color_ Filter Module

// Author: Chuan Zhang

// Translates YCrCb pixels into filtered RGB pixels
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module yellow(reset, clk, pixel in, pixel out, contrast input, selector, valid yellow);
input reset, clk;
input [17:0] pixel in;

// determines the threshold value
input [17:0] contrast input;

reg [6:0] yhighthreshold;

reg [6:0] ylowthreshold;

reg [6:0] cbthreshold;

// selector to switch mode
input [1:0] selector;

assign crselect = selector[l];
assign cbselect = selector([0];



output [17:0] pixel out;
reg [17:0] pixel out all;
reg [ ] pixel out y;

reg [17:0] pixel out cr;
reg [ ] pixel out cb;

output valid yellow;

reg valid yellow;

assign yhigh = (pixel in[17:12] < 63);
assign ylow = (pixel in[17:12] > 2);
assign cb = (pixel in[5:0] < cbthreshold + 13);

assign pixel out = crselect? pixel out cr : cbselect? pixel out cb
pixel out all;

always @ (posedge clk) begin
yvhighthreshold <= {0,contrast input[17:12]};
ylowthreshold <= {0,contrast input[11:6]};
cbthreshold <= {0,contrast input[5:0]};
valid yellow <= (yhigh && ylow && cb);

if (yhigh&s&ylow) begin
pixel out y <= {pixel in[17:12],pixel in[17:12],pixel in

[17:12]};
end
if (~(yhigh && ylow)) begin
pixel out y <= 18'b0;
end
pixel out_cr <= {pixel in[11:6],pixel in[11:6],pixel_in[11:6]};
if (cb) begin
pixel out cb <= {pixel in[5:0],pixel in[5:0],pixel in[5:0]};
end
if (~cb) begin
pixel out cb <= 18'b0;
end
if (yhigh && ylow && cb) begin
pixel out all <= {1'bl, 5'b0, 1'bl,11'b0};
end
if (~(yhigh && ylow && cb)) begin
pixel out_all <= 18'b0;
end
end
endmodule
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// Orange Color Filter Module

// Author: Chuan Zhang

// Translates YCrCb pixels into filtered RGB pixels
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module orange (reset, clk, pixel in, pixel out, contrast input, selector, valid orange);
input reset, clk;
input [17:0] pixel in;

// determines the threshold value
input [17:0] contrast input;

reg [6:0] ythreshold;

reg [6:0] crthreshold;

reg [6:0] cbthreshold;

// selector to switch mode
input [1:0] selector;

assign crselect = selector[l];



assign cbselect = selector[0];

output [17:0] pixel out;
reg [17:0] pixel out all;
reg [ ] pixel out y;
reg [17:0] pixel out cr;
reg [ ] pixel out cb;

output valid orange;

reg valid orange;

assign y = (pixel in[17:12] < 63);
assign cr = (pixel in[11:6] > crthreshold);
assign cb = (pixel in[5:0] < 60);

assign pixel out = crselect? pixel out cr : cbselect? pixel out cb
pixel out all;

always @ (posedge clk) begin
ythreshold <= {0,contrast input[17:12]};
crthreshold <= {0,contrast input[11:6]};
cbthreshold <= {0,contrast input[5:0]};

valid orange <= (y && cr && cb);

if (y) begin
pixel out y <= {pixel in[17:12],pixel in[17:12],pixel in

[17:12]};
end
if (~y) begin
pixel out_y <= 18'b0;
end
if (cr) begin
pixel out cr <= {pixel in[11:6],pixel in[11:6],pixel in
[11:6]1};
end
if (~cr) begin
pixel out cr <= 18'b0;
end
if (cb) begin
pixel out cb <= {pixel in[5:0],pixel in[5:0],pixel in[5:0]};
end
if (~cb) begin
pixel out cb <= 18'b0;
end
if (y && cr && cb) begin
pixel out all <= {12'b0, 1'bl,5'b0};
end
if (~(y && cr && cb)) begin
pixel out_all <= 18'b0;
end
end
endmodule
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// ContactDetect Module

// Author: Chuan Zhang

// The contact detect module takes in the two horizontal
// positions of the fingers and returns whether

// they are within a certain threshold distance

// away from each other.
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module contactdetect (reset, clk, flh, f2h, contact);
input reset, clk;
input [10:0] flh, f2h;

output contact;
reg contact;

assign range = (£2h[10:4] <= 10 + £1h[10:47);

always @ (posedge clk) begin

if (reset) begin
contact <= 0;

end

if (~reset) begin
if (range) begin

contact <= 1;

end

if (~range) begin
contact <= 0;

end
end
end
endmodule
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// SqueezeDetect Module

// Author: Chuan Zhang

// The Squeezedetect module takes in contact from

// the contact detect module. If contact makes

// a rising edge, then squeeze is asserted for 1/4
// of a second. If contact makes a falling edge

// then unsqueeze is asserted for 1/4 of a second
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module squeezedetect (reset, clk, contact, squeeze, unsqueeze);
input reset, clk, contact;

output squeeze, unsqueeze;
reg squeeze, unsqueeze;

reg oldcontact;
reg [25:0] counter;

assign enter_ contact = ((contact != oldcontact) && (contact == 1));
assign exit contact = ((contact != oldcontact) && (contact == 0));

always @ (posedge clk) begin
if (reset) begin
counter <= 5000000;
squeeze <= 0;
unsqueeze <= 0;
oldcontact <= 0;
end

if (~reset) begin
oldcontact <= contact;

if (counter == 0) begin

if (enter_ contact) begin
squeeze <= 1;
unsqueeze <= 0;
counter <= 5000000;

end

if (exit contact) begin
squeeze <= 0;
unsqueeze <= 1;
counter <= 5000000;

end

if (~enter contact && ~exit contact) begin
squeeze <= 0;



unsqueeze <= 0;
end
end

if (counter > 0) begin
counter <= counter - 1;
end
end

end

endmodule



module ninja_control(clk, reset, vsync, up, down, left, right,
throw, squeeze, unsqueeze, contact, mx, my,
xout, yout,
command, face, GSTATE, ninja_clear, regen,);
input clk;
input reset;

input vsync;

input up;

input down;

input left;

input right;
input throw;
input squeeze, unsqueeze;
input contact;

input [11:0] mx, my;
input ninja_clear, regen; // signals from Al for ninja regeneration after grab
output jump_DONE;

output[9:0] jumpCount;

output start_index, jump_vinc;
output[20:0] jump_index;
output[2:0] JSTATE;

parameter DEFAULT_Y
parameter DEFAULT_X 55;
parameter MAX_WIDTH 800-104;
parameter MAX_HEIGHT = 600-100;
parameter LEFT_EDGE = 50;
parameter RIGHT_EDGE = 750;
parameter TOP_EDGE = 50;
parameter BOTTOM_EDGE = 550;
parameter OFFSCR_X = 801;

600-106-50; // Ninja at bottom-most

//--vsync states -------
parameter NOT_VSYNC = O;
parameter VSNEW =
parameter VSOLD =

NEFEO

//--command parms---------
parameter RIGHT = O;
parameter LEFT = 1;
parameter UP = 2;
parameter DOWN =
parameter NOCMD =
parameter THROW =
parameter GRABBED

3-

output[11:0] xout;

output[11:0] yout;
output[2:0] command;
output face;
output[2:0] GSTATE;

reg [11:0] xout, yout;
reg[2:0] VSTATE, command;
reg face, jump_DONE;

always @(posedge clk)
if (reset)
VSTATE <= NOT_VSYNC;
else case(VSTATE)

NOT_VSYNC : VSTATE <= vsync ? NOT_VSYNC : VSNEW;

VSNEW : VSTATE <= vsync ? NOT_VSYNC : VSOLD;

VSOLD : VSTATE <= vsync ? NOT_VSYNC : VSOLD;
endcase

//--- GRAB STATES-----—————————o——
parameter NOT_GRABBED = O;
parameter JUST_GRABBED = 1;
parameter LET GO = 2;
parameter ON_FLOOR = 3;



parameter OFFSCR = 4;
parameter REGEN = 5;

reg[2:0] GSTATE;
wire ninja_fall = (yout >= DEFAULT_Y);
reg grabbed;

always @(posedge clk)
if (reset)
GSTATE <= NOT_GRABBED;
else if (vsync || (VSTATE == VSOLD))
GSTATE <= GSTATE;
else case (GSTATE)

NOT_GRABBED : GSTATE <= grabbed ? JUST_GRABBED : NOT_GRABBED;
JUST_GRABBED : GSTATE <= grabbed ? JUST_GRABBED : LET_GO;
LET_GO : GSTATE <= ninja_fall ? ON_FLOOR : LET_GO;
ON_FLOOR : GSTATE <= ninja_clear ? OFFSCR : ON_FLOOR;
OFFSCR : GSTATE <= regen ? REGEN : OFFSCR;
REGEN : GSTATE <= NOT_GRABBED;
endcase
// ---- JUMP STATES -------————-

parameter NO_JUMP = O;
parameter JUMP_UP 1;
parameter JUMP_UP_RIGHT = 2;
parameter JUMP_UP_LEFT= 3;
parameter END_JUMP = 4;

/-~
reg[9:0] jumpCount = 0; //to change velocity
reg start_index, jump_vinc; //start index count, jump_vinc is pulse that goes high when v
should change
reg[20:0] jump_index; // count up to 2720 clock cycles
reg[2:0] JSTATE; // 4 states

always @(posedge clk)

if (reset) begin
JSTATE <= NO_JUMP;
start_index <= 1"b0;
end

else if (vsync || (VSTATE == VSOLD)) begin
JSTATE <= JSTATE;
start_index <= start_index;

end
else case (JSTATE)
NO_JUMP :
if (up && right) begin
JSTATE <= JUMP_UP_RIGHT;
start_index <= 1%b1;
end
else if (up && left) begin
JSTATE <= JUMP_UP_LEFT;
start_index <= 1%b1;
end
else if (up) begin
JSTATE <= JUMP_UP;
start_index <= 1%b1;
end
else begin
JSTATE <= NO_JUMP;
start_index <= 1%b0;
end
JUMP_UP

if ((yout-6+jumpCount) >= DEFAULT_Y)
JSTATE <= END_JUMP;
else JSTATE <= JUMP_UP;

JUMP_UP_RIGHT : if ((yout-6+jumpCount) >= DEFAULT_Y)
JSTATE <= END_JUMP;
else JSTATE <= JUMP_UP_RIGHT;
JUMP_UP_LEFT sif ((yout-6+jumpCount) >= DEFAULT_Y) begin
JSTATE <= END_JUMP;
end
else JSTATE <= JUMP_UP_LEFT;
END_JUMP - if (yout == DEFAULT_Y) begin
JSTATE <= NO_JUMP;
start_index <= 1%b0;
end



default begin
JSTATE <= NO_JUMP;
start_index <= 1"b0;
end

endcase

always @(posedge clk)

if (reset)
Jump_DONE = 17b0;

else if (JSTATE != END_JUMP)
Jump_DONE = 17b0;

else if (vsync || (VSTATE == VSOLD))
Jump_DONE = 17b0;

else if (JSTATE == END_JUMP)
Jump_DONE = 1%b1;

always @(posedge clk)

if (reset)
Jump_index <= 21"dO;

else if (start_index == 1"b0)
Jump_index <= 21"dO;

else if (Jump_vinc == 1"bl)
Jump_index <= 21"dO;

else if (start_index == 1"bl)
Jump_index <= jump_index+1;

always @(posedge clk)
if (reset)
Jump_vinc <= 17b0;
else if (Jump_index == 5"b111111)
Jjump_vinc <= 1"b1;
else jump_vinc <= 17b0;

always @(posedge clk)

if (reset)
JumpCount <= 0;

else if (JSTATE == NO_JUMP)
JumpCount <= 0;

else if (Jump_vinc == 1"bl)
JumpCount <= jumpCount+1;

else jumpCount <= jumpCount;

always @(posedge clk)

if (reset)

command = NOCMD;
else if (grabbed)

command = GRABBED;
else if (right)

command = RIGHT;
else if (left)

command = LEFT;
else if (throw)

command = THROW;
else command = NOCMD;

reg [11:0] my_old, my_new, mx_old, mx_new;
reg signed [11:0] dmy, dmx;

always @(posedge clk)

if (reset) begin
my_old <= 0;
my_new <= my;
mx_old <= 0;
mx_new <= mx;
dmy <= 0;
dmx <= 0;

end else if (vsync || (VSTATE == VSOLD)) begin
mx_old <= mx_old;
mxX_new <= mx_new;
my_old <= my_old;
my_new <= my_new;
dmy <= dmy;
dmx <= dmx;

end else begin
my_old <= my_new;

else JSTATE <= END_JUMP;



my_new <= my;

mx_old <= mx_new;

mx_new <= mx;

dmy <= my_new - my_old;

dmx <= mx_new - mx_old;
end

reg falling;
always @(posedge clk)
if (GSTATE == LET_GO)
falling = 1°bl;
else falling = 1"b0;

reg fall_vc;
reg[20:0] fall_index;
always @(posedge clk)
if (reset) fall_index <= 21"dO;
else if (fall_vc == 1"bl)
fall_index <= 217dO;
else if (falling)
fall_index <= fall_index+1;
else fall_index <= 21"dO;

always @(posedge clk)
if (reset) fall_vc = 1°b0;
else if (fall_index == 5"b11111)
fall_vc = 17bl;
else fall_vc = 1"b0;

reg[9:0] fallCount;
always @(posedge clk)
if (reset) fallCount <= 10"dO;
else if (fall_vc == 1"bl)
fallCount <= fallCount+1;
else fallCount <= fallCount;

always @(posedge clk)

if (reset)
begin
xout <= DEFAULT_X;
yout <= DEFAULT_Y;
face <= RIGHT;
end
else if (vsync || (VSTATE == VSOLD))
begin
xout <= xout;
yout <= yout;
face <= face;
end
else if (GSTATE == REGEN)
begin
xout <= DEFAULT_X;
yout <= DEFAULT_Y;
face <= RIGHT;
end
else if (GSTATE == ON_FLOOR)
begin
xout <= xout;
yout <= yout;
face <= face;
end
else if (GSTATE == OFFSCR)
begin
xout <= 107d805;
yout <= DEFAULT_Y;
face <= RIGHT;
end
else if ((GSTATE == NOT_GRABBED) && (grabbed))
begin
xout <= xout;
yout <= yout;
face <= face;
end

else if (GSTATE == JUST_GRABBED)



begin
xout <= xout+dmx;
yout <= yout+dmy;
face <= face;

end
else if (GSTATE == LET_GO)
begin
xout <= xout;
yout <= yout+6+FallCount;
face <= face;
end

else if (JSTATE == JUMP_UP) begin
xout <= xout;
if ((yout-9+jumpCount) > DEFAULT_Y)
yout <= DEFAULT_Y;
else yout <= yout-9+jumpCount;
face <= face;
end
else if (JSTATE == JUMP_UP_RIGHT) begin
Xout <= xout+2;
if ((yout-9+jumpCount) > DEFAULT_Y)
yout <= DEFAULT_Y;
else yout <= yout-9+jumpCount;
face <= RIGHT;
end
else if (JSTATE == JUMP_UP_LEFT)
begin
Xout <= xout-2;
if ((yout-9+jumpCount) > DEFAULT_Y)
yout <= DEFAULT_Y;
else yout <= yout-9+jumpCount;
face <= LEFT;

end
else if (JSTATE == END_JUMP)
begin
xout <= xout;
yout <= DEFAULT_Y;
face <= face;
end
else if (yout != DEFAULT_Y)
begin
xout <= xout;
yout <= DEFAULT_Y;
face <= face;
end
else if (right)
begin

xout <= xout+4;
yout <= yout;
face <= RIGHT;
end

else if (left)
begin
xout <= xout-4;
yout <= yout;
face <= LEFT;

end
else
begin
Xout <= xout;
yout <= yout;
face <= face;
end

// GRAB LOGIC ————m e oo oo
parameter BOXWIDTH = 104;
parameter BOXHEIGHT = 106;
assign valid = ((mx[11:6]<=xout[11:6]+BOXWIDTH)&&(mx[11l:6]>=xout[11:6])&&(my[11:6]<=yout[11:6]+BOXHEIGHT)
&& (my[11:6]>=yout[11:6]));

always @(posedge clk) begin
if (reset) begin
grabbed <= 0;
end

if (~reset) begin
if (grabbed) begin
if (~contact) begin



end

end

grabbed <= 0;

if (~grabbed) begin
if (valid && squeeze) begin

end

end
end

end

endmodule

module star_display(vclock, reset,

input
input
input
input
input
input

vclock;
reset;
throwSwitch;
walkSwitch;
throw_assert;
face;

input[10:0] hcount;
input[9:0] vcount;

input
input
input

hsync;
vsync;
blank;

input[11:0] ninja_x;
input[11:0] ninja_y;
input[9:0] target_x, target_ y;
input target;

input[2:0] GSTATE;

output shsync;

output svsync;

output sblank;

output[2:0] spixel;
output[11:0] x,y;
output throw_DONE;
output stop_throw;
output[2:0] star_state;

assign shsync = hsync;
assign svsync = vsync;
assign sblank = blank;

//---FACES

parameter RIGHT = O;

//---STAR STATES

parameter DONT_SHOW = O;

parameter THROW_ASSERTED = 1;

parameter SHOW_STAR =
parameter STAR_MOVING

2;

grabbed <= 1;

ninja_x, ninja_y,

target_x, target_y, target,

throwSwitch, walkSwitch, throw_assert, face,
GSTATE,

hcount, vcount, hsync, vsync, blank,

shsync, svsync, sblank, spixel,

X,y, throw DONE, stop_throw, star_state);

//0 for right, 1 for left

// if throwing at target HIGH

parameter STAR_THROWN

//---GSTATES-—-—————-

parameter NOT_GRABBED

= 0:

parameter JUST GRABBED = 1;

parameter LET_GO = 2;
parameter ON_FLOOR =
parameter OFFSCR = 4;

3;



//--vsync states -------
parameter NOT_VSYNC = O;
parameter VSNEW = 1;
parameter VSOLD = 2;

//---test states---
parameter no_throw_TEST = O;
parameter throw_TEST = 1;

reg[2:0] star_state;
reg[11:0] x,y;

reg[2:0] VSTATE;

reg throw_DONE, stop_throw;

always @(posedge vclock)
if (reset)
VSTATE <= NOT_VSYNC;
else case(VSTATE)

NOT_VSYNC : VSTATE <= vsync ? NOT_VSYNC : VSNEW;

VSNEW : VSTATE <= vsync ? NOT_VSYNC : VSOLD;

VSOLD : VSTATE <= vsync ? NOT_VSYNC : VSOLD;
endcase

parameter DEFAULT_X = 850;
parameter X_SPEED = 6;
parameter X_HAND_RIGHT = 99;

always@(posedge vclock)
if (reset) x <= DEFAULT_X;

else if (vsync || (VSTATE == VSOLD))

X <= X;
else case (star_state)
DONT_SHOW

: X <= DEFAULT_X;

THROW_ASSERTED : x <= DEFAULT_X;

SHOW_STAR

STAR_MOVING

STAR_THROWN
endcase

parameter WIDTH = 750;
parameter HEIGHT = 550;

parameter DEFAULT_Y = 549-67;

wire xXOFF = x > WIDTH;
wire yOFF = y > HEIGHT;
wire starOffScreen = xOFF || yOFF;

always @(posedge vclock)
if (reset) begin

. X <= (face == RIGHT) ? ninja_x+X_HAND_RIGHT : ninja_x;
x <= (face == RIGHT) ? x+X_SPEED : x-X_SPEED;

. x <= DEFAULT X;

star_state <= DONT_SHOW;

throw_DONE <= 1%bO0;
stop_throw <= 17"b0;
end

else case (star_state)
DONT_SHOW

THROW_ASSERTED :

: begin
star_state <=
throw_DONE <= 1"bO0;
end

if (~throw_assert)

star_state <= DONT_SHOW;

else if (GSTATE != NOT_GRABBED)

star_state <= DONT_SHOW;

else if (throwSwitch)

else

SHOW_STAR

star_state <= SHOW_STAR;

star_state <= THROW_ASSERTED;

if (~thfbw_assert)

star_state <= DONT_SHOW;

else if (walkSwitch)

star_state <= STAR_MOVING;

throw_assert ? THROW_ASSERTED : DONT_SHOW;



// wire [9:0] Rx, Ry;
// assign Ry = ninja_lower ? (DEFAULT_Y - ninja_y) : (ninja_y - DEFAULT_Y);
// assign Rx = ninja_on_right ? ((ninja_x+3"d5) - target _x) : (target_x - (ninja_x + 77d98));
// wire [12:0] numerator = Ry*10;
// wire [9:0] Ratio_y, remainder;
// wire rfd; //ready for data
// divider yx (numerator, Rx, Ratio_y, remainder, vclock, rfd, 1"b0, reset, 1"bl);
reg[9:0] dy;
always @(posedge vclock)
if (reset)
y <= DEFAULT_Y;
else if (vsync || (VSTATE == VSOLD))
y <=Y;
else case (star_state)
DONT_SHOW : y <= DEFAULT_Y;
THROW_ASSERTED : y <= DEFAULT_Y;
SHOW_STAR Iy <= ninja_y+39;
STAR_MOVING Iy <= target ? y-5 : DEFAULT_Y;
STAR_THROWN : y <= DEFAULT_Y;
endcase
wire[2:0] starblob_pix;
blob starblob (vclock, x, y, hcount, vcount, starblob_pix);
defparam starblob_HEIGHT = 5;
defparam starblob_WIDTH = 5;
defparam starblob.COLOR = 3"b111;
assign spixel = starblob_pix;
endmodule

module ninjaAl(vclock, reset, Alsel, up, down,

/*

else star_state <= SHOW_STAR;

STAR_MOVING

if (stafbffScreen) begin

star_state <= STAR_THROWN;
stop_throw <= 1%b1;

end

STAR_THROWN

else star_state <= STAR_MOVING;

if (~throw_assert) begin

star_state <= DONT_SHOW;
stop_throw <= 1"b0;
throw_DONE <= 1"b1l;

end

else star_state <= STAR_THROWN;
default star_state <= DONT_SHOW;

endcase

wire ninja_on_right = ((ninja_x+3"d5) <= target_x);

wire ninja_lower = (ninja_y >= target_y);

gtSTATE,
input vclock;
input reset;
input[1:0] Alsel;
output up;
output down;
output left;
output right;
output throw;
input[11:0] ninja_x;
input[11:0] ninja_y;
input[11:0] mx, my;
input[2:0] GSTATE;
input throw_DONE, stop_throw, jump_DONE;
output ninja_clear, regen;
/*output[3:0] throwerSTATE;*/
/*output[24:0] stopTurnAround;*/

output[1:0] chickenSTATE;
output[4:0] chicken_cmd;

left, right, throw, ninja_x, ninja.y,
GSTATE, mx, my, ninja_clear, regen, throw_DONE, stop_throw, jump_DONE,

gtCOUNT, gtcCMD);



*/

output[20:0] gtCOUNT;

output[4:0] gtCMD;

output[3:0] gtSTATE;

//---GSTATES——--————-
parameter NOT_GRABBED = O;
parameter JUST_GRABBED = 1;
parameter LET_GO = 2;
parameter ON_FLOOR = 3;
parameter OFFSCR = 4;

parameter NINJA_FLOOR_TIME = 40000000;

parameter NINJA_OFFSCREEN_TIME = 40000000;
reg[25:0] time_floor_count, time_offscreen_count;
reg ninja_clear, regen;

always @(posedge vclock)
if (reset) begin
time_floor_count <= 0;
ninja_clear <= 1"b0;
end else if (time_floor_count == NINJA_FLOOR_TIME) begin
ninja_clear <= 1"b1;
time_floor_count <= 0;
end else if (GSTATE == ON_FLOOR) begin
ninja_clear <= 1"b0;
time_floor_count <= time_floor_count+1;
end else begin
ninja_clear <= 1"b0;
time_floor_count <= 0;
end

always @(posedge vclock)

if (reset) begin
time_offscreen_count <= 0;
regen <= 1%b0;

end else if (time_offscreen_count == NINJA_OFFSCREEN_TIME) begin
time_offscreen_count <= 0;
regen <= 1%bl;

end else if (GSTATE == OFFSCR) begin
time_offscreen_count <= time_offscreen_count+1;
regen <= 17b0;

end else begin
time_offscreen_count <= 0;
regen <= 1%b0;

end

parameter RIGHT_EDGE = 644;

parameter LEFT_EDGE = 50;
wire nx_right_bound = (ninja_x > RIGHT_EDGE);
wire nx_left_bound = (ninja_x < LEFT_EDGE);

// goomba’ Al

parameter GOOMBA_RIGHT = O;
parameter GOOMBA_LEFT = 1;
parameter GOOMBA_GRABBED
parameter GOOMBA_FALLING
parameter GOOMBA_FLOOR = 4;
parameter GOOMBA_OFFSCREEN = 5;

2;
3;

reg[2:0] goombaSTATE;
reg[4:0] goomba_cmd;

always @(posedge vclock)
if (reset)
goombaSTATE = GOOMBA_RIGHT;
else if (GSTATE == JUST_GRABBED)
goombaSTATE = GOOMBA_GRABBED;
else case(goombaSTATE)

GOOMBA_RIGHT : goombaSTATE = nx_right_bound ? GOOMBA_LEFT : GOOMBA_RIGHT;

GOOMBA_LEFT - goombaSTATE = nx_left_bound ? GOOMBA_RIGHT : GOOMBA_LEFT;

GOOMBA_GRABBED : goombaSTATE = GOOMBA_FALLING;

GOOMBA_FALLING : goombaSTATE = (GSTATE == ON_FLOOR) ? GOOMBA_FLOOR :
GOOMBA_FALLING;

GOOMBA_FLOOR : goombaSTATE = ninja_clear ? GOOMBA_OFFSCREEN : GOOMBA_FLOOR;

GOOMBA:OFFSCREEN : goombaSTATE = regen ? GOOMBA_RIGHT : GOOMBA_OFFSCREEN;
endcase



always @(posedge vclock)
if (reset)
goomba_cmd = 5"b00000;
else case (goombaSTATE)

GOOMBA_RIGHT : goomba_cmd = 5"b00010;
GOOMBA_LEFT : goomba_cmd = 5"b00100;
GOOMBA_GRABBED : goomba_cmd = 5"b00000;
GOOMBA_FALLING : goomba_cmd = 5"b00000;
GOOMBA_FLOOR : goomba_cmd = 5"b00000;

GOOMBA_OFFSCREEN : goomba_cmd = 5"b00000;
default goomba_cmd = GOOMBA_RIGHT;
endcase

parameter GT_RIGHT = O;
parameter GT_REDGE = 1;
parameter GT_REDGEL
parameter GT_RTHROW
parameter GT_LEFT = 4;
parameter GT_LEDGE = 5

WN v

o

6

parameter GT_LEDGER =
parameter GT_LTHROW = 7;
parameter GT_STOPTHROW1 = 8;
parameter GT_STOPTHROW2 = 9;

reg[3:0] gtSTATE;
reg[4:0] gtCMD;
reg[19:0] gtCOUNT;

always @(posedge vclock)

if (reset)
gtCOUNT <= 207dO;

else if (gtSTATE == GT_REDGEL)
gtCOUNT <= gtCOUNT+1;

else if (QtSTATE == GT_LEDGER)
gtCOUNT <= gtCOUNT+1;

else gtCOUNT <= 20°dO;

always @(posedge vclock)
if (reset)
gtSTATE <= GT_RIGHT;
else case (QgtSTATE)

GT_RIGHT : gtSTATE <= nx_right_bound ? GT_REDGE : GT_RIGHT;
GT_REDGE : gtSTATE <= GT_REDGEL;

GT_REDGEL : gtSTATE <= (gtCOUNT == 5"b11111) ? GT_RTHROW : GT_REDGEL;
GT_RTHROW : gtSTATE <= stop_throw ? GT_STOPTHROW1 : GT_RTHROW;
GT_STOPTHROW1 : gtSTATE <= throw_DONE ? GT_LEFT : GT_STOPTHROW1;

GT_LEFT : gtSTATE <= nx_left_bound ? GT_LEDGE : GT_LEFT;

GT_LEDGE : gtSTATE <= GT_LEDGER;

GT_LEDGER : gtSTATE <= (gtCOUNT == 5%"b11111) ? GT_LTHROW : GT_LEDGER;
GT_LTHROW : gtSTATE <= stop_throw ? GT_STOPTHROW2 : GT_LTHROW ;

GT_STOPTHROW2 : gtSTATE <= throw_DONE ? GT_RIGHT : GT_STOPTHROWZ2;
default gtSTATE <= GT_RIGHT;
endcase

always @(posedge vclock)
if (reset)
gtCMD = 5"b00000;
else case (gtSTATE)

GT_RIGHT : gtCMD = 5"b00010;
GT_REDGE : gtCMD = 5%"b00000;
GT_REDGEL : gtCMD = 5"b00100;
GT_RTHROW : gtCMD = 5"b00001;
GT_STOPTHROW1 : gtCMD = 5"b00000;
GT_LEFT : gtCMD = 5"b00100;
GT_LEDGE : gtCMD = 5"b00000;
GT_LEDGER : gtCMD = 5"b00010;
GT_LTHROW : gtCMD = 5"b00001;
GT_STOPTHROWZ2 : gtCMD = 5%b00000;
default gtSTATE = 5"b00010;
endcase

//thrower Al

parameter THROWER_JUMP_IN = O;
parameter THROWER_THROW_1 = 1;
parameter THROWER_WALK_RIGHT = 2;
parameter THROWER_TURN_RL = 3

parameter THROWER_AT_RIGHT = 4;



// parameter THROWER_JUMP_LEFT = 5;

// parameter THROWER_THROW_2 = 6;

// parameter THROWER_WALK LEFT = 7;

// parameter THROWER_TURN_LR = 8;

// parameter THROWER_THROW_3 = 9;

// parameter THROWER_GRABBED = 10;

// parameter THROWER_FALLING = 11;

// parameter THROWER_FLOOR = 12;

// parameter THROWER_OFFSCREEN = 13;

//

//

// reg[3:0] throwerSTATE;

// reg[24:0] stopTurnAround;

// reg sTA;

// parameter STOPTA = 20000000; //change this to 20000000
//

// always @(posedge vclock)

// if (reset) begin

// stopTurnAround <= 247°dO0;

// STA <= 1"b0;

// end

// else if (stopTurnAround == STOPTA) begin

// stopTurnAround <= 247°dO0;

// STA <= 1"b1;

// end

// else if (throwerSTATE == THROWER_TURN_RL) begin
// stopTurnAround <= stopTurnAround+1;

// STA <= 1"b0;

// end

// else if (throwerSTATE == THROWER_AT_RIGHT) begin
// stopTurnAround <= stopTurnAround+1;

// STA <= 1"b0;

// end

// else if (throwerSTATE == THROWER_TURN_LR) begin
// stopTurnAround <= stopTurnAround+1;

// STA <= 1"b0;

// end

// else begin stopTurnAround <= stopTurnAround;
// STA <= 1"b0; end
//

// always @(posedge vclock)

// if (reset)

// throwerSTATE = THROWER_JUMP_IN;

// else if (GSTATE == JUST_GRABBED)

// throwerSTATE = THROWER_GRABBED;

// else if (nx_right_bound)

// throwerSTATE = THROWER_TURN_RL;

// else if (nx_left_bound)

// throwerSTATE = THROWER_TURN_LR;

// else case (throwerSTATE)

// THROWER_JUMP_IN = throwerSTATE
THROWER_JUMP_IN;

// THROWER_THROW_1 : throwerSTATE

THROWER_THROW_1;

// THROWER_WALK_RIGHT
THROWER_WALK_RIGHT;
// THROWER_TURN_RL : throwerSTATE
// THROWER_AT_RIGHT : throwerSTATE
THROWER_AT_RIGHT;
// THROWER_JUMP_LEFT : throwerSTATE
THROWER_JUMP_LEFT;

THROWER_THROW_2 : throwerSTATE =
THROWER_THROW_2;
// THROWER_WALK_LEFT : throwerSTATE
THROWER_WALK_LEFT;
// THROWER_TURN_LR : throwerSTATE
// THROWER_THROW_3 : throwerSTATE
THROWER_THROW_3;
// THROWER_GRABBED : throwerSTATE
// THROWER_FALLING : throwerSTATE
THROWER_FALLING;
// THROWER_FLOOR : throwerSTATE
THROWER_FLOOR;

THROWER_OFFSCREEN : throwerSTATE

THROWER_OFFSCREEN;
//
//
//
//

default throwerSTATE = THROWER_JUMP_IN;
endcase

reg[4:0] thrower_cmd;

jump_DONE ? THROWER_THROW_ 1 :

throw_DONE ? THROWER_WALK_RIGHT :

: throwerSTATE = nx_right_bound ? THROWER_TURN_RL :

STA 2 THROWER_AT_RIGHT : THROWER_TURN_RL;
throw_DONE ? THROWER_JUMP_LEFT -

Jump_DONE ? THROWER_THROW_2 :
throw_DONE ? THROWER_WALK_LEFT :
nx_left_bound ? THROWER_TURN_LR :

STA ? THROWER_THROW_3 : THROWER_TURN_LR;
throw_DONE ? THROWER_JUMP_IN :

THROWER_FALLING;
(GSTATE == ON_FLOOR) ? THROWER_FLOOR :

ninja_clear ? THROWER_OFFSCREEN :

regen ? THROWER_JUMP_IN :



always @(posedge vclock)

if (reset)
thrower_cmd = 5"b00000;

else if (stop_throw)
thrower_cmd = 5"b00000;

else case (throwerSTATE)
THROWER_JUMP_IN
THROWER_THROW_1
THROWER_WALK_RIGHT : throwe

: thrower_cmd
: thrower_cmd

5"b10010;
5"b00001;

r_cmd = 5"b00010;

THROWER_TURN_RL : thrower_cmd = 5"b00100;
THROWER_AT_RIGHT : thrower_cmd = 5"b00001;
THROWER_JUMP_LEFT : thrower_cmd = 5"b10100;
THROWER_THROW_2 - thrower_cmd = 5"b00001;
THROWER_WALK_LEFT : thrower_cmd = 5"b00100;
THROWER_TURN_LR : thrower_cmd = 5"b00010;
THROWER_THROW_3 : thrower_cmd = 5"b00001;
THROWER_GRABBED - thrower_cmd = 5"b00000;
THROWER_FALLING : thrower_cmd = 5"b00000;
THROWER_FLOOR : thrower_cmd = 5"b00000;
THROWER_OFFSCREEN : thrower_cmd = 5"b00000;

default thrower_cmd = 5%"b00000;
endcase

parameter CHICKEN_LEFT = O;
parameter CHICKEN_RIGHT = 1;
parameter CHICKEN_JUMP = 2;
parameter CHICKEN_WAIT= 3;

parameter THRESHHOLD_X_LEFT = 250;
parameter THRESHHOLD_ X RIGHT = 500;

reg[1:0] chickenSTATE;
reg[4:0] chicken_cmd;

always @(posedge vclock)
if (reset)
chickenSTATE <= CHICKEN_RIGHT;
else if (mx <= 6%d50)
chickenSTATE <= CHICKEN_RIGHT;
else if (mx >= 10"d740)
chickenSTATE <= CHICKEN_LEFT;

else if ((chickenSTATE == CHICKEN_RIGHT) && (nx_right_bound))

chickenSTATE <= CHICKEN_WAIT;

else if ((chickenSTATE == CHICKEN_LEFT) && (nx_left_bound))

chickenSTATE <= CHICKEN_WAIT;
else case (chickenSTATE)
CHICKEN_LEFT :

if ((ninja_x < THRESHHOLD_X_LEFT) && (mx < THRESHHOLD_X_LEFT))
chickenSTATE <= CHICKEN_JUMP;

else if ((ninja_x > THRESHHOLD_X_RIGHT) && (mx > THRESHHOLD_X_RIGHT))
chickenSTATE <= CHICKEN_JUMP;

else if (nx_left_bound || (ninja_x == 6"d50))
chickenSTATE <= CHICKEN_WAIT;

else if (nx_right_bound || (ninja_x == 10"d644))
chickenSTATE <= CHICKEN_WAIT;

else if (mx <= ninja_x)
chickenSTATE <= CHICKEN_RIGHT;

else if (mx >= ninja_x)
chickenSTATE <= CHICKEN_LEFT;

else chickenSTATE <= CHICKEN_LEFT;

CHICKEN_RIGHT :

if ((ninja_x > THRESHHOLD_X_RIGHT) && (mx > THRESHHOLD_X_RIGHT))
chickenSTATE <= CHICKEN_JUMP;

else if ((ninja_x < THRESHHOLD_X_RIGHT) && (mx < THRESHHOLD_X_RIGHT))
chickenSTATE <= CHICKEN_JUMP;

else if (nx_right_bound || (ninja_x == 10"d644))
chickenSTATE <= CHICKEN_WAIT;

else if (nx_left_bound || (ninja_x == 6"d50))
chickenSTATE <= CHICKEN_WAIT;

else if (mx > ninja_x)
chickenSTATE <= CHICKEN_LEFT;

else chickenSTATE <= CHICKEN_RIGHT;

CHICKEN_JUMP :

it (Jump_DONE == 1%b0)

chickenSTATE <= CHICKEN_JUMP;



else if (mx >= THRESHHOLD_X_RIGHT)
chickenSTATE <= CHICKEN_LEFT;
if (mx < THRESHHOLD_X_ LEFT)

chickenSTATE <= CHICKEN_RIGHT;

else

CHICKEN_WAIT :

endcase

iT ((chickenSTATE == CHICKEN_RIGHT) && (nx_right_bound))
chickenSTATE <= CHICKEN_LEFT;
if ((chickenSTATE == CHICKEN_LEFT) && (nx_left_bound))
chickenSTATE <= CHICKEN_RIGHT;
if (mx > THRESHHOLD_X_RIGHT)
chickenSTATE <= CHICKEN_LEFT;
if (nx < THRESHHOLD_X_LEFT)
chickenSTATE <= CHICKEN_RIGHT;
else chickenSTATE <= CHICKEN_WAIT;

else
else

else

always @(posedge vclock)

if (reset)

chicken_cmd = 5"b00000;
else case (chickenSTATE)

CHICKEN_LEFT
CHICKEN_RIGHT
CHICKEN_JUMP
CHICKEN_WAIT
default chicken_cmd = 5"b0000

endcase

assign up

gtCvMD[4];

assign down =
[31: i

assign left =
[21: i i

assign right =
[11: i

assign throw =
[01;
endmodule

module health_display(vclock, reset, hcount, vcount, hsync, vsync, blank, dec,
hsync_health, vsync_health, blank_health);

input vclock;
input reset;
input[10:0] hcount;
input[9:0] vcount;

(Alsel == 2"b00) ? goomba_cmd[2]
(Alsel == 2"b00) ? goomba_cmd[1]

(Alsel == 2"b00) ? goomba_cmd[O]

: chicken_cmd = 5"b00100;

: chicken_cmd = 5"b00010;

- chicken_cmd = 5"b10000;

: chicken_cmd = 5"b00000;
0-

= (Alsel == 2"b00) ? goomba_cmd[4] /* (Alsel == 2"b01) ? chicken_cmd[4] */:

(Alsel == 2"b00) ? goomba_cmd[3] /* (Alsel == 2"b01) ? chicken_cmd[3]

/*(Alsel == 27b01) ?
/*(Alsel == 27b01) ?

/*(Alsel == 2°b01) ?

inc, hRGB,

input hsync, vsync, blank;

input dec;
input inc;
output[2:0] hRGB;

output hsync_health, vsync_health, blank_health;

assign hsync_health
assign vsync_health
assign blank_health

hsync;
vsync;
blank;

parameter DEFAULT_HEALTH = 300;
parameter HEALTH_BAR_TOP = 25;

parameter
reg[9:0] health;
reg hRGB;

HEALTH_BAR_BOTTOM = 40;

always @(posedge vclock)

if(reset)

health <= 8"d300;

*/:

chicken_cmd[2]*/ :
chicken_cmd[1]*/ :

chicken_cmd[0]*/ :

gtCMD
gtCmMD
gtCMD

gtCmMD



else if (dec)
health
else if (inc)
health

<= health - 25;

<= health + 25;

else health <= health;

wire XxRange
wire yRange =

= (hcount >= 25) && (hcount < DEFAULT_HEALTH);
(vcount >= HEALTH_BAR_TOP) && (vcount < HEALTH_BAR_BOTTOM);

wire validRange = (XRange && yRange);

always @(posedge vclock)
if (validRange && (hcount <= health))

hRGB =

3"b010;

else if (validRange)

hRGB =

3"b100;

else hRGB = 3"b000;

endmodule

module Ninja display(vclock,

input vclock;
input reset;
input[10:0] hcount;
input[9:0] vcount;

reset,

X, Y,
walkSwitch, throwSwitch, command, face,
hcount, vcount, hsync, vsync, blank,
nhsync, nvsync, nblank, npixel);

// 40 mhz clock
// to help initialize module
// xvga horizontal count (0...799)
// xvga vertical count (0...599)

input hsync;
input vsync;
input blank;

input [11:0] x;

input [11:0] y;

input walkSwitch;
switched

input throwSwitch;
switched

input face;

input[2:0] command;

// ninjas vga signals
output nhsync;
output nvsync;
output nblank;
output[7:0] npixel;

// XVGA output Horizontal Sync Signal (active LOW)
// XVGA output Vertical Sync Signal (active LOW)
// XVGA output blank signal (1 means output Black pixel)

// x coordinate of where ninja should be displayed

// y coordinate of where ninja should be displayed
// goes HIGH when walk frame should be
//goes HIGH when throwFrame should be

// RIGHT of LEFT direction of ninja

assign nhsync = hsync;
assign nvsync = vsync;
assign nblank = blank;
// Width and Height dimensions for different animation frames 49 x 23

parameter WIDTH = 104;
parameter HEIGHT = 106;
parameter GRABBED W =
parameter GRABBED_H =

0 O«

//----Walk Frames---------
parameter W1 = O;
parameter W2 = 1;
parameter W3 =

//---Throw Frames------
parameter Tl = O;

parameter T2 = 1;
parameter T3 = 2;
parameter T4 = 5;

parameter THROWN’= 3;
parameter NOT_THROWN = 4;



//---Command parms-------
parameter RIGHT = O;
parameter LEFT = 1;
parameter UP = 2;
parameter DOWN =
parameter NOCMD
parameter THROW
parameter GRABBE

O

//---face states ---———————-
parameter RIGHT_FACE = O;
parameter LEFT_FACE = 1;

reg facestate;

reg[2:0] walkState, throwState;
reg[13:0] addr, addrREV;

reg[12:0] addr_grabbed, addr_grabbedREV;
wire[2:0] starBlob;

wire xRange = (hcount >= x) && (hcount < (Xx+WIDTH));
wire xRange_grab = (hcount >= x) && (hcount < (x+GRABBED_W));
wire yRange = (vcount >= y) && (vcount < (y+HEIGHT));

wire yRange_grab = (vcount >= y) && (vcount < (y+GRABBED_H));

wire validRange = (xRange && yRange);

wire validRange_grab = (xRange_grab && yRange_grab);

//"Reverse" address function
//assigns the address to red from pixel to
// invert image from left to right

//walk addresses
always @(posedge vclock)
if (hcount ==0 && vcount ==0)

begin
addrREV
addr_grabbedREV
end
else if (x < 0)
begin
addrREV
X)+WIDTH) ;
addr_grabbedREV
+GRABBED_W) ;
end
else begin
addrREV

. addrREV;

<= WIDTH-1;
<= GRABBED_W-1;

<= ((vcount-y)*((hcount-x)+WIDTH))+((hcount-

<= ((vcount-y)*((hcount-x)+GRABBED_W))+((hcount-x)

<= (validRange) ? ((vcount-y)*WIDTH)+((WIDTH-1)-(hcount-x))

addr_grabbedREV <= (validRange_grab) ? ((vcount-y)*GRABBED_W)+(GRABBED_W-(hcount-x)) :

addr_grabbedREV;
end

//regular address blocks
always @(posedge vclock)
if (hcount == 0 && vcount == 0)
addr <= 0;
else if (validRange)
addr <= addr+1;
else if (addr > 147°d11025)
addr <= 0;
else
addr <= addr;

always @(posedge vclock)
if (hcount == 0 && vcount == 0)
addr_grabbed <= 0;
else if (validRange_grab)

addr_grabbed <= addr_grabbed+1;

else if (addr_grabbed > 13"d8096)
addr_grabbed <= 0;

else
addr_grabbed <= addr_grabbed;

wire[7:0] walkl, walk2, walk3,



walk_revl, walk_rev2, walk_rev3,
walk_left, walk _right, walking,

grabbed, grabbed_rev,

throwl, throw2, slash,
throw_revl, throw_rev2, slash_rev,
throw_left, throw_right, throwing;

wire STAND_TRUE = (command == NOCMD);

wire WALK_TRUE = ((command == LEFT) || (command == RIGHT)); //assert if there is a walk cmd

wire THROW_TRUE = (command == THROW); //assert if
there is a throw cmd

wire GRAB_TRUE = (command == GRABBED);

always @(posedge vclock)
if (walkSwitch)

begin
case (walkState)
W1l : walkState = W2;
W2 : walkState = W3;
W3 : walkState = W1;
endcase
end
else walkState = walkState;
always @(posedge vclock)
if (reset)
throwState = THROWN;
else case (throwState)
T1 : throwState = throwSwitch ? T2 :
(command == THROW) ?
T1 : NOT_THROWN;
T2 : throwState = walkSwitch ? T3 :
(command == THROW) ?
T2 : NOT_THROWN;
T3 : throwState = throwSwitch ? THROWN :
(command == THROW) ?
T3 : NOT_THROWN;
THROWN : throwState = (command == THROW) ? THROWN : NOT_THROWN;

NOT_THROWN : throwState = (command == THROW) ? T1 : NOT_THROWN;
default throwState = NOT_THROWN;
endcase

//--- Walk Frame Logic ----—-————————————————— - ——
assign walk_right = (walkState == W1) ? walkl :
(walkState == W2) ? walk2 : walk3;
assign walk_left = (walkState == W1) ? walk_revl :
(walkState == W2) ? walk_rev2 : walk_rev3;
assign standing = (face == LEFT) ? walk _rev3 : walk3;
assign walking = (command == LEFT) ? walk_left : walk_right;

Y e e e e e e e
//---- Throw frame logic ---—————————————— -
wire showThrow = (throwState !'= NOT_THROWN); //should throw be animated?

assign throw_right = (throwState == T1) ? throwl+starBlob :
(throwState == T2) ? throw2+starBlob :
(throwState == T3) ? throw2+starBlob :
(validrRange) ? walk3+starBlob : 8%b11111111;

assign throw_left = (throwState == T1) ? throw_revl+starBlob :
(throwState == T2) ? throw_rev2+starBlob :
(throwState == T3) ? throw_rev2+starBlob :
(validRange) ? walk_rev3+starBlob : 8"b11111111;

assign npixel = (GRAB_TRUE && (validRange_grab) && (face == RIGHT)) ? grabbed :
(GRAB_TRUE && (validRange_grab) && (face == LEFT)) ? grabbed_rev :
(WALK_TRUE && (validRange) && (face == RIGHT)) ? walk_right :
(WALK_TRUE && (validRange) && (face == LEFT)) ? walk_left :
(THROW_TRUE && (validRange) && (face == RIGHT)) ? (throw_right) :
(THROW_TRUE && (validRange) && (face == LEFT)) ? (throw_left) :
(STAND_TRUE && (validRange) && (face == RIGHT)) ? walk3:
(STAND_TRUE && (validRange) && (face == LEFT)) ? walk_rev3 :



8"b11111111;

// ninja pixel reads from ROMS

// FACING RIGHT

ninja walk_1 walk_fl(addr, vclock, walkl); //not walking frame
ninja_walk_2 walk_f2(addr, vclock, walk2);

ninja_walk_3 walk_f3(addr, vclock, walk3);

ninja_grabbed ng (addr_grabbed, vclock, grabbed);

ninja_throw_1 ntl (addr, vclock, throwl);
ninja_throw_2 nt2 (addr, vclock, throw2);

// FACING LEFT

ninja_walk_1 walk_l1(addrREV, vclock, walk_revl);
ninja_walk_2 walk_12(addrREV, vclock, walk_rev2);
ninja_walk_3 walk_13(addrREV, vclock, walk_rev3);
ninja_grabbed ngr (addr_grabbedREV, vclock, grabbed_rev);

ninja_throw_1 ntlr (addrREV, vclock, throw_revl);
ninja_throw_2 nt2r (addrREV, vclock, throw_rev2);

endmodule
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